1
|
Dong Y, Wang G, Yan X, Ye W, Qiao X, Deng X, Ren P, Jia C, Chen G, Zheng K, Jiang C, Li X. Ponatinib exacerbate renal injury in systemic lupus erythematosus mouse model through PDGFR-PI3K/AKT pathway. Biochem Pharmacol 2024; 230:116578. [PMID: 39427918 DOI: 10.1016/j.bcp.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Lupus nephritis (LN) is a common clinical complication of systemic lupus erythematosus (SLE). Proliferative lupus nephritis represents the gravest form of LN, and since effective drugs for its treatment are still lacking, tyrosine kinase inhibitors (TKIs) find extensive clinical utility due to their notable impact on suppressing cell proliferation and may serve as potential drugs for LN treatment. However, previous studies on the effects of TKI on LN have been controversial. Ponatinib, a third-generation TKI, lacks studies on its role in LN. This study aimed to investigate the impact of the ponatinib on LN. MRL/lpr mice were evaluated for renal function, autoimmune markers and histopathological changes after oral administration of ponatinib. RNA-seq analysis was performed to explore the molecular pathways involved in ponatinib-induced kidney injury. Ponatinib uniquely exacerbated renal damage in MRL/lpr mice, evidenced by a decline in renal function and acute pathological changes, without affecting lupus-related autoimmune markers. Differential expressed genes analysis and functional enrichment implicate ponatinib-induced renal damage in MRL/lpr mice associated with adiponectin. Furthermore, we verified ponatinib signaling the PI3K/AKT pathway through PDGFRα, potentially influencing high molecular weight adiponectin (HMW ADIPOQ) expression and exacerbating renal damage. In conclusion, this study demonstrates that ponatinib can up-regulate HMW ADIPOQ expression via the PI3K/AKT pathway by inhibiting PDGFRα phosphorylation, highlighting the potential nephrotoxic effects of ponatinib in lupus-prone mice, and underscoring the importance of monitoring renal function in systemic autoimmune diseases patients receiving ponatinib.
Collapse
Affiliation(s)
- Yixin Dong
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gangan Wang
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiwei Yan
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenling Ye
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiangyu Qiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingyu Deng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pengju Ren
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chunyu Jia
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gang Chen
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Zheng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengyu Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Xiao X, Zhang M, Qian Y, Wang X, Wu Q. KLF9 regulates osteogenic differentiation of mesenchymal stem cells. J Mol Histol 2024; 55:503-512. [PMID: 38801643 DOI: 10.1007/s10735-024-10204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Osteoporosis is a progressive skeletal disease which is characterized by reduced bone mass and degradation of bone microstructure. Mesenchymal stem cells (MSCs) have the potential to inhibit osteoporosis since they are multipotent stem cells that can differentiate into multiple types of cells including osteoblasts. Hence the mechanism of osteogenic differentiation of MSCs deserves comprehensive study. Here we report that KLF9 is a novel regulator in osteogenic differentiation of MSCs. We observed that depletion of KLF9 can largely compromise the osteogenic differentiation ability of MSCs. In addition, we revealed that inhibition of the PI3K-Akt pathway could also affect osteogenic differentiation since KLF9 depletion inhibits PI3K expression. Finally, we discovered that KLF9 expression can be induced by dexamethasone which is an essential component in osteogenic induction medium. Taken together, our study provides new insights into the regulatory role of KLF9 in osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Xiaoxiao Xiao
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Faculty of Chinese Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Ming Zhang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yiwei Qian
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xuepeng Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
3
|
Lavelle K, Chamberlain C, German M, Anderson M, Nip A, Gitelman SE. The Role of Imatinib in Pediatric Type 1 Diabetes. JCEM CASE REPORTS 2024; 2:luae065. [PMID: 38707652 PMCID: PMC11066799 DOI: 10.1210/jcemcr/luae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/07/2024]
Abstract
We report the first case of imatinib use in an adolescent with diabetes and suggest that it impacts the natural course of disease. A 14-year-old male patient presented in diabetic ketoacidosis (DKA) and was diagnosed with presumed autoantibody-negative type 1 diabetes (T1D) as well as myeloid neoplasm with platelet-derived growth factor receptor beta (PDGFRB) rearrangement. After starting exogenous insulin and imatinib, he experienced a 1.7-point reduction in glycated hemoglobin (HbA1c) and a 71% reduction in insulin requirement with sustained partial diabetes remission. Our case suggests imatinib as a potential therapeutic agent for pediatric T1D.
Collapse
Affiliation(s)
- Kristen Lavelle
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Chester Chamberlain
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Michael German
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Mark Anderson
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, CA 94143, USA
- Diabetes Center, University of California, San Francisco, CA 94143, USA
| | - Angel Nip
- Department of Pediatrics, Division of Endocrinology, University of California, San Francisco, CA 94143, USA
| | - Stephen E Gitelman
- Diabetes Center, University of California, San Francisco, CA 94143, USA
- Department of Pediatrics, Division of Endocrinology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
5
|
Li J, Chi J, Yang Y, Song Z, Yang Y, Zhou X, Liu Y, Zhao Y. PHDs-seq: a large-scale phenotypic screening method for drug discovery through parallel multi-readout quantification. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:22. [PMID: 37264282 DOI: 10.1186/s13619-023-00164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/15/2023] [Indexed: 06/03/2023]
Abstract
High-throughput phenotypic screening is a cornerstone of drug development and the main technical approach for stem cell research. However, simultaneous detection of activated core factors responsible for cell fate determination and accurate assessment of directional cell transition are difficult using conventional screening methods that focus on changes in only a few biomarkers. The PHDs-seq (Probe Hybridization based Drug screening by sequencing) platform was developed to evaluate compound function based on their transcriptional effects in a wide range of signature biomarkers. In this proof-of-concept demonstration, several sets of markers related to cell fate determination were profiled in adipocyte reprogramming from dermal fibroblasts. After validating the accuracy, sensitivity and reproducibility of PHDs-seq data in molecular and cellular assays, a panel of 128 signalling-related compounds was screened for the ability to induce reprogramming of keloid fibroblasts (KF) into adipocytes. Notably, the potent ATP-competitive VEGFR/PDGFR inhibitor compound, ABT869, was found to promote the transition from fibroblasts to adipocytes. This study highlights the power and accuracy of the PHDs-seq platform for high-throughput drug screening in stem cell research, and supports its use in basic explorations of the molecular mechanisms underlying disease development.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jun Chi
- Plastech Pharmaceutical Technology Ltd, Nanjing, 210031, China
| | - Yang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Plastech Pharmaceutical Technology Ltd, Nanjing, 210031, China
| | - Zhongya Song
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yong Yang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Plastech Pharmaceutical Technology Ltd, Nanjing, 210031, China.
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- Plastech Pharmaceutical Technology Ltd, Nanjing, 210031, China.
| |
Collapse
|
6
|
S AK, Patel SS, Patel S, Parikh P. Future treatment of Diabetes - Tyrosine Kinase inhibitors. J Diabetes Metab Disord 2023; 22:61-71. [PMID: 37255821 PMCID: PMC10225458 DOI: 10.1007/s40200-022-01164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/24/2022] [Indexed: 06/01/2023]
Abstract
Background Diabetes mellitus (DM) is a group of metabolic disorders that have an increased risk of macro and micro-vascular complications due to lipid dysfunction. The present drug treatments for the management of DM either have numerous side effects or do not have long-lasting therapeutic effects. So it is essential to find a newer class of drug for DM treatment. Method Broad information has been researched regarding Tyrosine kinase Inhibitors (TKIs) and their mechanism of action. They are proven for the management of various kinds of cancers. TKIs produce anti-hyperglycemic effects by acting on multiple targets such as c-Abl, Platelet-Derived Growth Factor Receptor (PDGFR), Vascular Endothelial Growth Factor Receptor (VEGFR), Epidermal Growth Factor Receptor (EGFR), and c-Kit. Result This family of drugs blocks numerous tyrosine kinases by acting as a partial agonist of PPAR-γ receptors and results in an anti-diabetic effect by improving insulin sensitivity and glucose disposal rate. Conclusion Therefore, it is said that TKI drugs will be great potential for the treatment of Diabetes. This review summarizes the possible targets of TKIs and TKIs being a potential drug class in the management of Diabetes mellitus.
