1
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Kotsifaki A, Alevizopoulos N, Dimopoulou V, Armakolas A. Unveiling the Immune Microenvironment's Role in Breast Cancer: A Glimpse into Promising Frontiers. Int J Mol Sci 2023; 24:15332. [PMID: 37895012 PMCID: PMC10607694 DOI: 10.3390/ijms242015332] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), one of the most widespread and devastating diseases affecting women worldwide, presents a significant public health challenge. This review explores the emerging frontiers of research focused on deciphering the intricate interplay between BC cells and the immune microenvironment. Understanding the role of the immune system in BC is critical as it holds promise for novel therapeutic approaches and precision medicine strategies. This review delves into the current literature regarding the immune microenvironment's contribution to BC initiation, progression, and metastasis. It examines the complex mechanisms by which BC cells interact with various immune cell populations, including tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). Furthermore, this review highlights the impact of immune-related factors, such as cytokines and immune checkpoint molecules. Additionally, this comprehensive analysis sheds light on the potential biomarkers associated with the immune response in BC, enabling early diagnosis and prognostic assessment. The therapeutic implications of targeting the immune microenvironment are also explored, encompassing immunotherapeutic strategies and combination therapies to enhance treatment efficacy. The significance of this review lies in its potential to pave the way for novel therapeutic interventions, providing clinicians and researchers with essential knowledge to design targeted and personalized treatment regimens for BC patients.
Collapse
Affiliation(s)
| | | | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (N.A.); (V.D.)
| |
Collapse
|
3
|
Cancer Vaccines for Triple-Negative Breast Cancer: A Systematic Review. Vaccines (Basel) 2023; 11:vaccines11010146. [PMID: 36679991 PMCID: PMC9866612 DOI: 10.3390/vaccines11010146] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the subtype of breast cancer with the poorest outcomes, and is associated with a high risk of relapse and metastasis. The treatment choices for this malignancy have been confined to conventional chemotherapeutic agents, due to a lack of expression of the canonical molecular targets. Immunotherapy has been recently changing the treatment paradigm for many types of tumors, and the approach of evoking active immune responses in the milieu of breast tumors through cancer vaccines has been introduced as one of the most novel immunotherapeutic approaches. Accordingly, a number of vaccines for the treatment or prevention of recurrence have been developed and are currently being studied in TNBC patients, while none have yet received any approvals. To elucidate the efficacy and safety of these vaccines, we performed a systematic review of the available literature on the topic. After searching the PubMed, Scopus, Web of Science, Embase, Cochrane CENTRAL, and Google Scholar databases, a total of 5701 results were obtained, from which 42 clinical studies were eventually included based on the predefined criteria. The overall quality of the included studies was acceptable. However, due to a lack of reporting outcomes of survival or progression in some studies (which were presented as conference abstracts) as well as the heterogeneity of the reported outcomes and study designs, we were not able to carry out a meta-analysis. A total of 32 different vaccines have so far been evaluated in TNBC patients, with the majority belonging to the peptide-based vaccine type. The other vaccines were in the cell or nucleic acid (RNA/DNA)-based categories. Most vaccines proved to be safe with low-grade, local adverse events and could efficiently evoke cellular immune responses; however, most trials were not able to demonstrate significant improvements in clinical indices of efficacy. This is in part due to the limited number of randomized studies, as well as the limited TNBC population of each trial. However, due to the encouraging results of the currently published trials, we anticipate that this strategy could show its potential through larger, phase III randomized studies in the near future.
Collapse
|
4
|
Chen M, Liu J, Liang X, Huang Y, Yang Z, Lu P, Shen J, Shi K, Qu H. Knockdown of Brachyury Suppresses Breast Cancer Cell Proliferation and Migration via Targeting E2F3. JOURNAL OF ONCOLOGY 2022; 2022:7913067. [PMID: 36457717 PMCID: PMC9708336 DOI: 10.1155/2022/7913067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 10/26/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancer in women and is the major cause of most cancer-related deaths. We previously reported that Brachyury, as a sensitive and specific marker, has been verified to involve in the process of carcinogenesis and progression of breast cancer, but the mechanism by which Brachyury promotes breast cancer cells proliferation and migration still remains less clear. In this study, we identified that Brachyury was markedly increased in breast cancer compared with the adjacent tissues. We have also shown that Brachyury knockdown could decrease the proliferation and migration capability in breast cancer cells both in vitro and in vivo. Finally, we found an important transcriptional factor, E2F3, which is a direct downstream target gene of Brachyury by chromatin immunoprecipitation (ChIP) analysis. Knockdown of E2F3 also decreased breast cancer cell proliferation and migration. Taken together, we reported that Brachyury may act as an oncogenic role in the progression of breast cancer by positively-regulating E2F3 expression.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Jinyan Liu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, China
| | - Xiao Liang
- Department of Anesthesiology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Ying Huang
- Department of Ultrasonography, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu 215002, China
| | - Zhengjie Yang
- Department of Orthopedic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Pei Lu
- Department of Orthopedic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Jun Shen
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, China
| | - Keqin Shi
- Department of Orthopedic Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| | - Huiheng Qu
- Department of General Surgery, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214000, China
| |
Collapse
|
5
|
Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol 2022; 12:1009193. [PMID: 36387127 PMCID: PMC9647139 DOI: 10.3389/fonc.2022.1009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 09/01/2023] Open
Abstract
The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.
