1
|
Utembe W, Kamng'ona AW. Inhalation exposure to chemicals, microbiota dysbiosis and adverse effects on humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176938. [PMID: 39414049 DOI: 10.1016/j.scitotenv.2024.176938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As revealed by culture-independent methodologies, disruption of the normal lung microbiota (LM) configuration (LM dysbiosis) is a potential mediator of adverse effects from inhaled chemicals. LM, which consists of microbiota in the upper and lower respiratory tract, is influenced by various factors, including inter alia environmental exposures. LM dysbiosis has been associated with multiple respiratory pathologies such as asthma, lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Chemically-induced LM dysbiosis appears to play significant roles in human respiratory diseases, as has been shown for some air pollutants, cigarette smoke and some inhalable chemical antibiotics. Lung microbiota are also linked with the central nervous system (CNS) in the so-called lung-brain axis. Inhaled chemicals that undergo mucociliary clearance may be linked to respiratory conditions through gut microbiota (GM) dysbiosis in the so-called Gut-Lung axis. However, current linkages of various disease states to LM appears to be associative, with causal linkages requiring further studies using more robust approaches, methods and techniques that are different from those applied in studies involving (GM). Most importantly, the sampling techniques determine the level of risk of cross contamination. Furthermore, the development of continuous or semi-continuous systems designed to replicate the lung microbiome will go a long way to further LM dysbiosis studies. These challenges notwithstanding, the preponderance of evidence points to the significant role of LM-mediated chemical toxicity in human disease and conditions.
Collapse
Affiliation(s)
- W Utembe
- Toxicology and Biochemistry Department, National Institute for Occupational Health, National Health Laboratory Services, Johannesburg 2000, South Africa; Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - A W Kamng'ona
- School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre Campus, Mahatma Gandhi Road, Blantyre 312224, Malawi
| |
Collapse
|
2
|
Azizi S, Hadi Dehghani M, Nabizadeh R. Ambient air fine particulate matter (PM10 and PM2.5) and risk of type 2 diabetes mellitus and mechanisms of effects: a global systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-20. [PMID: 39267465 DOI: 10.1080/09603123.2024.2391993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/08/2024] [Indexed: 09/17/2024]
Abstract
Type 2 diabetes causes early mortality worldwide. Air pollution's relationship with T2DM has been studied. The association between them is unclear because of inconsistent outcomes. Studies on this topic have been published since 2019, but not thoroughly evaluated. We conducted a systematic review and meta-analysis using relevant data. The study protocol was registered in PROSPIRO and conducted according to MOOSE guidelines. In total, 4510 manuscripts were found. After screening, 46 studies were assessed using the OHAT tool. This meta-analysis evaluated fine particles with T2DM using OR and HR effect estimates. Evaluation of publication bias was conducted by Egger's test, Begg's test, and funnel plot analysis. A sensitivity analysis was conducted to evaluate the influence of several studies on the total estimations. Results show a significant association between PM2.5 and PM10 exposure and T2DM. Long-term exposure to fine air particles may increase the prevalence and incidence of T2DM. Fine air pollution increases the chance of developing T2DM mainly via systemic inflammation, oxidative stress, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Salah Azizi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Stevenin G, Canonge J, Gervais M, Fiore A, Lareyre F, Touma J, Desgranges P, Raffort J, Sénémaud J. e-Health and environmental sustainability in vascular surgery. Semin Vasc Surg 2024; 37:333-341. [PMID: 39277350 DOI: 10.1053/j.semvascsurg.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
e-Health technology holds great promise for improving the management of patients with vascular diseases and offers a unique opportunity to mitigate the environmental impact of vascular care, which remains an under-investigated field. The innovative potential of e-Health operates in a complex environment with finite resources. As the expansion of digital health will increase demand for devices, contributing to the environmental burden of electronics and energy use, the sustainability of e-Health technology is of crucial importance, especially in the context of increasing prevalence of cardiovascular diseases. This review discusses the environmental impact of care related to vascular surgery and e-Health innovation, the potential of e-Health technology to mitigate greenhouse gas emissions generated by the health care sector, and to provide leads to research promoting e-Heath technology sustainability. A multifaceted approach, including ethical design, validated eco-audits methodology and reporting standards, technological refinement, electronic and medical devices reuse and recycling, and effective policies is required to provide a sustainable and optimal level of care to vascular patients.
Collapse
Affiliation(s)
- Gabrielle Stevenin
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France
| | - Jennifer Canonge
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France
| | - Marianne Gervais
- Université Paris-Est, Créteil, France; Institut Mondor de Recherche Biomédicale, U955 INSERM, Créteil, France
| | - Antonio Fiore
- Université Paris-Est, Créteil, France; Department of Cardiac Surgery, Henri Mondor University Hospital, Créteil, France
| | - Fabien Lareyre
- Department of Vascular Surgery, Hospital of Antibes Juan-les-Pins, France,; Université Côte d'Azur, Le Centre National de la Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France
| | - Joseph Touma
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France
| | - Pascal Desgranges
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France
| | - Juliette Raffort
- Université Côte d'Azur, Le Centre National de la Recherche Scientifique, UMR7370, LP2M, Nice, France; Fédération Hospitalo-Universitaire Plan&Go, Nice, France; Clinical Chemistry Laboratory, University Hospital of Nice, France; Institute 3IA Côte d'Azur, Université Côte d'Azur, France
| | - Jean Sénémaud
- Department of Vascular Surgery, Henri Mondor University Hospital, 1 rue Gustave Eiffel, 94000 Créteil, France; Université Paris-Est, Créteil, France; Laboratory for Vascular Translational Science, U1148 INSERM, Paris, France.
| |
Collapse
|
4
|
Alahmad B, Ali H, Alwadi Y, Al-Hemoud A, Koutrakis P, Al-Mulla F. Combined impact of heat and dust on diabetes hospitalization in Kuwait. BMJ Open Diabetes Res Care 2024; 12:e004320. [PMID: 39209775 PMCID: PMC11367401 DOI: 10.1136/bmjdrc-2024-004320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION In Kuwait, a severe diabetes and obesity epidemic coexists with intense dust storms and harsh summer heat. While, theoretically, this interplay between dust, heat, and diabetes presents a serious public health problem, the empirical understanding of the actual risks remains limited. We hypothesized that increased exposure to heat and dust, independently and jointly, exacerbates the risk of hospitalization for diabetes patients. RESEARCH DESIGN AND METHODS We placed custom-designed particle samplers in Kuwait to collect daily dust samples for 2 years from 2017 to 2019. Samples were analyzed for elemental concentrations to identify and quantify dust pollution days. Temperature data were collected from meteorological stations. We then collected hospitalization data for unplanned diabetic admissions in all public hospitals in Kuwait. We used a case-crossover study design and conditional quasi-Poisson models to compare hospitalization days to control days within the same subject. Finally, we fitted generalized additive models to explore the smoothed interaction between temperature and dust days on diabetes hospitalization. RESULTS There were 11 155 unplanned diabetes hospitalizations over the study period. We found that each year, there was an excess of 282 diabetic admissions attributed to hot days (95% CI: -14 to 473). Additionally, for every 10 µg/m3 increase in dust levels, there were about 114 excess diabetic admissions annually (95% CI: 11 to 219). Compared with mild non-dusty days (33°C (0 µg/m3)), hot-dusty days jointly increased the relative risk of diabetic admissions from 1.11 at 42°C (85 µg/m3) to 1.36 at 42°C (150 µg/m3). CONCLUSIONS Both heat and dust seem to contribute to the increased diabetes morbidity, with combined hot-dusty conditions exacerbating these risks even further.
Collapse
Affiliation(s)
- Barrak Alahmad
- Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hamad Ali
- Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, Kuwait
| | - Yazan Alwadi
- Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ali Al-Hemoud
- Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Petros Koutrakis
- Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Barbieri M, Prattichizzo F, La Grotta R, Matacchione G, Scisciola L, Fontanella RA, Tortorella G, Benedetti R, Carafa V, Marfella R, Ceriello A, Paolisso G. Is it time to revise the fighting strategy toward type 2 diabetes? Sex and pollution as new risk factors. Ageing Res Rev 2024; 99:102405. [PMID: 38971321 DOI: 10.1016/j.arr.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Diabetes mellitus, a metabolic condition affecting around 537 million individuals worldwide, poses significant challenges, particularly among the elderly population. The etiopathogenesis of type 2 diabetes (T2D) depends on a combination of the effects driven by advancing age, genetic background, and lifestyle habits, e.g. overnutrition. These factors influence the development of T2D differently in men and women, with an obvious sexual dimorphism possibly underlying the diverse clinical features of the disease in different sexes. More recently, environmental pollution, estimated to cause 9 million deaths every year, is emerging as a novel risk factor for the development of T2D. Indeed, exposure to atmospheric pollutants such as PM2.5, O3, NO2, and Persistent Organic Pollutants (POP)s, along with their combination and bioaccumulation, is associated with the development of T2D and obesity, with a 15 % excess risk in case of exposure to very high levels of PM2.5. Similar data are available for plasticizer molecules, e.g. bisphenol A and phthalates, emerging endocrine-disrupting chemicals. Even though causality is still debated at this stage, preclinical evidence sustains the ability of multiple pollutants to affect pancreatic function, promote insulin resistance, and alter lipid metabolism, possibly contributing to T2D onset and progression. In addition, preclinical findings suggest a possible role also for plastic itself in the development of T2D. Indeed, pioneeristic studies evidenced that micro- or nanoplastics (MNP)s, particles in the micro- or nano- range, promote cellular damage, senescence, inflammation, and metabolic disturbances, leading to insulin resistance and impaired glucose metabolism in animal and/or in vitro models. Here we synthesize recent knowledge relative to the association between air-related or plastic-derived pollutants and the incidence of T2D, discussing also the possible mechanistic links suggested by the available literature. We then anticipate the need for future studies in the field of candidate therapeutic strategies limiting pollution-induced damage in preclinical models, such as SGLT-2 inhibitors. We finally postulate that future guidelines for T2D prevention should consider pollution and sex an additional risk factors to limit the diabetes pandemic.
Collapse
Affiliation(s)
- Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Giulia Matacchione
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy.
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples 80138, Italy; Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino 83031, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| |
Collapse
|
6
|
Niedermayer F, Wolf K, Zhang S, Dallavalle M, Nikolaou N, Schwettmann L, Selsam P, Hoffmann B, Schneider A, Peters A. Sex-specific associations of environmental exposures with prevalent diabetes and obesity - Results from the KORA Fit study. ENVIRONMENTAL RESEARCH 2024; 252:118965. [PMID: 38642640 DOI: 10.1016/j.envres.2024.118965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Promising evidence suggests a link between environmental factors, particularly air pollution, and diabetes and obesity. However, it is still unclear whether men and women are equally susceptible to environmental exposures. Therefore, we aimed to assess sex-specific long-term effects of environmental exposures on metabolic diseases. We analyzed cross-sectional data from 3,034 participants (53.7% female, aged 53-74 years) from the KORA Fit study (2018/19), a German population-based cohort. Environmental exposures, including annual averages of air pollutants [nitrogen oxides (NO2, NOx), ozone, particulate matter of different diameters (PM10, PMcoarse, PM2.5), PM2.5abs, particle number concentration], air temperature and surrounding greenness, were assessed at participants' residences. We evaluated sex-specific associations of environmental exposures with prevalent diabetes, obesity, body-mass-index (BMI) and waist circumference using logistic or linear regression models with an interaction term for sex, adjusted for age, lifestyle factors and education. Further effect modification, in particular by urbanization, was assessed in sex-stratified analyses. Higher annual averages of air pollution, air temperature and greenness at residence were associated with diabetes prevalence in men (NO2: Odds Ratio (OR) per interquartile range increase in exposure: 1.49 [95% confidence interval (CI): 1.13, 1.95], air temperature: OR: 1.48 [95%-CI: 1.15, 1.90]; greenness: OR: 0.78 [95%-CI: 0.59, 1.01]) but not in women. Conversely, higher levels of air pollution, temperature and lack of greenness were associated with lower obesity prevalence and BMI in women. After including an interaction term for urbanization, only higher greenness was associated with higher BMI in rural women, whereas higher air pollution was associated with higher BMI in urban men. To conclude, we observed sex-specific associations of environmental exposures with metabolic diseases. An additional interaction between environmental exposures and urbanization on obesity suggests a higher susceptibility to air pollution among urban men, and higher susceptibility to greenness among rural women, which needs corroboration in future studies.
