1
|
Augustyniak K, Lesniak M, Latka H, Golan MP, Kubiak JZ, Zdanowski R, Malek K. Adipose-derived mesenchymal stem cells' adipogenesis chemistry analyzed by FTIR and Raman metrics. J Lipid Res 2024; 65:100573. [PMID: 38844049 PMCID: PMC11260339 DOI: 10.1016/j.jlr.2024.100573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 07/01/2024] Open
Abstract
The full understanding of molecular mechanisms of cell differentiation requires a holistic view. Here we combine label-free FTIR and Raman hyperspectral imaging with data mining to detect the molecular cell composition enabling noninvasive monitoring of cell differentiation and identifying biochemical heterogeneity. Mouse adipose-derived mesenchymal stem cells (AD-MSCs) undergoing adipogenesis were followed by Raman and FT-IR imaging, Oil Red, and immunofluorescence. A workflow of the data analysis (IRRSmetrics4stem) was designed to identify spectral predictors of adipogenesis and test machine-learning (ML) methods (hierarchical clustering, PCA, PLSR) for the control of the AD-MSCs differentiation degree. IRRSmetrics4stem provided insights into the chemism of adipogenesis. With single-cell tracking, we established IRRS metrics for lipids, proteins, and DNA variations during AD-MSCs differentiation. The over 90% predictive efficiency of the selected ML methods proved the high sensitivity of the IRRS metrics. Importantly, the IRRS metrics unequivocally recognize a switch from proliferation to differentiation. This study introduced a new bioassay identifying molecular markers indicating molecular transformations and delivering rapid and machine learning-based monitoring of adipogenesis that can be relevant to other differentiation processes. Thus, we introduce a novel, rapid, machine learning-based bioassay to identify molecular markers of adipogenesis. It can be relevant to identification of differentiation-related molecular processes in other cell types, and beyond the cell differentiation including progression of different cellular pathophysiologies reconstituted in vitro.
Collapse
Affiliation(s)
- Karolina Augustyniak
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Lesniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warszawa, Poland
| | - Hubert Latka
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland
| | - Maciej P Golan
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warszawa, Poland; Institute of Psychology, The Maria Grzegorzewska University, Warsaw, Poland
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warszawa, Poland; Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), Faculty of Medicine, University of Rennes, CNRS, UMR 6290, Rennes, France.
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warszawa, Poland.
| | - Kamilla Malek
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
2
|
Yavuz B, Mutlu EC, Ahmed Z, Ben-Nissan B, Stamboulis A. Applications of Stem Cell-Derived Extracellular Vesicles in Nerve Regeneration. Int J Mol Sci 2024; 25:5863. [PMID: 38892052 PMCID: PMC11172915 DOI: 10.3390/ijms25115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies. It underscores the importance of bioengineers comprehending and manipulating EV activity to optimize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Burcak Yavuz
- Vocational School of Health Services, Altinbas University, 34147 Istanbul, Turkey;
| | - Esra Cansever Mutlu
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - Besim Ben-Nissan
- Translational Biomaterials and Medicine Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| | - Artemis Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
3
|
Rodrigues JS, Chenlo M, Bravo SB, Perez-Romero S, Suarez-Fariña M, Sobrino T, Sanz-Pamplona R, González-Prieto R, Blanco Freire MN, Nogueiras R, López M, Fugazzola L, Cameselle-Teijeiro JM, Alvarez CV. dsRNAi-mediated silencing of PIAS2beta specifically kills anaplastic carcinomas by mitotic catastrophe. Nat Commun 2024; 15:3736. [PMID: 38744818 PMCID: PMC11094195 DOI: 10.1038/s41467-024-47751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.
Collapse
Affiliation(s)
- Joana S Rodrigues
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Miguel Chenlo
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Susana B Bravo
- Department of Proteomics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Sihara Perez-Romero
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Maria Suarez-Fariña
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Tomas Sobrino
- Department of NeuroAging Group - Clinical Neurosciences Research Laboratory (LINC), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rebeca Sanz-Pamplona
- University Hospital Lozano Blesa, Institute for Health Research Aragon (IISA), ARAID Foundation, Aragon Government and CIBERESP, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Román González-Prieto
- Cell Dynamics and Signaling Department, Andalusian Center for Molecular Biology and Regenerative Medicine, Universidad de Sevilla - CSIC - Universidad Pablo de Olavide-Junta de Andalucía, 41092, Sevilla, Spain
- Department of Cell Biology, Faculty of Biology, University of Sevilla, 41012, Sevilla, Spain
| | - Manuel Narciso Blanco Freire
- Department of Surgery, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ruben Nogueiras
- Molecular Metabolism, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS); Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Galego de Saúde (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela (USC), Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Chen J, Xu L, Li X, Park S. Deep learning models for cancer stem cell detection: a brief review. Front Immunol 2023; 14:1214425. [PMID: 37441078 PMCID: PMC10333688 DOI: 10.3389/fimmu.2023.1214425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are a subset of tumor cells that persist within tumors as a distinct population. They drive tumor initiation, relapse, and metastasis through self-renewal and differentiation into multiple cell types, similar to typical stem cell processes. Despite their importance, the morphological features of CSCs have been poorly understood. Recent advances in artificial intelligence (AI) technology have provided automated recognition of biological images of various stem cells, including CSCs, leading to a surge in deep learning research in this field. This mini-review explores the emerging trend of deep learning research in the field of CSCs. It introduces diverse convolutional neural network (CNN)-based deep learning models for stem cell research and discusses the application of deep learning for CSC research. Finally, it provides perspectives and limitations in the field of deep learning-based stem cell research.