Collapse
|
6
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Niu G, Hao J, Sheng S, Wen F. Role of T-box genes in cancer, epithelial-mesenchymal transition, and cancer stem cells. J Cell Biochem 2021; 123:215-230. [PMID: 34897787 DOI: 10.1002/jcb.30188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Sharing a common DNA binding motif called T-box, transcription factor T-box gene family controls embryonic development and is also involved in cancer progression and metastasis. Cancer metastasis shows therapy resistance and involves complex processes. Among them, epithelial-mesenchymal transition (EMT) triggers cancer cell invasiveness and the acquisition of stemness of cancer cells, called cancer stem cells (CSCs). CSCs are a small fraction of tumor bulk and are capable of self-renewal and tumorsphere formation. Recent progress has highlighted the critical roles of T-box genes in cancer progression, EMT, and CSC function, and such regulatory functions of T-box genes have emerged as potential therapeutic candidates for cancer. Herein we summarize the current understanding of the regulatory mechanisms of T-box genes in cancer, EMT, and CSCs, and discuss the implications of targeting T-box genes as anticancer therapeutics.
Collapse
Affiliation(s)
- Gengle Niu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jin Hao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Wen
- Department of Outpatient, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
8
|
Barzaman K, Moradi-Kalbolandi S, Hosseinzadeh A, Kazemi MH, Khorramdelazad H, Safari E, Farahmand L. Breast cancer immunotherapy: Current and novel approaches. Int Immunopharmacol 2021; 98:107886. [PMID: 34153663 DOI: 10.1016/j.intimp.2021.107886] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
The crucial role of the immune system in the progression/regression of breast cancer (BC) should always be taken into account. Various immunotherapy approaches have been investigated for BC, including tumor-targeting antibodies (bispecific antibodies), adoptive T cell therapy, vaccines, and immune checkpoint blockade such as anti-PD-1. In addition, a combination of conventional chemotherapy and immunotherapy approaches contributes to improving patients' overall survival rates. Although encouraging outcomes have been reported in most clinical trials of immunotherapy, some obstacles should still be resolved in this regard. Recently, personalized immunotherapy has been proposed as a potential complementary medicine with immunotherapy and chemotherapy for overcoming BC. Accordingly, this review discusses the brief association of these methods and future directions in BC immunotherapy.
Collapse
Affiliation(s)
- Khadijeh Barzaman
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzadeh
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjani University of Medical Sciences, Rafsanjani, Iran; Department of Immunology, School of Medicine, Rafsanjani University of Medical Sciences, Rafsanjani, Iran
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Akinduro OO, Suarez-Meade P, Garcia D, Brown DA, Sarabia-Estrada R, Attia S, Gokaslan ZL, Quiñones-Hinojosa A. Targeted Therapy for Chordoma: Key Molecular Signaling Pathways and the Role of Multimodal Therapy. Target Oncol 2021; 16:325-337. [PMID: 33893940 DOI: 10.1007/s11523-021-00814-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chordoma is a rare but devastating tumor that arises in the cranial skull base or spine. There are currently no US Food and Drug Administration-approved targeted therapies for chordoma, and little understanding of whether using more than one therapy has benefit over monotherapy. OBJECTIVE The objective of this study was to systematically review the current status of clinical trials completed for patients with chordoma to determine if multimodal therapy offers a benefit in progression-free survival over monomodal therapy. METHODS We performed a systematic review of the literature according to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines to review the available clinical trials of targeted therapy for chordoma. We compiled the clinical data to determine if there is a benefit of multimodal therapy over monotherapy. RESULTS Our search resulted in 11 clinical trials including 270 patients with advanced chordoma who were treated with targeted therapies. The most commonly employed targeted therapies acted within the following pathways: platelet-derived growth factor receptor (187 patients), vascular endothelial growth factor (66 patients), and mammalian target of rapamycin (43 patients). Reported progression-free survival for included studies ranged from 2.5 to 58 months, with the longest progression-free survival in a trial that included a platelet-derived growth factor receptor inhibitor, nilotinib, and concurrent radiotherapy (58.2 months). There was a higher range of progression-free survival for trials treating patients with multimodal therapy (10.2-14 months vs 2.5-9.2 months, except for a monotherapy trial published in 2020 with a progression-free survival of 18 months), and those published in 2018 or later (14-58.2 months vs 2.5-10.2 months). Only 23% of patients with chordoma in published clinical trials have been treated with multimodal therapy. CONCLUSIONS Progression-free survival may be enhanced by the use of targeted therapy with concurrent radiotherapy, use of multimodal therapy, and use of newer targeted therapy. Future clinical trials should consider use of concurrent radiotherapy and multimodal therapy for patients with advanced chordoma.
