1
|
Uno D, Endo K, Yoshikawa T, Hirai N, Kobayashi E, Nakanishi Y, Kondo S, Yoshizaki T. Correlation between gene mutations and clinical characteristics in papillary thyroid cancer: a retrospective analysis of BRAF mutations and RET rearrangements. Thyroid Res 2024; 17:21. [PMID: 39278941 PMCID: PMC11404047 DOI: 10.1186/s13044-024-00209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 09/18/2024] Open
Abstract
INTRODUCTION Activation of the MAPK pathway by genetic mutations (such as BRAF and RET) initiates and accelerates the growth of papillary thyroid carcinoma (PTC). However, the correlation between genetic mutations and clinical features remains to be established. Therefore, this study aimed to retrospectively analyze major genetic mutations, specifically BRAF mutations and RET rearrangements, and develop a treatment algorithm by comparing background and clinical characteristics. METHOD One hundred thirteen patients with primary PTC were included in this study. BRAF mutations were detected via Sanger sequencing and RET rearrangements were detected via fluorescence in situ hybridization (FISH) analysis, and reverse transcription polymerase chain reaction (RT-PCR). The patients were categorized into two groups based on the presence of BRAF mutations and RET rearrangements and their clinical characteristics (age, sex, TNM, stage, extratumoral extension, tumor size, unifocal/multifocal lesions, vascular invasion, differentiation, chronic thyroiditis, preoperative serum thyroglobulin level, and 18F-fluorodeoxyglucose (FDG) uptake) were compared subsequently. RESULT After excluding unanalyzable specimens, 80 PTC patients (22 males and 58 females, mean age: 57.2 years) were included in the study. RET rearrangements were positive in 8 cases (10%), and BRAF mutation was positive in 63 (78.6%). The RET rearrangement group was significantly associated with younger age (p = 0.024), multifocal lesion (p = 0.048), distant metastasis (p = 0.025) and decreased 18F-fluorodeoxyglucose uptake (p < 0.001). The BRAF mutation group was significantly associated with unifocal lesions (p = 0.02) and increased 18F-FDG uptake (p = 0.004). CONCLUSION In this study, an increase in M classification cases was found in the RET rearrangements group. However, genetic mutations were not associated with the clinical stage, and no factors that could be incorporated into the treatment algorithm were identified.
Collapse
Affiliation(s)
- Daisuke Uno
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Tomomi Yoshikawa
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Nobuyuki Hirai
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Satoru Kondo
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Stanescu LS, Ghemigian A, Ciobica ML, Nistor C, Ciuche A, Radu AM, Sandru F, Carsote M. Thyroid Malignancy and Cutaneous Lichen Amyloidosis: Key Points Amid RET Pathogenic Variants in Medullary Thyroid Cancer/Multiple Endocrine Neoplasia Type 2 (MEN2). Int J Mol Sci 2024; 25:9765. [PMID: 39337252 PMCID: PMC11431960 DOI: 10.3390/ijms25189765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
We aimed to provide an updated narrative review with respect to the RET pathogenic variants and their implications at the clinical and molecular level in the diagnosis of medullary thyroid cancer (MTC)/multiple endocrine neoplasia (MEN) type 2, particularly with respect to the presence of cutaneous lichen amyloidosis (CLA). We searched English-language, in extenso original articles with no timeline nor study design restriction that were published on PubMed. A traditional interplay stands for CLA and MTC in MEN2 (not MEN3) confirmation. While the connection has been reported for more than three decades, there is still a large gap in understanding and addressing it. The majority of patients with MEN2A-CLA have RET pathogenic variants at codon 634; hence, it suggests an involvement of this specific cysteine residue in both disorders (most data agree that one-third of C634-positive subjects have CLA, but the ranges are between 9% and 50%). Females seem more prone to MEN2-CLA than males. Non-C634 germline RET pathogenic variants included (at a low level of statistical evidence) the following: RET V804M mutation in exon 14 for MTC-CLA (CLA at upper back); RET S891A mutation in exon 15 binding OSMR variant G513D (familial MTC and CLA comprising the lower legs to thighs, upper back, shoulders, arms, and forearms); and C611Y (CLA at interscapular region), respectively. Typically, CLA is detected at an early age (from childhood until young adulthood) before the actual MTC identification unless RET screening protocols are already applied. The time frame between CLA diagnosis and the identification of RET pathogenic variants was between 5 and 60 years according to one study. The same RET mutation in one family is not necessarily associated with the same CLA presentation. In MTC/MEN2 subjects, the most affected CLA area was the scapular region of the upper back. Alternatively, another hypothesis highlighted the fact that CLA is secondary to long-term prurit/notalgia paresthetica (NP) in MTC/MEN2. OSMR p. G513D may play a role in modifying the evolutionary processes of CLA in subjects co-harboring RET mutations (further studies are necessary to sustain this aspect). Awareness in CLA-positive patients is essential, including the decision of RET testing in selected cases.
Collapse
Affiliation(s)
- Laura-Semonia Stanescu
- PhD Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 0505474 Bucharest, Romania
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Adina Ghemigian
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai-Lucian Ciobica
- Department of Internal Medicine and Gastroenterology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine I and Rheumatology, "Dr. Carol Davila" Central Military University Emergency Hospital, 010825 Bucharest, Romania
| | - Claudiu Nistor
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, "Carol Davila" University of Medicine and Pharmacy, 0505474 Bucharest, Romania
- Thoracic Surgery Department, "Dr. Carol Davila" Central Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Adrian Ciuche
- Department 4-Cardio-Thoracic Pathology, Thoracic Surgery II Discipline, "Carol Davila" University of Medicine and Pharmacy, 0505474 Bucharest, Romania
- Thoracic Surgery Department, "Dr. Carol Davila" Central Emergency University Military Hospital, 010825 Bucharest, Romania
| | - Andreea-Maria Radu
- Department of Dermatovenerology, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Department of Dermatovenerology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatovenerology, Elias University Emergency Hospital, 011461 Bucharest, Romania
- Department of Dermatovenerology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mara Carsote
- Department of Clinical Endocrinology V, C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
3
|
Chiloiro S, Capoluongo ED, Costanza F, Minucci A, Giampietro A, Infante A, Milardi D, Ricciardi Tenore C, De Bonis M, Gaudino S, Rindi G, Olivi A, De Marinis L, Pontecorvi A, Doglietto F, Bianchi A. The Pathogenic RET Val804Met Variant in Acromegaly: A New Clinical Phenotype? Int J Mol Sci 2024; 25:1895. [PMID: 38339173 PMCID: PMC10856706 DOI: 10.3390/ijms25031895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Several genetic investigations were conducted to identify germline and somatic mutations in somatotropinomas, a subtype of pituitary tumors. To our knowledge, we report the first acromegaly patient carrying a RET pathogenic variant: c.2410G>A (rs79658334), p.Val804Met. Alongside the fact that the patient's father and daughter carried the same variant, we investigated the clinical significance of this variant in the context of somatotropinomas and other endocrine tumors, reviewing the RET mutations' oncogenic mechanisms. The aim was to search for new targets to precisely manage and treat acromegaly. Our case describes a new phenotype associated with the RET pathogenic variant, represented by aggressive acromegaly, and suggests consideration for RET mutation screening if NGS for well-established PitNET-associated gene mutations renders negative.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro, 00168 Rome, Italy; (F.C.); (A.G.); (D.M.); (L.D.M.); (A.P.); (A.B.)
- Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Ettore Domenico Capoluongo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80138 Naples, Italy;
- Department of Clinical Pathology and Genomics, Ospedale per l’Emergenza Cannizzaro, 95126 Catania, Italy
| | - Flavia Costanza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro, 00168 Rome, Italy; (F.C.); (A.G.); (D.M.); (L.D.M.); (A.P.); (A.B.)
- Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Angelo Minucci
- Unit of Molecular Diagnostics and Genomics, Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.M.); (M.D.B.)
| | - Antonella Giampietro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro, 00168 Rome, Italy; (F.C.); (A.G.); (D.M.); (L.D.M.); (A.P.); (A.B.)
- Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Amato Infante
- Department of Imaging, Radiation Therapy and Hematology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (A.I.); (S.G.)
| | - Domenico Milardi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro, 00168 Rome, Italy; (F.C.); (A.G.); (D.M.); (L.D.M.); (A.P.); (A.B.)
- Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Ricciardi Tenore
- Unit of Molecular Diagnostics and Genomics, Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.M.); (M.D.B.)
| | - Maria De Bonis
- Unit of Molecular Diagnostics and Genomics, Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.M.); (M.D.B.)
| | - Simona Gaudino
- Department of Imaging, Radiation Therapy and Hematology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (A.I.); (S.G.)
| | - Guido Rindi
- Section of Anatomic Pathology, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Unit of Head and Neck, Thoracic and Endocrine Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma European Neuro-Endocrine Tumor Society (ENETS) Center of Excellence, 00168 Rome, Italy
| | - Alessandro Olivi
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli, 8, 00168 Rome, Italy; (A.O.); (F.D.)
| | - Laura De Marinis
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro, 00168 Rome, Italy; (F.C.); (A.G.); (D.M.); (L.D.M.); (A.P.); (A.B.)
- Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro, 00168 Rome, Italy; (F.C.); (A.G.); (D.M.); (L.D.M.); (A.P.); (A.B.)
- Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Doglietto
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli, 8, 00168 Rome, Italy; (A.O.); (F.D.)
| | - Antonio Bianchi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro, 00168 Rome, Italy; (F.C.); (A.G.); (D.M.); (L.D.M.); (A.P.); (A.B.)
- Division of Endocrinology and Metabolism, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Wan R, Li W, Wang Z, Zhong J, Lin L, Duan J, Wang J. Real-world outcomes of chemoimmunotherapy and selective RET inhibitors in Chinese patients with RET fusion-positive non-small cell lung cancer. Heliyon 2024; 10:e24796. [PMID: 38304763 PMCID: PMC10831772 DOI: 10.1016/j.heliyon.2024.e24796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Background Rearranged during transfection (RET) gene fusion is a target for non-small cell lung cancer (NSCLC) treatment, and RET inhibitors are approved for advanced NSCLC. The role of immune checkpoint inhibitors (ICIs) in RET fusion-positive NSCLC remains controversial. This retrospective study analyzed the efficacy of ICIs and RET inhibitors in Chinese patients with RET fusion-positive NSCLC. Methods Data from patients diagnosed with advanced NSCLC harboring RET fusion from Jan 2017 to Sep 2021 were analyzed. Clinicopathological characteristics and outcomes of ICIs and RET inhibitors treatments were collected. Results Seventy-five patients with RET fusion-positive advanced NSCLC were identified. The median age of patients was 57 years, half of the patients were female (50.3%), and most were non-smokers or light smokers (72%). Of the cancer types diagnosed in study patients, the KIF5B-RET fusion subtype accounted for 73.3% (55/75), twelve patients (16%) had CCDC6-RET fusion, and three (4%) had NCOA4-RET fusion. Sixteen patients were treated with ICIs. In previously untreated patients, we observed an objective response rate (ORR) of 71.4% and median progression free survival (PFS) of 7.5 months in seven assessable patients. Of four patients with PD-L1 overexpression (>50%) one received pembrolizumab and the other three patients received pemetrexed, carboplatin, and pembrolizumab or camrelizumab. In these patients, the ORR was 75% and disease control rate was 100%. Fifteen patients received selective RET inhibitors (pralsetinib and selpercatinib), resulting in an ORR of 53.3% (8/15) and median PFS of 10.0 months (95% CI 5.2-14.9). Conclusions ICIs for PD-L overexpression and treatment naive patients offer comparable benefits for RET fusion-positive NSCLC, warranting further investigation.
Collapse
Affiliation(s)
- Rui Wan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia Zhong
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lin Lin
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, CAMS Key Laboratory of Translational Research on Lung Cancer, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Pu X, Qi L, Yan JW, Ai Z, Wu P, Yang F, Fu Y, Li X, Zhang M, Sun B, Yue S, Chen J. Oncogenic activation revealed by FGFR2 genetic alterations in intrahepatic cholangiocarcinomas. Cell Biosci 2023; 13:208. [PMID: 37964396 PMCID: PMC10644541 DOI: 10.1186/s13578-023-01156-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Except for gene fusions, FGFR2 genetic alterations in intrahepatic cholangiocarcinomas (ICCs) have received limited attention, leaving patients harboring activating FGFR2 gene mutations with inadequate access to targeted therapies. EXPERIMENTAL DESIGN We sought to survey FGFR2 genetic alterations in ICC and pan-cancers using fluorescence in situ hybridization and next-generation sequencing. We conducted an analysis of the clinical and pathological features of ICCs with different FGFR2 alterations, compared FGFR2 lesion spectrum through public databases and multicenter data, and performed cellular experiments to investigate the oncogenic potential of different FGFR2 mutants. RESULTS FGFR2 gene fusions were identified in 30 out of 474 ICC samples, while five FGFR2 genetic alterations aside from fusion were present in 290 ICCs. The tumors containing FGFR2 translocations exhibited unique features, which we designated as the "FGFR2 fusion subtypes of ICC". Molecular analysis revealed that FGFR2 fusions were not mutually exclusive with other oncogenic driver genes/mutations, whereas FGFR2 in-frame deletions and site mutations often co-occurred with TP53 mutations. Multicenter and pan-cancer studies demonstrated that FGFR2 in-frame deletions were more prevalent in ICCs (0.62%) than in other cancers, and were not limited to the extracellular domain. We selected representative FGFR2 genetic alterations, including in-frame deletions, point mutations, and frameshift mutations, to analyze their oncogenic activity and responsiveness to targeted drugs. Cellular experiments revealed that different FGFR2 genetic alterations promoted ICC tumor growth, invasion, and metastasis but responded differently to FGFR-selective small molecule kinase inhibitors (SMKIs). CONCLUSIONS FGFR2 oncogenic alterations have different clinicopathological features and respond differently to SMKIs.