Collapse
Affiliation(s)
- Aakash Kumar S
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| | - Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| | - Shreya Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| | - Palak Parikh
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej - Gandhinagar Hwy, Gota, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
7
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
8
|
Ceccarelli S, Gerini G, Megiorni F, Pontecorvi P, Messina E, Camero S, Anastasiadou E, Romano E, Onesti MG, Napoli C, Marchese C. Inhibiting DNA methylation as a strategy to enhance adipose-derived stem cells differentiation: Focus on the role of Akt/mTOR and Wnt/β-catenin pathways on adipogenesis. Front Cell Dev Biol 2022; 10:926180. [PMID: 36120582 PMCID: PMC9478209 DOI: 10.3389/fcell.2022.926180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 01/10/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) represent a valid therapeutic option for clinical application in several diseases, due to their ability to repair damaged tissues and to mitigate the inflammatory/immune response. A better understanding of the underlying mechanisms regulating ASC biology might represent the chance to modulate their in vitro characteristics and differentiation potential for regenerative medicine purposes. Herein, we investigated the effects of the demethylating agent 5-azacytidine (5-aza) on proliferation, clonogenicity, migration, adipogenic differentiation and senescence of ASCs, to identify the molecular pathways involved. Through functional assays, we observed a detrimental effect of 5-aza on ASC self-renewal capacity and migration, accompanied by actin cytoskeleton reorganization, with decreased stress fibers. Conversely, 5-aza treatment enhanced ASC adipogenic differentiation, as assessed by lipid accumulation and expression of lineage-specific markers. We analyzed the involvement of the Akt/mTOR, MAPK and Wnt/β-catenin pathways in these processes. Our results indicated impairment of Akt and ERK phosphorylation, potentially explaining the reduced cell proliferation and migration. We observed a 5-aza-mediated inhibition of the Wnt signaling pathway, this potentially explaining the pro-adipogenic effect of the drug. Finally, 5-aza treatment significantly induced ASC senescence, through upregulation of the p53/p21 axis. Our data may have important translational implications, by helping in clarifying the potential risks and advantages of using epigenetic treatment to improve ASC characteristics for cell-based clinical approaches.
Collapse
Affiliation(s)
- S. Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: S. Ceccarelli ,
| | - G. Gerini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - F. Megiorni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - P. Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E. Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - S. Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - E. Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - E. Romano
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - M. G. Onesti
- Department of Surgery “P. Valdoni”, Unit of Plastic Surgery “P. Valdoni”, Sapienza University of Rome, Rome, Italy
| | - C. Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - C. Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Kumar V, Singh P, Gupta SK, Ali V, Jyotirmayee, Verma M. Alterations in cellular metabolisms after Imatinib therapy: a review. Med Oncol 2022; 39:95. [DOI: 10.1007/s12032-022-01699-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022]
|
10
|
Althubiti M. Tyrosine kinase targeting: A potential therapeutic strategy for diabetes. SAUDI JOURNAL OF MEDICINE AND MEDICAL SCIENCES 2022; 10:183-191. [PMID: 36247049 PMCID: PMC9555044 DOI: 10.4103/sjmms.sjmms_492_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/06/2021] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have been studied extensively in cancer research, ultimately resulting in the approval of many drugs for cancer therapy. Recent evidence from reported clinical cases and experimental studies have suggested that some of these drugs have a potential role in diabetes treatment. These TKIs include imatinib, sunitinib, dasatinib, erlotinib, nilotinib, neratinib, and ibrutinib. As a result of promising findings, imatinib has been used in a phase II clinical trial. In this review, studies that used TKIs in the treatment of both types of diabetes are critically discussed. In addition, the different molecular mechanisms of action of these drugs in diabetes models are also highlighted to understand their antidiabetic mode of action.
Collapse
|
11
|
Stanford SM, Collins M, Diaz MA, Holmes ZJ, Gries P, Bliss MR, Lodi A, Zhang V, Tiziani S, Bottini N. The low molecular weight protein tyrosine phosphatase promotes adipogenesis and subcutaneous adipocyte hypertrophy. J Cell Physiol 2021; 236:6630-6642. [PMID: 33615467 DOI: 10.1002/jcp.30307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
Obesity is a major contributing factor to the pathogenesis of Type 2 diabetes. Multiple human genetics studies suggest that high activity of the low molecular weight protein tyrosine phosphatase (LMPTP) promotes metabolic syndrome in obesity. We reported that LMPTP is a critical promoter of insulin resistance in obesity by regulating liver insulin receptor signaling and that inhibition of LMPTP reverses obesity-associated diabetes in mice. Since LMPTP is expressed in adipose tissue but little is known about its function, here we examined the role of LMPTP in adipocyte biology. Using conditional knockout mice, we found that selective deletion of LMPTP in adipocytes impaired obesity-induced subcutaneous adipocyte hypertrophy. We assessed the role of LMPTP in adipogenesis in vitro, and found that LMPTP deletion or knockdown substantially impaired differentiation of primary preadipocytes and 3T3-L1 cells into adipocytes, respectively. Inhibition of LMPTP in 3T3-L1 preadipocytes also reduced adipogenesis and expression of proadipogenic transcription factors peroxisome proliferator activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha. Inhibition of LMPTP increased basal phosphorylation of platelet-derived growth factor receptor alpha (PDGFRα) on activation motif residue Y849 in 3T3-L1, resulting in increased activation of the mitogen-associated protein kinases p38 and c-Jun N-terminal kinase and increased PPARγ phosphorylation on inhibitory residue S82. Analysis of the metabolome of differentiating 3T3-L1 cells suggested that LMPTP inhibition decreased cell glucose utilization while enhancing mitochondrial respiration and nucleotide synthesis. In summary, we report a novel role for LMPTP as a key driver of adipocyte differentiation via control of PDGFRα signaling.
Collapse
Affiliation(s)
- Stephanie M Stanford
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Meghan Collins
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Michael A Diaz
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Zachary J Holmes
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Paul Gries
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Matthew R Bliss
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Vida Zhang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA.,Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
12
|
Khodabandehloo F, Taleahmad S, Aflatoonian R, Rajaei F, Zandieh Z, Nassiri-Asl M, Eslaminejad MB. Microarray analysis identification of key pathways and interaction network of differential gene expressions during osteogenic differentiation. Hum Genomics 2020; 14:43. [PMID: 33234152 PMCID: PMC7687700 DOI: 10.1186/s40246-020-00293-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. RESULTS Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. CONCLUSIONS These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT.
Collapse
Affiliation(s)
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
13
|
Pichavaram P, Shawky NM, Hartney TJ, Jun JY, Segar L. Imatinib improves insulin resistance and inhibits injury-induced neointimal hyperplasia in high fat diet-fed mice. Eur J Pharmacol 2020; 890:173666. [PMID: 33131722 DOI: 10.1016/j.ejphar.2020.173666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/28/2022]
Abstract
Imatinib, a PDGF receptor tyrosine kinase inhibitor, has been shown to suppress intimal hyperplasia in different animal models under normal metabolic milieu, diabetic, and/or hypercholesterolemic conditions. However, the impact of imatinib treatment on injury-induced neointimal hyperplasia has not yet been investigated in the setting of insulin resistance without frank diabetes. Using a mouse model of high fat diet (HFD)-induced insulin resistance and guidewire-induced arterial injury, the present study demonstrates that intraperitoneal administration of imatinib (25 mg/kg/day) for ~3 weeks resulted in a marked attenuation of neointimal hyperplasia (intima/media ratio) by ~78% (n = 6-9 per group; P < 0.05). Imatinib treatment also led to significant improvements in key metabolic parameters. In particular, imatinib improved insulin resistance and glucose tolerance, as revealed by complete inhibition of HFD-induced increase in HOMA-IR index and AUCIPGTT, respectively. In addition, imatinib treatment led to diminutions in HFD-induced increases in plasma total cholesterol and triglycerides by ~73% and ~59%, respectively. Furthermore, imatinib decreased HFD-induced increase in visceral fat accumulation by ~51% (as determined by epididymal white adipose tissue weight). Importantly, imatinib treatment in HFD-fed mice enhanced plasma levels of high-molecular-weight adiponectin by ~2-fold without affecting total adiponectin. However, there were no significant changes in mean arterial pressure in insulin-resistant state or after imatinib exposure, as measured by tail-cuff method. Together, the present findings suggest that targeting PDGF receptor tyrosine kinase using imatinib may provide a realistic treatment option to prevent injury-induced neointimal hyperplasia and diet-induced insulin resistance in obesity.