Collapse
Affiliation(s)
- Oluwaseun O Akinduro
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | - Paola Suarez-Meade
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | - Diogo Garcia
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | | | - Rachel Sarabia-Estrada
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA
| | - Steven Attia
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Alfredo Quiñones-Hinojosa
- Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
10
|
Machine learning based tissue analysis reveals Brachyury has a diagnosis value in breast cancer. Biosci Rep 2021; 41:228103. [PMID: 33734319 PMCID: PMC8024874 DOI: 10.1042/bsr20203391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The aim of the present study was to confirm the role of Brachyury in breast cancer and to verify whether four types of machine learning models can use Brachyury expression to predict the survival of patients. Methods: We conducted a retrospective review of the medical records to obtain patient information, and made the patient’s paraffin tissue into tissue chips for staining analysis. We selected 303 patients for research and implemented four machine learning algorithms, including multivariate logistic regression model, decision tree, artificial neural network and random forest, and compared the results of these models with each other. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. Results: The chi-square test results of relevant data suggested that the expression of Brachyury protein in cancer tissues was significantly higher than that in paracancerous tissues (P=0.0335); patients with breast cancer with high Brachyury expression had a worse overall survival (OS) compared with patients with low Brachyury expression. We also found that Brachyury expression was associated with ER expression (P=0.0489). Subsequently, we used four machine learning models to verify the relationship between Brachyury expression and the survival of patients with breast cancer. The results showed that the decision tree model had the best performance (AUC = 0.781). Conclusions: Brachyury is highly expressed in breast cancer and indicates that patients had a poor prognosis. Compared with conventional statistical methods, decision tree model shows superior performance in predicting the survival status of patients with breast cancer.
Collapse
|
11
|
Gatti-Mays ME, Gameiro SR, Ozawa Y, Knudson KM, Hicks KC, Palena C, Cordes LM, Steinberg SM, Francis D, Karzai F, Lipkowitz S, Donahue RN, Jochems C, Schlom J, Gulley JL. Improving the Odds in Advanced Breast Cancer With Combination Immunotherapy: Stepwise Addition of Vaccine, Immune Checkpoint Inhibitor, Chemotherapy, and HDAC Inhibitor in Advanced Stage Breast Cancer. Front Oncol 2021; 10:581801. [PMID: 33747894 PMCID: PMC7977003 DOI: 10.3389/fonc.2020.581801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
Breast tumors commonly harbor low mutational burden, low PD-L1 expression, defective antigen processing/presentation, and an immunosuppressive tumor microenvironment (TME). In a malignancy mostly refractory to checkpoint blockade, there is an unmet clinical need for novel combination approaches that increase tumor immune infiltration and tumor control. Preclinical data have guided the development of this clinical trial combining 1) BN-Brachyury (a poxvirus vaccine platform encoding the tumor associated antigen brachyury), 2) bintrafusp alfa (a bifunctional protein composed of the extracellular domain of the TGF-βRII receptor (TGFβ "trap") fused to a human IgG1 anti-PD-L1), 3), entinostat (a class I histone deacetylase inhibitor), and 4) T-DM1 (ado-trastuzumab emtansine, a standard of care antibody-drug conjugate targeting HER2). We hypothesize that this tetratherapy will induce a robust immune response against HER2+ breast cancer with improved response rates through 1) expanding tumor antigen-specific effector T cells, natural killer cells, and immunostimulatory dendritic cells, 2) improving antigen presentation, and 3) decreasing inhibitory cytokines, regulatory T cells, and myeloid-derived suppressor cells. In an orthotopic HER2+ murine breast cancer model, tetratherapy induced high levels of antigen-specific T cell responses, tumor CD8+ T cell/Treg ratio, and augmented the presence of IFNγ- or TNFα-producing CD8+ T cells and IFNγ/TNFα bifunctional CD8+ T cells with increased cytokine production. Similar effects were observed in tumor CD4+ effector T cells. Based on this data, a phase 1b clinical trial evaluating the stepwise addition of BN-Brachyury, bintrafusp alfa, T-DM1 and entinostat in advanced breast cancer was designed. Arm 1 (TNBC) receives BN-Brachyury + bintrafusp alfa. Arm 2 (HER2+) receives T-DM1 + BN-Brachyury + bintrafusp alfa. After safety is established in Arm 2, Arm 3 (HER2+) will receive T-DM1 + BN-Brachyury + bintrafusp alfa + entinostat. Reimaging will occur every 2 cycles (1 cycle = 21 days). Arms 2 and 3 undergo research biopsies at baseline and after 2 cycles to evaluate changes within the TME. Peripheral immune responses will be evaluated. Co-primary objectives are response rate and safety. All arms employ a safety assessment in the initial six patients and a 2-stage Simon design for clinical efficacy (Arm 1 if ≥ three responses of eight then expand to 13 patients; Arms 2 and 3 if ≥ four responses of 14 then expand to 19 patients per arm). Secondary objectives include progression-free survival and changes in tumor infiltrating lymphocytes. Exploratory analyses include changes in peripheral immune cells and cytokines. To our knowledge, the combination of a vaccine, an anti-PD-L1 antibody, entinostat, and T-DM1 has not been previously evaluated in the preclinical or clinical setting. This trial (NCT04296942) is open at the National Cancer Institute (Bethesda, MD).