Collapse
Affiliation(s)
- Xiaohong Pu
- Department of Pathology, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Liang Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Jia Wu Yan
- Department of Hepatobiliary Surgery, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Zihe Ai
- Department of Medical Genetics, Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Ping Wu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Fei Yang
- Department of Hepatobiliary Surgery, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Yao Fu
- Department of Pathology, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xing Li
- Shanghai Origimed Limited Company, Shanghai, 20000, China
| | - Min Zhang
- Beijing Gene Plus Limited Company, Beijing, 10000, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Shen Yue
- Department of Medical Genetics, Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| | - Jun Chen
- Department of Pathology, Drum Tower Hospital, Affiliated Hospital of Medical School,Nanjing University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
6
|
Sahakian N, Castinetti F, Romanet P. Molecular Basis and Natural History of Medullary Thyroid Cancer: It is (Almost) All in the RET. Cancers (Basel) 2023; 15:4865. [PMID: 37835559 PMCID: PMC10572078 DOI: 10.3390/cancers15194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Medullary thyroid cancer (MTC) is a rare disease, which can be either sporadic (roughly 75% of cases) or genetically determined (multiple endocrine neoplasia type 2, due to REarranged during Transfection RET germline mutations, 25% of cases). Interestingly, RET pathogenic variants (mainly M918T) have also been reported in aggressive forms of sporadic MTC, suggesting the importance of RET signalling pathways in the pathogenesis of MTC. The initial theory of RET codon-related MTC aggressiveness has been recently questioned by studies suggesting that this would only define the age at disease onset rather than the aggressiveness of MTC. Other factors might however impact the natural history of the disease, such as RET polymorphisms, epigenetic factors, environmental factors, MET (mesenchymal-epithelial transition) alterations, or even other genetic alterations such as RAS family (HRAS, KRAS, NRAS) genetic alterations. This review will detail the molecular bases of MTC, focusing on RET pathways, and the potential mechanisms that explain the phenotypic intra- and interfamilial heterogeneity.
Collapse
Affiliation(s)
- Nicolas Sahakian
- Aix Marseille Univ, APHM, INSERM, MMG, La Conception University Hospital, Department of Endocrinology, Marseille, France; (N.S.); (F.C.)
| | - Frédéric Castinetti
- Aix Marseille Univ, APHM, INSERM, MMG, La Conception University Hospital, Department of Endocrinology, Marseille, France; (N.S.); (F.C.)
| | - Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, La Conception University Hospital, Laboratory of Molecular Biology, Marseille, France
| |
Collapse
|
7
|
Shehata MA, Contreras J, Martín-Hurtado A, Froux A, Mohamed HT, El-Sherif AA, Plaza-Menacho I. Structural and dynamic determinants for highly selective RET kinase inhibition reveal cryptic druggability. J Adv Res 2023; 45:87-100. [PMID: 35595215 PMCID: PMC10006619 DOI: 10.1016/j.jare.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/05/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION The structural and dynamic determinants that confer highly selective RET kinase inhibition are poorly understood. OBJECTIVES To explore the druggability landscape of the RET active site in order to uncover structural and dynamic vulnerabilities that can be therapeutically exploited. METHODS We apply an integrated structural, computational and biochemical approach in order to explore the druggability landscape of the RET active site. RESULTS We demonstrate that the that the druggability landscape of the RET active site is determined by the conformational setting of the ATP-binding (P-) loop and its coordination with the αC helix. Open and intermediate P-loop structures display additional druggable vulnerabilities within the active site that were not exploited by first generation RET inhibitors. We identify a cryptic pocket adjacent to the catalytic lysine formed by K758, L760, E768 and L772, that we name the post-lysine pocket, with higher druggability potential than the adenine-binding site and with important implications in the regulation of the phospho-tyrosine kinase activity. Crystal structure and simulation data show that the binding mode of highly-selective RET kinase inhibitors LOXO-292 and BLU-667 is controlled by a synchronous open P-loop and αC-in configuration that allows accessibility to the post-lysine pocket. Molecular dynamics simulations show that these inhibitors efficiently occupy the post-lysine pocket with high stability through the simulation time-scale (300 ns), with both inhibitors forming hydrophobic contacts further stabilized by pi-cation interactions with the catalytic K758. Engineered mutants targeting the post-lysine pocket impact on inhibitor binding and sensitivity, as well as RET tyrosine kinase activity. CONCLUSIONS The identification of the post-lysine pocket as a new druggable vulnerability in the RET kinase and its exploitation by second generation RET inhibitors have important implications for future drug design and the development of personalized therapies for patients with RET-driven cancers.
Collapse
Affiliation(s)
- Moustafa A Shehata
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain; Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Julia Contreras
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Ana Martín-Hurtado
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Aurane Froux
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt
| | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Iván Plaza-Menacho
- Kinases, Protein Phosphorylation and Cancer Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain.
| |
Collapse
|
8
|
Newey PJ, Hannan FM, Wilson A, Thakker RV. Genetics of monogenic disorders of calcium and bone metabolism. Clin Endocrinol (Oxf) 2022; 97:483-501. [PMID: 34935164 PMCID: PMC7614875 DOI: 10.1111/cen.14644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 11/07/2021] [Indexed: 12/19/2022]
Abstract
Disorders of calcium homeostasis are the most frequent metabolic bone and mineral disease encountered by endocrinologists. These disorders usually manifest as primary hyperparathyroidism (PHPT) or hypoparathyroidism (HP), which have a monogenic aetiology in 5%-10% of cases, and may occur as an isolated endocrinopathy, or as part of a complex syndrome. The recognition and diagnosis of these disorders is important to facilitate the most appropriate management of the patient, with regard to both the calcium-related phenotype and any associated clinical features, and also to allow the identification of other family members who may be at risk of disease. Genetic testing forms an important tool in the investigation of PHPT and HP patients and is usually reserved for those deemed to be an increased risk of a monogenic disorder. However, identifying those suitable for testing requires a thorough clinical evaluation of the patient, as well as an understanding of the diversity of relevant phenotypes and their genetic basis. This review aims to provide an overview of the genetic basis of monogenic metabolic bone and mineral disorders, primarily focusing on those associated with abnormal calcium homeostasis, and aims to provide a practical guide to the implementation of genetic testing in the clinic.