Collapse
Affiliation(s)
- Prahalathan Pichavaram
- Charlie Norwood VA Medical Center, Augusta, GA, USA; Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Noha M Shawky
- Charlie Norwood VA Medical Center, Augusta, GA, USA; Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | | | - John Y Jun
- Division of Endocrinology, Diabetes, and Metabolism, Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lakshman Segar
- Charlie Norwood VA Medical Center, Augusta, GA, USA; Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
14
|
Stromal CCL2 Signaling Promotes Mammary Tumor Fibrosis through Recruitment of Myeloid-Lineage Cells. Cancers (Basel) 2020; 12:cancers12082083. [PMID: 32731354 PMCID: PMC7465971 DOI: 10.3390/cancers12082083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is correlated with breast tumor desmoplasia, leading to diminished chemotherapy response and disease-free survival. Obesity causes chronic, macrophage-driven inflammation within breast tissue, initiated by chemokine ligand 2 (CCL2) signaling from adipose stromal cells. To understand how CCL2-induced inflammation alters breast tumor pathology, we transplanted oncogenically transformed human breast epithelial cells with breast stromal cells expressing CCL2 or empty vector into murine mammary glands and examined tumor formation and progression with time. As tumors developed, macrophages were rapidly recruited, followed by the emergence of cancer-associated fibroblasts (CAFs) and collagen deposition. Depletion of CD11b + myeloid lineage cells early in tumor formation reduced tumor growth, CAF numbers, and collagen deposition. CCL2 expression within developing tumors also enhanced recruitment of myeloid progenitor cells from the bone marrow into the tumor site. The myeloid progenitor cell population contained elevated numbers of fibrocytes, which exhibited platelet-derived growth factor receptor-alpha (PDGFRα)-dependent colony formation and growth in vitro. Together, these results suggest that chronic inflammation induced by CCL2 significantly enhances tumor growth and promotes the formation of a desmoplastic stroma through early recruitment of macrophages and fibrocytes into the tumor microenvironment. Fibrocytes may be a novel target in the tumor microenvironment to reduce tumor fibrosis and enhance treatment responses for obese breast cancer patients.
Collapse
|
15
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
16
|
Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020; 11:354. [PMID: 32372975 PMCID: PMC7186430 DOI: 10.3389/fphys.2020.00354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic diseases, such as diabetes, obesity, and fatty liver disease, have now reached epidemic proportions. Receptor tyrosine kinases (RTKs) are a family of cell surface receptors responding to growth factors, hormones, and cytokines to mediate a diverse set of fundamental cellular and metabolic signaling pathways. These ligands signal by endocrine, paracrine, or autocrine means in peripheral organs and in the central nervous system to control cellular and tissue-specific metabolic processes. Interestingly, the expression of many RTKs and their ligands are controlled by changes in metabolic demand, for example, during starvation, feeding, or obesity. In addition, studies of RTKs and their ligands in regulating energy homeostasis have revealed unexpected diversity in the mechanisms of action and their specific metabolic functions. Our current understanding of the molecular, biochemical and genetic control of energy homeostasis by the endocrine RTK ligands insulin, FGF21 and FGF19 are now relatively well understood. In addition to these classical endocrine signals, non-endocrine ligands can govern local energy regulation, and the intriguing crosstalk between the RTK family and the TGFβ receptor family demonstrates a signaling network that diversifies metabolic process between tissues. Thus, there is a need to increase our molecular and mechanistic understanding of signal diversification of RTK actions in metabolic disease. Here we review the known and emerging molecular mechanisms of RTK signaling that regulate systemic glucose and lipid metabolism, as well as highlighting unexpected roles of non-classical RTK ligands that crosstalk with other receptor pathways.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Yunshin Jung
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Zewen Jiang
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Katrin J Svensson
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
17
|
Cakouros D, Hemming S, Gronthos K, Liu R, Zannettino A, Shi S, Gronthos S. Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination. Epigenetics Chromatin 2019; 12:3. [PMID: 30606231 PMCID: PMC6317244 DOI: 10.1186/s13072-018-0247-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background The 5 hydroxymethylation (5hmC) mark and TET DNA dioxygenases play a pivotal role in embryonic stem cell differentiation and animal development. However, very little is known about TET enzymes in lineage determination of human bone marrow-derived mesenchymal stem/stromal cells (BMSC). We examined the function of all three TET DNA dioxygenases, responsible for DNA hydroxymethylation, in human BMSC cell osteogenic and adipogenic differentiation. Results We used siRNA knockdown and retroviral mediated enforced expression of TET molecules and discovered TET1 to be a repressor of both osteogenesis and adipogenesis. TET1 was found to recruit the co-repressor proteins, SIN3A and the histone lysine methyltransferase, EZH2 to osteogenic genes. Conversely, TET2 was found to be a promoter of both osteogenesis and adipogenesis. The data showed that TET2 was directly responsible for 5hmC levels on osteogenic and adipogenic lineage-associated genes, whereas TET1 also played a role in this process. Interestingly, TET3 showed no functional effect in BMSC osteo-/adipogenic differentiation. Finally, in a mouse model of ovariectomy-induced osteoporosis, the numbers of clonogenic BMSC were dramatically diminished corresponding to lower trabecular bone volume and reduced levels of TET1, TET2 and 5hmC. Conclusion The present study has discovered an epigenetic mechanism mediated through changes in DNA hydroxymethylation status regulating the activation of key genes involved in the lineage determination of skeletal stem cells, which may have implications in BMSC function during normal bone regulation. Targeting TET molecules or their downstream targets may offer new therapeutic strategies to help prevent bone loss and repair following trauma or disease. Electronic supplementary material The online version of this article (10.1186/s13072-018-0247-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Sarah Hemming
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Kahlia Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Renjing Liu
- Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute for Cancer Medicine and Cell Biology, University of Sydney, Sydney, NSW, 2042, Australia
| | - Andrew Zannettino
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.,Multiple Myeloma Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia. .,South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
18
|
Goody D, Pfeifer A. MicroRNAs in brown and beige fat. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:29-36. [DOI: 10.1016/j.bbalip.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/05/2018] [Accepted: 05/04/2018] [Indexed: 12/27/2022]
|
19
|
Haider N, Dusseault J, Larose L. Nck1 Deficiency Impairs Adipogenesis by Activation of PDGFRα in Preadipocytes. iScience 2018; 6:22-37. [PMID: 30240612 PMCID: PMC6137712 DOI: 10.1016/j.isci.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/22/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity results from an excessive expansion of white adipose tissue (WAT), which is still poorly understood from an etiologic-mechanistic perspective. Here, we report that Nck1, a Src homology domain-containing adaptor, is upregulated during WAT expansion and in vitro adipogenesis. In agreement, Nck1 mRNA correlates positively with peroxisome proliferator-activated receptor (PPAR) γ and adiponectin mRNAs in the WAT of obese humans, whereas Nck1-deficient mice display smaller WAT depots with reduced number of adipocyte precursors and accumulation of extracellular matrix. Furthermore, silencing Nck1 in 3T3-L1 preadipocytes increases the proliferation and expression of genes encoding collagen, whereas it decreases the expression of adipogenic markers and impairs adipogenesis. Silencing Nck1 in 3T3-L1 preadipocytes also promotes the expression of platelet-derived growth factor (PDGF)-A and platelet-derived growth factor receptor (PDGFR) α activation and signaling. Preventing PDGFRα activation using imatinib, or through PDGF-A or PDGFRα deficiency, inhibits collagen expression in Nck1-deficient preadipocytes. Finally, imatinib rescues differentiation of Nck1-deficient preadipocytes. Altogether, our findings reveal that Nck1 modulates WAT development through PDGFRα-dependent remodeling of preadipocytes.
Collapse
Affiliation(s)
- Nida Haider
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Julie Dusseault
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada
| | - Louise Larose
- Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Glen Site, Bloc E, Rm E02-7244, 1001 Decarie Boulevard, Montreal, QC H4A 3J1 Canada.
| |
Collapse
|
20
|
Poggi A, Varesano S, Zocchi MR. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front Immunol 2018; 9:262. [PMID: 29515580 PMCID: PMC5825917 DOI: 10.3389/fimmu.2018.00262] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Experimental evidence indicates that mesenchymal stromal cells (MSCs) may regulate tumor microenvironment (TME). It is conceivable that the interaction with MSC can influence neoplastic cell functional behavior, remodeling TME and generating a tumor cell niche that supports tissue neovascularization, tumor invasion and metastasization. In addition, MSC can release transforming growth factor-beta that is involved in the epithelial-mesenchymal transition of carcinoma cells; this transition is essential to give rise to aggressive tumor cells and favor cancer progression. Also, MSC can both affect the anti-tumor immune response and limit drug availability surrounding tumor cells, thus creating a sort of barrier. This mechanism, in principle, should limit tumor expansion but, on the contrary, often leads to the impairment of the immune system-mediated recognition of tumor cells. Furthermore, the cross-talk between MSC and anti-tumor lymphocytes of the innate and adaptive arms of the immune system strongly drives TME to become immunosuppressive. Indeed, MSC can trigger the generation of several types of regulatory cells which block immune response and eventually impair the elimination of tumor cells. Based on these considerations, it should be possible to favor the anti-tumor immune response acting on TME. First, we will review the molecular mechanisms involved in MSC-mediated regulation of immune response. Second, we will focus on the experimental data supporting that it is possible to convert TME from immunosuppressive to immunostimulant, specifically targeting MSC.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Borriello A, Caldarelli I, Bencivenga D, Stampone E, Perrotta S, Oliva A, Della Ragione F. Tyrosine kinase inhibitors and mesenchymal stromal cells: effects on self-renewal, commitment and functions. Oncotarget 2018; 8:5540-5565. [PMID: 27750212 PMCID: PMC5354929 DOI: 10.18632/oncotarget.12649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
The hope of selectively targeting cancer cells by therapy and eradicating definitively malignancies is based on the identification of pathways or metabolisms that clearly distinguish “normal” from “transformed” phenotypes. Some tyrosine kinase activities, specifically unregulated and potently activated in malignant cells, might represent important targets of therapy. Consequently, tyrosine kinase inhibitors (TKIs) might be thought as the “vanguard” of molecularly targeted therapy for human neoplasias. Imatinib and the successive generations of inhibitors of Bcr-Abl1 kinase, represent the major successful examples of TKI use in cancer treatment. Other tyrosine kinases have been selected as targets of therapy, but the efficacy of their inhibition, although evident, is less definite. Two major negative effects exist in this therapeutic strategy and are linked to the specificity of the drugs and to the role of the targeted kinase in non-malignant cells. In this review, we will discuss the data available on the TKIs effects on the metabolism and functions of mesenchymal stromal cells (MSCs). MSCs are widely distributed in human tissues and play key physiological roles; nevertheless, they might be responsible for important pathologies. At present, bone marrow (BM) MSCs have been studied in greater detail, for both embryological origins and functions. The available data are evocative of an unexpected degree of complexity and heterogeneity of BM-MSCs. It is conceivable that this grade of intricacy occurs also in MSCs of other organs. Therefore, in perspective, the negative effects of TKIs on MSCs might represent a critical problem in long-term cancer therapies based on such inhibitors.