Collapse
Affiliation(s)
- Jingchun Chen
- Nevada Institute for Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xindi Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
6
|
Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosens Bioelectron 2023; 225:115100. [PMID: 36709589 DOI: 10.1016/j.bios.2023.115100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.
Collapse
|
7
|
Moazeny M, Dehbashi M, Hojati Z, Esmaeili F. Investigating neural differentiation of mouse P19 embryonic stem cells in a time-dependent manner by bioinformatic, microscopic and transcriptional analyses. Mol Biol Rep 2023; 50:2183-2194. [PMID: 36565416 DOI: 10.1007/s11033-022-08166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND As an available cell line, mouse pluripotent P19 has been widely employed for neuronal differentiation studies. In this research, by applying the in vitro differentiation of this cell line into neuron-like cells through retinoic acid (RA) treatment, the roles of some genes including DNMT3B, ICAM1, IRX3, JAK2, LHX1, SOX9, TBX3 and THY1 in neural differentiation was investigated. METHODS AND RESULTS Bioinformatics, microscopic, and transcriptional studies were conducted in a time-dependent manner after RA-induced neural differentiation. According to bioinformatics studies, we determined the engagement of the metabolic and developmental super-pathways and pathways in neural cell differentiation, particularly focusing on the considered genes. According to our qRT-PCR analyses, JAK2, SOX9, TBX3, LHX1 and IRX3 genes were found to be significantly overexpressed in a time-dependent manner (p < 0.05). In addition, the significant downregulation of THY1, DNMT3B and ICAM1 genes was observed during the experiment (p < 0.05). The optical microscopic investigation showed that the specialized extensions of the neuron-like cells were revealed on day 8 after RA treatment. CONCLUSION Accordingly, the neural differentiation of P19 cell line and the role of the considered genes during the differentiation were proved. However, our results warrant further in vivo studies.
Collapse
Affiliation(s)
- Marzieh Moazeny
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran.
| | - Fariba Esmaeili
- Division of Animal Sciences, Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, 81746-73441, Isfahan, Iran
| |
Collapse
|
8
|
Zhang L, Liang L, Su T, Guo Y, Yu Q, Zhu D, Cui Z, Zhang J, Chen J. Regulation of the Keratocyte Phenotype and Cell Behavior Derived from Human Induced Pluripotent Stem Cells by Substrate Stiffness. ACS Biomater Sci Eng 2023; 9:856-868. [PMID: 36668685 DOI: 10.1021/acsbiomaterials.2c01003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Substrate stiffness has been indicated as an important factor to control stem cell fate, including proliferation and differentiation. To optimize the stiffness for the differentiation process from h-iPSCs (human induced pluripotent stem cells) into h-iCSCs (human corneal stromal cells derived from h-iPSCs) and the phenotypic maintenance of h-iCSCs in vitro, h-iPSCs were cultured on matrigel-coated tissue culture plate (TCP) (106 kPa), matrigel-coated polydimethylsiloxane (PDMS) 184 (1250 kPa), and matrigel-coated PDMS 527 (4 kPa) before they were differentiated to h-iCSCs. Immunofluorescence staining, quantitative real-time polymerase chain reaction (RT-qPCR), and western blot demonstrated that the stiffer substrate TCP promoted the h-iCSCs' differentiation from h-iPSCs. On the contrary, softer PDMS 527 was more effective to maintain the phenotype of h-iCSCs cultured in vitro. Finally, we cultured h-iCSCs on PDMS 527 until P3 and seeded them on a biomimetic collagen membrane to form the single-layer and multiple-layer bioengineered corneal stroma with high transparency properties and cell survival rate. In conclusion, the study is helpful for differentiating h-iPSCs to h-iCSCs and corneal tissue engineering by manipulating stiffness mechanobiology.
Collapse
Affiliation(s)
- Lan Zhang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Liying Liang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ting Su
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yonglong Guo
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou 510632, China
| | - Deliang Zhu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, PR China
| | - Zekai Cui
- Aier Eye Institute, Changsha 410015, Hunan Province, China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies, Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.,Aier Eye Institute, Changsha 410015, Hunan Province, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother 2023; 158:114131. [PMID: 36538861 DOI: 10.1016/j.biopha.2022.114131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.