Collapse
Affiliation(s)
- Margaret E. Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sofia R. Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yohei Ozawa
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karin M. Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kristin C. Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lisa M. Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Deneise Francis
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Renee N. Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - James L. Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Behravan J, Razazan A, Behravan G. Towards Breast Cancer Vaccines, Progress and Challenges. Curr Drug Discov Technol 2020; 16:251-258. [PMID: 29732989 DOI: 10.2174/1570163815666180502164652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
Breast cancer is the second leading cause of cancer death among women. National cancer institute of the US estimates that one in eight women will be diagnosed with breast cancer during their lifetime. Considering the devastating effects of the disease and the alarming numbers many scientists and research groups have devoted their research to fight breast cancer. Several recommendations are to be considered as preventing measures which include living a healthy lifestyle, regular physical activity, weight control and smoking cessation. Early detection of the disease by annual and regular mammography after the age of 40 is recommended by many healthcare institutions. This would help the diagnosis of the disease at an earlier stage and the start of the treatment before it is spread to other parts of the body. Current therapy for breast cancer includes surgical ablation, radiotherapy and chemotherapy which is often associated with adverse effects and even may lead to a relapse of the disease at a later stage. In order to achieve a long-lasting anticancer response with minimal adverse effects, development of breast cancer vaccines is under investigation by many laboratories. The immune system can be stimulated by a vaccine against breast cancer. This approach has attracted a great enthusiasm in recent years. No breast cancer vaccines have been approved for clinical use today. One breast cancer vaccine (NeuVax) has now completed clinical trial phase III and a few preventive and therapeutic breast cancer vaccines are at different steps of development. We think that with the recent advancements in immunotherapy, a breast cancer vaccine is not far from reach.
Collapse
Affiliation(s)
- Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto M5G0B7, Canada
| | - Atefeh Razazan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazal Behravan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Chen M, Wu Y, Zhang H, Li S, Zhou J, Shen J. The Roles of Embryonic Transcription Factor BRACHYURY in Tumorigenesis and Progression. Front Oncol 2020; 10:961. [PMID: 32695672 PMCID: PMC7338565 DOI: 10.3389/fonc.2020.00961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Transcription factor brachyury, with a DNA-binding T-domain, regulates posterior mesoderm formation and notochord development through binding with highly conserved palindromic consensus sequence in a variety of organisms. The absence of brachyury expression in majority of adult normal tissues and exclusive tumor-specific expression provides the potential to be developed into a novel and promising diagnostic and therapeutic target in cancer. As a sensitive and specific marker in the diagnosis of chordoma, brachyury protein has been verified to involve in the process of carcinogenesis and progression of chordoma and several epithelial carcinomas in various studies, but the mechanism by which brachyury promotes tumor cells migrate, invade and metastasis still remains less clear. To this end, we attempt to summarize the literature on the upstream regulatory pathway of brachyury transcription and downstream controlling network by brachyury activation, all of which involve in both the embryonic development and tumor progression. We present the respective correlation of brachyury expression with tumor progression, distant metastasis, survival rate and prognosis in several types of tumor samples (including chordoma, lung cancer, breast carcinoma, and prostate cancer), and various brachyury gain-of-function and loss-of-function experiments are summarized to explore its specific role in respective tumor cell line in vitro. In addition, we also discuss another two programs relating to brachyury function: epithelial-to-mesenchymal transition (EMT) and cell cycle control, both of which implicate in the regulation of brachyury on biological behavior of tumor cells. This review will provide an overview of the function of master transcriptional factor brachyury, compare the similarities and differences of its role between embryonic development and carcinogenesis, and list the evidence on which brachyury-target therapies have the potential to help control advanced cancer populations.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Department of Orthopeadic Surgery, Wuxi No. 2 People's Hospital, Nanjing Medical University, Wuxi, China
| | - Yinghui Wu
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Hong Zhang
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Suoyuan Li
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Shen
- Department of Orthopeadic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
14
|
Scimeca M, Trivigno D, Bonfiglio R, Ciuffa S, Urbano N, Schillaci O, Bonanno E. Breast cancer metastasis to bone: From epithelial to mesenchymal transition to breast osteoblast-like cells. Semin Cancer Biol 2020; 72:155-164. [PMID: 32045651 DOI: 10.1016/j.semcancer.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
In this review we highlighted the newest aspects concerning the physiopathology of breast cancer metastatization into the bone including: a) in situ biomarkers of breast cancer metastatic diseases, b) biological processes related to the origin of metastatic cells (epithelial to mesenchymal transition), c) the nature and the possible role of Breast Osteoblast-Like Cells in the formation of bone lesions and d) the prognostic value of breast microcalcifications for the bone metastatic disease. In addition, the more recent data about the biology of breast cancer metastatic process and the origin and function of Breast Osteoblast-Like Cells have been analyzed to propose the use of molecular imaging investigations able to identify early neoplastic lesions with high propensity to form bone metastasis in vivo.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano, Mi, Italy; Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
15
|
Gatti-Mays ME, Balko JM, Gameiro SR, Bear HD, Prabhakaran S, Fukui J, Disis ML, Nanda R, Gulley JL, Kalinsky K, Abdul Sater H, Sparano JA, Cescon D, Page DB, McArthur H, Adams S, Mittendorf EA. If we build it they will come: targeting the immune response to breast cancer. NPJ Breast Cancer 2019; 5:37. [PMID: 31700993 PMCID: PMC6820540 DOI: 10.1038/s41523-019-0133-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Historically, breast cancer tumors have been considered immunologically quiescent, with the majority of tumors demonstrating low lymphocyte infiltration, low mutational burden, and modest objective response rates to anti-PD-1/PD-L1 monotherapy. Tumor and immunologic profiling has shed light on potential mechanisms of immune evasion in breast cancer, as well as unique aspects of the tumor microenvironment (TME). These include elements associated with antigen processing and presentation as well as immunosuppressive elements, which may be targeted therapeutically. Examples of such therapeutic strategies include efforts to (1) expand effector T-cells, natural killer (NK) cells and immunostimulatory dendritic cells (DCs), (2) improve antigen presentation, and (3) decrease inhibitory cytokines, tumor-associated M2 macrophages, regulatory T- and B-cells and myeloid derived suppressor cells (MDSCs). The goal of these approaches is to alter the TME, thereby making breast tumors more responsive to immunotherapy. In this review, we summarize key developments in our understanding of antitumor immunity in breast cancer, as well as emerging therapeutic modalities that may leverage that understanding to overcome immunologic resistance.