Collapse
Affiliation(s)
- Adriana Borriello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Ilaria Caldarelli
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Debora Bencivenga
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Emanuela Stampone
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Silverio Perrotta
- Department of Woman, Child and of General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Adriana Oliva
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Fulvio Della Ragione
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
22
|
Haguet H, Douxfils J, Chatelain C, Graux C, Mullier F, Dogné JM. BCR-ABL Tyrosine Kinase Inhibitors: Which Mechanism(s) May Explain the Risk of Thrombosis? TH OPEN 2018; 2:e68-e88. [PMID: 31249931 PMCID: PMC6524858 DOI: 10.1055/s-0038-1624566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Imatinib, the first-in-class BCR-ABL tyrosine kinase inhibitor (TKI), had been a revolution for the treatment of chronic myeloid leukemia (CML) and had greatly enhanced patient survival. Second- (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKIs have been developed to be effective against BCR-ABL mutations making imatinib less effective. However, these treatments have been associated with arterial occlusive events. This review gathers clinical data and experiments about the pathophysiology of these arterial occlusive events with BCR-ABL TKIs. Imatinib is associated with very low rates of thrombosis, suggesting a potentially protecting cardiovascular effect of this treatment in patients with BCR-ABL CML. This protective effect might be mediated by decreased platelet secretion and activation, decreased leukocyte recruitment, and anti-inflammatory or antifibrotic effects. Clinical data have guided mechanistic studies toward alteration of platelet functions and atherosclerosis development, which might be secondary to metabolism impairment. Dasatinib, nilotinib, and ponatinib affect endothelial cells and might induce atherogenesis through increased vascular permeability. Nilotinib also impairs platelet functions and induces hyperglycemia and dyslipidemia that might contribute to atherosclerosis development. Description of the pathophysiology of arterial thrombotic events is necessary to implement risk minimization strategies.
Collapse
Affiliation(s)
- Hélène Haguet
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| | - Jonathan Douxfils
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
- QUALIblood s.a., Namur, Belgium
| | - Christian Chatelain
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
| | - Carlos Graux
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Department of Hematology, Yvoir, Belgium
| | - François Mullier
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center, Hematology Laboratory, Yvoir, Belgium
| | - Jean-Michel Dogné
- University of Namur, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Department of Pharmacy, Namur, Belgium
| |
Collapse
|
23
|
Martyanov V, Kim GHJ, Hayes W, Du S, Ganguly BJ, Sy O, Lee SK, Bogatkevich GS, Schieven GL, Schiopu E, Marangoni RG, Goldin J, Whitfield ML, Varga J. Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLoS One 2017; 12:e0187580. [PMID: 29121645 PMCID: PMC5679625 DOI: 10.1371/journal.pone.0187580] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/21/2017] [Indexed: 01/04/2023] Open
Abstract
Background There are no effective treatments or validated clinical response markers in systemic sclerosis (SSc). We assessed imaging biomarkers and performed gene expression profiling in a single-arm open-label clinical trial of tyrosine kinase inhibitor dasatinib in patients with SSc-associated interstitial lung disease (SSc-ILD). Methods Primary objectives were safety and pharmacokinetics. Secondary outcomes included clinical assessments, quantitative high-resolution computed tomography (HRCT) of the chest, serum biomarker assays and skin biopsy-based gene expression subset assignments. Clinical response was defined as decrease of >5 or >20% from baseline in the modified Rodnan Skin Score (MRSS). Pulmonary function was assessed at baseline and day 169. Results Dasatinib was well-tolerated in 31 patients receiving drug for a median of nine months. No significant changes in clinical assessments or serum biomarkers were seen at six months. By quantitative HRCT, 65% of patients showed no progression of lung fibrosis, and 39% showed no progression of total ILD. Among 12 subjects with available baseline and post-treatment skin biopsies, three were improvers and nine were non-improvers. Improvers mapped to the fibroproliferative or normal-like subsets, while seven out of nine non-improvers were in the inflammatory subset (p = 0.0455). Improvers showed stability in forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO), while both measures showed a decline in non-improvers (p = 0.1289 and p = 0.0195, respectively). Inflammatory gene expression subset was associated with higher baseline HRCT score (p = 0.0556). Non-improvers showed significant increase in lung fibrosis (p = 0.0313). Conclusions In patients with SSc-ILD dasatinib treatment was associated with acceptable safety profile but no significant clinical efficacy. Patients in the inflammatory gene expression subset showed increase in skin fibrosis, decreasing pulmonary function and worsening lung fibrosis during the study. These findings suggest that target tissue-specific gene expression analyses can help match patients and therapeutic interventions in heterogeneous diseases such as SSc, and quantitative HRCT is useful for assessing clinical outcomes. Trial registration Clinicaltrials.gov NCT00764309
Collapse
Affiliation(s)
- Viktor Martyanov
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States of America
- * E-mail:
| | - Grace-Hyun J. Kim
- David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, United States of America
| | - Wendy Hayes
- Bristol-Myers Squibb, Princeton, NJ, United States of America
| | - Shuyan Du
- Bristol-Myers Squibb, Princeton, NJ, United States of America
| | | | - Oumar Sy
- Bristol-Myers Squibb, Princeton, NJ, United States of America
| | - Sun Ku Lee
- Bristol-Myers Squibb, Princeton, NJ, United States of America
| | | | | | - Elena Schiopu
- University of Michigan Health System, Ann Arbor, MI, United States of America
| | | | - Jonathan Goldin
- David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, United States of America
| | | | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
24
|
Sun C, Berry WL, Olson LE. PDGFRα controls the balance of stromal and adipogenic cells during adipose tissue organogenesis. Development 2017; 144:83-94. [PMID: 28049691 DOI: 10.1242/dev.135962] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022]
Abstract
Adipose tissue is distributed in depots throughout the body with specialized roles in energy storage and thermogenesis. PDGFRα is a marker of adipocyte precursors, and increased PDGFRα activity causes adipose tissue fibrosis in adult mice. However, the function of PDGFRα during adipose tissue organogenesis is unknown. Here, by analyzing mice with juxtamembrane or kinase domain point mutations that increase PDGFRα activity (V561D or D842V), we found that PDGFRα activation inhibits embryonic white adipose tissue organogenesis in a tissue-autonomous manner. By lineage tracing analysis, we also found that collagen-expressing precursor fibroblasts differentiate into white adipocytes in the embryo. PDGFRα inhibited the formation of adipocytes from these precursors while favoring the formation of stromal fibroblasts. This imbalance between adipocytes and stromal cells was accompanied by overexpression of the cell fate regulator Zfp521. PDGFRα activation also inhibited the formation of juvenile beige adipocytes in the inguinal fat pad. Our data highlight the importance of balancing stromal versus adipogenic cell expansion during white adipose tissue development, with PDGFRα activity coordinating this crucial process in the embryo.