Collapse
|
10
|
Dalmizrak A, Dalmizrak O. Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer. Front Bioeng Biotechnol 2022; 10:956563. [PMID: 36225602 PMCID: PMC9548561 DOI: 10.3389/fbioe.2022.956563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although ongoing medical research is working to find a cure for a variety of cancers, it continues to be one of the major causes of death worldwide. Chemotherapy and immunotherapy, as well as surgical intervention and radiation therapy, are critical components of cancer treatment. Most anti-cancer drugs are given systemically and distribute not just to tumor tissues but also to normal tissues, where they may cause side effects. Furthermore, because anti-cancer drugs have a low delivery efficiency, some tumors do not respond to them. As a result, tumor-targeted drug delivery is critical for improving the safety and efficacy of anti-cancer treatment. Exosomes are microscopic extracellular vesicles that cells produce to communicate with one another. MicroRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids are among the therapeutic cargos found in exosomes. Recently, several studies have focused on miRNAs as a potential therapeutic element for the treatment of cancer. Mesenchymal stem cells (MSC) have been known to have angiogenic, anti-apoptotic, anti-inflammatory and immunomodulatory effects. Exosomes derived from MSCs are gaining popularity as a non-cellular alternative to MSC-based therapy, as this method avoids unwanted lineage differentiation. Therefore more research have focused on transferring miRNAs to mesenchymal stem cells (MSC) and targeting miRNA-loaded exosomes to cancer cells. Here, we initially gave an overview of the characteristics and potentials of MSC as well as the use of MSC-derived exosomes in cancer therapy. Finally, we emphasized the utilization of MSC-derived exosomes for miRNA delivery in the treatment of cancer.
Collapse
Affiliation(s)
- Aysegul Dalmizrak
- Department of Medical Biology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Mersin, Turkey
- *Correspondence: Ozlem Dalmizrak,
| |
Collapse
|
11
|
Steens J, Klein D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front Cell Dev Biol 2022; 10:1002909. [PMID: 36176275 PMCID: PMC9514042 DOI: 10.3389/fcell.2022.1002909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells display a unique cell type within the body that has the capacity to self-renew and differentiate into specialized cell types. Compared to pluripotent stem cells, adult stem cells (ASC) such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) exhibit restricted differentiation capabilities that are limited to cell types typically found in the tissue of origin, which implicates that there must be a certain code or priming determined by the tissue of origin. HOX genes, a subset of homeobox genes encoding transcription factors that are generally repressed in undifferentiated pluripotent stem cells, emerged here as master regulators of cell identity and cell fate during embryogenesis, and in maintaining this positional identity throughout life as well as specifying various regional properties of respective tissues. Concurrently, intricate molecular circuits regulated by diverse stem cell-typical signaling pathways, balance stem cell maintenance, proliferation and differentiation. However, it still needs to be unraveled how stem cell-related signaling pathways establish and regulate ASC-specific HOX expression pattern with different temporal-spatial topography, known as the HOX code. This comprehensive review therefore summarizes the current knowledge of specific ASC-related HOX expression patterns and how these were integrated into stem cell-related signaling pathways. Understanding the mechanism of HOX gene regulation in stem cells may provide new ways to manipulate stem cell fate and function leading to improved and new approaches in the field of regenerative medicine.
Collapse
|
12
|
Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. [PMID: 35490966 PMCID: PMC9168971 DOI: 10.1016/j.arr.2022.101636] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, the process by which neurons are generated in certain areas of the adult brain, declines in an age-dependent manner and is one potential target for extending cognitive healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are increasing, these health challenges are becoming more prevalent. An age-associated loss in neural stem cell number and/or activity could cause this decline in brain function, so interventions that reverse aging in stem cells might increase the human cognitive healthspan. In this review, we describe the involvement of adult neurogenesis in neurodegenerative diseases and address the molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to interventions that increase neurogenesis and regulate known targets in aging research, such as mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to physiological levels in elderly individuals and those with neurodegeneration. We suggest that modulating neurogenesis represents a potential target for interventions that could help in the fight against neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Luka Culig
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
13
|
Lim SK, Khoo BY. An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy. Oncol Lett 2021; 22:785. [PMID: 34594426 PMCID: PMC8456491 DOI: 10.3892/ol.2021.13046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
There has been increased interest in using stem cells for regenerative medicine and cancer therapy in the past decade. Mesenchymal stem cells (MSCs) are among the most studied stem cells due to their unique characteristics, such as self-renewal and developmental potency to differentiate into numerous cell types. MSC use has fewer ethical challenges compared with other types of stem cells. Although a number of studies have reported the beneficial effects of MSC-based therapies in treating various diseases, their contribution to cancer therapy remains controversial. The behaviour of MSCs is determined by the interaction between intrinsic transcriptional genes and extrinsic environmental factors. Numerous studies continue to emerge, as there is no denying the potential of MSCs to treat a wide variety of human afflictions. Therefore, the present review article provided an overview of MSCs and their differences compared with embryonic stem cells, and described the molecular mechanisms involved in maintaining their stemness. In addition, the article examined the therapeutic application of stem cells in the field of cancer. The present article also discussed the current divergent roles of MSCs in cancer therapy and the future potential in this field.