Collapse
Affiliation(s)
- Paul J Newey
- Division of Molecular and Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Scotland, UK
| | - Fadil M Hannan
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Abbie Wilson
- Division of Molecular and Clinical Medicine, Ninewells Hospital & Medical School, University of Dundee, Scotland, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Ma X, Ma X, Chin L, Zhu Z, Han H. A Novel Germline Deletion of p.C630 in RET Causes MTC and Promotes Cell Proliferation and Sensitivity to Pralsetinib. J Clin Endocrinol Metab 2022; 107:2636-2643. [PMID: 35689816 DOI: 10.1210/clinem/dgac352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 01/18/2023]
Abstract
CONTEXT Medullary thyroid cancer (MTC) is usually caused by gain-of-function mutations in the proto-oncogene RET. OBJECTIVE This study aimed to determine the underlying mechanism in a male patient diagnosed with MTC at age 51 years. METHODS Genomic DNA extracted from leukocytes or tumor tissues of patients was used for next-generation sequencing (NGS)-panel sequencing and Sanger sequencing. Wild-type (WT) and p.C630 deletion RET were expressed in HEK 293T cells. Activation of phosphorylation of the crucial tyrosine-905 of RET and MAPK/ERK was analyzed by Western blotting. The effect of RET mutants on cell viability and colony formation ability was determined by CCK8 assay and a colony forming assay. RESULTS NGS-Panel sequencing revealed a 3-nucleotide/1-amino acid C630 in-frame deletion in exon 11 of RET (c.1887_1889delGTG p.C630del). In vitro expression showed that phosphorylation of the crucial tyrosine 905 was much stronger in the p.C630del RET mutant than in WT RET, indicating ligand-independent activation of the Ret protein tyrosine kinase. Furthermore, p.C630del RET mutant induced strong activation of the MAPK/ERK pathway. In addition, p.C630del RET mutant cells exhibited increased HEK 293T cell viability and colony formation compared with WT RET cells. Pralsetinib (BLU-667), a highly selective RET inhibitor, inhibited the viability of WT RET and p.C630del RET mutant-transfected HEK 293T cells (IC50s: 18.54 and 16.49 µM after treatment for 24 hours), followed by inhibition of the RET-induced MAPK/ERK pathway. CONCLUSION The finding in our patient with MTC was a 3-base-pair deletion in exon 11 of RET, a p.C630 deletion not previously reported. The p.C630del RET stimulates cell proliferation by increasing ligand-independent phosphorylation and activation of MAPK/ERK pathway, demonstrating the pathogenic nature of the mutation. We therefore recommend screening panel sequence of RET in MTC patients with indications of a genetic cause.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory of Carcinogenesis and Translational Research, Department of Head and Neck, Peking University Cancer Hospital and Institute, Beijing, 100142, P.R. China
| | - Xiuli Ma
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, P.R. China
| | - Lihan Chin
- Berry Oncology, Changping District, Beijing 102206, China
| | - Zhen Zhu
- Berry Oncology, Changping District, Beijing 102206, China
| | - Haibo Han
- Department of Clinical Lab, Peking University Cancer Hospital and Institute, Beijing, 100142, P.R. China
| |
Collapse
|
10
|
Rhymes ER, Tosolini AP, Fellows AD, Mahy W, McDonald NQ, Schiavo G. Bimodal regulation of axonal transport by the GDNF-RET signalling axis in healthy and diseased motor neurons. Cell Death Dis 2022; 13:584. [PMID: 35798698 PMCID: PMC9263112 DOI: 10.1038/s41419-022-05031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/08/2023]
Abstract
Deficits in axonal transport are one of the earliest pathological outcomes in several models of amyotrophic lateral sclerosis (ALS), including SOD1G93A mice. Evidence suggests that rescuing these deficits prevents disease progression, stops denervation, and extends survival. Kinase inhibitors have been previously identified as transport enhancers, and are being investigated as potential therapies for ALS. For example, inhibitors of p38 mitogen-activated protein kinase and insulin growth factor receptor 1 have been shown to rescue axonal transport deficits in vivo in symptomatic SOD1G93A mice. In this work, we investigated the impact of RET, the tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF), as a modifier of axonal transport. We identified the fundamental interplay between RET signalling and axonal transport in both wild-type and SOD1G93A motor neurons in vitro. We demonstrated that blockade of RET signalling using pharmacological inhibitors and genetic knockdown enhances signalling endosome transport in wild-type motor neurons and uncovered a divergence in the response of primary motor neurons to GDNF compared with cell lines. Finally, we showed that inhibition of the GDNF-RET signalling axis rescues in vivo transport deficits in early symptomatic SOD1G93A mice, promoting RET as a potential therapeutic target in the treatment of ALS.
Collapse
Affiliation(s)
- Elena R Rhymes
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, UK
| | - Andrew P Tosolini
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, UK
| | | | - William Mahy
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, London, UK
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, UK.
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, UK.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
11
|
Nacchio M, Pisapia P, Pepe F, Russo G, Vigliar E, Porcelli T, Luongo C, Iaccarino A, Pagni F, Salvatore D, Troncone G, Malapelle U, Bellevicine C. Predictive molecular pathology in metastatic thyroid cancer: the role of RET fusions. Expert Rev Endocrinol Metab 2022; 17:167-178. [PMID: 35404189 DOI: 10.1080/17446651.2022.2060819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rearranged during transfection (RET) gene fusions are detected in 10-20% of thyroid cancer patients. Recently, RET fusion-positive metastatic thyroid cancers have attracted much attention owing to the FDA approval of two highly selective anti-RET tyrosine kinase inhibitors, namely, selpercatinib, and pralsetinib. AREAS COVERED This review summarizes the available evidence on the biological and predictive role of RET gene fusions in thyroid carcinoma patients and the latest screening assays currently used to detect these genomic alterations in histological and cytological specimens. EXPERT OPINION Management of advanced thyroid carcinoma has significantly evolved over the last decade thanks to the approval of three multikinase inhibitors, i.e. sorafenib, lenvatinib, cabozantinib, and of two selective RET-tyrosine inhibitors, i.e. selpercatinib and pralsetinib. In this setting, the detection of RET-fusions in advanced thyroid cancer specimens through the use of next-generation sequencing has become a commonly used strategy in clinical practice to select the best treatment options.