Collapse
Affiliation(s)
- Chengyi Sun
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
25
|
Tyrosine kinase inhibitors of Ripk2 attenuate bacterial cell wall-mediated lipolysis, inflammation and dysglycemia. Sci Rep 2017; 7:1578. [PMID: 28484277 PMCID: PMC5431485 DOI: 10.1038/s41598-017-01822-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/31/2017] [Indexed: 01/01/2023] Open
Abstract
Inflammation underpins aspects of insulin resistance and dysglycemia. Microbiota-derived cell wall components such as muropeptides or endotoxin can trigger changes in host immunity and metabolism. Specific peptidoglycan motifs promote metabolic tissue inflammation, lipolysis and insulin resistance via Nucleotide-binding oligomerization domain-containing protein 1 (Nod1). Receptor-interacting serine/threonine-protein kinase 2 (Ripk2) mediates Nod1-induced immunity, but the role of Ripk2 in metabolism is ill-defined. We hypothesized that Ripk2 was required for Nod1-mediated inflammation, lipolysis and dysglycemia. This is relevant because certain tyrosine kinase inhibitors (TKIs) inhibit Ripk2 and there is clinical evidence of TKIs lowering inflammation and blood glucose. Here, we showed that only a subset of TKIs known to inhibit Ripk2 attenuated Nod1 ligand-mediated adipocyte lipolysis. TKIs that inhibit Ripk2 decreased cytokine responses induced by Nod1-activating peptidoglycan, but not endotoxin in both metabolic and immune cells. Pre-treatment of adipocytes or macrophages with the TKI gefitinib inhibited Nod1-induced Cxcl1 and Il-6 secretion. Furthermore, treatment of mice with gefitinib prevented Nod1-induced glucose intolerance in vivo. Ripk2 was required for these effects on inflammation and metabolism, since Nod1-mediated cytokine and blood glucose changes were absent in Ripk2−/− mice. Our data show that specific TKIs used in cancer also inhibit Nod1-Ripk2 immunometabolism responses indicative of metabolic disease.
Collapse
|
26
|
Wu R, Sun JG, Wang JQ, Li B, Liu Q, Ning G, Jin W, Yuan Z. c-Abl inhibition mitigates diet-induced obesity through improving insulin sensitivity of subcutaneous fat in mice. Diabetologia 2017; 60:900-910. [PMID: 28074253 DOI: 10.1007/s00125-016-4202-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS High-energy diets are among the main causes of the global epidemic of metabolic disorders, including obesity and type 2 diabetes. The mechanisms of high-energy-diet-induced metabolic disorders are complex and largely unknown. The non-receptor tyrosine kinase c-Abl plays an important role in adipogenesis in vitro but its role in vivo in the regulation of metabolism is still elusive. Hence, we sought to address the role of c-Abl in diet-induced obesity and obesity-associated insulin resistance. METHODS The expression of c-Abl in different fat tissues from obese humans or mice fed a high-fat diet (HFD) were first analysed by western blotting and quantitative PCR. We employed conditional deletion of the c-Abl gene (also known as Abl1) in adipose tissue using Fabp4-Cre and 6-week-old mice were fed with either a chow diet (CD) or an HFD. Age-matched wild-type mice were treated with the c-Abl inhibitor nilotinib or with vehicle and exposed to either CD or HFD, followed by analysis of body mass, fat mass, glucose and insulin tolerance. Histological staining, ELISA and biochemical analysis were used to clarify details of changes in physiology and molecular signalling. RESULTS c-Abl was highly expressed in subcutaneous fat from obese humans and HFD-induced obese mice. Conditional knockout of c-Abl in adipose tissue improved insulin sensitivity and mitigated HFD-induced body mass gain, hyperglycaemia and hyperinsulinaemia. Consistently, treatment with nilotinib significantly reduced fat mass and improved insulin sensitivity in HFD-fed mice. Further biochemical analyses suggested that c-Abl inhibition improved whole-body insulin sensitivity by reducing HFD-triggered insulin resistance and increasing adiponectin in subcutaneous fat. CONCLUSIONS/INTERPRETATION Our findings define a new biological role for c-Abl in the regulation of diet-induced obesity through improving insulin sensitivity of subcutaneous fat. This suggests it may become a novel therapeutic target in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Rong Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Guang Sun
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish Center Neuroscience Program, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Qiu Wang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Binhua Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Guang Ning
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
| | - Zengqiang Yuan
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
27
|
Rivera-Gonzalez GC, Shook BA, Andrae J, Holtrup B, Bollag K, Betsholtz C, Rodeheffer MS, Horsley V. Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis. Cell Stem Cell 2016; 19:738-751. [PMID: 27746098 DOI: 10.1016/j.stem.2016.09.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/14/2016] [Accepted: 09/11/2016] [Indexed: 12/15/2022]
Abstract
Tissue growth and maintenance requires stem cell populations that self-renew, proliferate, and differentiate. Maintenance of white adipose tissue (WAT) requires the proliferation and differentiation of adipocyte stem cells (ASCs) to form postmitotic, lipid-filled mature adipocytes. Here we use the dynamic adipogenic program that occurs during hair growth to uncover an unrecognized regulator of ASC self-renewal and proliferation, PDGFA, which activates AKT signaling to drive and maintain the adipogenic program in the skin. Pdgfa expression is reduced in aged ASCs and is required for ASC proliferation and maintenance in the dermis, but not in other WATs. Our molecular and genetic studies uncover PI3K/AKT2 as a direct PDGFA target that is activated in ASCs during WAT hyperplasia and is functionally required for dermal ASC proliferation. Our data therefore reveal active mechanisms that regulate ASC self-renewal in the skin and show that distinct regulatory mechanisms operate in different WAT depots.
Collapse
Affiliation(s)
| | - Brett A Shook
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Johanna Andrae
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Brandon Holtrup
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Katherine Bollag
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Matthew S Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Section of Comparative Medicine, Yale University, New Haven, CT 06520, USA
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules consisting of approximately 20 to 22 nucleotides. They play a very important role in the regulation of gene expression. miRNAs can be found in different species and a variety of organs and tissues including adipose tissue. There are two types of adipose tissue in mammals: White adipose tissue (WAT) is the largest energy storage, whereas brown adipose tissue (BAT) dissipates energy to maintain body temperature. BAT was first identified in hibernating animals and newborns as a defense against cold. Later on, it was also discovered in human adults, suggesting its potential role in energy balance and metabolism. Moreover, "brown-like" adipocytes present in WAT depots, so called beige or brite (brown-in-white) cells, were discovered by several groups. In recent years, miRNAs were found to have important regulatory function during brown fat differentiation, brown fat activation and white fat "browning". In this review, we focus on the regulation of brown and beige fat by miRNAs including the role in their differentiation and function, providing evidence for their therapeutic potential in metabolic diseases.
Collapse
Affiliation(s)
- Yong Chen
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Ruping Pan
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
29
|
Chen WH, Lin CM, Huang CF, Hsu WC, Lee CH, Ou KL, Dubey NK, Deng WP. Functional Recovery in Osteoarthritic Chondrocytes Through Hyaluronic Acid and Platelet-Rich Plasma-Inhibited Infrapatellar Fat Pad Adipocytes. Am J Sports Med 2016; 44:2696-2705. [PMID: 27400716 DOI: 10.1177/0363546516651822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Recent studies have shown evidence that higher adiposity in the infrapatellar fat pad (IFP) induces inflammatory phenotypes in the knee joint and thereby contributes to the development and progression of osteoarthritis (OA). In particular, IFP adipocyte-derived inflammatory cytokines participate in pathological events. Our previous research has already addressed the therapeutic efficacy of hyaluronic acid and platelet-rich plasma (HA+PRP), including the promotion of cartilage regeneration and the inhibition of inflammation. The current study aimed to explore the remedial action of coadministered HA+PRP in OA recovery via IFP adipocyte inhibition. HYPOTHESIS HA+PRP repairs OA articular cartilage by inhibiting the release of adipokines from IFP adipocytes. STUDY DESIGN Controlled laboratory study. METHODS IFP adipocytes and articular chondrocytes were obtained from 10 patients with OA, and the effects of releasates containing cytokines and adipokines in IFP adipocyte-derived conditioned medium (IACM) on articular chondrocytes and IFP adipocytes themselves were evaluated. The therapeutic efficacy of exogenous HA+PRP was determined through its administration to cocultured IFP adipocytes and articular chondrocytes and further demonstrated in a 3-dimensional (3D) arthritic neocartilage model. RESULTS The IACM and IFP adipocyte-induced microenvironment could induce dedifferentiated and inflammatory phenotypes in articular chondrocytes. HA+PRP decreased the inflammatory potential of IFP adipocytes through the profound inhibition of cytokines and adipokines. The IACM-mediated and -reduced cartilaginous extracellular matrix could also be recovered through HA+PRP in the 3D arthritic neocartilage model. CONCLUSION IFP adipocyte-derived releasates mediated inflammatory response dedifferentiation in chondrocytes, which was recovered through HA+PRP administration. CLINICAL RELEVANCE Our findings demonstrated that HA+PRP effectively diminished IFP adipocyte-promoted inflammation in articular chondrocytes, indicating that the IFP could be a potential therapeutic target for OA therapy.