Collapse
Affiliation(s)
- Shern Kwok Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
14
|
Ou M, Zhao M, Li C, Tang D, Xu Y, Dai W, Sui W, Zhang Y, Xiang Z, Mo C, Lin H, Dai Y. Single-cell sequencing reveals the potential oncogenic expression atlas of human iPSC-derived cardiomyocytes. Biol Open 2021; 10:10/2/bio053348. [PMID: 33589441 PMCID: PMC7903994 DOI: 10.1242/bio.053348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are important source for regenerative medicine. However, the links between pluripotency and oncogenic transformation raise safety issues. To understand the characteristics of iPSC-derived cells at single-cell resolution, we directly reprogrammed two human iPSC lines into cardiomyocytes and collected cells from four time points during cardiac differentiation for single-cell sequencing. We captured 32,365 cells and identified five molecularly distinct clusters that aligned well with our reconstructed differentiation trajectory. We discovered a set of dynamic expression events related to the upregulation of oncogenes and the decreasing expression of tumor suppressor genes during cardiac differentiation, which were similar to the gain-of-function and loss-of-function patterns during oncogenesis. In practice, we characterized the dynamic expression of the TP53 and Yamanaka factor genes (OCT4, SOX2, KLF4 and MYC), which were widely used for human iPSCs lines generation; and revealed the co-occurrence of MYC overexpression and TP53 silencing in some of human iPSC-derived TNNT2+ cardiomyocytes. In summary, our oncogenic expression atlas is valuable for human iPSCs application and the single-cell resolution highlights the clues potentially associated with the carcinogenic risk of human iPSC-derived cells. Summary: The single-cell expression atlas in the cardiomyocytes generated from human iPSCs provide potential carcinogenic information for the clinical application of human iPSC-derived cells.
Collapse
Affiliation(s)
- Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541000, China.,Clinical Medical Research Center, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Min Zhao
- GeneCology Research Centre/Seaweed Research Group, School of Science and Engineering, University of the Sunshine Coast, Queensland 4556, Australia
| | - Chunhong Li
- Guangxi Key laboratory of Metabolic Diseases Research, Central Laboratory of Guilin No. 181 Hospital, Guilin 541002, China.,College of Life Science, Guangxi Normal University, Guilin 541006, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yong Xu
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin 78712, Texas, USA
| | - Weiguo Sui
- Guangxi Key laboratory of Metabolic Diseases Research, Central Laboratory of Guilin No. 181 Hospital, Guilin 541002, China
| | - Yue Zhang
- Guangxi Key laboratory of Metabolic Diseases Research, Central Laboratory of Guilin No. 181 Hospital, Guilin 541002, China
| | - Zhen Xiang
- Guangxi Key laboratory of Metabolic Diseases Research, Central Laboratory of Guilin No. 181 Hospital, Guilin 541002, China
| | - Chune Mo
- Guangxi Key laboratory of Metabolic Diseases Research, Central Laboratory of Guilin No. 181 Hospital, Guilin 541002, China
| | - Hua Lin
- Guangxi Key laboratory of Metabolic Diseases Research, Central Laboratory of Guilin No. 181 Hospital, Guilin 541002, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China .,Guangxi Key laboratory of Metabolic Diseases Research, Central Laboratory of Guilin No. 181 Hospital, Guilin 541002, China
| |
Collapse
|
15
|
Hickman RA, Bruce JN, Otten M, Khandji AG, Flowers XE, Siegelin M, Lopes B, Faust PL, Freda PU. Gonadotroph tumours with a low SF-1 labelling index are more likely to recur and are associated with enrichment of the PI3K-AKT pathway. Neuropathol Appl Neurobiol 2020; 47:415-427. [PMID: 33128255 DOI: 10.1111/nan.12675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022]
Abstract
AIMS The gonadotroph tumour (GT) is the most frequently resected pituitary neuroendocrine tumour. Although many symptomatic GT are successfully resected, some recur. We sought to identify histological biomarkers that may predict recurrence and explore biological mechanisms that explain this difference in behaviour. METHODS SF-1 immunohistochemistry of 51 GT, a subset belonging to a longitudinal prospective cohort study (n = 25), was reviewed. Four groups were defined: Group 1-recently diagnosed GT (n = 20), Group 2-non-recurrent GT with long-term follow up (n = 11), Group 3-initial resections of GT that recur (n = 7) and Group 4-recurrent GT (n = 13). The percentage of SF-1 immunolabelling in the lowest staining fields (SF-1 labelling index (SLI)) was assessed and RNA sequencing was performed on 5 GT with SLI <80% and 5 GT with SLI >80%. RESULTS Diffuse, strong SF-1 immunolabelling was the most frequent pattern in Groups 1/2, whereas patchy SF-1 staining predominated in Groups 3/4. There was a lower median SLI in Groups 3/4 than 1/2. Overall, GT with SLI <80% recurred earlier than GT with SLI >80%. Differential expression analysis identified 89 statistically significant differentially expressed genes (FDR <0.05) including over-expression of pituitary stem cell genes (SOX2, GFRA3) and various oncogenes (e.g. BCL2, ERRB4) in patchy SF-1 GT. Gene set enrichment analysis identified significant enrichment of genes involved in the PI3K-AKT pathway. CONCLUSIONS We speculate that patchy SF-1 labelling in GT reflects intratumoural heterogeneity and are less differentiated tumours than diffusely staining GT. SF-1 immunolabelling patterns may have prognostic significance in GT, but confirmatory studies are needed for further validation.