Collapse
Affiliation(s)
- Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Molecular Testing and Treatment Strategies in RET-Rearranged NSCLC Patients: Stay on Target to Look Forward. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RET alterations are recognized as key oncogenic drivers in different cancer types, including non-small cell lung cancer (NSCLC). Multikinase inhibitors (MKIs) with anti-RET activities resulted in variable efficacy with significant toxicities because of low target specificity. Selective RET kinase inhibitors, such as pralsetinib and selepercatinib, demonstrated high efficacy and favorable tolerability in advanced RET-rearranged NSCLC patients, leading to their introduction in the clinical setting. Among the different approaches available for the identification of RET rearrangements, next-generation sequencing (NGS) assays present substantial advantages in terms of turnaround time and diagnostic accuracy, even if potentially limited by accessibility issues. The recent advent of novel effective targeted therapies raises several questions regarding the emergence of resistance mechanisms and the potential ways to prevent/overcome them. In this review, we discuss molecular testing and treatment strategies to manage RET fusion positive NSCLC patients with a focus on resistance mechanisms and future perspectives in this rapidly evolving scenario.
Collapse
|
13
|
Parate S, Kumar V, Chan Hong J, Lee KW. Investigating natural compounds against oncogenic RET tyrosine kinase using pharmacoinformatic approaches for cancer therapeutics. RSC Adv 2022; 12:1194-1207. [PMID: 35425116 PMCID: PMC8978841 DOI: 10.1039/d1ra07328a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
Rearranged during transfection (RET) tyrosine kinase is a transmembrane receptor tyrosine kinase regulating vital aspects of cellular proliferation, differentiation, and survival. An outstanding challenge in designing protein kinase inhibitors is due to the development of drug resistance. The “gain of function” mutations in the RET gate-keeper residue, Val804, confers resistance to the majority of known RET inhibitors, including vandetanib. To curtail this resistance, researchers developed selpercatinib (LOXO-292) against the RET gate-keeper mutant forms – V804M and V804L. In the present in silico investigation, a receptor–ligand pharmacophore model was generated to identify small molecule inhibitors effective for wild-type (WT) as well as mutant RET kinase variants. The generated model was employed to screen 144 766 natural products (NPs) available in the ZINC database and the retrieved NPs were filtered for their drug-likeness. The resulting 2696 drug-like NPs were subjected to molecular docking with the RET WT kinase domain and a total of 27 molecules displayed better dock scores than the reference inhibitors – vandetanib and selpercatinib. From 27 NPs, an aggregate of 12 compounds demonstrated better binding free energy (BFE) scores than the reference inhibitors, towards RET. Thus, the 12 NPs were also subjected to docking, simulation, and BFE estimation towards the constructed gate-keeper RET mutant structures. The BFE calculations revealed 3 hits with better BFE scores than the reference inhibitors towards WT, V804M, and V804L RET variants. Thus, the scaffolds of hit compounds presented in this study could act as potent RET inhibitors and further provide insights for drug optimization targeting aberrant activation of RET signaling, specifically the mutation of gate-keeper residue – Val804. Identification of natural product inhibitors against rearranged during transfection (RET) tyrosine kinase as cancer therapeutics using combination of in silico techniques.![]()
Collapse
Affiliation(s)
- Shraddha Parate
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Jong Chan Hong
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| |
Collapse
|
14
|
Abstract
Primary hyperparathyroidism (PHPT) is a commonly encountered clinical problem and occurs as part of an inherited disorder in ∼10% of patients. Several features may alert the clinician to the possibility of a hereditary PHPT disorder (eg, young age of disease onset) whilst establishing any relevant family history is essential to the clinical evaluation and will help inform the diagnosis. Genetic testing should be offered to patients at risk of a hereditary PHPT disorder, as this may improve management and allow the identification and investigation of other family members who may also be at risk of disease.
Collapse
Affiliation(s)
- Paul J Newey
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Jacqui Wood Cancer Centre, James Arrott Drive, Dundee, Scotland DD1 9SY, UK.
| |
Collapse
|
15
|
Saha D, Ryan KR, Lakkaniga NR, Acharya B, Garcia NG, Smith EL, Frett B. Targeting Rearranged during Transfection in Cancer: A Perspective on Small-Molecule Inhibitors and Their Clinical Development. J Med Chem 2021; 64:11747-11773. [PMID: 34402300 DOI: 10.1021/acs.jmedchem.0c02167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rearranged during transfection (RET) is a receptor tyrosine kinase essential for the normal development and maturation of a diverse range of tissues. Aberrant RET signaling in cancers, due to RET mutations, gene fusions, and overexpression, results in the activation of downstream pathways promoting survival, growth, and metastasis. Pharmacological manipulation of RET is effective in treating RET-driven cancers, and efforts toward developing RET-specific therapies have increased over the last 5 years. In 2020, RET-selective inhibitors pralsetinib and selpercatinib achieved clinical approval, which marked the first approvals for kinase inhibitors specifically developed to target the RET oncoprotein. This Perspective discusses current development and clinical applications for RET precision medicine by providing an overview of the incremental improvement of kinase inhibitors for use in RET-driven malignancies.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Noemi Garcia Garcia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Erica Lane Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 United States
| |
Collapse
|
16
|
Moccia M, Yang D, Lakkaniga NR, Frett B, McConnell N, Zhang L, Brescia A, Federico G, Zhang L, Salerno P, Santoro M, Li HY, Carlomagno F. Targeted activity of the small molecule kinase inhibitor Pz-1 towards RET and TRK kinases. Sci Rep 2021; 11:16103. [PMID: 34373541 PMCID: PMC8352932 DOI: 10.1038/s41598-021-95612-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
We have recently described Pz-1, a benzimidazole-based type-2 RET and VEGFR2 inhibitor. Based on a kinome scan, here we show that Pz-1 is also a potent (IC50 < 1 nM) TRKA/B/C inhibitor. Pz-1 potently inhibited proliferation of human cancer cells carrying either RET- or TRKA oncoproteins (IC50 ~ 1 nM), with a negligible effect against RET- and TRKA-negative cells. By testing mutations, known to mediate resistance to other compounds, RET G810R/S, but not L730I/V, E732K, V738A and Y806N, showed some degree of resistance to Pz-1. In the case of TRKA, G595R and F589L, but not G667C, showed some degree of resistance. In xenograft models, orally administered Pz-1 almost completely inhibited RET- and TRKA-mutant tumours at 1-3 mg/kg/day but showed a reduced effect on RET/TRKA-negative cancer models. The activity, albeit reduced, on RET/TRKA-negative tumours may be justified by VEGFR2 inhibition. Tumours induced by NIH3T3 cells transfected by RET G810R and TRKA G595R featured resistance to Pz-1, demonstrating that RET or TRKA inhibition is critical for its anti-tumourigenic effect. In conclusion, Pz-1 represents a new powerful kinase inhibitor with distinct activity towards cancers induced by oncogenic RET and TRKA variants, including some mutants displaying resistance to other drugs.