Collapse
Affiliation(s)
- Fiona Niedermayer
- Chair of Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, United States
| | - Marco Dallavalle
- Chair of Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nikolaos Nikolaou
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lars Schwettmann
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Peter Selsam
- Department Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research GmbH-UFZ, Leipzig, Germany
| | - Barbara Hoffmann
- Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Chair of Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Neuherberg, Germany
| |
Collapse
|
7
|
Zhang B, Mendes de Leon CF, Langa KM, Weuve J, Szpiro A, Faul J, D’Souza J, Kaufman JD, Hirth RA, Lisabeth LD, Gao J, Adar SD. Source-Specific Air Pollution and Loss of Independence in Older Adults Across the US. JAMA Netw Open 2024; 7:e2418460. [PMID: 38941096 PMCID: PMC11214115 DOI: 10.1001/jamanetworkopen.2024.18460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/23/2024] [Indexed: 06/29/2024] Open
Abstract
Importance Air pollution is a recognized risk factor associated with chronic diseases, including respiratory and cardiovascular conditions, which can lead to physical and cognitive impairments in later life. Although these losses of function, individually or in combination, reduce individuals' likelihood of living independently, little is known about the association of air pollution with this critical outcome. Objective To investigate associations between air pollution and loss of independence in later life. Design, Setting, and Participants This cohort study was conducted as part of the Environmental Predictors Of Cognitive Health and Aging study and used 1998 to 2016 data from the Health and Retirement Study. Participants included respondents from this nationally representative, population-based cohort who were older than 50 years and had not previously reported a loss of independence. Analyses were performed from August 31 to October 15, 2023. Exposures Mean 10-year pollutant concentrations (particulate matter less than 2.5 μm in diameter [PM2.5] or ranging from 2.5 μm to 10 μm in diameter [PM10-2.5], nitrogen dioxide [NO2], and ozone [O3]) were estimated at respondent addresses using spatiotemporal models along with PM2.5 levels from 9 emission sources. Main Outcomes and Measures Loss of independence was defined as newly receiving care for at least 1 activity of daily living or instrumental activity of daily living due to health and memory problems or moving to a nursing home. Associations were estimated with generalized estimating equation regression adjusting for potential confounders. Results Among 25 314 respondents older than 50 years (mean [SD] baseline age, 61.1 [9.4] years; 11 208 male [44.3%]), 9985 individuals (39.4%) experienced lost independence during a mean (SD) follow-up of 10.2 (5.5) years. Higher exposure levels of mean concentration were associated with increased risks of lost independence for total PM2.5 levels (risk ratio [RR] per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.10), PM2.5 levels from road traffic (RR per 1-IQR of 10-year mean, 1.09; 95% CI, 1.03-1.16) and nonroad traffic (RR per 1-IQR of 10-year mean, 1.13; 95% CI, 1.03-1.24), and NO2 levels (RR per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.08). Compared with other sources, traffic-generated pollutants were most consistently and robustly associated with loss of independence; only road traffic-related PM2.5 levels remained associated with increased risk after adjustment for PM2.5 from other sources (RR per 1-IQR increase in 10-year mean concentration, 1.10; 95% CI, 1.00-1.21). Other pollutant-outcome associations were null, except for O3 levels, which were associated with lower risks of lost independence (RR per 1-IQR increase in 10-year mean concentration, 0.94; 95% CI, 0.92-0.97). Conclusions and Relevance This study found that long-term exposure to air pollution was associated with the need for help for lost independence in later life, with especially large and consistent increases in risk for pollution generated by traffic-related sources. These findings suggest that controlling air pollution could be associated with diversion or delay of the need for care and prolonged ability to live independently.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | | | - Kenneth M. Langa
- Institute for Social Research, University of Michigan, Ann Arbor
- University of Michigan Medical School, Ann Arbor
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Adam Szpiro
- Department of Biostatistics, University of Washington, Seattle
| | - Jessica Faul
- Institute for Social Research, University of Michigan, Ann Arbor
| | - Jennifer D’Souza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Joel D. Kaufman
- Department of Epidemiology, University of Washington, Seattle
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Richard A. Hirth
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Lynda D. Lisabeth
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Jiaqi Gao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Sara D. Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
8
|
Badpa M, Schneider A, Schwettmann L, Thorand B, Wolf K, Peters A. Air pollution, traffic noise, greenness, and temperature and the risk of incident type 2 diabetes: Results from the KORA cohort study. Environ Epidemiol 2024; 8:e302. [PMID: 38617422 PMCID: PMC11008658 DOI: 10.1097/ee9.0000000000000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/12/2024] [Indexed: 04/16/2024] Open
Abstract
Introduction Type 2 diabetes (T2D) is a major public health concern, and various environmental factors have been associated with the development of this disease. This study aimed to investigate the longitudinal effects of multiple environmental exposures on the risk of incident T2D in a German population-based cohort. Methods We used data from the KORA cohort study (Augsburg, Germany) and assessed exposure to air pollutants, traffic noise, greenness, and temperature at the participants' residencies. Cox proportional hazard models were used to analyze the associations with incident T2D, adjusting for potential confounders. Results Of 7736 participants included in the analyses, 10.5% developed T2D during follow-up (mean: 15.0 years). We found weak or no association between environmental factors and the risk of T2D, with sex and education level significantly modifying the effects of air pollutants. Conclusion Our study contributes to the growing body of literature investigating the impact of environmental factors on T2D risks and suggests that the impact of environmental factors may be small.
Collapse
Affiliation(s)
- Mahnaz Badpa
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Lars Schwettmann
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Munich, Germany
- Department of Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
| |
Collapse
|
9
|
Zhou Y, Xu B, Wang L, Sun Q, Zhang C, Li S. Effects of inhaled fine particulate matter on the lung injury as well as gut microbiota in broilers. Poult Sci 2024; 103:103426. [PMID: 38335666 PMCID: PMC10869302 DOI: 10.1016/j.psj.2024.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024] Open
Abstract
Fine particulate matter (PM2.5) has been widely regarded as an important environmental risk factor that has widely influenced health of both animals and humans. Lung injury is the main cause of PM2.5 affecting respiratory tract health. Gut microbiota participates in the development of lung injury in many pathological processes. However, there is still unknown the specific effects of PM2.5 on the gut-lung axis in broilers. Thus, we conducted a broiler model based on 3-wk-old male Arbor Acres broiler to explore the underlying mechanism. Our results showed that PM2.5 exposure triggered TLR4 signaling pathway and induced the increase of IL-6, IFN-γ, TNF-α expression as well as the decrease of IL-10 expression in the lung. Inhaled PM2.5 exposure significantly altered the gut microbiota diversity and community. Specifically, PM2.5 exposure decreased α diversity and altered β diversity of gut microbiota, and reduced the abundance of DTU089, Oscillospirales, Staphylococcus, and increased the Escherichia-Shigella abundance, leading to the increase of gut-derived lipopolysaccharides (LPS). Moreover, PM2.5 significantly disrupted the intestinal epithelial barrier by reducing the expression of muc2 and claudin-1 to increase intestinal permeability, which possibly facilitated the LPS translocation into the blood. Spearman analysis revealed that gut microbiota dysbiosis was positively related to TLR4, TNF-α, and IFN-γ expression in the lung. In summary, our results showed that PM2.5 exposure induced lung injury by causing inflammation and triggering TLR4 signaling pathway, and also induced gut microbiota dysbiosis resulting in the overproduction of gut-derived LPS. And gut microbiota dysbiosis may be associated with lung injury. The above results provide basis data to comprehend the potential role of gut microbiota dysbiosis in the lung injury as well as providing a new regulatory target for alleviating lung injury associated with environmental pollutants.
Collapse
Affiliation(s)
- Ying Zhou
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bin Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Linyi Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Quanyou Sun
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chaoshuai Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
10
|
Godin R, Hejazi S, Reuel NF. Advancements in Airborne Viral Nucleic Acid Detection with Wearable Devices. ADVANCED SENSOR RESEARCH 2024; 3:2300061. [PMID: 38764891 PMCID: PMC11101210 DOI: 10.1002/adsr.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 05/21/2024]
Abstract
Wearable health sensors for an expanding range of physiological parameters have experienced rapid development in recent years and are poised to disrupt the way healthcare is tracked and administered. The monitoring of environmental contaminants with wearable technologies is an additional layer of personal and public healthcare and is also receiving increased focus. Wearable sensors that detect exposure to airborne viruses could alert wearers of viral exposure and prompt proactive testing and minimization of viral spread, benefitting their own health and decreasing community risk. With the high levels of asymptomatic spread of COVID-19 observed during the pandemic, such devices could dramatically enhance our pandemic response capabilities in the future. To facilitate advancements in this area, this review summarizes recent research on airborne viral detection using wearable sensing devices as well as technologies suitable for wearables. Since the low concentration of viral particles in the air poses significant challenges to detection, methods for airborne viral particle collection and viral sensing are discussed in detail. A special focus is placed on nucleic acid-based viral sensing mechanisms due to their enhanced ability to discriminate between viral subtypes. Important considerations for integrating airborne viral collection and sensing on a single wearable device are also discussed.
Collapse
Affiliation(s)
- Ryan Godin
- Department of Chemical and Biological Engineering, Iowa State University
| | - Sepehr Hejazi
- Department of Chemical and Biological Engineering, Iowa State University
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University
| |
Collapse
|
11
|
Goldney J, Henson J, Edwardson CL, Khunti K, Davies MJ, Yates T. Long-term ambient air pollution exposure and prospective change in sedentary behaviour and physical activity in individuals at risk of type 2 diabetes in the UK. J Public Health (Oxf) 2024; 46:e32-e42. [PMID: 38103023 PMCID: PMC10901272 DOI: 10.1093/pubmed/fdad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Air pollution may be a risk factor for physical inactivity and sedentary behaviour (SED) through discouraging active lifestyles, impairing fitness and contributing to chronic diseases with potentially important consequences for population health. METHODS Using generalized estimating equations, we examined the associations between long-term particulate matter with diameter ≤2.5 μm (PM2.5), ≤10 μm (PM10) and nitrogen dioxide (NO2) and annual change in accelerometer-measured SED, moderate-to-vigorous physical activity (MVPA) and steps in adults at risk of type 2 diabetes within the Walking Away from Type 2 Diabetes trial. We adjusted for important confounders including social deprivation and measures of the built environment. RESULTS From 808 participants, 644 had complete data (1605 observations; 64.7% men; mean age 63.86 years). PM2.5, NO2 and PM10 were not associated with change in MVPA/steps but were associated with change in SED, with a 1 ugm-3 increase associated with 6.38 (95% confidence interval: 0.77, 12.00), 1.52 (0.49, 2.54) and 4.48 (0.63, 8.34) adjusted annual change in daily minutes, respectively. CONCLUSIONS Long-term PM2.5, NO2 and PM10 exposures were associated with an annual increase in SED: ~11-22 min/day per year across the sample range of exposure (three standard deviations). Future research should investigate whether interventions to reduce pollution may influence SED.
Collapse
Affiliation(s)
- Jonathan Goldney
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
| | - Joseph Henson
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
| | - Charlotte L Edwardson
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
- Leicester Real World Evidence Unit, Leicester Diabetes Centre, University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
| | - Melanie J Davies
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
| | - Thomas Yates
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Gwendolen Rd, Leicester LE5 4PW, UK
| |
Collapse
|
12
|
Wang M, He Y, Zhao Y, Zhang L, Liu J, Zheng S, Bai Y. Exposure to PM 2.5 and its five constituents is associated with the incidence of type 2 diabetes mellitus: a prospective cohort study in northwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:34. [PMID: 38227152 DOI: 10.1007/s10653-023-01794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/31/2023] [Indexed: 01/17/2024]
Abstract
Studies have demonstrated that fine particulate matter (PM2.5) is an underlying risk factor for type 2 diabetes mellitus (T2DM), but evidence exploring the relationship between PM2.5 chemical components and T2DM was extremely limited, to investigate the effects of long-term exposure to PM2.5 and its five constituents (sulfate [SO42-], nitrate [NO3-], ammonium [NH4+]), organic matter [OM] and black carbon [BC]) on incidence of T2DM. Based on the "Jinchang Cohort" platform, a total of 19,884 participants were selected for analysis. Daily average concentrations of pollutants were gained from Tracking Air Pollution in China (TAP). Cox proportional hazards regression models were utilized to estimate the hazard ratios (HR) and 95% confidence interval (CI) in single-pollutant models, restricted cubic splines functions were used to examine the dose-response relationships, and quantile g-computation (QgC) was applied to evaluate the combined effect of PM2.5 compositions on T2DM. Stratification analysis was also considered. A total of 791 developed new cases of T2DM were observed during a follow-up period of 45254.16 person-years. The concentrations of PM2.5, NO3-, NH4+, OM and BC were significantly associated with incidence of T2DM (P-trend < 0.05), with the HRs in the highest quartiles of 2.16 (95% CI 1.79, 2.62), 1.43 (95% CI 1.16, 1.75), 1.75 (95% CI 1.45, 2.11), 1.31 (95% CI 1.08, 1.59) and 1.79 (95% CI 1.46, 2.21), respectively. Findings of QgC model showed a noticeably positive joint effect of one quartile increase in PM2.5 constituents on increased T2DM morbidity (HR 1.27, 95% CI 1.09, 1.49), and BC (32.7%) contributed the most to the overall effect. The drinkers, workers and subjects with hypertension, obesity, higher physical activity, and lower education and income were generally more susceptible to PM2.5 components hazards. Long-term exposure to PM2.5 and its components (i.e., NO3-, NH4+, OM, BC) was positively correlated with T2DM incidence. Moreover, BC may be the most responsible for the association between PM2.5 constituents and T2DM. In the future, more epidemiological and experimental studies are needed to identify the link and potential biological mechanisms.