Collapse
Affiliation(s)
- Margaret E. Gatti-Mays
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Justin M. Balko
- Department of Medicine and Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN USA
| | - Sofia R. Gameiro
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Harry D. Bear
- Division of Surgical Oncology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA USA
| | - Sangeetha Prabhakaran
- Division of Surgical Oncology, Department of Surgery, University of New Mexico; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM USA
| | - Jami Fukui
- University of Hawaii Cancer Center, Honolulu, HI USA
| | | | - Rita Nanda
- The University of Chicago, Chicago, IL USA
| | - James L. Gulley
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Kevin Kalinsky
- Columbia University Irving Medical Center, New York, NY USA
| | - Houssein Abdul Sater
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Joseph A. Sparano
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY USA
| | - David Cescon
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON Canada
| | - David B. Page
- Providence Cancer Institute, Earle A. Chiles Research Institute, Portland, OR USA
| | | | - Sylvia Adams
- Perlmutter Cancer Center, NYU School of Medicine, New York, NY USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA USA
- Breast Oncology Program, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA USA
| |
Collapse
|
16
|
Razazan A, Behravan J. Single peptides and combination modalities for triple negative breast cancer. J Cell Physiol 2019; 235:4089-4108. [PMID: 31642059 DOI: 10.1002/jcp.29300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
Unlike other types of breast cancers (BCs), no specific therapeutic targets have been established for triple negative breast cancer (TNBC). Therefore, chemotherapy and radiotherapy are the only available adjuvant therapeutic choices for TNBC. New emerging reports show that TNBC is associated with higher numbers of intratumoral tumor infiltrating lymphocytes. This is indicative of host anti-TNBC immune surveillance and suggesting that immunotherapy can be considered as a therapeutic approach for TNBC management. Recent progress in molecular mechanisms of tumor-immune system interaction and cancer vaccine development studies, fast discoveries and FDA approvals of immune checkpoint inhibitors, chimeric antigen receptor T-cells, and oncolytic virotherapy have significantly attracted attention and research directions toward the immunotherapeutic approach to TNBC. Here in this review different aspects of TNBC immunotherapies including the host immune system-tumor interactions, the tumor microenvironment, the relevant molecular targets for immunotherapy, and clinical trials in the field are discussed.
Collapse
Affiliation(s)
- Atefeh Razazan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Center for Obesity, Diabetes and Metabolism (Internal Medicine-Molecular Medicine), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, University of Waterloo, Waterloo, Canada.,Theraphage Inc., Kitchener, Ontario, Canada
| |
Collapse
|
17
|
Ferroni P. Meet Our Section Editor. Curr Med Chem 2019. [DOI: 10.2174/092986732603190326151204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Arab A, Behravan N, Razazn A, Barati N, Mosaffa F, Nicastro J, Slavcev R, Behravan J. The viral approach to breast cancer immunotherapy. J Cell Physiol 2018; 234:1257-1267. [PMID: 30146692 DOI: 10.1002/jcp.27150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/05/2018] [Indexed: 01/03/2023]
Abstract
Despite years of intensive research, breast cancer remains the leading cause of death in women worldwide. New technologies including oncolytic virus therapies, virus, and phage display are among the most powerful and advanced methods that have emerged in recent years with potential applications in cancer prevention and treatment. Oncolytic virus therapy is an interesting strategy for cancer treatment. Presently, a number of viruses from different virus families are under laboratory and clinical investigation as oncolytic therapeutics. Oncolytic viruses (OVs) have been shown to be able to induce and initiate a systemic antitumor immune response. The possibility of application of a multimodal therapy using a combination of the OV therapy with immune checkpoint inhibitors and cancer antigen vaccination holds a great promise in the future of cancer immunotherapy. Display of immunologic peptides on bacterial viruses (bacteriophages) is also increasingly being considered as a new and strong cancer vaccine delivery strategy. In phage display immunotherapy, a peptide or protein antigen is presented by genetic fusions to the phage coat proteins, and the phage construct formulation acts as a protective or preventive vaccine against cancer. In our laboratory, we have recently tested a few peptides (E75, AE37, and GP2) derived from HER2/neu proto-oncogene as vaccine delivery modalities for the treatment of TUBO breast cancer xenograft tumors of BALB/c mice. Here, in this paper, we discuss the latest advancements in the applications of OVs and bacterial viruses display systems as new and advanced modalities in cancer immune therapeutics.