Collapse
Affiliation(s)
- Marialuisa Moccia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Di Napoli "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Donglin Yang
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Di Napoli "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Synactix Pharmaceuticals, Inc., Tucson, AZ, 85718, USA
| | - Nicholas McConnell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Lingtian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Annalisa Brescia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Di Napoli "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Giorgia Federico
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Di Napoli "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Lingzhi Zhang
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Di Napoli "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Paolo Salerno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Di Napoli "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Di Napoli "Federico II", Via S. Pansini 5, 80131, Naples, Italy
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Synactix Pharmaceuticals, Inc., Tucson, AZ, 85718, USA.
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Di Napoli "Federico II", Via S. Pansini 5, 80131, Naples, Italy.
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, 80131, Naples, Italy.
| |
Collapse
|
17
|
Salvatore D, Santoro M, Schlumberger M. The importance of the RET gene in thyroid cancer and therapeutic implications. Nat Rev Endocrinol 2021; 17:296-306. [PMID: 33603219 DOI: 10.1038/s41574-021-00470-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Since the discovery of the RET receptor tyrosine kinase in 1985, alterations of this protein have been found in diverse thyroid cancer subtypes. RET gene rearrangements are observed in papillary thyroid carcinoma, which result in RET fusion products. By contrast, single amino acid substitutions and small insertions and/or deletions are typical of hereditary and sporadic medullary thyroid carcinoma. RET rearrangements and mutations of extracellular cysteines facilitate dimerization and kinase activation, whereas mutations in the RET kinase coding domain drive dimerization-independent kinase activation. Thus, RET kinase inhibition is an attractive therapeutic target in patients with RET alterations. This approach was initially achieved using multikinase inhibitors, which affect multiple deregulated pathways that include RET kinase. In clinical practice, use of multikinase inhibitors in patients with advanced thyroid cancer resulted in therapeutic efficacy, which was associated with frequent and sometimes severe adverse effects. However, remarkable progress has been achieved with the identification of novel potent and selective RET kinase inhibitors for the treatment of advanced thyroid cancer. Although expanded clinical validation in future trials is needed, the sustained antitumoural activity and the improved safety profile of these novel compounds is opening a new exciting era in precision oncology for RET-driven cancers.
Collapse
Affiliation(s)
- Domenico Salvatore
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Massimo Santoro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Martin Schlumberger
- Département de Médecine Nucléaire et Cancérologie Endocrinienne, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
18
|
Cleary JM, Raghavan S, Wu Q, Li YY, Spurr LF, Gupta HV, Rubinson DA, Fetter IJ, Hornick JL, Nowak JA, Siravegna G, Goyal L, Shi L, Brais LK, Loftus M, Shinagare AB, Abrams TA, Clancy TE, Wang J, Patel AK, Brichory F, Vaslin Chessex A, Sullivan RJ, Keller RB, Denning S, Hill ER, Shapiro GI, Pokorska-Bocci A, Zanna C, Ng K, Schrag D, Janne PA, Hahn WC, Cherniack AD, Corcoran RB, Meyerson M, Daina A, Zoete V, Bardeesy N, Wolpin BM. FGFR2 Extracellular Domain In-Frame Deletions are Therapeutically Targetable Genomic Alterations that Function as Oncogenic Drivers in Cholangiocarcinoma. Cancer Discov 2021; 11:2488-2505. [PMID: 33926920 DOI: 10.1158/2159-8290.cd-20-1669] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
We conducted next generation DNA sequencing on 335 biliary tract cancers and characterized the genomic landscape by anatomic site within the biliary tree. In addition to frequent FGFR2 fusions among patients with intrahepatic cholangiocarcinoma (IHCC), we identified FGFR2 extracellular domain in-frame deletions (EIDs) in 5 of 178 (2.8%) patients with IHCC, including two patients with FGFR2 p.H167_N173del. Expression of this FGFR2 EID in NIH3T3 cells resulted in constitutive FGFR2 activation, oncogenic transformation, and sensitivity to FGFR inhibitors. Three patients with FGFR2 EIDs were treated with Debio 1347, an oral FGFR-1/2/3 inhibitor, and all showed partial responses. One patient developed an acquired L618F FGFR2 kinase domain mutation at disease progression and experienced a further partial response for 17 months to an irreversible FGFR2 inhibitor, futibatinib. Together, these findings reveal FGFR2 EIDs as an alternative mechanism of FGFR2 activation in IHCC that predict sensitivity to FGFR inhibitors in the clinic.
Collapse
Affiliation(s)
- James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | | | | | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | - Liam F Spurr
- Dana-Farber Cancer Institute, Harvard Medical School
| | - Hersh V Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | | | | | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School
| | | | | | - Lipika Goyal
- Internal Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | - Lei Shi
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | | | - Atul B Shinagare
- Department of Radiology, Brigham and Women's Hospital/ Dana-Farber Cancer Institute
| | | | | | - Jiping Wang
- Department of Surgery, Brigham and Women's Hospital
| | - Anuj K Patel
- Department of Gastrointestinal Oncology, Dana-Farber Cancer Institute
| | | | | | - Ryan J Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center
| | | | | | - Emma R Hill
- Dana-Farber/Brigham and Women's Cancer Center
| | | | | | | | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | | | - Pasi A Janne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | - Andrew D Cherniack
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School
| | | | | | | | | | | | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber/Harvard Cancer Center
| |
Collapse
|
19
|
Danesi R, Fogli S, Indraccolo S, Del Re M, Dei Tos AP, Leoncini L, Antonuzzo L, Bonanno L, Guarneri V, Pierini A, Amunni G, Conte P. Druggable targets meet oncogenic drivers: opportunities and limitations of target-based classification of tumors and the role of Molecular Tumor Boards. ESMO Open 2021; 6:100040. [PMID: 33540286 PMCID: PMC7859305 DOI: 10.1016/j.esmoop.2020.100040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The therapeutic landscape of cancer is changing rapidly due to the growing number of approved drugs capable of targeting specific genetic alterations. This aspect, together with the development of noninvasive methods for the assessment of somatic mutations in the peripheral blood of patients, generated a growing interest toward a new tumor-agnostic classification system based on ‘predictive’ biomarkers. The current review article discusses this emerging alternative approach to the classification of cancer and its implications for the selection of treatments. It is suggested that different types of cancers sharing the same molecular profiles could benefit from the same targeted drugs. Although recent clinical trials have demonstrated that this approach cannot be generalized, there are also specific examples that demonstrate the clinical utility of this alternative vision. In this rapidly evolving scenario, a multidisciplinary approach managed by institutional Molecular Tumor Boards is fundamental to interpret the biological and clinical relevance of genetic alterations and the complexity of their relationship with treatment response. The identification of oncogenic drivers offers the opportunity to develop target-specific drugs. The inhibition of crucial pathways realizes the principle of druggable target to exploit cancer vulnerability. The approval of new anticancer agents based on target-based concept represents a paradigm shift in cancer therapy. However, only few drugs have been approved so far on an agnostic basis and the concept of biomarker cannot be generalized. Tumor Molecular Boards will have an increasing role in the identification of new therapeutic options in selected patients.