Collapse
Affiliation(s)
- Minzhen Wang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, China
| | - Yingqian He
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, China
| | - Yanan Zhao
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, China
| | - Lulu Zhang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, China
| | - Jing Liu
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, China
| | - Shan Zheng
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, China.
| | - Yana Bai
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 199 Donggang West Road, Lanzhou, 730000, China
| |
Collapse
|
13
|
McAlexander TP, Ryan V, Uddin J, Kanchi R, Thorpe L, Schwartz BS, Carson A, Rolka DB, Adhikari S, Pollak J, Lopez P, Smith M, Meeker M, McClure LA. Associations between PM 2.5 and O 3 exposures and new onset type 2 diabetes in regional and national samples in the United States. ENVIRONMENTAL RESEARCH 2023; 239:117248. [PMID: 37827369 DOI: 10.1016/j.envres.2023.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Exposure to particulate matter ≤2.5 μm in diameter (PM2.5) and ozone (O3) has been linked to numerous harmful health outcomes. While epidemiologic evidence has suggested a positive association with type 2 diabetes (T2D), there is heterogeneity in findings. We evaluated exposures to PM2.5 and O3 across three large samples in the US using a harmonized approach for exposure assignment and covariate adjustment. METHODS Data were obtained from the Veterans Administration Diabetes Risk (VADR) cohort (electronic health records [EHRs]), the Reasons for Geographic and Racial Disparities in Stroke (REGARDS) cohort (primary data collection), and the Geisinger health system (EHRs), and reflect the years 2003-2016 (REGARDS) and 2008-2016 (VADR and Geisinger). New onset T2D was ascertained using EHR information on medication orders, laboratory results, and T2D diagnoses (VADR and Geisinger) or report of T2D medication or diagnosis and/or elevated blood glucose levels (REGARDS). Exposure was assigned using pollutant annual averages from the Downscaler model. Models stratified by community type (higher density urban, lower density urban, suburban/small town, or rural census tracts) evaluated likelihood of new onset T2D in each study sample in single- and two-pollutant models of PM2.5 and O3. RESULTS In two pollutant models, associations of PM2.5, and new onset T2D were null in the REGARDS cohort except for in suburban/small town community types in models that also adjusted for NSEE, with an odds ratio (95% CI) of 1.51 (1.01, 2.25) per 5 μg/m3 of PM2.5. Results in the Geisinger sample were null. VADR sample results evidenced nonlinear associations for both pollutants; the shape of the association was dependent on community type. CONCLUSIONS Associations between PM2.5, O3 and new onset T2D differed across three large study samples in the US. None of the results from any of the three study populations found strong and clear positive associations.
Collapse
Affiliation(s)
- Tara P McAlexander
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA.
| | - Victoria Ryan
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Jalal Uddin
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rania Kanchi
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Lorna Thorpe
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - April Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA
| | - Deborah B Rolka
- Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samrachana Adhikari
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Jonathan Pollak
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Priscilla Lopez
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Megan Smith
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Melissa Meeker
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| |
Collapse
|
14
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Xu H, Xu H, Wu J, Wang L, Guo B, Li W, Zhang J, Xiao X, Zhao X. Ambient air pollution exposure, plasma metabolomic markers, and risk of type 2 diabetes: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132844. [PMID: 39491993 DOI: 10.1016/j.jhazmat.2023.132844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Both air pollution (AP) and impaired lipid metabolism contribute to type 2 diabetes (T2D). However, little is known about the detailed associations of AP to lipidomic markers and the specific lipid metabolomic profile that mediates the impact of AP on incident T2D. We aimed to examine the associations between long-term AP exposure, plasma metabolomic markers, and incident T2D, and subsequently determine the lipid metabolomic profile that mediates the relationship between AP and T2D. METHODS This prospective study included 82,548 participants from the UK Biobank without a history of T2D at baseline. Baseline plasma samples were analyzed using the nuclear magnetic resonance (NMR) metabolomic platform, which measured 168 metabolomic markers, including lipids, lipoprotein subclasses, and other circulating metabolites. Land Use Regression models were utilized to estimate annual average concentrations of PM2.5 and NO2. The associations among AP, metabolomic markers, and T2D were investigated using multivariable linear regressions and Cox proportional hazards models. Mediation analyses were performed to assess the role of each metabolomic marker in the AP-T2D relationship. Furthermore, principal component (PC) analysis was conducted on 168 metabolomic markers to extract metabolic patterns. These patterns were utilized to determine their associations with AP and T2D, as well as their mediating role in the AP-T2D relationship. RESULTS We found that long-term AP exposure was associated with some lipid metabolites, including ApoA1, HDL concentration, HDL size, and lipid components within HDL, especially in very large, large, and medium HDL, as well as some other lipids, fatty acids, amino acids, glucose, and glycoprotein acetyls. In pairwise mediation analysis, these metabolites exhibited significant mediation effects in the AP-T2D relationship. We identified six PCS representing distinct metabolic patterns. Long-term exposure to PM2.5 and NO2 showed significantly negative associations with PC2 (characterized by high levels of ApoA1, larger HDL, other lipids, and low levels of larger VLDL). PC2 mediated 12.3% and 10.3% of the associations of PM2.5 and NO2 with incident T2D, respectively. CONCLUSIONS This study revealed the associations of AP with various lipid metabolites. A lipid metabolomic profile characterized by ApoA1 and larger HDL may mediate the association between AP and incident T2D.
Collapse
Affiliation(s)
- Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jialong Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Somayajulu M, McClellan SA, Muhammed F, Wright R, Hazlett LD. PM 10 and Pseudomonas aeruginosa: effects on corneal epithelium. Front Cell Infect Microbiol 2023; 13:1240903. [PMID: 37868351 PMCID: PMC10585254 DOI: 10.3389/fcimb.2023.1240903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose In vivo data indicate that mouse corneas exposed to PM10 showed early perforation and thinning after infection with Pseudomonas aeruginosa. To understand the mechanisms underlying this finding, we tested the effects of PM10 and the mitochondria targeted anti-oxidant SKQ1 in immortalized human corneal epithelial cells (HCET) that were challenged with Pseudomonas aeruginosa strain 19660. Methods Mouse corneas were infected with strain 19660 after a 2 week whole-body exposure to PM10 or control air and assessed by clinical scores, slit lamp photography and western blot. HCET were exposed to 100μg/ml PM10 for 24h before challenge with strain 19660 (MOI 20). A subset of cells were pre-treated with 50nM SKQ1 for 1h before PM10 exposure. Phase contrast microscopy was used to study cell morphology, cell viability was measured by an MTT assay, and ROS by DCFH-DA. Levels of pro-inflammatory markers and anti-oxidant enzymes were evaluated by RT-PCR, western blot and ELISA. Reduced glutathione (GSH) and malondialdehyde (MDA) levels were evaluated by assay kits. Results In vivo, whole body exposure to PM10 vs. control air exposed mouse corneas showed early perforation and/or corneal thinning at 3 days post infection, accompanied by increased TNF-α and decreased SOD2 protein levels. In vitro, PM10 induced a dose dependent reduction in cell viability of HCET and significantly increased mRNA levels of pro-inflammatory molecules compared to control. Exposure to PM10 before bacterial challenge further amplified the reduction in cell viability and GSH levels. Furthermore, PM10 exposure also exacerbated the increase in MDA and ROS levels and phase contrast microscopy revealed more rounded cells after strain 19660 challenge. PM10 exposure also further increased the mRNA and protein levels of pro-inflammatory molecules, while anti-inflammatory IL-10 was decreased. SKQ1 reversed the rounded cell morphology observed by phase contrast microscopy, increased levels of MDA, ROS and pro-inflammatory molecules, and restored IL-10. Conclusions PM10 induces decreased cell viability, oxidative stress and inflammation in HCET and has an additive effect upon bacterial challenge. SKQ1 protects against oxidative stress and inflammation induced by PM10 after bacterial challenge by reversing these effects. The findings provide insight into mechanisms underlying early perforation and thinning observed in infected corneas of PM10 exposed mice.
Collapse
Affiliation(s)
| | | | | | | | - Linda D. Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
17
|
Duchesne J, Carrière I, Artero S, Brickman AM, Maller J, Meslin C, Chen J, Vienneau D, de Hoogh K, Jacquemin B, Berr C, Mortamais M. Ambient Air Pollution Exposure and Cerebral White Matter Hyperintensities in Older Adults: A Cross-Sectional Analysis in the Three-City Montpellier Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107013. [PMID: 37878794 PMCID: PMC10599635 DOI: 10.1289/ehp12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Growing epidemiological evidence suggests an adverse relationship between exposure to air pollutants and cognitive health, and this could be related to the effect of air pollution on vascular health. OBJECTIVE We aim to evaluate the association between air pollution exposure and a magnetic resonance imaging (MRI) marker of cerebral vascular burden, white matter hyperintensities (WMH). METHODS This cross-sectional analysis used data from the French Three-City Montpellier study. Randomly selected participants 65-80 years of age underwent an MRI examination to estimate their total and regional cerebral WMH volumes. Exposure to fine particulate matter (PM 2.5 ), nitrogen dioxide (NO 2 ), and black carbon (BC) at the participants' residential address during the 5 years before the MRI examination was estimated with land use regression models. Multinomial and binomial logistic regression assessed the associations between exposure to each of the three pollutants and categories of total and lobar WMH volumes. RESULTS Participants' (n = 582 ) median age at MRI was 70.7 years [interquartile range (IQR): 6.1], and 52% (n = 300 ) were women. Median exposure to air pollution over the 5 years before MRI acquisition was 24.3 (IQR: 1.7) μ g / m 3 for PM 2.5 , 48.9 (14.6) μ g / m 3 for NO 2 , and 2.66 (0.60) 10 - 5 / m for BC. We found no significant association between exposure to the three air pollutants and total WMH volume. We found that PM 2.5 exposure was significantly associated with higher risk of temporal lobe WMH burden [odds ratio (OR) for an IQR increase = 1.82 (95% confidence interval: 1.41, 2.36) for the second volume tercile, 2.04 (1.59, 2.61) for the third volume tercile, reference: first volume tercile]. Associations for other regional WMH volumes were inconsistent. CONCLUSION In this population-based study in older adults, PM 2.5 exposure was associated with increased risk of high WMH volume in the temporal lobe, strengthening the evidence on PM 2.5 adverse effect on the brain. Further studies looking at different markers of cerebrovascular damage are still needed to document the potential vascular effects of air pollution. https://doi.org/10.1289/EHP12231.
Collapse
Affiliation(s)
- Jeanne Duchesne
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Isabelle Carrière
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Sylvaine Artero
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Adam M. Brickman
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, USA
| | - Jerome Maller
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
- General Electric Healthcare, Richmond, Victoria, Australia
| | - Chantal Meslin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Jie Chen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Bénédicte Jacquemin
- Irset Institut de Recherche en Santé, Environnement et Travail, UMR-S 1085, Inserm, University of Rennes, EHESP, Rennes, France
| | - Claudine Berr
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Marion Mortamais
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| |
Collapse
|
18
|
Dehghani S, Yousefi S, Oskoei V, Tazik M, Moradi MS, Shaabani M, Vali M. Ecological study on household air pollution exposure and prevalent chronic disease in the elderly. Sci Rep 2023; 13:11763. [PMID: 37474604 PMCID: PMC10359274 DOI: 10.1038/s41598-023-39059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Older people spend most of their time indoors. Limited evidence demonstrates that exposure to indoor air pollutants might be related to chronic complications. This study aimed to estimate the correlation between household air pollution (HAP)'s long-term exposure and the prevalence of elevated hypertension, diabetes mellitus (DM), obesity, and low-density lipoprotein (LDL) cholesterol. From the Global Burden disease dataset, we extracted HAP, hypertension, DM, body mass index, and LDL cholesterol data from Iran from 1990 to 2019 to males and females in people over 50 years. We present APC and AAPC and their confidence intervals using Joinpoint Software statistical software. R software examined the correlation between HAP and hypertension, DM2, Obesity, and high LDL cholesterol. Our finding showed a significant and positive correlation between HAP exposure and prevalence of high low-density lipoprotein cholesterol (p ≤ 0.001, r = 0.70), high systolic blood pressure (p ≤ 0.001, r = 0.63), and high body mass index (p ≤ 0.001, r = 0.57), and DM2 (p ≤ 0.001, r = 0.38). The analysis results also illustrated a positive correlation between indoor air pollution and smoking (p ≤ 0.001, r = 0.92). HAP exposure might be a risk factor for elevated blood pressure, DM, obesity, and LDL cholesterol and, consequently, more serious health problems. According to our results, smoking is one of the sources of HAP. However, ecological studies cannot fully support causal relationships, and this article deals only with Iran. Our findings should be corroborated in personal exposure and biomonitoring approach studies.