Collapse
Affiliation(s)
- Richard A Hickman
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Marc Otten
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Alexander G Khandji
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Xena E Flowers
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Markus Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Beatriz Lopes
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Pamela U Freda
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Ramakrishna RR, Abd Hamid Z, Wan Zaki WMD, Huddin AB, Mathialagan R. Stem cell imaging through convolutional neural networks: current issues and future directions in artificial intelligence technology. PeerJ 2020; 8:e10346. [PMID: 33240655 PMCID: PMC7680049 DOI: 10.7717/peerj.10346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cells are primitive and precursor cells with the potential to reproduce into diverse mature and functional cell types in the body throughout the developmental stages of life. Their remarkable potential has led to numerous medical discoveries and breakthroughs in science. As a result, stem cell-based therapy has emerged as a new subspecialty in medicine. One promising stem cell being investigated is the induced pluripotent stem cell (iPSC), which is obtained by genetically reprogramming mature cells to convert them into embryonic-like stem cells. These iPSCs are used to study the onset of disease, drug development, and medical therapies. However, functional studies on iPSCs involve the analysis of iPSC-derived colonies through manual identification, which is time-consuming, error-prone, and training-dependent. Thus, an automated instrument for the analysis of iPSC colonies is needed. Recently, artificial intelligence (AI) has emerged as a novel technology to tackle this challenge. In particular, deep learning, a subfield of AI, offers an automated platform for analyzing iPSC colonies and other colony-forming stem cells. Deep learning rectifies data features using a convolutional neural network (CNN), a type of multi-layered neural network that can play an innovative role in image recognition. CNNs are able to distinguish cells with high accuracy based on morphologic and textural changes. Therefore, CNNs have the potential to create a future field of deep learning tasks aimed at solving various challenges in stem cell studies. This review discusses the progress and future of CNNs in stem cell imaging for therapy and research.
Collapse
Affiliation(s)
- Ramanaesh Rao Ramakrishna
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zariyantey Abd Hamid
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Mimi Diyana Wan Zaki
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ramya Mathialagan
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Harnessing cells to deliver nanoparticle drugs to treat cancer. Biotechnol Adv 2020; 42:107339. [DOI: 10.1016/j.biotechadv.2019.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/27/2022]
|
18
|
Burns in the Elderly: Potential Role of Stem Cells. Int J Mol Sci 2020; 21:ijms21134604. [PMID: 32610474 PMCID: PMC7369885 DOI: 10.3390/ijms21134604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Burns in the elderly continue to be a challenge despite advances in burn wound care management. Elderly burn patients continue to have poor outcomes compared to the younger population. This is secondary to changes in the quality of the aged skin, leading to impaired wound healing, aggravated immunologic and inflammatory responses, and age-related comorbidities. Considering the fast-growing elderly population, it is imperative to understand the anatomic, physiologic, and molecular changes of the aging skin and the mechanisms involved in their wound healing process to prevent complications associated with burn wounds. Various studies have shown that stem cell-based therapies improve the rate and quality of wound healing and skin regeneration; however, the focus is on the younger population. In this paper, we start with an anatomical, physiological and molecular dissection of the elderly skin to understand why wound healing is delayed. We then review the potential use of stem cells in elderly burn wounds, as well as the mechanisms by which mesenchymal stem cell (MSCs)-based therapies may impact burn wound healing in the elderly. MSCs improve burn wound healing by stimulating and augmenting growth factor secretion and cell proliferation, and by modulating the impaired elderly immune response. MSCs can be used to expedite healing in superficial partial thickness burns and donor site wounds, improve graft take and prevent graft breakdown.