Collapse
Affiliation(s)
- R Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Indraccolo
- Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - M Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A P Dei Tos
- Department of Medicine, School of Medicine, University of Padua, Padua, Italy
| | - L Leoncini
- Department of Medical Biotechnology, Anatomic Pathology Division, University of Siena, Siena, Italy
| | - L Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - L Bonanno
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - V Guarneri
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - A Pierini
- Integrated Access, Roche, Monza, Italy
| | - G Amunni
- Institute for the Study, Prevention and Oncology Network (ISPRO), Florence, Italy.
| | - P Conte
- Medical Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| |
Collapse
|
20
|
Schirwani S, Fraser S, Mushtaq T, Chengot P, Mavrogiannis LA, Jewell R, Adlard J. Homozygosity for the pathogenic RET hotspot variant p.Cys634Trp: A consanguineous family with MEN2A. Eur J Med Genet 2021; 64:104141. [PMID: 33450337 DOI: 10.1016/j.ejmg.2021.104141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/02/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022]
Abstract
Multiple endocrine neoplasia type 2 (MEN2) is a dominantly inherited condition with defined correlations between the genetic variant and clinical presentations. The location of pathogenic variants in the RET gene is a significant determinant of disease presentation and is associated with variable gene activation. Heterozygous pathogenic variants in codon 634 result in earlier onset of medullary thyroid carcinoma and higher incidence of phaeochromocytoma. Here we describe a consanguineous family with MEN2A that includes two children homozygous for the established pathogenic variant p. Cys634Trp. Both parents and a sibling were confirmed to being heterozygotes. Previous reports of biallelic or multiple RET variants have been limited to weakly activating variants. We present the first report of individuals homozygous for the highly activating RET p. Cys634Trp pathogenic variant and discuss disease severity and onset in this rare occurrence.
Collapse
Affiliation(s)
- Schaida Schirwani
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Sheila Fraser
- Department of Endocrine Surgery, Leeds Teaching Hospitals, Leeds, UK
| | - Talat Mushtaq
- Department of Paediatric Endocrinology, Leeds Teaching Hospitals, Leeds, UK
| | - Preetha Chengot
- Department of Pathology, Leeds Teaching Hospitals, Leeds, UK
| | - Lampros A Mavrogiannis
- Yorkshire and North East Genomic Laboratory Hub, St James's University Hospital, Leeds, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Julian Adlard
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
21
|
Okafor C, Hogan J, Raygada M, Thomas BJ, Akshintala S, Glod JW, Del Rivero J. Update on Targeted Therapy in Medullary Thyroid Cancer. Front Endocrinol (Lausanne) 2021; 12:708949. [PMID: 34489865 PMCID: PMC8416904 DOI: 10.3389/fendo.2021.708949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare neuroendocrine tumor that accounts for 2-4% of all thyroid cancers. All inherited MTC and approximately 50% of sporadic cases are driven by mutations in the REarranged during Transfection (RET) proto-oncogene. The recent expansion of the armamentarium of RET-targeting tyrosine kinase inhibitors (TKIs) has provided effective options for systemic therapy for patients with metastatic and progressive disease. However, patients that develop resistant disease as well as those with other molecular drivers such as RAS have limited options. An improved understanding of mechanisms of resistance to TKIs as well as identification of novel therapeutic targets is needed to improve outcomes for patients with MTC.
Collapse
Affiliation(s)
- Christian Okafor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Julie Hogan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Margarita Raygada
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Barbara J. Thomas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - John W. Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Jaydira Del Rivero,
| |
Collapse
|
22
|
RET Gene Fusions in Malignancies of the Thyroid and Other Tissues. Genes (Basel) 2020; 11:genes11040424. [PMID: 32326537 PMCID: PMC7230609 DOI: 10.3390/genes11040424] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer.