Collapse
Affiliation(s)
- Samaneh Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahide Oskoei
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Moslem Tazik
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sanyar Moradi
- Department of Occupational Health and Safety Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Shaabani
- Education (and Training) Office of Hendijan, Hendijan, Khuzestan, Iran
| | - Mohebat Vali
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Shin MK, Kim KN. Association between long-term air pollution exposure and development of diabetes among community-dwelling adults: Modification of the associations by dietary nutrients. ENVIRONMENT INTERNATIONAL 2023; 174:107908. [PMID: 37004480 DOI: 10.1016/j.envint.2023.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Studies on the modifying effects of dietary factors on the association between air pollution and diabetes-related outcomes are limited. We examined whether dietary nutrients could modify the association between long-term air pollution exposure and the development of diabetes. METHODS We used data from the Cardiovascular Disease Association Study, which enrolled adults aged 40-69 years in Korea between 2005 and 2011 and followed them up until 2016 (n = 14,667). Annual concentrations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) at each participant's residence(s) were estimated using community multiscale air quality models. Intake of 22 dietary nutrients was assessed using a validated food frequency questionnaire during the baseline survey. We examined the product terms between air pollution levels (continuous) and each dietary nutrient (quartile) using Cox regression models, adjusted for potential confounders. RESULTS PM2.5 [hazard ratio (HR) = 1.49, 95 % confidence interval (CI): 1.11, 2.00] and NO2 (HR = 1.29, 95 % CI: 1.12, 1.49) concentrations were found to be associated with incident diabetes. NO2 levels interacted with dietary intake of retinol, vitamin A, and cholesterol (p-values for interaction < 0.05). Stronger associations were observed between NO2 levels and the occurrence of diabetes among individuals with a lower intake of these nutrients compared to those with a higher intake. No interaction was found between PM2.5 and the 22 investigated dietary nutrients. CONCLUSIONS Adequate intake of dietary nutrients, such as retinol, vitamin A, and cholesterol, from various food items in a balanced diet may prevent the occurrence of diabetes in a setting wherein reduction of air pollution levels cannot be achieved in a short time frame.
Collapse
Affiliation(s)
- Moon-Kyung Shin
- Department of Preventive, Hanyang University College of Medicine, Seoul, Republic of Korea; Institute for Health and Society, Hanyang University, Seoul, Republic of Korea
| | - Kyoung-Nam Kim
- Department of Preventive, Hanyang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Al-Shihabi F, Moore A, Chowdhury TA. Diabetes and climate change. Diabet Med 2023; 40:e14971. [PMID: 36209378 DOI: 10.1111/dme.14971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
It is widely accepted that climate change is the biggest threat to human health. The pandemic of diabetes is also a major threat to human health, especially in rapidly developing nations. Climate change and diabetes appear to have common global vectors, including increased urbanisation, increased use of transportation, and production and ingestion of ultra-processed foods. People with diabetes appear to be at higher risk of threats to health from climate change, including effects from extreme heat or extreme cold, and natural disasters. Solutions to climate change offer some benefits for the prevention of diabetes and diabetes-related complications. Moving towards lower carbon economies is likely to help reduce reliance on intensive agriculture, reduce physical inactivity, reduce air pollution and enhance quality of life. It may enable a reduction in the prevalence of diabetes and reduced morbidity from the condition.
Collapse
Affiliation(s)
- Fatima Al-Shihabi
- Department of Diabetes and Metabolism, Royal London Hospital, London, UK
| | - Anna Moore
- Department of Diabetes and Metabolism, Royal London Hospital, London, UK
| | | |
Collapse
|
21
|
Nazarpour S, Ramezani Tehrani F, Valizadeh R, Amiri M. The relationship between air pollutants and gestational diabetes: an updated systematic review and meta-analysis. J Endocrinol Invest 2023:10.1007/s40618-023-02037-z. [PMID: 36807891 DOI: 10.1007/s40618-023-02037-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Air pollution is an environmental stimulus that may predispose pregnant women to gestational diabetes mellitus (GDM). This systematic review and meta-analysis were conducted to investigate the relationship between air pollutants and GDM. METHODS PubMed, Web of Science, and Scopus were systematically searched for retrieving English articles published from January 2020 to September 2021, investigating the relationship of exposure to ambient air pollution or levels of air pollutants with GDM and related parameters, including fasting plasma glucose (FPG), insulin resistance, and impaired glucose tolerance. Heterogeneity and publication bias were evaluated using I-squared (I2), and Begg's statistics, respectively. We also performed the subgroup analysis for particulate matters (PM2.5, PM10), Ozone (O3), and sulfur dioxide (SO2) in the different exposure periods. RESULTS A total of 13 studies examining 2,826,544 patients were included in this meta-analysis. Compared to non-exposed women, exposure to PM2.5 increases the odds (likelihood of occurrence outcome) of GDM by 1.09 times (95% CI 1.06, 1.12), whereas exposure to PM10 has more effect by OR of 1.17 (95% CI 1.04, 1.32). Exposure to O3 and SO2 increases the odds of GDM by 1.10 times (95% CI 1.03, 1.18) and 1.10 times (95% CI 1.01, 1.19), respectively. CONCLUSIONS The results of the study show a relationship between air pollutants PM2.5, PM10, O3, and SO2 and the risk of GDM. Although evidence from various studies can provide insights into the linkage between maternal exposure to air pollution and GDM, more well-designed longitudinal studies are recommended for precise interpretation of the association between GDM and air pollution by adjusting all potential confounders.
Collapse
Affiliation(s)
- S Nazarpour
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 24 Parvaneh, Yaman Street, Velenjak, P.O. Box: 19395-4763, Tehran, 1985717413, Islamic Republic of Iran
- Department of Midwifery, Varamin-Pishva Branch, Islamic Azad University, Tehran, Iran
| | - F Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 24 Parvaneh, Yaman Street, Velenjak, P.O. Box: 19395-4763, Tehran, 1985717413, Islamic Republic of Iran.
| | - R Valizadeh
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Minimally Invasive Surgery Research Center, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - M Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, 24 Parvaneh, Yaman Street, Velenjak, P.O. Box: 19395-4763, Tehran, 1985717413, Islamic Republic of Iran
| |
Collapse
|
22
|
Zick CD, Curtis DS, Meeks H, Smith KR, Brown BB, Kole K, Kowaleski-Jones L. The changing food environment and neighborhood prevalence of type 2 diabetes. SSM Popul Health 2023; 21:101338. [PMID: 36691490 PMCID: PMC9860365 DOI: 10.1016/j.ssmph.2023.101338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
In this ecological study, we used longitudinal data to assess if changes in neighborhood food environments were associated with type 2 diabetes mellitus (T2DM) prevalence, controlling for a host of neighborhood characteristics and spatial error correlation. We found that the population-adjusted prevalence of fast-food and pizza restaurants, grocery stores, and full-service restaurants along with changes in their numbers from 1990 to 2010 were associated with 2015 T2DM prevalence. The results suggested that neighborhoods where fast-food restaurants have increased and neighborhoods where full-service restaurants have decreased over time may be especially important targets for educational campaigns or other public health-related T2DM interventions.
Collapse
Affiliation(s)
- Cathleen D. Zick
- Department of Family and Consumer Studies, University of Utah, USA,Corresponding author. 225 S. 1400 E. Rm. 228, University of Utah, Salt Lake City, UT, 84112, USA.
| | - David S. Curtis
- Department of Family and Consumer Studies, University of Utah, USA
| | - Huong Meeks
- Department of Pediatrics, University of Utah, USA
| | - Ken R. Smith
- Department of Family and Consumer Studies, University of Utah, USA
| | - Barbara B. Brown
- Department of Family and Consumer Studies, University of Utah, USA
| | - Kyle Kole
- Department of Family and Consumer Studies, University of Utah, USA
| | - Lori Kowaleski-Jones
- Department of Family and Consumer Studies, University of Utah, USA,NEXUS Institute, University of Utah, USA
| |
Collapse
|
23
|
Li R, Cai M, Qian ZM, Wang X, Zhang Z, Wang C, Wang Y, Arnold LD, Howard SW, Li H, Lin H. Ambient air pollution, lifestyle, and genetic predisposition associated with type 2 diabetes: findings from a national prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157838. [PMID: 35934032 DOI: 10.1016/j.scitotenv.2022.157838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The combined effects of ambient air pollution, lifestyle, and genetic predisposition on incident Type 2 Diabetes (T2D) have not been well documented. METHODS A total of 263,733 participants without T2D at baseline were identified from the UK Biobank. Annual concentrations of five air pollutants were estimated using Land Use Regression, while a healthy lifestyle score (HLS) was constructed using 7 major lifestyle factors, and polygenic risk score (PRS) was generated using 73 genetic variants. Cox regression was used to determine the association between air pollution and incident T2D for different HLS/PRS categories. Potential HLS/PRS interactions and population attributable fraction (PAF) were also examined. RESULTS During a median follow-up of 11.94 years, 7827 (2.97 %) incident T2D cases were identified. Association between air pollution and incident T2D was stronger among those with higher HLS/PRS in a dose-response fashion. In addition, synergistic interactions between lifestyles and air pollution were observed. Lifestyle was the leading risk factor of T2D with a weighted PAF of 25.54 % (95 % CI: 19.22 %, 27.77 %) for intermediate HLS and 24.24 % (18.24 %, 26.36 %) due to unhealthy HLS. Overall, we estimated that about 25 % of T2D cases could be attributable to air pollution and associated interactions. CONCLUSIONS Associations between air pollution and T2D were stronger among individuals with unhealthier lifestyle on an additive interaction scale. Public health interventions that address both reduction of exposure to high levels of air pollution in addition to lifestyle changes may have more benefit on reducing T2D risk than focusing on lifestyle changes alone.
Collapse
Affiliation(s)
- Rui Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, United States.
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Yuqin Wang
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Lauren D Arnold
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, United States.
| | - Steven W Howard
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, United States.
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Abstract
Air pollutants are a complex mixture of gaseous substances and particulate matter (PM). Each component potentially has specific harmful effects on human health, but several experimental and clinical studies have shown a strong impact of fine particles on major adverse cardiovascular events. Most of the available evidence concerns the effects of exposure to PM with a diameter of <2.5 µm (PM2.5) and the risk of developing coronary heart disease through inflammation and oxidative stress. While prolonged exposure to PM2.5 has been shown to be associated with the development of atherosclerosis and cardio-metabolic risk factors, short-term exposure has instead proved to be a trigger for acute coronary events, and especially in subjects with pre-existing coronary artery disease. As such, environmental PM2.5 is a major risk element for global public health. This underlines on the one hand not only the need to adopt and encourage preventive measures especially for individuals with a higher risk profile but also to practice environmental policies that are effective in promoting the reduction of exposure to pollutants.
Collapse
|
25
|
Wang X, Guo B, Yang X, Li J, Baima Y, Yin J, Yu J, Xu H, Zeng C, Feng S, Wei J, Hong F, Zhao X. Role of Liver Enzymes in the Relationship Between Particulate Matter Exposure and Diabetes Risk: A Longitudinal Cohort Study. J Clin Endocrinol Metab 2022; 107:e4086-e4097. [PMID: 35861878 DOI: 10.1210/clinem/dgac438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Particulate matter (PM) is an important risk factor for diabetes. However, its underlying mechanisms remain poorly understood. Although liver-derived biological intermediates may play irreplaceable roles in the pathophysiology of diabetes, few studies have explored this in the association between PM and diabetes. OBJECTIVE We investigated the role of liver enzymes in mediating the relationship between PM exposure and diabetes. METHODS We included a total of 7963 participants from the China Multi-Ethnic Cohort. Residential exposure to PM was assessed using a validated spatial-temporal assessment method. Diabetes was diagnosed according to the criteria from American Diabetes Association. Associations between PM, liver enzyme [including alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase (GGT)], and diabetes were estimated using multivariable regression models. The function of liver enzymes in the relationship between PM and diabetes was assessed using mediation analysis. RESULTS PM exposure was positively associated with the odds of diabetes, with odds ratios of 1.32 (95% CI 0.83, 2.09), 1.33 (95% CI 1.07, 1.65), and 1.18 (95% CI 1.02, 1.36) for every 10-μg/m3 increment in ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10) PM, respectively. ALT (4.47%) and GGT (4.78%) exhibited statistically significant mediation effects on the association between PM2.5 and diabetes, and the ALT (4.30%) also had a mediating role on PM10. However, none of the liver enzymes had a significant mediating effect on PM1. CONCLUSION The relationship between PM and diabetes is partially mediated by liver enzymes, suggesting that lipid accumulation, oxidative stress, and chronic inflammation in the liver may be involved in its pathogenesis.