Collapse
|
19
|
Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, Kotiya D, Barik S, Atri N, Gautam V. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res 2020; 10:1147-1169. [DOI: 10.1007/s13346-020-00766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019; 56:8489-8512. [PMID: 31264092 PMCID: PMC6842047 DOI: 10.1007/s12035-019-01653-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Rahmanian
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Anesthesiology, Critical Care, and Pain Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrdad Bayandori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02215, USA
| | - Mahdi Karimi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
21
|
Beljanski V, Grinnemo KH, Österholm C. Pleiotropic roles of autophagy in stem cell-based therapies. Cytotherapy 2019; 21:380-392. [PMID: 30876741 DOI: 10.1016/j.jcyt.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/25/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Stem cells (SCs) have been proven to possess regenerative and immunomodulatory properties and can be used to treat diseases that involve loss of cells due to tissue damage or inflammation. For this approach to succeed, SCs or their derivatives should be able to engraft in the target tissue at least for a short period of time. Unfortunately, once injected, therapeutic SCs will encounter a hostile environment, including hypoxia, lack of nutrients and stromal support, and cells may also be targeted and rejected by the immune system. Therefore, SC's stress-response mechanisms likely play a significant role in survival of injected cells and possibly contribute to their therapeutic efficacy. Autphagy, a stress-response pathway, is involved in many different cellular processes, such as survival during hypoxia and nutrient deprivation, cellular differentiation and de-differentiation, and it can also contribute to their immunovisibility by regulating antigen presentation and cytokine secretion. Autophagy machinery interacts with many proteins and signaling pathways that regulate SC properties, including PI3K/Akt, mammalian target of rapamycin (mTOR), Wnt, Hedgehog and Notch, and it is also involved in regulating intracellular reactive oxygen species (ROS) levels. In this review, we contend that autophagy is an important therapeutic target that can be used to improve the outcome of SC-based tissue repair and regeneration. Further research should reveal whether inhibition or stimulation of autophagy increases the therapeutic utility of SCs and it should also identify appropriate therapeutic regimens that can be applied in the clinic.
Collapse
Affiliation(s)
- Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| | - Karl-Henrik Grinnemo
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anesthesiology, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Application of induced pluripotent stem cell transplants: Autologous or allogeneic? Life Sci 2018; 212:145-149. [DOI: 10.1016/j.lfs.2018.09.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022]
|
23
|
Affiliation(s)
- Sang Youn Jung
- Division of Rheumatology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
24
|
Adult Stem Cells of Orofacial Origin: Current Knowledge and Limitation and Future Trend in Regenerative Medicine. Tissue Eng Regen Med 2017; 14:719-733. [PMID: 30603522 DOI: 10.1007/s13770-017-0078-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
Stem cell research is one of the most rapidly expanding field of medicine which provides significant opportunities for therapeutic and regenerative applications. Different types of stem cells have been isolated investigating their accessibility, control of the differentiation pathway and additional immunomodulatory properties. Bulk of the literature focus has been on the study and potential applications of adult stem cells (ASC) because of their low immunogenicity and reduced ethical considerations. This review paper summarizes the basic available literature on different types of ASC with special focus on stem cells from dental and orofacial origin. ASC have been isolated from different sources, however, isolation of ASC from orofacial tissues has provided a novel promising alternative. These cells offer a great potential in the future of therapeutic and regenerative medicine because of their remarkable availability at low cost while allowing minimally invasive isolation procedures. Furthermore, their immunomodulatory and anti-inflammatory potential is of particular interest. However, there are conflicting reports in the literature regarding their particular biology and full clinical potentials. Sound knowledge and higher control over proliferation and differentiation mechanisms are prerequisites for clinical applications of these cells. Therefore, further standardized basic and translational studies are required to increase the reproducibility and reduce the controversies of studies, which in turn facilitate comparison of related literature and enhance further development in the field.
Collapse
|
25
|
A New Chapter for Mesenchymal Stem Cells: Decellularized Extracellular Matrices. Stem Cell Rev Rep 2017; 13:587-597. [DOI: 10.1007/s12015-017-9757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Alvarez CV, Oroz-Gonjar F, Garcia-Lavandeira M. Future perspectives in adult stem cell turnover: Implications for endocrine physiology and disease. Mol Cell Endocrinol 2017; 445:1-6. [PMID: 27956115 DOI: 10.1016/j.mce.2016.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Clara V Alvarez
- Centre for Investigations in Molecular Medicine and Chronic Disease (CIMUS) and Institute of Investigaciones Sanitarias (IDIS), Group of Endocrine Neoplasia and Differentiation, University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| | - Fernando Oroz-Gonjar
- Centre for Investigations in Molecular Medicine and Chronic Disease (CIMUS) and Institute of Investigaciones Sanitarias (IDIS), Group of Endocrine Neoplasia and Differentiation, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Montserrat Garcia-Lavandeira
- Centre for Investigations in Molecular Medicine and Chronic Disease (CIMUS) and Institute of Investigaciones Sanitarias (IDIS), Group of Endocrine Neoplasia and Differentiation, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|
27
|
Recent Advances in Therapeutic Applications of Induced Pluripotent Stem Cells. Cell Reprogram 2017; 19:65-74. [DOI: 10.1089/cell.2016.0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Peverelli E, Giardino E, Treppiedi D, Meregalli M, Belicchi M, Vaira V, Corbetta S, Verdelli C, Verrua E, Serban AL, Locatelli M, Carrabba G, Gaudenzi G, Malchiodi E, Cassinelli L, Lania AG, Ferrero S, Bosari S, Vitale G, Torrente Y, Spada A, Mantovani G. Dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists are effective in inhibiting proliferation of progenitor/stem-like cells isolated from nonfunctioning pituitary tumors. Int J Cancer 2017; 140:1870-1880. [PMID: 28120505 DOI: 10.1002/ijc.30613] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023]
Abstract
The role of progenitor/stem cells in pituitary tumorigenesis, resistance to pharmacological treatments and tumor recurrence is still unclear. This study investigated the presence of progenitor/stem cells in non-functioning pituitary tumors (NFPTs) and tested the efficacy of dopamine receptor type 2 (DRD2) and somatostatin receptor type 2 (SSTR2) agonists to inhibit in vitro proliferation. They found that 70% of 46 NFPTs formed spheres co-expressing stem cell markers, transcription factors (DAX1, SF1, ERG1) and gonadotropins. Analysis of tumor behavior showed that spheres formation was associated with tumor invasiveness (OR = 3,96; IC: 1.05-14.88, p = 0.036). The in vitro reduction of cell proliferation by DRD2 and SSTR2 agonists (31 ± 17% and 35 ± 13% inhibition, respectively, p < 0.01 vs. basal) occurring in about a half of NFPTs cells was conserved in the corresponding spheres. Accordingly, these drugs increased cyclin-dependent kinase inhibitor p27 and decreased cyclin D3 expression in spheres. In conclusion, they provided further evidence for the existence of cells with a progenitor/stem cells-like phenotype in the majority of NFPTs, particularly in those with invasive behavior, and demonstrated that the antiproliferative effects of dopaminergic and somatostatinergic drugs were maintained in progenitor/stem-like cells.