Collapse
Affiliation(s)
- Atefeh Arab
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Atefeh Razazn
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jessica Nicastro
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON, Canada.,Mediphage Bioceuticals, Inc., MaRS Centre, Toronto, ON, Canada
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Mediphage Bioceuticals, Inc., MaRS Centre, Toronto, ON, Canada
| |
Collapse
|
19
|
Li Z, Qiu Y, Lu W, Jiang Y, Wang J. Immunotherapeutic interventions of Triple Negative Breast Cancer. J Transl Med 2018; 16:147. [PMID: 29848327 PMCID: PMC5977468 DOI: 10.1186/s12967-018-1514-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a highly heterogeneous subtype of breast cancer that lacks the expression of oestrogen receptors, progesterone receptors and human epidermal growth factor receptor 2. Although TNBC is sensitive to chemotherapy, the overall outcomes of TNBC are worse than for other breast cancers, and TNBC is still one of the most fatal diseases for women. With the discovery of antigens specifically expressed in TNBC cells and the developing technology of monoclonal antibodies, chimeric antigen receptors and cancer vaccines, immunotherapy is emerging as a novel promising option for TNBC. This review is mainly focused on the tumour microenvironment and host immunity, Triple Negative Breast Cancer and the clinical treatment of TNBC, novel therapies for cancer and immunotherapy for TNBC, and the future outlook for the treatment for TNBC and the interplay between the therapies, including immune checkpoint inhibitors, combination of immune checkpoint inhibitors with targeted treatments in TNBC, adoptive cell therapy, cancer vaccines. The review also highlights recent reports on the synergistic effects of immunotherapy and chemotherapy, antibody-drug conjugates, and exosomes, as potential multifunctional therapeutic agents in TNBC.
Collapse
Affiliation(s)
- Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Yiran Qiu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032 People’s Republic of China
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508 People’s Republic of China
| |
Collapse
|
20
|
Hamilton DH, McCampbell KK, Palena C. Loss of the Cyclin-Dependent Kinase Inhibitor 1 in the Context of Brachyury-Mediated Phenotypic Plasticity Drives Tumor Resistance to Immune Attack. Front Oncol 2018; 8:143. [PMID: 29774202 PMCID: PMC5943507 DOI: 10.3389/fonc.2018.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8+ T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8+ T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial–mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of brachyury could be alleviated via the use of a WEE1 inhibitor. Several vaccine platforms targeting brachyury have been developed and are undergoing clinical evaluation. These studies provide further rationale for the use of WEE1 inhibition in combination with brachyury-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kristen K McCampbell
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Lee KH, Kim EY, Yun JS, Park YL, Do SI, Chae SW, Park CH. Prognostic significance of expression of epithelial-mesenchymal transition driver brachyury in breast cancer and its association with subtype and characteristics. Oncol Lett 2017; 15:1037-1045. [PMID: 29399164 PMCID: PMC5772917 DOI: 10.3892/ol.2017.7402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Brachyury is a T-box transcription factor characterized as a driver of the epithelial-to-mesenchymal process, which is associated with poor prognosis of patients with breast cancer. The present study investigated expression of brachyury in breast cancer including primary tumor, metastatic and recurred tumor tissues, and the clinical significance and value of brachyury as a prognostic biomarker. This retrospective study included a series of 102 consecutive patients surgically resected between January 2005 and December 2011. Brachyury expression in tumor cell was evaluated using immunohistochemistry and scored as the immunoactivity. Of 102 patients, 62 primary tumors were positive for brachyury expression and 40 were negative. Multivariate analysis of disease-free survival (DFS) revealed brachyury expression, HER2 and lymphovascular invasion as independent prognostic factors [brachyury negative vs. positive hazard ratio (HR), 3.0; P=0.024; HER2 negative vs. positive HR, 4.9; P=0.003; lymphovascular invasion absent vs. present HR, 3.5; P=0.020]. These results were particularly observed in triple-negative breast cancer (TNBC), no recurrence or mortality occurred in brachyury negative group during the follow-up period, and therefore a significantly improved prognosis was demonstrated in these patients compared with the brachyury positive group [overall survival (OS), P=0.022; DFS, P=0.002]. Brachyury expression in metastatic lymph node/recurred tumors was not significantly associated with prognosis (OS, P=0.745; DFS, P=0.189). Therefore, Brachyury expression in primary tumor independently is a potential predictor of poor prognosis, particularly in TNBC, where it appears to serve a crucial function in recurrence and mortality. Brachyury vaccines under clinical trials are likely to be useful in patients with breast cancer.