Collapse
Affiliation(s)
- Xing Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xianxian Yang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Jingzhong Li
- Tibet Center for disease control and prevention, Lhasa, Tibet, China
| | - Yangji Baima
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| | - Jianhong Yu
- Pidu District Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Riches NO, Gouripeddi R, Payan-Medina A, Facelli JC. K-means cluster analysis of cooperative effects of CO, NO 2, O 3, PM 2.5, PM 10, and SO 2 on incidence of type 2 diabetes mellitus in the US. ENVIRONMENTAL RESEARCH 2022; 212:113259. [PMID: 35460634 PMCID: PMC9413686 DOI: 10.1016/j.envres.2022.113259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/08/2022] [Accepted: 04/03/2022] [Indexed: 06/02/2023]
Abstract
Air pollution (AP) has been shown to increase the risk of type 2 diabetes mellitus, as well as other cardiometabolic diseases. AP is characterized by a complex mixture of components for which the composition depends on sources and metrological factors. The US Environmental Protection Agency (EPA) monitors and regulates certain components of air pollution known to have negative consequences for human health. Research assessing the health effects of these components of AP often uses traditional regression models, which might not capture more complex and interdependent relationships. Machine learning has the capability to simultaneously assess multiple components and find complex, non-linear patterns that may not be apparent and could not be modeled by other techniques. Here we use k-means clustering to assess the patterns associating PM2.5, PM10, CO, NO2, O3, and SO2 measurements and changes in annual diabetes incidence at a US county level. The average age adjusted annual decrease in diabetes incidence for the entire US populations is -0.25 per 1000 but the change shows a significant geographic variation (range: -17.2 to 5.30 per 1000). In this paper these variations were compared with the local daily AP concentrations of the pollutants listed above from 2005 to 2015, which were matched to the annual change in diabetes incidence for the following year. A total of 134,925 daily air quality observations were included in the cluster analysis, representing 125 US counties and the District of Columbia. K-means successfully clustered AP components and indicated an association between exposure to certain AP mixtures with lower decreases on T2D incidence.
Collapse
Affiliation(s)
- Naomi O Riches
- University of Utah School of Medicine, Department of Biomedical Informatics, 421 Wakara Way #140, Salt Lake City, UT, 84108, USA; University of Utah Center of Excellence in Exposure Health Informatics, 27 S. Mario Capecci Dr. Bldg 379, Salt Lake City, UT, 84133, USA.
| | - Ramkiran Gouripeddi
- University of Utah School of Medicine, Department of Biomedical Informatics, 421 Wakara Way #140, Salt Lake City, UT, 84108, USA; University of Utah Center for Clinical and Translational Science, 27 S. Mario Capecci Dr. Bldg 379, Salt Lake City, UT, 84133, USA; University of Utah Center of Excellence in Exposure Health Informatics, 27 S. Mario Capecci Dr. Bldg 379, Salt Lake City, UT, 84133, USA.
| | - Adriana Payan-Medina
- University of Utah School of Medicine, Department of Biomedical Informatics, 421 Wakara Way #140, Salt Lake City, UT, 84108, USA; University of Utah Center of Excellence in Exposure Health Informatics, 27 S. Mario Capecci Dr. Bldg 379, Salt Lake City, UT, 84133, USA; University of Utah Office of Undergraduate Research, Sill Center 005, Salt Lake City, UT, 84112, USA.
| | - Julio C Facelli
- University of Utah School of Medicine, Department of Biomedical Informatics, 421 Wakara Way #140, Salt Lake City, UT, 84108, USA; University of Utah Center for Clinical and Translational Science, 27 S. Mario Capecci Dr. Bldg 379, Salt Lake City, UT, 84133, USA; University of Utah Center of Excellence in Exposure Health Informatics, 27 S. Mario Capecci Dr. Bldg 379, Salt Lake City, UT, 84133, USA.
| |
Collapse
|
27
|
Tian L, Sun M, Lin L, Wang Y, Yu Y, Duan J, Sun Z. Effects of ambient air pollution on glycosylated hemoglobin: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53954-53966. [PMID: 35622285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is one of the biggest environmental health problems in the world; accumulative studies have shown that air pollution was closely related to metabolism disorders. HbA1c is a stable indicator for blood glucose level monitoring. However, studies on the impact of ambient air pollution on HbA1c have inconsistent conclusions. The objective of the study is to explore the influence of ambient air pollution on HbA1c. By searching keywords, a systematic literature retrieval was carried out on PubMed, Cochrane Library, Web of Science, and Embase databases up to April 2022. Pooled percentage change (%-change) and 95% confidence intervals (95% CI) were estimated using random effect models for particulate matter (PM) and nitrogen dioxide (NO2). A subgroup analysis of body mass index (BMI), study region, exposure period, sample size, sensitivity analysis, and publication bias detection was also performed. There were 8, 12, and 6 studies included in this meta-analysis to explore the association between PM10, PM2.5, NO2, and HbA1c, respectively. The results showed that for every increase of 10 μg/m3 in PM10, PM2.5, and NO2, the %-changes in HbA1c were 0.13%, 0.814%, and 0.02%, respectively. The subgroup analysis showed that exposure period, sample size, and BMI were associated with HbA1c in response to air pollution. PM10, PM2.5, and NO2 exposure were significantly associated with increased HbA1c levels.
Collapse
Affiliation(s)
- Li Tian
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yan Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
28
|
Wabnitz K, Klinger C, von Philipsborn P. Diabetogene Umweltfaktoren. DIE DIABETOLOGIE 2022. [PMCID: PMC9164573 DOI: 10.1007/s11428-022-00911-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Das Risiko, an einem Diabetes mellitus Typ 2 zu erkranken, wird maßgeblich von Merkmalen unserer physischen und sozialen Umwelt beeinflusst. Diese Umweltfaktoren wirken sich insbesondere auf das Ausmaß individueller körperlicher Aktivität sowie das Ernährungsverhalten aus. Weiterhin zählen die Exposition gegenüber Tabakrauch sowie Luftverschmutzung zu den etablierten Risikofaktoren. In den letzten Jahren rückten darüber hinaus weitere mögliche diabetogene Umweltaspekte in den Fokus der Forschung, darunter Umgebungslärm und andere stressfördernde Einflüsse sowie Chemikalien mit endokriner Wirkung. Im folgenden Beitrag wird der Forschungsstand zur Rolle von Umweltfaktoren bei der Entstehung eines Typ-2-Diabetes vorgestellt. Zudem wird diskutiert, wie diese Umweltfaktoren günstig beeinflusst werden können und was DiabetologInnen und andere Diabetesfachkräfte sowie PatientInnen mit Diabetes hierzu beitragen können.
Collapse
Affiliation(s)
- Katharina Wabnitz
- Lehrstuhl für Public Health und Versorgungsforschung, Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Pettenkofer School of Public Health, Ludwig-Maximilians-Universität München, Elisabeth-Winterhalter-Weg 6, 81377 München, Deutschland
| | - Carmen Klinger
- Lehrstuhl für Public Health und Versorgungsforschung, Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Pettenkofer School of Public Health, Ludwig-Maximilians-Universität München, Elisabeth-Winterhalter-Weg 6, 81377 München, Deutschland
| | - Peter von Philipsborn
- Lehrstuhl für Public Health und Versorgungsforschung, Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Pettenkofer School of Public Health, Ludwig-Maximilians-Universität München, Elisabeth-Winterhalter-Weg 6, 81377 München, Deutschland
| |
Collapse
|
29
|
Ao L, Zhou J, Han M, Li H, Li Y, Pan Y, Chen J, Xie X, Jiang Y, Wei J, Chen G, Li S, Guo Y, Hong F, Li Z, Xiao X, Zhao X. The joint effects of physical activity and air pollution on type 2 diabetes in older adults. BMC Geriatr 2022; 22:472. [PMID: 35650529 PMCID: PMC9158242 DOI: 10.1186/s12877-022-03139-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/12/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Older adults with type 2 diabetes are at higher risk of developing common geriatric syndromes and have a lower quality of life. To prevent type 2 diabetes in older adults, it's unclear whether the health benefits of physical activity (PA) will be influenced by the harms caused by increased exposure to air pollution during PA, especially in developing countries with severe air pollution problem. We aimed to investigate the joint effects of PA and long-term exposure to air pollution on the type 2 diabetes in older adults from China. METHODS This cross-sectional study was based on the China Multi-Ethnic cohort (CMEC) study. The metabolic equivalent of PA was calculated according to the PA scale during the CMEC baseline survey. High resolution air pollution datasets (PM10, PM2.5 and PM1) were collected from open products. The joint effects were assessed by the marginal structural mean model with generalized propensity score. RESULTS A total of 36,562 participants aged 50 to 79 years were included in the study. The prevalence of type 2 diabetes was 10.88%. The mean (SD) level of PA was 24.93 (18.60) MET-h/d, and the mean (SD) level of PM10, PM2.5, and PM1 were 70.00 (23.32) µg/m3, 40.45 (15.66) µg/m3 and 27.62 (6.51) µg/m3, respectively. With PM10 < 92 µg/m3, PM2.5 < 61 µg/m3, and PM1 < 36 µg/m3, the benefit effects of PA on type 2 diabetes was significantly greater than the harms due to PMs when PA levels were roughly below 80 MET-h/d. With PM10 ≥ 92 µg/m3, PM2.5 ≥ 61 µg/m3, and PM1 ≥ 36 µg/m3, the odds ratio (OR) first decreased and then rose rapidly with confidence intervals progressively greater than 1 and break-even points close to or even below 40 MET-h/d. CONCLUSIONS Our findings implied that for the prevention of type 2 diabetes in older adults, the PA health benefits outweighed the harms of air pollution except in extreme air pollution situations, and suggested that when the air quality of residence is severe, the PA levels should ideally not exceed 40 MET-h/d.
Collapse
Affiliation(s)
- Linjun Ao
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Junmin Zhou
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Mingming Han
- grid.507966.bChengdu Center for Disease Control and Prevention, Sichuan, China
| | - Hong Li
- grid.508395.20000 0004 9404 8936Yunnan Center for Disease Control and Prevention, Yunnan, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention CN, Tibet, China
| | - Yongyue Pan
- grid.440680.e0000 0004 1808 3254Tibet University, Tibet, China
| | - Jiayi Chen
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Xiaofen Xie
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Ye Jiang
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Jing Wei
- grid.164295.d0000 0001 0941 7177Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD USA
| | - Gongbo Chen
- grid.12981.330000 0001 2360 039XGuangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Shanshan Li
- grid.1002.30000 0004 1936 7857Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- grid.1002.30000 0004 1936 7857Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Feng Hong
- grid.413458.f0000 0000 9330 9891School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zhifeng Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Xiong Xiao
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| | - Xing Zhao
- grid.13291.380000 0001 0807 1581West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu Sichuan, China
| |
Collapse
|
30
|
Huo W, Hou J, Nie L, Mao Z, Liu X, Chen G, Xiang H, Li S, Guo Y, Wang C. Combined effects of air pollution in adulthood and famine exposure in early life on type 2 diabetes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37700-37711. [PMID: 35066828 DOI: 10.1007/s11356-021-18193-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Famine exposure or air pollution is linked to type 2 diabetes mellitus (T2DM). However, their combined effects on T2DM remain largely unknown. A total of 11,640 individuals were obtained from the Henan Rural Cohort Study. According to their birthdate, participants were divided into three famine exposure subgroups: fetal exposed, childhood exposed, and unexposed groups. The air pollutants (particles with aerodynamics diameters ≤ 1.0 µm (PM1), ≤ 2.5 µm, and ≤ 10 µm, and nitrogen dioxide) concentrations of each individual were estimated by a spatiotemporal model. Participants were divided into low or high air pollution exposure groups taking the 1st quartile value of air pollutants as the cut-off point. Logistic regression model was used to analyze independent and joint associations between air pollution exposure, famine exposure, and T2DM. Positive associations of air pollution and famine exposure with T2DM were found. Participants who experienced fetal or childhood famine and also were exposed to high concentrations of any kind of the air pollutants had a much higher risk for T2DM than those with no famine and low air pollutants exposure (taking PM1.0 for example, the odds ratio [OR]: 1.76, 95% confidence interval [CI]: 1.25, 2.47 for fetal famine, and OR: 1.64, 95%CI: 1.13, 2.40 for childhood famine). After stratified analysis, similar results were observed in women. The results indicated that both famine exposure in early life and air pollution exposure in adulthood are related to increased risk for prevalent T2DM, and they have combined effects on T2DM.