Collapse
Affiliation(s)
- E Peverelli
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Ystem Srl, Milan, Italy
| | - M Belicchi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Ystem Srl, Milan, Italy
| | - V Vaira
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milan, Italy
| | - S Corbetta
- Endocrinology Service, Department of Biomedical Science for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - C Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - E Verrua
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A L Serban
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Locatelli
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - G Carrabba
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - G Gaudenzi
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - E Malchiodi
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - L Cassinelli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Ystem Srl, Milan, Italy
| | - A G Lania
- Endocrine Unit, IRCCS Istituto Clinico Humanitas, Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - S Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan Medical School
| | - S Bosari
- Division of Pathology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - G Vitale
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy.,Endocrine and Metabolic Research Laboratory, Istituto Auxologico Italiano-IRCCS, Milan, Italy
| | - Y Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Ystem Srl, Milan, Italy
| | - A Spada
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - G Mantovani
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
29
|
Burrello J, Monticone S, Gai C, Gomez Y, Kholia S, Camussi G. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation. Front Cell Dev Biol 2016; 4:83. [PMID: 27597941 PMCID: PMC4992732 DOI: 10.3389/fcell.2016.00083] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system.
Collapse
Affiliation(s)
- Jacopo Burrello
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Silvia Monticone
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Chiara Gai
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Yonathan Gomez
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Sharad Kholia
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| | - Giovanni Camussi
- Stem Cell Laboratory, Department of Medical Sciences, University of Torino Torino, Italy
| |
Collapse
|
30
|
Okere B, Lucaccioni L, Dominici M, Iughetti L. Cell therapies for pancreatic beta-cell replenishment. Ital J Pediatr 2016; 42:62. [PMID: 27400873 PMCID: PMC4940879 DOI: 10.1186/s13052-016-0273-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022] Open
Abstract
The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes.
Collapse
Affiliation(s)
- Bernard Okere
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy
| | - Laura Lucaccioni
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy.,Child Health, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy
| | - Lorenzo Iughetti
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy.
| |
Collapse
|
31
|
Osei-Sarfo K, Gudas LJ. Retinoic acid suppresses the canonical Wnt signaling pathway in embryonic stem cells and activates the noncanonical Wnt signaling pathway. Stem Cells 2015; 32:2061-71. [PMID: 24648413 DOI: 10.1002/stem.1706] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/20/2014] [Indexed: 12/27/2022]
Abstract
Embryonic stem cells (ESCs) have both the ability to self-renew and to differentiate into various cell lineages. Retinoic acid (RA), a metabolite of Vitamin A, has a critical function in initiating lineage differentiation of ESCs through binding to the retinoic acid receptors. Additionally, the Wnt signaling pathway plays a role in pluripotency and differentiation, depending on the activation status of the canonical and noncanonical pathways. The activation of the canonical Wnt signaling pathway, which requires the nuclear accumulation of β-catenin and its interaction with Tcf1/Lef at Wnt response elements, is involved in ESC stemness maintenance. The noncanonical Wnt signaling pathway, through actions of Tcf3, can antagonize the canonical pathway. We show that RA activates the noncanonical Wnt signaling pathway, while concomitantly inhibiting the canonical pathway. RA increases the expression of ligands and receptors of the noncanonical Wnt pathway (Wnt 5a, 7a, Fzd2 and Fzd6), downstream signaling, and Tcf3 expression. RA reduces the phosphorylated β-catenin levels by fourfold, although total β-catenin levels do not change. We show that RA signaling increases the dissociation of Tcf1 and the association of Tcf3 at promoters of genes that regulate stemness (e.g., NR5A2, Lrh-1) or differentiation (e.g. Cyr61, Zic5). Knockdown of Tcf3 increases Lrh-1 transcript levels in mESCs and prevents the RA-associated, fourfold increase in Zic5, indicating that RA requires Tcf3 to effect changes in Zic5 levels. We demonstrate a novel role for RA in altering the activation of these two Wnt signaling pathways and show that Tcf3 mediates some actions of RA during differentiation.