Collapse
Affiliation(s)
- Wei-Hong Chen
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chien-Min Lin
- Department of Neurosurgery, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chiung-Fang Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Che Hsu
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chian-Her Lee
- Department of Orthopaedics and Traumatology, Orthopaedic Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Keng-Liang Ou
- Research Center for Biomedical Implants and Microsurgery Devices, Taipei, Taiwan Research Center for Biomedical Devices and Prototype Production, Taipei, Taiwan
| | - Navneet Kumar Dubey
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei, Taiwan Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| |
Collapse
|
30
|
Hashemnia SMR, Atari-Hajipirloo S, Roshan- Milani S, Valizadeh N, Mahabadi S, Kheradmand F. Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.9.577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
31
|
Samis J, Lee P, Zimmerman D, Arceci RJ, Suttorp M, Hijiya N. Recognizing Endocrinopathies Associated With Tyrosine Kinase Inhibitor Therapy in Children With Chronic Myelogenous Leukemia. Pediatr Blood Cancer 2016; 63:1332-8. [PMID: 27100618 DOI: 10.1002/pbc.26028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/18/2016] [Indexed: 01/19/2023]
Abstract
Side effects of tyrosine kinase inhibitor (TKI) treatment vary in children and adults with chronic myelogenous leukemia (CML). As children have a much longer life expectancy than adults, TKI therapy may continue for decades and with long-term consequences that differ from adults. Children may develop endocrinopathies related to "off-target" effects of TKIs, such as delayed growth, changes in bone metabolism, thyroid abnormalities, and effects on puberty and fertility. These endocrinopathies present additional challenges for pediatric patients with CML. This review critically evaluates the literature on long-term endocrine side effects of TKIs in the pediatric CML population and provides suggested recommendations.
Collapse
Affiliation(s)
- Jill Samis
- Division of Pediatric Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul Lee
- Division of Pediatric Hematology Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Donald Zimmerman
- Division of Pediatric Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert J Arceci
- Department of Child Health, The Ron Matricaria Institute of Molecular Medicine at Phoenix Children's Hospital, University of Arizona College of Medicine, Phoenix, Arizona
| | - Meinolf Suttorp
- Pediatric Hematology, Oncology & Stem Cell Transplantation, Department of Pediatrics, Children's Hospital, Technical University of Dresden, Dresden, Germany
| | - Nobuko Hijiya
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Division of Pediatric Hematology Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| |
Collapse
|
32
|
Iizuka K, Niwa H, Kato T, Takeda J. Dasatinib improves insulin sensitivity and affects lipid metabolism in a patient with chronic myeloid leukaemia. BMJ Case Rep 2016; 2016:bcr-2015-214284. [PMID: 26873919 DOI: 10.1136/bcr-2015-214284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 65-year-old woman had been visiting our department for the treatment of type-2 diabetes mellitus since December 2012. Her glycated haemoglobin levels were well controlled (≈5.8% (40 mmol/mol)) by metformin (500 mg). In July 2014, her white cell count increased suddenly to 33 530 cells/μL and she was diagnosed with Ph+ chronic myeloid leukaemia. She was started on dasatinib (100 mg), which immediately normalised plasma levels of WCC. Dasatinib improved the glycaemic index to <6.0% and also improved plasma levels of triglycerides (TGs) and high-density lipoprotein-cholesterol (HDL-c). Levels of low-density lipoprotein-cholesterol were increased but remained within the normal range. The TG:HDL-c ratio and Quantitative Insulin Sensitivity Check Index rapidly improved. Followed by an improvement in insulin sensitivity, plasma levels of adiponectin and leptin were increased. This case study suggests that dasatinib might have positive as well as negative effects on the metabolism of glucose and lipids.
Collapse
Affiliation(s)
- Katsumi Iizuka
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiroyuki Niwa
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takehiro Kato
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Jun Takeda
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
33
|
Fountas A, Diamantopoulos LN, Tsatsoulis A. Tyrosine Kinase Inhibitors and Diabetes: A Novel Treatment Paradigm? Trends Endocrinol Metab 2015; 26:643-656. [PMID: 26492832 DOI: 10.1016/j.tem.2015.09.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/08/2015] [Accepted: 09/12/2015] [Indexed: 01/08/2023]
Abstract
Deregulation of protein tyrosine kinase (PTK) activity is implicated in various proliferative conditions. Multi-target tyrosine kinase inhibitors (TKIs) are increasingly used for the treatment of different malignancies. Recently, several clinical cases of the reversal of both type 1 and 2 diabetes mellitus (T1DM, T2DM) during TKI administration have been reported. Experimental in vivo and in vitro studies have elucidated some of the mechanisms behind this effect. For example, inhibition of Abelson tyrosine kinase (c-Abl) results in β cell survival and enhanced insulin secretion, while platelet-derived growth factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) inhibition leads to improvement in insulin sensitivity. In addition, inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) reduces the degree of islet cell inflammation (insulitis). Therefore, targeting several PTKs may provide a novel approach for correcting the pathophysiologic disturbances of diabetes.
Collapse
Affiliation(s)
- Athanasios Fountas
- Department of Endocrinology, University of Ioannina, Stavros Niarchos Avenue, 45110, Ioannina, Greece
| | | | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, Stavros Niarchos Avenue, 45110, Ioannina, Greece.
| |
Collapse
|
34
|
Tan G, Shi L, Li Q, Wang M. Adiponectin enhances Imatinib anti-tumour activity in human chronic myeloid leukaemia cells with serum levels associated with Imatinib efficacy in early chronic phase patients. Cell Prolif 2015; 48:486-96. [PMID: 26147296 DOI: 10.1111/cpr.12194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/02/2015] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Adiponectin, a functional ligand of adiponectin receptor-1 (AdipoR1) and adiponectin receptor-2 (AdipoR2), has been found to be linked to risk of development of chronic myeloid leukaemia (CML). Imatinib, as its first-line therapy, exhibits striking activity in both chronic and accelerated phases of the condition. However, numerous clinical trials have shown that many patients become refractory or experience relapses. Thus, development of new, hopefully effective Imatinib-based treatment strategies, are still needed. MATERIALS AND METHODS Effects of recombinant adiponectin protein, in enhancing Imatinib anti-tumour activities, in K562 and MEG-01 CML cells, were examined in vitro and in vivo. Forty-eight consecutive newly diagnosed adult patients with Bcr-Abl-positive CML, in the early chronic phase (ECP), were enrolled in the study. Imatinib efficacy, plasma adiponectin levels and their correlations were analysed. RESULTS Data presented here indicate that adiponectin enhanced Imatinib efficacy in vitro and in vivo. Furthermore, this augmented effect was due to inhibition of Bcr-Abl tyrosine kinase activity in an AdipoR1-dependent way, while AdipoR2 was not involved. Most importantly, additional clinical data revealed that adiponectin plasma levels in CML ECP patients, correlated with Imatinib efficacy. CONCLUSIONS Adiponectin enhanced Imatinib anti-tumour activity in human chronic myeloid leukaemia cells and its serum levels were associated with Imatinib efficacy, in early chronic phase patients.
Collapse
Affiliation(s)
- Guangshan Tan
- Department of Pharmacy, People's Hospital of Liaocheng, Shandong, 252000, China
| | - Lei Shi
- Department of Pharmacy, People's Hospital of Liaocheng, Shandong, 252000, China
| | - Qiang Li
- Department of Hematology, People's Hospital of Liaocheng, Shandong, 252000, China
| | - Mingjun Wang
- Department of Hematology, People's Hospital of Liaocheng, Shandong, 252000, China
| |
Collapse
|
35
|
Sciorati C, Clementi E, Manfredi AA, Rovere-Querini P. Fat deposition and accumulation in the damaged and inflamed skeletal muscle: cellular and molecular players. Cell Mol Life Sci 2015; 72:2135-56. [PMID: 25854633 PMCID: PMC11113943 DOI: 10.1007/s00018-015-1857-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
The skeletal muscle has the capacity to repair damage by the activation and differentiation of fiber sub-laminar satellite cells. Regeneration impairment due to reduced satellite cells number and/or functional capacity leads to fiber substitution with ectopic tissues including fat and fibrous tissue and to the loss of muscle functions. Muscle mesenchymal cells that in physiological conditions sustain or directly contribute to regeneration differentiate in adipocytes in patients with persistent damage and inflammation of the skeletal muscle. These cells comprise the fibro-adipogenic precursors, the PW1-expressing cells and some interstitial cells associated with vessels (pericytes, mesoangioblasts and myoendothelial cells). Resident fibroblasts that are responsible for collagen deposition and extracellular matrix remodeling during regeneration yield fibrotic tissue and can differentiate into adipose cells. Some authors have also proposed that satellite cells themselves could transdifferentiate into adipocytes, although recent results by lineage tracing techniques seem to put this theory to discussion. This review summarizes findings about muscle resident mesenchymal cell differentiation in adipocytes and recapitulates the molecular mediators involved in intramuscular adipose tissue deposition.