Collapse
Affiliation(s)
- Wenqian Huo
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, PR China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, PR China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China.
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China.
| |
Collapse
|
31
|
Wang Y, Cao R, Xu Z, Jin J, Wang J, Yang T, Wei J, Huang J, Li G. Long-term exposure to ozone and diabetes incidence: A longitudinal cohort study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151634. [PMID: 34774942 DOI: 10.1016/j.scitotenv.2021.151634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Ozone (O3) has become a prominent air pollutant problem as other pollutants concentrations have decreased obviously since China published Air Pollution Action Plan Pollution Prevention Action Plan in 2013. Few studies examined the association between O3 and diabetes especially in developing countries. This study was designed to investigate the above topic in China. METHODS We conducted a prospective cohort study based on a nationwide survey of 13,548 adults from China Health and Retirement Longitudinal Study. City-level exposure to ozone for each participant was matched through ChinaHighO3 dataset. Time-varying cox proportional hazard regression model was applied to determine the association. Stratification analyses were conducted to explore potential effect modification. RESULTS The annual mean concentration of O3 was 86.6 μg/m3. A 10 μg/m3 increase in 1-year average O3 concentration was associated with 5.7% (95% CI: 1.004-1.114) relative increment in hazards ratio of diabetes incidence in the fully adjusted model. Results stayed stable when controlling for physical activity, PM2.5 and mean temperature. CONCLUSIONS Our findings provided initial support for a positive and robust association between long-term exposure to O3 and diabetes incidence in a developing country. More scientific and social attention should be attached to the ozone-induced risks of diabetes occurrence.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Ru Cao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jianbo Jin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jiawei Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| |
Collapse
|
32
|
Li Z, Zhang Y, Yuan Y, Yan J, Mei Y, Liu X, Xu Q, Shi J. Association between exposure to air pollutants and the risk of hospitalization for pulmonary embolism in Beijing, China: A case-crossover design using a distributed lag nonlinear model. ENVIRONMENTAL RESEARCH 2022; 204:112321. [PMID: 34748777 DOI: 10.1016/j.envres.2021.112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pulmonary embolism (PE) is a life-threatening condition. Few studies have evaluated the relationship between air pollution and PE, and these results have been inconsistent. Therefore, our study aimed to investigate the association between air pollutant exposure and the risk of hospitalization due to PE. MATERIALS AND METHODS Daily PE admissions, meteorological data, and ambient pollution data from January 1, 2015, to December 31, 2018, were collected in Beijing. A quasi-Poisson regression model combined with time-stratified case-crossover design and a distributed lag nonlinear model was used to determine the effect of air pollutant exposure on PE admission. To examine the stability of air pollutants' effects, multi-pollutant analyses were performed. Stratified analyses by age and sex were further conducted. RESULTS There were 5060 PE admissions during the study period, with an estimated incidence of 6.5 per 100,000. PM2.5, PM10, SO2, O3 and CO exposures were significantly associated with elevated risk of PE hospitalization. The highest cumulative risks were observed at a lag of 0-28 days for PM2.5 (relative risk [RR] = 1.056, 95% confidence intervals [CI]: 1.015-1.098), PM10 (RR = 1.042, 95%CI: 1.010-1.075), and CO (RR = 1.466, 95%CI: 1.127-1.906), at a lag of 0-27 days for SO2 (RR = 1.674, 95%CI: 1.200-2.335), and at a lag of 0-4 days for O3 (RR = 1.019, 95%CI: 1.001-1.038). All associations mentioned above except O3 remained significant in multi-pollutant models. Stratified analyses showed that women and those aged ≥65 years people were more sensitive to PM10 and CO exposure than men and those aged <65 years. The effect of PM2.5 exposure was statistically significant in all subgroups. CONCLUSIONS Exposure to PM2.5, PM10, SO2, and CO showed a positive association with PE hospitalization. High-risk PE groups should take special precautions on days with poor air quality.
Collapse
Affiliation(s)
- Zhaohui Li
- Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yunjian Zhang
- Department of Respiratory Medicine, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yuan Yuan
- Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jingwen Yan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoqing Liu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Clinical Epidemiology Unit, International Epidemiology Network, Beijing, 100730, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Juhong Shi
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
33
|
Wu C, Yan Y, Chen X, Gong J, Guo Y, Zhao Y, Yang N, Dai J, Zhang F, Xiang H. Short-term exposure to ambient air pollution and type 2 diabetes mortality: A population-based time series study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117886. [PMID: 34371265 DOI: 10.1016/j.envpol.2021.117886] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Acute health effects of air pollution on diabetes risk have not been fully studied in developing countries and the results remain inconsistent. This study aimed to investigate the association between short-term exposure to ambient air pollution and Type 2 diabetes mellitus (T2DM) mortality in China. Data on T2DM mortality from 2013 to 2019 were obtained from the Cause of Death Reporting System (CDRS) of Wuhan Center for Disease Control and Prevention. Air pollution data for the same period were collected from 10 national air quality monitoring stations of Wuhan Ecology and Environment Institute, including daily average PM2.5, PM10, SO2, and NO2. Meteorological data including daily average temperature and relative humidity were collected from Wuhan Meteorological Bureau. Generalized additive models (GAM) based on quasi-Poisson distribution were applied to evaluate the association between short-term exposure to air pollution and daily T2DM deaths. A total of 9837 T2DM deaths were recorded during the study period in Wuhan. We found that short-term exposure to PM2.5, PM10, SO2, and NO2 were positively associated with T2DM mortality, and gaseous pollutants appeared to have greater effects than particulate matter (PM). For the largest effect, per 10 μg/m3 increment in PM2.5 (lag 02), PM10 (lag 02), SO2 (lag 03), and NO2 (lag 02) were significantly associated with 1.099% (95% CI: 0.451, 1.747), 1.016% (95% CI: 0.517, 1.514), 3.835% (95% CI: 1.480, 6.189), and 1.587% (95% CI: 0.646, 2.528) increase of daily T2DM deaths, respectively. Stratified analysis showed that females or elderly population aged 65 and above were more susceptible to air pollution exposure. In conclusion, short-term exposure to air pollution was significantly associated with a higher risk of T2DM mortality. Further research is required to verify our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Chuangxin Wu
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yaqiong Yan
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Xi Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China; Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Jie Gong
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Yan Guo
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Yuanyuan Zhao
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Niannian Yang
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Juan Dai
- Wuhan Centers for Disease Control and Prevention, 288# Machang Road, Wuhan, China
| | - Faxue Zhang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
34
|
Chilian-Herrera OL, Tamayo-Ortiz M, Texcalac-Sangrador JL, Rothenberg SJ, López-Ridaura R, Romero-Martínez M, Wright RO, Just AC, Kloog I, Bautista-Arredondo LF, Téllez-Rojo MM. PM 2.5 exposure as a risk factor for type 2 diabetes mellitus in the Mexico City metropolitan area. BMC Public Health 2021; 21:2087. [PMID: 34774026 PMCID: PMC8590776 DOI: 10.1186/s12889-021-12112-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Exposure to air pollution is the main risk factor for morbidity and mortality in the world. Exposure to particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) is associated with cardiovascular and respiratory conditions, as well as with lung cancer, and there is evidence to suggest that it is also associated with type II diabetes (DM). The Mexico City Metropolitan Area (MCMA) is home to more than 20 million people, where PM2.5 levels exceed national and international standards every day. Likewise, DM represents a growing public health problem with prevalence around 12%. In this study, the objective was to evaluate the association between exposure to PM2.5 and DM in adults living in the MCMA. METHODS Data from the 2006 or 2012 National Health and Nutrition Surveys (ENSANUT) were used to identify subjects with DM and year of diagnosis. We estimated PM2.5 exposure at a residence level, based on information from the air quality monitoring system (monitors), as well as satellite measurements (satellite). We analyzed the relationship through a cross-sectional approach and as a case - control study. RESULTS For every 10 μg/m3 increase of PM2.5 we found an OR = 3.09 (95% CI 1.17-8.15) in the 2012 sample. These results were not conclusive for the 2006 data or for the case - control approach. CONCLUSIONS Our results add to the evidence linking PM2.5 exposure to DM in Mexican adults. Studies in low- and middle-income countries, where PM2.5 atmospheric concentrations exceed WHO standards, are required to strengthen the evidence.
Collapse
Affiliation(s)
- Olivia L Chilian-Herrera
- Homologous Normative Coordination, General Directorate, Mexican Social Security Institute, Mexico City, Mexico
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Av. Cuauhtémoc 330, Doctores, Cuauhtémoc, 06720, Mexico City, Mexico.
| | - Jose L Texcalac-Sangrador
- Department of Environmental Health, Center for Population Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Stephen J Rothenberg
- Department of Environmental Health, Center for Population Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Ruy López-Ridaura
- National Center for Disease Prevention and Control Programs, Mexico City, Mexico
| | - Martín Romero-Martínez
- Center for Research in Surveys and Evaluation, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Luis F Bautista-Arredondo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| |
Collapse
|
35
|
Oxidative Stress Biomarkers in the Relationship between Type 2 Diabetes and Air Pollution. Antioxidants (Basel) 2021; 10:antiox10081234. [PMID: 34439482 PMCID: PMC8388875 DOI: 10.3390/antiox10081234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
The incidence and prevalence of type 2 diabetes have increased in the last decades and are expected to further grow in the coming years. Chronic hyperglycemia triggers free radical generation and causes increased oxidative stress, affecting a number of molecular mechanisms and cellular pathways, including the generation of advanced glycation end products, proinflammatory and procoagulant effects, induction of apoptosis, vascular smooth-muscle cell proliferation, endothelial and mitochondrial dysfunction, reduction of nitric oxide release, and activation of protein kinase C. Among type 2 diabetes determinants, many data have documented the adverse effects of environmental factors (e.g., air pollutants) through multiple exposure-induced mechanisms (e.g., systemic inflammation and oxidative stress, hypercoagulability, and endothelial and immune responses). Therefore, here we discuss the role of air pollution in oxidative stress-related damage to glycemic metabolism homeostasis, with a particular focus on its impact on health. In this context, the improvement of new advanced tools (e.g., omic techniques and the study of epigenetic changes) may provide a substantial contribution, helping in the evaluation of the individual in his biological totality, and offer a comprehensive assessment of the molecular, clinical, environmental, and epidemiological aspects.
Collapse
|
36
|
Lee M, Ohde S. PM 2.5 and Diabetes in the Japanese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126653. [PMID: 34205663 PMCID: PMC8296336 DOI: 10.3390/ijerph18126653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Growing evidence suggests that PM2.5 is associated with diabetes mellitus (DM). Although DM is a major public health concern, there has not yet been a study of this association in Japan. We used health examination data from 66,885 individuals in Tokyo, Japan 2005–2019. Cox proportional hazards models were used to evaluate an association between annual exposure to PM2.5 and glycated hemoglobin A1c (HbA1c), or fasting plasma glucose (FPG). An increase of 1 μg/m3 in the annual average of PM2.5 concentration was associated (HR = 1.029; 95% CI = 1.004–1.055) with an increase in diabetes (incident + prevalent). For incident DM, a greater PM2.5 level was associated with more DM (HR = 1.029; 95% CI, 1.003–1.055). Compared to HbA1c, FPG showed a stronger association with the annual exposure to PM2.5 (HR = 1.065; 95% CI, 1.040–1.091). We found that greater exposure to PM2.5 in the long-term was associated with an increased risk of diabetes, and that the magnitude of association became stronger as the exposure duration increased. Omorogieva Ojo
Collapse
Affiliation(s)
- Mihye Lee
- Correspondence: ; Tel./Fax: +81-3-3541-5151
| | | |
Collapse
|
37
|
Liu J, Su X, Lu J, Ning J, Lin M, Zhou H. PM 2.5 induces intestinal damage by affecting gut microbiota and metabolites of rats fed a high-carbohydrate diet. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116849. [PMID: 33773181 DOI: 10.1016/j.envpol.2021.116849] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 has a major impact on the gastrointestinal system, but the specific mechanism behind this action is not fully understood. Current studies have focused on the relationship between PM2.5 and intestinal flora disorder, while ignoring the important influence of diet on gut microbes. In this study, SD rats were fed either a normal, high-fat, or high-carbohydrate diet for two months and exposed to PM2.5 (7 mg/kg b.w.) by intratracheal instillation. The results showed that the body and kidney weights of the rats in the high-fat diet group were significantly increased relative to those with a normal diet, and changes in the intestinal microbes and metabolites induced by PM2.5 were observed. Rats in the high-carbohydrate diet group had a significant response, and the diversity and richness indices of the flora were reduced (p < 0.05); additionally, intestinal Biffidobacterium and Lactobacillus were enriched, while many endogenous metabolites were found. Some amino acids derivatives and long-chain fatty acids were increased (p < 0.05). Both diet structure and PM2.5 exposure can affect the composition of gut microbiota, and intestinal metabolites may be associated with cell membrane damage when a high-carbohydrate diet interacts with PM2.5. This study considers multiple dietary factors to further supplement the evidence of intestinal damage via PM2.5.