Collapse
Affiliation(s)
- Kwan Ho Lee
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Eun Young Kim
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Ji Sup Yun
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Yong Lai Park
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Chan Heun Park
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| |
Collapse
|
22
|
Heery CR, Palena C, McMahon S, Donahue RN, Lepone LM, Grenga I, Dirmeier U, Cordes L, Marté J, Dahut W, Singh H, Madan RA, Fernando RI, Hamilton DH, Schlom J, Gulley JL. Phase I Study of a Poxviral TRICOM-Based Vaccine Directed Against the Transcription Factor Brachyury. Clin Cancer Res 2017; 23:6833-6845. [PMID: 28855356 DOI: 10.1158/1078-0432.ccr-17-1087] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/11/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022]
Abstract
Purpose: The transcription factor brachyury has been shown in preclinical studies to be a driver of the epithelial-to-mesenchymal transition (EMT) and resistance to therapy of human tumor cells. This study describes the characterization of a Modified Vaccinia Ankara (MVA) vector-based vaccine expressing the transgenes for brachyury and three human costimulatory molecules (B7.1, ICAM-1, and LFA-3, designated TRICOM) and a phase I study with this vaccine.Experimental Design: Human dendritic cells (DC) were infected with MVA-brachyury-TRICOM to define their ability to activate brachyury-specific T cells. A dose-escalation phase I study (NCT02179515) was conducted in advanced cancer patients (n = 38) to define safety and to identify brachyury-specific T-cell responses.Results: MVA-brachyury-TRICOM-infected human DCs activated CD8+ and CD4+ T cells specific against the self-antigen brachyury in vitro No dose-limiting toxicities were observed due to vaccine in cancer patients at any of the three dose levels. One transient grade 3 adverse event (AE) possibly related to vaccine (diarrhea) resolved without intervention and did not recur with subsequent vaccine. All other AEs related to vaccine were transient and ≤grade 2. Brachyury-specific T-cell responses were observed at all dose levels and in most patients.Conclusions: The MVA-brachyury-TRICOM vaccine directed against a transcription factor known to mediate EMT can be administered safely in patients with advanced cancer and can activate brachyury-specific T cells in vitro and in patients. Further studies of this vaccine in combination therapies are warranted and planned. Clin Cancer Res; 23(22); 6833-45. ©2017 AACR.
Collapse
Affiliation(s)
- Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheri McMahon
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Renee N Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lauren M Lepone
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Italia Grenga
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Lisa Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jenn Marté
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William Dahut
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Harpreet Singh
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Romaine I Fernando
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
23
|
Malamas AS, Hammond SA, Schlom J, Hodge JW. Combination therapy with an OX40L fusion protein and a vaccine targeting the transcription factor twist inhibits metastasis in a murine model of breast cancer. Oncotarget 2017; 8:90825-90841. [PMID: 29207606 PMCID: PMC5710887 DOI: 10.18632/oncotarget.19967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/23/2017] [Indexed: 12/22/2022] Open
Abstract
OX40 is a costimulatory receptor that potentiates proliferation, survival, memory formation, and effector function of CD4+ and CD8+ T-cells, while overcoming the suppressive activity of regulatory T-cells (Tregs). Here, we explored the combination of an OX40L fusion protein (OX40L-FP) with a poxvirus-based cancer vaccine (MVA-Twist-TRICOM) to inhibit tumor metastasis in the 4T1 murine breast cancer model. Contrary to the single agent treatments, the combination therapy significantly decreased the number of metastatic colonies per lung and prolonged survival. Depletion studies demonstrated that these effects were mediated by both CD4+ and CD8+ T-cells. The combination therapy a) increased the total number of T-cells in the CD4+Foxp3- population and the CD4+ central and effector memory subsets within the lung, spleen, and draining lymph node, b) enhanced infiltration of CD4+ T-cells into metastatic areas of the lung, and (c) increased the number of functional CD8+ T-cells that produced IFNγ and TNFα. The combination therapy also promoted the development of KLRG1-CD127+ memory precursor CD8+ T-cells, while reducing those with a KLRG1+ terminally differentiated phenotype. Moreover, the combination of OX40L-FP and vaccine induced greater CD4+ and CD8+ Twist-specific responses. In addition, Tregs isolated from mice receiving the combination were also less immunosuppressive in ex-vivo proliferation assays than those from the OX40L-FP and MVA-Twist-TRICOM monotherapy groups. Such results provide the rationale to combine co-stimulatory agonists with cancer vaccines for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Anthony S Malamas
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Lee KH, Kim EY, Park YL, Do SI, Chae SW, Park CH. Expression of epithelial-mesenchymal transition driver brachyury and status of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in predicting treatment responses to neoadjuvant chemotherapy of breast cancer. Tumour Biol 2017. [PMID: 28621227 DOI: 10.1177/1010428317710575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Brachyury has been characterized as a driver of epithelial-mesenchymal transition process which is regarded as an important mechanism of cancer cell invasion and metastatic progression. The status of tumor-infiltrating lymphocytes has been proposed to predict response to neoadjuvant chemotherapy in breast cancer. We investigated the clinical significance and value of tumor-infiltrating lymphocytes and brachyury as biomarkers to predict treatment responses to neoadjuvant chemotherapy in breast cancer. We also examined the correlation of the Neo-Bioscore with tumor-infiltrating lymphocytes and brachyury to indirectly predict long-term outcome. This retrospective study included a series of 44 consecutive patients treated between January 2011 and December 2015. All patient samples were obtained using core needle biopsy before neoadjuvant chemotherapy. The relationship of expression of Brachyury and tumor-infiltrating lymphocyte subsets (CD8+, forkhead box protein 3 tumor-infiltrating lymphocytes) with clinicopathological factors was assessed to identify its predictive role with respect to tumor response to neoadjuvant chemotherapy and the outcome. Of 44 patients, 6 showed no response, 31 had partial response, and 7 demonstrated pathological complete response. Forkhead box protein 3 was significantly higher in the response group than in the no response group (no response = 2.6, partial response = 7.0, complete response = 9.7, p = 0.020). Brachyury expression was inversely associated with response to neoadjuvant chemotherapy, but the difference was not statistically significant ( p = 0.62). We also observed a significant association between forkhead box protein 3 ( p = 0.001) and the Neo-Bioscore, while only a marginal difference was observed with CD8+ expression ( p = 0.074). This study demonstrated that forkhead box protein 3 expression has value as the only independent marker that predicts a good response to neoadjuvant chemotherapy and that it is related with a good prognosis according to the Neo-Bioscore. Brachyury was significantly associated with estrogen receptor positive and human epidermal growth factor receptor 2 negative status; further study would be needed to clarify how it affects treatment prognosis.