Collapse
Affiliation(s)
- Clara Sciorati
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy,
| | | | | | | |
Collapse
|
36
|
Cakouros D, Isenmann S, Hemming SE, Menicanin D, Camp E, Zannetinno ACW, Gronthos S. Novel Basic Helix–Loop–Helix Transcription Factor Hes4 Antagonizes the Function of Twist-1 to Regulate Lineage Commitment of Bone Marrow Stromal/Stem Cells. Stem Cells Dev 2015; 24:1297-308. [DOI: 10.1089/scd.2014.0471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Isenmann
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah Elizabeth Hemming
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Danijela Menicanin
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Esther Camp
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew Christopher William Zannetinno
- Myeloma Research Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Martin SK, Gan ZY, Fitter S, To LB, Zannettino ACW. The effect of the PI3K inhibitor BKM120 on tumour growth and osteolytic bone disease in multiple myeloma. Leuk Res 2015; 39:380-7. [PMID: 25624048 DOI: 10.1016/j.leukres.2014.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 10/24/2022]
Abstract
The plasma cell malignancy multiple myeloma (MM) is unique amongst haematological malignancies in its capacity to cause osteoclast-mediated skeletal destruction. The PI3K/Akt pathway mediates proliferation, survival and drug resistance in MM plasma cells and is also involved in regulating the formation and activity of bone-forming osteoblasts and bone-resorbing osteoclasts. NVP-BKM120 (Buparlisib, Novartis) is a PI3K inhibitor that is currently undergoing clinical evaluation in several tumour settings. In this study, we have examined the anti-tumorigenic effects of BKM120 in an immunocompetent mouse model of MM and its effects on osteoblast and osteoclast formation and function. BKM120 treatment (40 mg/kg) resulted in a significant decrease in serum paraprotein and tumour burden, and μCT analysis of the proximal tibia revealed a significant reduction in the number of osteolytic bone lesions in BKM120-treated animals. BKM120 also mediated a significant increase in serum levels of the osteoblast marker P1NP, and a significant decrease in serum levels of the osteoclast marker TRAcP5. In vitro, BKM120 decreased MM plasma cell proliferation, osteoclast formation and function, and promoted osteoblast formation and function. These findings suggest that, in addition to its anti-tumour properties, BKM120 could be used to treat osteolytic bone disease in MM patients.
Collapse
Affiliation(s)
- Sally K Martin
- Myeloma Research Laboratory, School of Medical Sciences, Faculty of Health Science, University of Adelaide, Australia; Centre for Cancer Biology and Hanson Centre for Cancer Research, SA Pathology, Australia; Centre for Stem Cell Research and Centre for Personalised Cancer Medicine, University of Adelaide, Australia; The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Zhen Ying Gan
- Myeloma Research Laboratory, School of Medical Sciences, Faculty of Health Science, University of Adelaide, Australia; Centre for Stem Cell Research and Centre for Personalised Cancer Medicine, University of Adelaide, Australia; The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Medical Sciences, Faculty of Health Science, University of Adelaide, Australia; Centre for Cancer Biology and Hanson Centre for Cancer Research, SA Pathology, Australia; Centre for Stem Cell Research and Centre for Personalised Cancer Medicine, University of Adelaide, Australia; The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Luen B To
- Division of Haematology, Royal Adelaide Hospital, Flinders Medical Centre, Women and Children's Hospital, Queen Elizabeth Hospital and The Lyell McEwin Hospital, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Medical Sciences, Faculty of Health Science, University of Adelaide, Australia; Centre for Cancer Biology and Hanson Centre for Cancer Research, SA Pathology, Australia; Centre for Stem Cell Research and Centre for Personalised Cancer Medicine, University of Adelaide, Australia; The South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
38
|
Wu S, Zheng C, Chen S, Lin B, Chen Y, Zhou W, Li Z. Adiponectin signals through Adiponectin Receptor 1 to reverse imatinib resistance in K562 human chronic myeloid leukemia cells. Biochem Biophys Res Commun 2014; 456:367-72. [PMID: 25475722 DOI: 10.1016/j.bbrc.2014.11.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 01/18/2023]
Abstract
Adiponectin, a member of adipokines, is a functional ligand for Adiponectin Receptor-1 (AdipoR1) and Adiponectin Receptor-2 (AdipoR2), and has been found to be linked to the risk of CML. Imatinib has undoubtedly revolutionised the management and outcome of chronic myeloid leukemia (CML), however imatinib resistance has been recognized as a major problem in CML therapy. In this study, we first established imatinib-resistant K562 CML cells, and then evaluated the effect of Adiponectin in reversing imatinib resistance. The data presented here demonstrated that Adiponectin was able to reverse K562 resistance to imatinib in vitro and in vivo. Additional data with molecular approaches suggested that the reversion of Adiponectin in imatinib resistance signals through AdipoR1 but not AdipoR2 to downregulate Bcr-Abl expression and effect in imatinib-resistant K562 CML cells. Taken together, our data showed that Adiponectin can reverse imatinib resistance in CML, and to a certain extent elucidate the mechanism of Adiponectin reversing imatinib resistance that may provide a new and promising approach in imatinib resistance management in CML therapy.
Collapse
Affiliation(s)
- Shenghao Wu
- Department of Hematology, The Dingli Clinical Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang 325000, China.
| | - Cuiping Zheng
- Department of Hematology, The Dingli Clinical Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang 325000, China
| | - Songyan Chen
- Department of Hematology, The Dingli Clinical Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang 325000, China
| | - Bijing Lin
- Department of Hematology, The Dingli Clinical Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang 325000, China
| | - Yuemiao Chen
- Department of Hematology, The Dingli Clinical Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang 325000, China
| | - Wenjin Zhou
- Department of Hematology, The Dingli Clinical Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang 325000, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, China
| |
Collapse
|
39
|
Kim HJ, Cho H, Alexander R, Patterson HC, Gu M, Lo KA, Xu D, Goh VJ, Nguyen LN, Chai X, Huang CX, Kovalik JP, Ghosh S, Trajkovski M, Silver DL, Lodish H, Sun L. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes 2014; 63:4045-56. [PMID: 25008181 PMCID: PMC4238002 DOI: 10.2337/db14-0466] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue-specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Hyunjii Cho
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Ryan Alexander
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Heide Christine Patterson
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Minxia Gu
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | | | - Dan Xu
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Vera J Goh
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Long N Nguyen
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Xiaoran Chai
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Cher X Huang
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Mirko Trajkovski
- University of Geneva, Medical Faculty, Department of Cell Physiology and Metabolism, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - David L Silver
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Harvey Lodish
- Whitehead Institute for Biomedical Research, Cambridge, MA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Lei Sun
- Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Graduate Medical School, Singapore Institute of Molecular and Cell Biology, Singapore
| |
Collapse
|
40
|
Breccia M, Molica M, Alimena G. How tyrosine kinase inhibitors impair metabolism and endocrine system function: A systematic updated review. Leuk Res 2014; 38:1392-8. [DOI: 10.1016/j.leukres.2014.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/23/2014] [Accepted: 09/27/2014] [Indexed: 01/24/2023]
|
41
|
c-Abl tyrosine kinase promotes adipocyte differentiation by targeting PPAR-gamma 2. Proc Natl Acad Sci U S A 2014; 111:16365-70. [PMID: 25368164 DOI: 10.1073/pnas.1411086111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adipocyte differentiation, or adipogenesis, is a complex and highly regulated process. A recent proteomic analysis has predicted that the nonreceptor tyrosine kinase Abelson murine leukemia viral oncogene (c-Abl) is a putative key regulator of adipogenesis, but the underlying mechanism remained obscure. We found that c-Abl was activated during the early phase of mouse 3T3-L1 preadipocyte differentiation. Moreover, c-Abl activity was essential and its inhibition blocked differentiation to mature adipocytes. c-Abl directly controlled the expression and activity of the master adipogenic regulator peroxisome proliferator-activator receptor gamma 2 (PPARγ2). PPARγ2 physically associated with c-Abl and underwent phosphorylation on two tyrosine residues within its regulatory activation function 1 (AF1) domain. We demonstrated that this process positively regulates PPARγ2 stability and adipogenesis. Remarkably, c-Abl binding to PPARγ2 required the Pro12 residue that has a phenotypically well-studied common human genetic proline 12 alanine substitution (Pro12Ala) polymorphism. Our findings establish a critical role for c-Abl in adipocyte differentiation and explain the behavior of the known Pro12Ala polymorphism.