Collapse
Affiliation(s)
- Jinhua Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang, 832003, China
| | - Xianghui Su
- Department of Endocrinology, Changji Branch, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, 831100, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang, 832003, China.
| | - Jianying Ning
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832003, China
| | - Meng Lin
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang, 832003, China
| | - Hongjuan Zhou
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang, 832003, China
| |
Collapse
|
38
|
Abstract
Air pollution in the environment and in households is responsible worldwide for almost 9 million preventable premature deaths per year and almost 800,000 such deaths within Europe. Air pollution therefore shortens life expectancy worldwide by almost 3 years. Smoking, a proven cardiovascular risk factor, shortens the mean life expectancy by 2.2 years. Epidemiological studies have shown that air pollution from fine and coarse particulate matter is associated with increased cardiovascular morbidity and mortality. Responsible for this are mainly cardiovascular diseases, such as coronary heart disease, heart attack, heart failure, stroke, hypertension and also diabetes, which are mainly caused or aggravated by fine particulate matter. After inhalation fine particulate matter can reach the brain directly and also reach the bloodstream via a transition process. There, the particles are absorbed by the blood vessels where they stimulate the formation of reactive oxygen species (ROS) in the vascular wall. They therefore promote the formation of atherosclerotic changes and in this way increase the cardiovascular risks, especially an increase in chronic ischemic heart disease and stroke. Recent studies also reported that in coronavirus disease 2019 (COVID-19) patients a high degree of air pollution is correlated with severe disease courses with cardiovascular complications and pulmonary diseases. This necessitates preventive measures, such as lowering of the upper limits for air pollutants. Individual measures to mitigate the health consequences of fine particulate matter are also discussed.
Collapse
Affiliation(s)
- Thomas Münzel
- Zentrum für Kardiologie - Kardiologie I, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland.
| | - Omar Hahad
- Zentrum für Kardiologie - Kardiologie I, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - Andreas Daiber
- Zentrum für Kardiologie - Kardiologie I, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | - Jos Lelieveld
- Max-Planck-Institut für Chemie, Johannes-Gutenberg-Universität Mainz, Mainz, Deutschland
| |
Collapse
|
39
|
TAGHIZADEH-HESARY FARHAD, RASOULINEZHAD EHSAN, YOSHINO NAOYUKI, CHANG YOUNGHO, TAGHIZADEH-HESARY FARZAD, MORGAN PETERJ. THE ENERGY–POLLUTION–HEALTH NEXUS: A PANEL DATA ANALYSIS OF LOW- AND MIDDLE-INCOME ASIAN COUNTRIES. THE SINGAPORE ECONOMIC REVIEW 2021; 66:435-455. [DOI: 10.1142/s0217590820430043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Increased consumption of nonrenewable energy sources may lead to more air pollution, resulting in negative health impacts in a society. The main purpose of this study is to investigate the relationship between fossil fuel energy consumption and health issues using generalized method of moments estimation technique for data from 18 Asian countries (both low- and middle-income) over the period 1991–2018. The findings demonstrate that fossil fuel energy consumption increases the risk of lung and respiratory diseases. In addition, the results demonstrate the significant effect of CO2 emissions and fossil fuel consumption on undernourishment and death rates. Furthermore, we find that increases in the gross domestic product per capita and healthcare expenditure may help reduce undernourishment and death ratio. The conclusion recommends that diversification of energy in low- and middle-income countries from too much reliance on fossil fuels to more renewable energy sources can improve energy insecurity, at the same time reduce greenhouse gas emissions and minimize the negative impacts on human health.
Collapse
Affiliation(s)
| | | | - NAOYUKI YOSHINO
- Keio University and National Graduate Institute for Policy Studies (GRIPS), Tokyo, Japan
| | - YOUNGHO CHANG
- School of Business, Singapore University of Social Sciences, Singapore
| | | | | |
Collapse
|
40
|
Yadav R, Deora S, Yadav G. Air pollution and its impact on cardiovascular health - It's time to act fast! Indian Heart J 2021; 73:1-6. [PMID: 33714392 PMCID: PMC7961250 DOI: 10.1016/j.ihj.2021.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rakesh Yadav
- Department of Cardiology, AIIMS, Ansari Nagar, New Delhi, 110029, India.
| | | | | |
Collapse
|
41
|
Kim SR, Choi D, Choi S, Kim K, Lee G, Son JS, Kim KH, Park SM. Association of combined effects of physical activity and air pollution with diabetes in older adults. ENVIRONMENT INTERNATIONAL 2020; 145:106161. [PMID: 33035891 DOI: 10.1016/j.envint.2020.106161] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Physical activity (PA), especially outdoor PA, may have twofold effects on diabetes risk: the health benefits of PA and the potential detrimental effects caused by augmented exposure to air pollution. We examined the association of combined effects of PA and air pollution with diabetes in older adults. METHODS The study participants consisted of 1,259,871 older adults aged 58 years or more from the Korean National Health Insurance Service database. The exposure to air pollution was estimated by the average ambient levels of particulate matter (PM) of the participants' residence area. Cox proportional hazards models were used to evaluate the adjusted hazard ratios and 95% confidence intervals of developing diabetes according to the combined effect of moderate to vigorous physical activity (MVPA) and air pollution exposure. RESULTS Engaging in 5 or more times of MVPA/week was associated with decreased risk of diabetes within groups with both high and low/moderate levels of exposure to PM10 (low/moderate PM10 aHR 0.91, 95% CI 0.89-0.93; high PM10 aHR 0.97, 95% CI 0.94-0.99) or PM2.5 (low/moderate PM2.5 aHR 0.88, 95% CI 0.85-0.90; high PM10 aHR 0.95, 95% CI 0.91-0.99) exposure. The risk-reducing effects upon MVPA tended to be slightly attenuated, which showed the reverse J-shaped association, but still significant, among those who were exposed to a high level of air pollution. The association was consistent among stratified analyses according to the possible confounders. CONCLUSION MVPA may be inversely associated with the risk of diabetes development within groups with both high and low/moderate levels of exposure to PM10 or PM2.5 in older adults. Future studies are necessary to validate whether the positive health effects of MVPA outweigh the potential detrimental effects due to augmented exposure to air pollution during MVPA.
Collapse
Affiliation(s)
- Seong Rae Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Daein Choi
- Department of Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, NY, USA; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Seulggie Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Kyuwoong Kim
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Gyeongsil Lee
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Joung Sik Son
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyae Hyung Kim
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Institute for Public Health and Medical Service, Seoul National University Hospital, Seoul, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea; Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
42
|
Ma JW, Lai TJ, Hu SY, Lin TC, Ho WC, Tsan YT. Effect of ambient air pollution on the incidence of colorectal cancer among a diabetic population: a nationwide nested case-control study in Taiwan. BMJ Open 2020; 10:e036955. [PMID: 33115890 PMCID: PMC7594369 DOI: 10.1136/bmjopen-2020-036955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES An increasing number of studies had shown that air pollution exposure may aggravate blood glucose control in patients with diabetes, an independent risk factor for colorectal cancer (CRC) proposed by some researchers. This study aimed to investigate the impact of exposure to ambient particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) on the incidence of CRC among a diabetic population. DESIGN A nested case-control study. SETTING A subset data retrieved from the Taiwan's National Health Insurance Research Database. PARTICIPANTS We identified patients with newly diagnosed diabetes (n=1 164 962) during 1999-2013. Participants who had subsequently developed an incident of CRC were placed into the case group, while controls were matched to the cases at a 4:1 ratio by age, gender, date of diabetes diagnosis and the index date of CRC diagnosis. METHODS AND OUTCOME MEASURES All variables associated with the risk of CRC entered into a multinomial logistic regression model. The dose-response relationship between various average concentrations of PM2.5 exposure and the incidence of CRC was estimated by logistic regression. RESULTS The study included a total of 7719 incident CRC cases matched with 30 876 controls of random sampling. The mean annual concentration of PM2.5 was 35.3 µg/m3. After adjusting for potential confounders, a dose-response relationship was observed between the CRC risks and each interquartile increase of PM2.5 concentration (Q1-Q2: 1.03 (0.95-1.11), Q2-Q3: 1.06 (0.98-1.15), ≥Q3: 1.19 (1.10-1.28) in model 2. The adjusted ORs (95% CI) of CRC incidence for each 10 µg/m3 increment of PM2.5 was 1.08 (1.04-1.11). Moreover, a faster growing adapted Diabetes Complications Severity Index (aDCSI) score was noticed in CRC group compared with the controls, which also showed a significant association in our multivariate analysis (adjusted OR=1.28, 95% CI 1.18 to 1.38). CONCLUSIONS Long-term exposure to high concentrations of PM2.5 may contribute to an increased incidence of CRC among diabetic populations.
Collapse
Affiliation(s)
- Jen-Wen Ma
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ting-Ju Lai
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Sung-Yuan Hu
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Chieh Lin
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Yu-Tse Tsan
- Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Occupational Medicine, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
43
|
Calcagno S, Di Pietro R, Dei Giudici A, Del Prete A, Sciarretta S, Versaci F. Air pollution, climate changes and cardiovascular diseases: a nightmare threesome! Minerva Cardioangiol 2020; 68:282-284. [DOI: 10.23736/s0026-4725.20.05122-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Al-Kindi SG, Brook RD, Biswal S, Rajagopalan S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol 2020; 17:656-672. [PMID: 32382149 PMCID: PMC7492399 DOI: 10.1038/s41569-020-0371-2] [Citation(s) in RCA: 320] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
Air pollution is well recognized as a major risk factor for chronic non-communicable diseases and has been estimated to contribute more to global morbidity and mortality than all other known environmental risk factors combined. Although air pollution contains a heterogeneous mixture of gases, the most robust evidence for detrimental effects on health is for fine particulate matter (particles ≤2.5 µm in diameter (PM2.5)) and ozone gas and, therefore, these species have been the main focus of environmental health research and regulatory standards. The evidence to date supports a strong link between the risk of cardiovascular events and all-cause mortality with PM2.5 across a range of exposure levels, including to levels below current regulatory standards, with no 'safe' lower exposure levels at the population level. In this comprehensive Review, the empirical evidence supporting the effects of air pollution on cardiovascular health are examined, potential mechanisms that lead to increased cardiovascular risk are described, and measures to reduce this risk and identify key gaps in our knowledge that could help address the increasing cardiovascular morbidity and mortality associated with air pollution are discussed.
Collapse
Affiliation(s)
- Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, USA
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Robert D Brook
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shyam Biswal
- Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, USA.
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
45
|
Lelieveld J, Klingmüller K, Pozzer A, Pöschl U, Fnais M, Daiber A, Münzel T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 2020; 40:1590-1596. [PMID: 30860255 PMCID: PMC6528157 DOI: 10.1093/eurheartj/ehz135] [Citation(s) in RCA: 398] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/05/2018] [Accepted: 02/22/2019] [Indexed: 01/16/2023] Open
Abstract
Aims Ambient air pollution is a major health risk, leading to respiratory and cardiovascular mortality. A recent Global Exposure Mortality Model, based on an unmatched number of cohort studies in many countries, provides new hazard ratio functions, calling for re-evaluation of the disease burden. Accordingly, we estimated excess cardiovascular mortality attributed to air pollution in Europe. Methods and results The new hazard ratio functions have been combined with ambient air pollution exposure data to estimate the impacts in Europe and the 28 countries of the European Union (EU-28). The annual excess mortality rate from ambient air pollution in Europe is 790 000 [95% confidence interval (95% CI) 645 000–934 000], and 659 000 (95% CI 537 000–775 000) in the EU-28. Between 40% and 80% are due to cardiovascular events, which dominate health outcomes. The upper limit includes events attributed to other non-communicable diseases, which are currently not specified. These estimates exceed recent analyses, such as the Global Burden of Disease for 2015, by more than a factor of two. We estimate that air pollution reduces the mean life expectancy in Europe by about 2.2 years with an annual, attributable per capita mortality rate in Europe of 133/100 000 per year. Conclusion We provide new data based on novel hazard ratio functions suggesting that the health impacts attributable to ambient air pollution in Europe are substantially higher than previously assumed, though subject to considerable uncertainty. Our results imply that replacing fossil fuels by clean, renewable energy sources could substantially reduce the loss of life expectancy from air pollution.