Collapse
Affiliation(s)
- Kwan Ho Lee
- 1 Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Young Kim
- 1 Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong Lai Park
- 1 Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-Im Do
- 2 Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seoung Wan Chae
- 2 Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chan Heun Park
- 1 Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Benedetti R, Dell’Aversana C, Giorgio C, Astorri R, Altucci L. Breast Cancer Vaccines: New Insights. Front Endocrinol (Lausanne) 2017; 8:270. [PMID: 29081765 PMCID: PMC5645504 DOI: 10.3389/fendo.2017.00270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023] Open
Abstract
Breast cancer (BC) is a persistent global challenge for its high frequency in women (although it seldom occurs in men), due to the large diffusion of risk factors and gene mutations, and for its peculiar biology and microenvironment. To date, BC can benefit from different therapeutic strategies involving surgery, ablation, chemotherapy, radiotherapy, and more specific approaches such as hormone therapy and the administration of various substances impairing cancer growth, aggressivity, and recurrence with different modalities. Despite these relatively wide chances, also used in combinatory protocols, relevant mortality and relapse rates, often associated with resistant phenotypes, stress the need for a personalized-medicine based on prompting the patient's immune system (IS) against cancer cells. BC immunogenicity was latterly proven, so the whole immunotherapy field for BC is still at a very early stage. This immunotherapeutic approach exploits both the high specificity of adaptive immune response and the immunological memory. This review is focused on some of the majorly relevant BC vaccines available (NeuVax, AVX901, and INO-1400), providing a description of the more promising clinical trials. The efficacy of cancer vaccines highly depends on the patient's IS, and a wide optimization is needed in terms of targets' selection, drug design and combinations, dose finding, protocol structuring, and patients' recruitment; moreover, new standards are being discussed for the outcome evaluation. However, early-phases excellent results suggest that the manipulation of the IS via specific vaccines is a highly attractive approach for BC.
Collapse
Affiliation(s)
- Rosaria Benedetti
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
- *Correspondence: Rosaria Benedetti, ; Lucia Altucci,
| | - Carmela Dell’Aversana
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
| | - Cristina Giorgio
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
| | - Roberta Astorri
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
- Dipartimento di Medicina e Scienze della Salute “Vincenzo Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica Biofisica e Patologia generale, Università degli Studi della Campania ‘L. Vanvitelli’ Naples, Naples, Italy
- *Correspondence: Rosaria Benedetti, ; Lucia Altucci,
| |
Collapse
|
26
|
David JM, Dominguez C, Palena C. Pharmacological and immunological targeting of tumor mesenchymalization. Pharmacol Ther 2016; 170:212-225. [PMID: 27916651 DOI: 10.1016/j.pharmthera.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling the spread of carcinoma cells to distant organs is the foremost challenge in cancer treatment, as metastatic disease is generally resistant to therapy and is ultimately incurable for the majority of patients. The plasticity of tumor cell phenotype, in which the behaviors and functions of individual tumor cells differ markedly depending upon intrinsic and extrinsic factors, is now known to be a central mechanism in cancer progression. Our expanding knowledge of epithelial and mesenchymal phenotypic states in tumor cells, and the dynamic nature of the transitions between these phenotypes has created new opportunities to intervene to better control the behavior of tumor cells. There are now a variety of innovative pharmacological approaches to preferentially target tumor cells that have acquired mesenchymal features, including cytotoxic agents that directly kill these cells, and inhibitors that block or revert the process of mesenchymalization. Furthermore, novel immunological strategies have been developed to engage the immune system in seeking out and destroying mesenchymalized tumor cells. This review highlights the relevance of phenotypic plasticity in tumor biology, and discusses recently developed pharmacological and immunological means of targeting this phenomenon.
Collapse
Affiliation(s)
- Justin M David
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Charli Dominguez
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|