Collapse
|
23
|
Subbiah V, Yang D, Velcheti V, Drilon A, Meric-Bernstam F. State-of-the-Art Strategies for Targeting RET-Dependent Cancers. J Clin Oncol 2020; 38:1209-1221. [PMID: 32083997 DOI: 10.1200/jco.19.02551] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activating receptor tyrosine kinase RET (rarranged during transfection) gene alterations have been identified as oncogenic in multiple malignancies. RET gene rearrangements retaining the kinase domain are oncogenic drivers in papillary thyroid cancer, non-small-cell lung cancer, and multiple other cancers. Activating RET mutations are associated with different phenotypes of multiple endocrine neoplasia type 2 as well as sporadic medullary thyroid cancer. RET is thus an attractive therapeutic target in patients with oncogenic RET alterations. Multikinase inhibitors with RET inhibitor activity, such as cabozantinib and vandetanib, have been explored in the clinic for tumors with activating RET gene alterations with modest clinical efficacy. As a result of the nonselective nature of these multikinase inhibitors, patients had off-target adverse effects, such as hypertension, rash, and diarrhea. This resulted in a narrow therapeutic index of these drugs, limiting ability to dose for clinically effective RET inhibition. In contrast, the recent discovery and clinical validation of highly potent selective RET inhibitors (pralsetinib, selpercatinib) demonstrating improved efficacy and a more favorable toxicity profile are poised to alter the landscape of RET-dependent cancers. These drugs appear to have broad activity across tumors with activating RET alterations. The mechanisms of resistance to these next-generation highly selective RET inhibitors is an area of active research. This review summarizes the current understanding of RET alterations and the state-of-the-art treatment strategies in RET-dependent cancers.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX.,MD Anderson Cancer Network, Houston, TX
| | - Dong Yang
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Alexander Drilon
- Thoracic Oncology Service, Early Drug Development Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.,Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
24
|
Luzón-Toro B, Fernández RM, Villalba-Benito L, Torroglosa A, Antiñolo G, Borrego S. Influencers on Thyroid Cancer Onset: Molecular Genetic Basis. Genes (Basel) 2019; 10:E913. [PMID: 31717449 PMCID: PMC6895808 DOI: 10.3390/genes10110913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Thyroid cancer, a cancerous tumor or growth located within the thyroid gland, is the most common endocrine cancer. It is one of the few cancers whereby incidence rates have increased in recent years. It occurs in all age groups, from children through to seniors. Most studies are focused on dissecting its genetic basis, since our current knowledge of the genetic background of the different forms of thyroid cancer is far from complete, which poses a challenge for diagnosis and prognosis of the disease. In this review, we describe prevailing advances and update our understanding of the molecular genetics of thyroid cancer, focusing on the main genes related with the pathology, including the different noncoding RNAs associated with the disease.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
25
|
Updates on the Role of Molecular Alterations and NOTCH Signalling in the Development of Neuroendocrine Neoplasms. J Clin Med 2019; 8:jcm8091277. [PMID: 31443481 PMCID: PMC6780206 DOI: 10.3390/jcm8091277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Neuroendocrine neoplasms (NENs) comprise a heterogeneous group of rare malignancies, mainly originating from hormone-secreting cells, which are widespread in human tissues. The identification of mutations in ATRX/DAXX genes in sporadic NENs, as well as the high burden of mutations scattered throughout the multiple endocrine neoplasia type 1 (MEN-1) gene in both sporadic and inherited syndromes, provided new insights into the molecular biology of tumour development. Other molecular mechanisms, such as the NOTCH signalling pathway, have shown to play an important role in the pathogenesis of NENs. NOTCH receptors are expressed on neuroendocrine cells and generally act as tumour suppressor proteins, but in some contexts can function as oncogenes. The biological heterogeneity of NENs suggests that to fully understand the role and the potential therapeutic implications of gene mutations and NOTCH signalling in NENs, a comprehensive analysis of genetic alterations, NOTCH expression patterns and their potential role across all NEN subtypes is required.
Collapse
|
26
|
Mulligan LM. GDNF and the RET Receptor in Cancer: New Insights and Therapeutic Potential. Front Physiol 2019; 9:1873. [PMID: 30666215 PMCID: PMC6330338 DOI: 10.3389/fphys.2018.01873] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
The Glial cell line-derived neurotrophic Family Ligands (GFL) are soluble neurotrophic factors that are required for development of multiple human tissues, but which are also important contributors to human cancers. GFL signaling occurs through the transmembrane RET receptor tyrosine kinase, a well-characterized oncogene. GFL-independent RET activation, through rearrangement or point mutations occurs in thyroid and lung cancers. However, GFL-mediated activation of wildtype RET is an increasingly recognized mechanism promoting tumor growth and dissemination of a much broader group of cancers. RET and GFL expression have been implicated in metastasis or invasion in diverse human cancers including breast, pancreatic, and prostate tumors, where they are linked to poorer patient prognosis. In addition to directly inducing tumor growth in these diseases, GFL-RET signaling promotes changes in the tumor microenvironment that alter the surrounding stroma and cellular composition to enhance tumor invasion and metastasis. As such, GFL RET signaling is an important target for novel therapeutic approaches to limit tumor growth and spread and improve disease outcomes.
Collapse
Affiliation(s)
- Lois M. Mulligan
- Division of Cancer Biology and Genetics, Department of Pathology and Molecular Medicine, Cancer Research Institute, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
27
|
|
28
|
Clinical Syndromes and Genetic Screening Strategies of Pheochromocytoma and Paraganglioma. J Kidney Cancer VHL 2018; 5:14-22. [PMID: 30613466 PMCID: PMC6308242 DOI: 10.15586/jkcvhl.2018.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors that originate from chromaffin cells of the adrenal medulla, and paragangliomas (PGLs) are extra-adrenal pheochromocytomas. These can be mainly found in clinical syndromes including multiple endocrine neoplasia (MEN), von Hippel–Lindau (VHL) syndrome, neurofibromatosis-1 (NF-1) and familial paraganglioma (FPGL). PCCs and PGLs are thought to have the highest degree of heritability among human tumors, and it has been estimated that 60% of the patients have genetic abnormalities. This review provides an overview of the clinical syndrome and the genetic screening strategies of PCCs and PGLs. Comprehensive screening principles and strategies, along with specific screening based on clinical symptoms, biochemical tests and immunohistochemistry, are discussed.
Collapse
|
29
|
Mulligan LM. 65 YEARS OF THE DOUBLE HELIX: Exploiting insights on the RET receptor for personalized cancer medicine. Endocr Relat Cancer 2018; 25:T189-T200. [PMID: 29743166 DOI: 10.1530/erc-18-0141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
The focus of precision cancer medicine is the use of patient genetic signatures to predict disease occurrence and course and tailor approaches to individualized treatment to improve patient outcomes. The rearranged during transfection (RET) receptor tyrosine kinase represents a paradigm for the power of personalized cancer management to change cancer impact and improve quality of life. Oncogenic activation of RET occurs through several mechanisms including activating mutations and increased or aberrant expression. Activating RET mutations found in the inherited cancer syndrome multiple endocrine neoplasia 2 permit early diagnosis, predict disease course and guide disease management to optimize patient survival. Rearrangements of RET found in thyroid and lung tumors provide insights on potential disease aggressiveness and offer opportunities for RET-targeted therapy. Aberrant RET expression in a subset of cases is associated with tumor dissemination, resistance to therapies and/or poorer prognosis in multiple cancers. The potential of RET targeting through repurposing of small-molecule multikinase inhibitors, selective RET inhibitors or other novel approaches provides exciting opportunities to individualize therapies across multiple pathologies where RET oncogenicity contributes to cancer outcomes.
Collapse
Affiliation(s)
- Lois M Mulligan
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology and Molecular MedicineQueen's University, Kingston, Ontario, Canada
| |
Collapse
|
30
|
Moodley S, Weber F, Mulligan LM. The evolving clinical, genetic and therapeutic landscape of multiple endocrine neoplasia type 2. Endocr Relat Cancer 2018; 25:E1-E4. [PMID: 29348305 DOI: 10.1530/erc-17-0488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Serisha Moodley
- Division of Cancer Biology and GeneticsCancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Frank Weber
- Department of General-Visceral- and Transplantations Surgery, Division of Endocrine Surgery, Medical Faculty, University of Duisburg-Essen, Duisburg, Germany
| | - Lois M Mulligan
- Division of Cancer Biology and GeneticsCancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|