Collapse
Affiliation(s)
- Jos Lelieveld
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany.,The Cyprus Institute, 20 Kavafi Street, Nicosia, Cyprus
| | - Klaus Klingmüller
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany
| | - Andrea Pozzer
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany
| | - Mohammed Fnais
- King Saud University, College of Science, Riyadh, Saudi Arabia
| | - Andreas Daiber
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Cardiology I, Angiology and Intensive Care Medicine, University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, Mainz, Germany
| |
Collapse
|
46
|
Viher Hrženjak V, Kukec A, Eržen I, Stanimirović D. Effects of Ultrafine Particles in Ambient Air on Primary Health Care Consultations for Diabetes in Children and Elderly Population in Ljubljana, Slovenia: A 5-Year Time-Trend Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17144970. [PMID: 32664229 PMCID: PMC7400531 DOI: 10.3390/ijerph17144970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022]
Abstract
Epidemiological studies indicate that exposure to ultrafine particles (UFP) in ambient air represents an important environmental public health issue. The aim of this study was to determine the association between UFP in ambient air and the daily number of consultations in the primary health care unit due to diabetes mellitus in children and elderly population of the Municipality of Ljubljana. A 5-year time-trend ecological study was carried out for the period between 1 January 2013 and 31 December 2017. The daily number of primary health care consultations due to diabetes mellitus among children and elderly population was observed as the health outcome. Daily mean UFP concentrations (different size from 10 to 100 nm) were measured and calculated. Poisson regression analysis was used to investigate the association between the observed outcome and the daily UFP, particulate matter fine fraction (PM2.5), and particulate matter coarse fraction (PM10) concentrations, adjusted to other covariates. The results show that the daily number of consultations due to diabetes mellitus were highly significantly associated with the daily concentrations of UFP (10 to 20 nm; p ≤ 0.001 and 20 to 30 nm; p ≤ 0.001) in all age groups and in the elderly population. In observed the population of children, we did not confirm the association. Findings indicate that specified environmental challenges should be addressed by comprehensive public health strategies leading to the coordinated cross-sectoral measures for the reduction of UFP in ambient air and the mitigation of adverse health effects.
Collapse
Affiliation(s)
- Vesna Viher Hrženjak
- National Laboratory of Health, Environment and Food, Prvomajska 1, 2000 Maribor, Slovenia;
| | - Andreja Kukec
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (I.E.)
- National Institute of Public Health, Trubarjeva 2, 1000 Ljubljana, Slovenia
| | - Ivan Eržen
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (I.E.)
- National Institute of Public Health, Trubarjeva 2, 1000 Ljubljana, Slovenia
| | - Dalibor Stanimirović
- National Institute of Public Health, Trubarjeva 2, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1244-1413
| |
Collapse
|
47
|
Elbarbary M, Honda T, Morgan G, Kelly P, Guo Y, Negin J. Ambient air pollution exposure association with diabetes prevalence and glycosylated hemoglobin (HbA1c) levels in China. Cross-sectional analysis from the WHO study of AGEing and adult health wave 1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1149-1162. [PMID: 32615056 DOI: 10.1080/10934529.2020.1787011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Over the past decades, air pollution has become one of the critical environmental health issues in China. The present study aimed to evaluate links between ambient air pollution and the prevalence of type 2 diabetes mellitus (T2DM) and the levels of glycosylated hemoglobin (HbA1c). A multilevel linear and logistic regression was used to assess these associations among 7,770 participants aged ≥50 years from the WHO Study on global AGEing and adult health (SAGE) in China in 2007-2010. The average exposure to each of pollutants (particulate matter with an aerodynamic diameter of ≤10 μm/≤2.5 μm/≤1 μm [PM10/PM2.5/PM1] and nitrogen dioxide [NO2]) was estimated using a satellite-based spatial statistical model. In logistic models, a 10 µg/m3 increase in PM10 and PM2.5 was associated with increased T2DM prevalence (Prevalence Odds Ratio, POR: 1.27; 95% CI: 1.11, 1.45 and POR: 1.23; 95% CI: 1.03, 1.46). Similar increments in PM10, PM2.5, PM1 and NO2 were associated with increase in HbA1c levels of 1.8% (95% CI: 1.3, 2.3), 1.3% (95% CI: 1.1, 1.5), 0.7% (95% CI: 0.1, 1.3), and 0.8% (95% CI: 0.4, 1.2), respectively. In a large cohort of older Chinese adults, air pollution was liked to both higher T2DM prevalence and elevated HbA1c levels.
Collapse
Affiliation(s)
- Mona Elbarbary
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Trenton Honda
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Geoffrey Morgan
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, Australia
- School of Public Health, University Centre for Rural Health, Lismore, Australia
| | - Patrick Kelly
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine at the School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Joel Negin
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
48
|
Suryadhi MAH, Suryadhi PAR, Abudureyimu K, Ruma IMW, Calliope AS, Wirawan DN, Yorifuji T. Exposure to particulate matter (PM 2.5) and prevalence of diabetes mellitus in Indonesia. ENVIRONMENT INTERNATIONAL 2020; 140:105603. [PMID: 32344253 DOI: 10.1016/j.envint.2020.105603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/11/2020] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Recently emerging evidence suggests an association between particulate matter less than 2.5 µm in diameter (PM2.5) exposure and diabetes risk. However, evidence from Asia is limited. Here, we evaluated the association between PM2.5 exposure and the prevalence of diabetes mellitus in one of the most populated countries in Asia, Indonesia. METHODS We used the 2013 Indonesia Basic Health Research, which surveyed households in 487 regencies/municipalities in all 33 provinces in Indonesia (n = 647,947). We assigned individual exposure to PM2.5 using QGIS software. Multilevel logistic regression with a random intercept based on village and cubic spline analysis were used to assess the association between PM2.5 exposure and the prevalence of diabetes mellitus. We also assessed the lower exposure at which PM2.5 has potential adverse effects. RESULTS We included 647,947 subjects with a mean age of 41.9 years in our study. Exposure to PM2.5 levels was associated with a 10-unit increase in PM2.5 (fully adjusted odds ratio: 1.09; 95% confidence interval: 1.05-1.14). The findings were consistent for quartile increases in PM2.5 levels and the cubic spline function. Even when we restricted to those exposed to PM2.5 concentrations of less than 10.0 µg/m3 in accordance with the recommended guidelines for annual exposure to PM2.5 made by the World Health Organization, the association remained elevated, especially among subjects living in the urban areas. Hence, we were unable to establish a safe threshold for PM2.5 and the risk of diabetes. CONCLUSIONS Our findings suggest a positive association between PM2.5 exposure and prevalence of diabetes mellitus, which is possibly below the current recommended guidelines. Further studies are needed to ascertain the causal association of this finding.
Collapse
Affiliation(s)
- Made Ayu Hitapretiwi Suryadhi
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Udayana University, Jalan P.B. Sudirman, Sudirman Denpasar Campus, Bali, Indonesia.
| | - Putu Ayu Rhamani Suryadhi
- Department of Electrical Engineering, Engineering Faculty, Bukit Jimbaran Campus, Udayana University, Bali, Indonesia
| | - Kawuli Abudureyimu
- Department of Human Ecology, Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8558, Japan
| | - I Made Winarsa Ruma
- Department of Biochemistry, Faculty of Medicine, Udayana University, Jalan P.B. Sudirman, Sudirman Denpasar Campus, Bali, Indonesia
| | - Akintije Simba Calliope
- Department of International Health Institute of Tropical Medicine, Nagasaki University, Japan; Department of Infection Research Graduate School of Biomedical Sciences, Doctoral Leadership Program, Nagasaki University, Japan
| | - Dewa Nyoman Wirawan
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Udayana University, Jalan P.B. Sudirman, Sudirman Denpasar Campus, Bali, Indonesia
| | - Takashi Yorifuji
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
49
|
Shan A, Zhang Y, Zhang LW, Chen X, Li X, Wu H, Yan M, Li Y, Xian P, Ma Z, Li C, Guo P, Dong GH, Liu YM, Chen J, Wang T, Zhao BX, Tang NJ. Associations between the incidence and mortality rates of type 2 diabetes mellitus and long-term exposure to ambient air pollution: A 12-year cohort study in northern China. ENVIRONMENTAL RESEARCH 2020; 186:109551. [PMID: 32330771 DOI: 10.1016/j.envres.2020.109551] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Ambient air pollution has recently been related to type 2 diabetes mellitus (T2DM), a disease that has caused an economic and health burden worldwide. Evidence of an association between air pollution and T2DM was reported in the United States and Europe. However, few studies have focused on the association with high levels of air pollutants in a developing country. OBJECTIVES We conducted a 12-year cohort study to assess the incidence and mortality of T2DM associated with long-term exposure to PM10, SO2, and NO2. METHODS A retrospective cohort with participants from four cities in northern China was conducted to assess mortality and incidence of T2DM from 1998 to 2009. Incidence of T2DM was self-reported, and incident intake of an antidiabetic drug or injection of insulin simultaneously and mortality of T2DM was obtained from a family member and double checked against death certificates provided from the local center for disease control and prevention. Individual pollution exposures were the mean concentrations of pollutants estimated from the local environmental monitoring centers over the survival years. Hazard ratios (HRs) were estimated using Cox regression models after adjusting for potential confounding factors. RESULTS A total of 39 054 participants were recruited into the mortality cohort, among which 59 subjects died from T2DM; 38 529 participants were analyzed in the incidence cohort, and 1213 developed new cases of T2DM. For each 10 μg/m3 increase in PM10, SO2, and NO2, the adjusted HRs and 95% confidence interval (CI) for diabetic incidence were 1.831 (1.778, 1.886), 1.287 (1.256, 1.318), and 1.472 (1.419, 1.528), respectively. Similar results can be observed in the analysis of diabetic mortality with HRs (95% CI) up to 2.260 (1.732, 2.950), 1.130 (1.042, 1.225), and 1.525 (1.280, 1.816), respectively. CONCLUSIONS Our results suggested that long-term exposure to high levels of PM10, SO2, and NO2 increase risk of incident and mortality of T2DM in China.
Collapse
Affiliation(s)
- Anqi Shan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Li-Wen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xuejun Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Hui Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Mengfan Yan
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Yaoyan Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Ping Xian
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Zhao Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Chaokang Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Pengyi Guo
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Guang-Hui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Min Liu
- School of Medicine and Life Sciences, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbei New District, 110122, Shenyang, Liaoning, China
| | - Tong Wang
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Xin Zhao
- Taiyuan Center for Disease Control and Prevention, Taiyuan, 030001, China
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
50
|
The Nexus between Workplace Exposure for Wood, Welding, Motor Mechanic, and Oil Refinery Workers and the Prevalence of Prediabetes and Type 2 Diabetes Mellitus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113992. [PMID: 32512868 PMCID: PMC7312831 DOI: 10.3390/ijerph17113992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 11/16/2022]
Abstract
Workplace exposure in various occupational and industrial sectors is an emerging health concern worldwide. This study aimed to investigate the nexus between workplace exposure for wood, welding, motor mechanic, and oil refinery workers and the prevalence of prediabetes and type 2 diabetes mellitus. Initially, 2500 male volunteers who were wood, welding, motor mechanic, and oil refinery workers were interviewed. After an examination of their demographics and medical history, 1408 non-smoking wood (158), welding (560), motor mechanic (272), and oil refinery workers (217), along with 201 control subjects, were selected. The participants' mean age was 36.59 ± 0.29 years and the mean body mass index was 26.14 ± 0.11 kg/m2. The selected industry workers had been exposed to their respective wood, welding, motor mechanic, and oil refinery workplaces for 8 h per day, six days per week. The American Diabetic Association (ADA)-based glycated hemoglobin (HbA1c) criterion was used to diagnose prediabetes and type 2 diabetes mellitus. Subjects with an HbA1c of less than 5.7% were regarded as non-diabetics, subjects with an HbA1c of 5.7%-6.4% were considered prediabetics, and subjects with an HbA1c of more than 6.4% were considered diabetics. In wood industry workers, the prevalence of prediabetes (PD) was 64 (40.50%) and in type 2 diabetes mellitus (T2DM), it was 21 (13.29%); in welding workers, the prevalence of prediabetes was 261 (46.60%), and for T2DM, it was 90 (16.07%); in motor mechanic workers, the prevalence of prediabetes was 110 (40.44%), and for T2DM, it was 126 (46.32%); and in oil refinery workers, the prevalence of prediabetes was 80 (36.86%), and for T2DM, it was 35 (16.12%). However; the combined prevalence of prediabetes and T2DM among wood, welding, motor mechanic, and oil refinery workers was 421 (34.79%) and 515 (42.66%), respectively. The prevalence of prediabetes and T2DM among workers increased with the duration of working exposure in the wood, welding, motor mechanic, and oil refinery industries. A one-year working exposure in these industries caused an increase of 0.03% in HbA1c. Workplace exposure in wood, welding, motor mechanic, and oil refinery industries increased the risk of prevalence of prediabetes and T2DM among the workers and affected the diabetes etiology.
Collapse
|