Collapse
|
42
|
Hemming S, Cakouros D, Isenmann S, Cooper L, Menicanin D, Zannettino A, Gronthos S. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells 2014; 32:802-15. [PMID: 24123378 DOI: 10.1002/stem.1573] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022]
Abstract
The methyltransferase, Enhancer of Zeste homology 2 (EZH2), trimethylates histone 3 lysine 27 (H3K27me3) on chromatin and this repressive mark is removed by lysine demethylase 6A (KDM6A). Loss of these epigenetic modifiers results in developmental defects. We demonstrate that Ezh2 and Kdm6a transcript levels change during differentiation of multipotential human bone marrow-derived mesenchymal stem cells (MSC). Enforced expression of Ezh2 in MSC promoted adipogenic in vitro and inhibited osteogenic differentiation potential in vitro and in vivo, whereas Kdm6a inhibited adipogenesis in vitro and promoted osteogenic differentiation in vitro and in vivo. Inhibition of EZH2 activity and knockdown of Ezh2 gene expression in human MSC resulted in decreased adipogenesis and increased osteogenesis. Conversely, knockdown of Kdm6a gene expression in MSC leads to increased adipogenesis and decreased osteogenesis. Both Ezh2 and Kdm6a were shown to affect expression of master regulatory genes involved in adipogenesis and osteogenesis and H3K27me3 on the promoters of master regulatory genes. These findings demonstrate an important epigenetic switch centered on H3K27me3 which dictates MSC lineage determination.
Collapse
Affiliation(s)
- Sarah Hemming
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Gan ZY, Fitter S, Vandyke K, To LB, Zannettino ACW, Martin SK. The effect of the dual PI3K and mTOR inhibitor BEZ235 on tumour growth and osteolytic bone disease in multiple myeloma. Eur J Haematol 2014; 94:343-54. [PMID: 25179233 DOI: 10.1111/ejh.12436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2014] [Indexed: 12/17/2022]
Abstract
The plasma cell malignancy multiple myeloma (MM) is unique among haematological malignancies in its capacity to cause osteoclast-mediated skeletal destruction. The PI3K/Akt/mTOR pathway mediates proliferation, survival and drug resistance in MM plasma cells and is also involved in regulating the formation and activity of bone-forming osteoblasts and bone-resorbing osteoclasts. NVP-BEZ235 is a dual pan class I PI3K and mTOR inhibitor that is currently undergoing clinical evaluation in several tumour settings. In this study, we examined the anti-tumorigenic effects of BEZ235 in an immunocompetent mouse model of MM and assessed the effects of BEZ235 on osteoblast and osteoclast formation and function. BEZ235 treatment (50 mg/kg) resulted in a significant decrease in serum paraprotein and tumour burden, and μCT analysis of the proximal tibia revealed a significant reduction in the number of osteolytic bone lesions in BEZ235-treated animals. Levels of the serum osteoblast marker P1NP were significantly higher in BEZ235-treated animals, while levels of the osteoclast marker TRAcP5 were reduced. In vitro, BEZ235 decreased MM plasma cell proliferation, osteoclast formation and function and promoted osteoblast formation and function. These findings suggest that, in addition to its anti-tumour properties, BEZ235 could be useful in treating osteolytic bone disease in MM patients.
Collapse
Affiliation(s)
- Zhen Ying Gan
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, SA; Centre for Stem Cell Research, Robinson Institute and Centre for Personalised Cancer Medicine, University of Adelaide, Adelaide, SA; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA
| | | | | | | | | | | |
Collapse
|
44
|
Estrada-González PK, Gómez-Ceja L, Montesinos JJ, Mayani H, Chávez-González A, Meillón L, Delgado N, Sánchez-Nava E, Flores-Figueroa E. Decreased frequency, but normal functional integrity of mesenchymal stromal cells derived from untreated and Imatinib-treated chronic myeloid leukemia patients. Leuk Res 2014; 38:594-600. [PMID: 24661629 DOI: 10.1016/j.leukres.2014.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 02/07/2023]
Abstract
In vitro, Imatinib inhibits the proliferation and stimulates the osteogenic and adipogenic differentiation of mesenchymal stromal cells (MSC). However, it is unknown whether Imatinib affects the biology of MSC in vivo. We asked whether MSC from long-term Imatinib-treated CML patients were affected by the in vivo treatment. MSC from untreated and Imatinib-treated patients displayed normal functional properties (i.e. proliferation, immunophenotype, differentiation and hematopoietic supportive capacity) - but a decreased frequency. In vitro, Imatinib lost its effect when discontinued; which suggest that it has a reversible effect on MSC. Therefore it might lose its effect on MSC after discontinuation in vivo.
Collapse
Affiliation(s)
- P K Estrada-González
- Niche and Microenvironment Laboratory, Oncology Research Unit, Oncology Hospital, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, México City, Mexico
| | - L Gómez-Ceja
- Niche and Microenvironment Laboratory, Oncology Research Unit, Oncology Hospital, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, México City, Mexico
| | - J J Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, Mexico
| | - H Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, Mexico
| | - A Chávez-González
- Leukemic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, Mexico
| | - L Meillón
- Hematology Service, Bernardo Sepulveda Hospital, National Medical Center, IMSS, México City, Mexico
| | - N Delgado
- Hematology Service, Bernardo Sepulveda Hospital, National Medical Center, IMSS, México City, Mexico
| | - E Sánchez-Nava
- Hematology Service, Bernardo Sepulveda Hospital, National Medical Center, IMSS, México City, Mexico
| | - E Flores-Figueroa
- Niche and Microenvironment Laboratory, Oncology Research Unit, Oncology Hospital, Mexico.
| |
Collapse
|
45
|
Whittaker JL, Choudhury NR, Dutta NK, Zannettino A. Facile and rapid ruthenium mediated photo-crosslinking of Bombyx mori silk fibroin. J Mater Chem B 2014; 2:6259-6270. [DOI: 10.1039/c4tb00698d] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report a unique and facile way of preparing silk fibroin gel by ruthenium-mediated photocrosslinking of silk solution. Compared to existing methods, this approach is faster, taking only a few minutes to form the gel with tunable modulus. Hydrogels demonstrate their potential suitability as biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Naba K. Dutta
- Ian Wark Research Institute
- University of South Australia
- Adelaide, Australia
| | - Andrew Zannettino
- Myeloma Research Laboratory
- School of Medical Sciences
- University of Adelaide
- Adelaide, Australia
| |
Collapse
|
46
|
Chen J, Crawford R, Chen C, Xiao Y. The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:516-28. [PMID: 23651329 DOI: 10.1089/ten.teb.2012.0672] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types and have been widely used in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes, and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production, and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functionalities. Biomaterials have been modified in their properties and surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jiezhong Chen
- 1 Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| | | | | | | |
Collapse
|
47
|
Delayed cytogenetic and major molecular responses associated to increased BMI at baseline in chronic myeloid leukemia patients treated with imatinib. Cancer Lett 2013; 333:32-5. [DOI: 10.1016/j.canlet.2012.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/12/2012] [Accepted: 12/06/2012] [Indexed: 11/20/2022]
|
48
|
Imatinib induces body mass changes in women with chronic myeloid leukemia. Ann Hematol 2013; 92:1581-2. [DOI: 10.1007/s00277-013-1752-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/30/2013] [Indexed: 10/27/2022]
|
49
|
Irvine E, Williams C. Treatment-, Patient-, and Disease-Related Factors and the Emergence of Adverse Events with Tyrosine Kinase Inhibitors for the Treatment of Chronic Myeloid Leukemia. Pharmacotherapy 2013; 33:868-81. [DOI: 10.1002/phar.1266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Elizabeth Irvine
- Department of Pharmacy; University of Kansas Hospital; Kansas City; Kansas
| | - Casey Williams
- Sanford Research/USD; Edith Sanford Breast Cancer Initiative; Sioux Falls; South Dakota
| |
Collapse
|
50
|
Berry R, Rodeheffer MS. Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol 2013; 15:302-8. [PMID: 23434825 PMCID: PMC3721064 DOI: 10.1038/ncb2696] [Citation(s) in RCA: 408] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 01/21/2013] [Indexed: 01/05/2023]
Abstract
Mature adipocytes are generated through the proliferation and differentiation of precursor cells. Our prior studies identified adipocyte progenitors in white adipose tissue (WAT) as Lin−:CD29+:CD34+:Sca-1+:CD24+ (CD24+) cells that are capable of generating functional WAT1. Here, we employ several Cre recombinase mouse models to identify the adipocyte cellular lineage in vivo. While it has been proposed that white adipocytes are derived from endothelial2 and hematopoietic3, 4 lineages, we find that neither of these lineages label white adipocytes. However, platelet-derived growth factor receptor α (PdgfRα)-Cre trace labels all white adipocytes. Analysis of WAT from PdgfRα-Cre reporter mice identifies CD24+ and Lin−:CD29+:CD34+:Sca-1+:CD24− (CD24−) cells as adipocyte precursors. We show that CD24+ cells generate the CD24− population in vivo and the CD24− cells express late markers of adipogenesis. From these data we propose a model where the CD24+ adipocyte progenitors become further committed to the adipocyte lineage as CD24 expression is lost, generating CD24− preadipocytes. This characterization of the adipocyte cellular lineage will facilitate study of the mechanisms that regulate WAT formation in vivo and WAT mass expansion in obesity.
Collapse
Affiliation(s)
- Ryan Berry
- Department of Molecular, Cell and Developmental Biology, School of Medicine, Yale University, 375 Congress Avenue, New Haven, Connecticut 06520, USA
| | | |
Collapse
|