Collapse
Affiliation(s)
- Kwame Osei-Sarfo
- Department of Pharmacology, Weill Cornell Medical College, New York, New York, USA; Weill Cornell Meyer Cancer Center, New York, New York, USA
| | | |
Collapse
|
32
|
Yu T, Qing Q, Deng N, Min XH, Zhao LN, Li JY, Xia ZS, Chen QK. CXCR4 positive cell-derived Pdx1-high/Shh-low cells originated from embryonic stem cells improve the repair of pancreatic injury in mice. Cell Biol Int 2015; 39:995-1006. [PMID: 25820869 DOI: 10.1002/cbin.10470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 01/05/2023]
Abstract
Treatments for pancreatic injuries have been significantly improved recently, but full recovery of pancreatic function remains difficult. Embryonic stem cells have great potentialities for self-renewal and multiple differentiations. In this study, we explored an approach to induce the differentiation of pancreatic progenitor cells from embryonic stem cells in vitro. Male mouse embryonic stem cells were cultured by the hanging-drop method to form embryoid bodies. The definitive endoderm marked by CXCR4 in embryoid bodies was sorted by magnetic activated cell sorting and subsequently administrated with b-FGF, exendin-4, and cyclopamine to induce the differentiation of putative pancreatic progenitor cells, which was monitored by Pdx1, and Shh expressions. The putative pancreatic progenitor cells were transplanted into female BALB/c mice with pancreatitis induced by L-Arginine. Male donor cells were located by detecting sex-determining region of Y-chromosome DNA. Definitive endoderm cells (CXCR4(+) cells) were sorted from 5-day embryoid bodies. After 3-day administration with b-FGF, exendin-4, and cyclopamine, Pdx1-high/Shh-low cells were differentiated from CXCR4(+) cells. These cells developed into more amylase-secreted cells in vitro and could specifically reside in the damaged pancreas acinar area in mice with acute pancreatitis to enhance the regeneration. The putative pancreatic progenitor cells (Pdx1-high/Shh-low cells) derived from mouse embryonic stem cells through the administration of b-FGF, exendin-4, and cyclopamine on the CXCR4(+) cells in vitro could improve the regeneration of injured pancreatic acini in vivo.
Collapse
Affiliation(s)
- Tao Yu
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qing Qing
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Na Deng
- Department of Gastroenterology, Yuebei People's Hospital, Shaoguan, Guangdong, People's Republic of China
| | - Xiao-Hui Min
- Department of Infectious Disease, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Li-Na Zhao
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jie-Yao Li
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhong-Sheng Xia
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qi-Kui Chen
- Departmentof Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
33
|
Prigione A, Ruiz-Pérez MV, Bukowiecki R, Adjaye J. Metabolic restructuring and cell fate conversion. Cell Mol Life Sci 2015; 72:1759-77. [PMID: 25586562 PMCID: PMC11113500 DOI: 10.1007/s00018-015-1834-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 02/07/2023]
Abstract
Accumulating evidence implicates mitochondrial and metabolic pathways in the establishment of pluripotency, as well as in the control of proliferation and differentiation programs. From classic studies in mouse embryos to the latest findings in adult stem cells, human embryonic and induced pluripotent stem cells, an increasing number of evidence suggests that mitochondrial and metabolic-related processes might intertwine with signaling networks and epigenetic rewiring, thereby modulating cell fate decisions. This review summarizes the progresses in this exciting field of research. Dissecting these complex mitochondrial and metabolic mechanisms may lead to a more comprehensive understanding of stemness biology and to potential improvements in stem cell applications for biomedicine, cell therapy, and disease modeling.
Collapse
Affiliation(s)
- Alessandro Prigione
- Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Str. 10, 13125, Berlin, Germany,
| | | | | | | |
Collapse
|
34
|
Zhou Q, Li L, Li J. Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications. Liver Int 2015; 35:687-94. [PMID: 24797694 DOI: 10.1111/liv.12581] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/27/2014] [Indexed: 02/13/2023]
Abstract
End-stage hepatic failure is a potentially life-threatening condition for which orthotopic liver transplantation (OLT) is the only effective treatment. However, a shortage of available donor organs for transplantation each year results in the death of many patients waiting for liver transplantation. Cell-based therapies and hepatic tissue engineering have been considered as alternatives to liver transplantation. However, primary hepatocyte transplantation has rarely produced therapeutic effects because mature hepatocytes cannot be effectively expanded in vitro, and the availability of hepatocytes is often limited by shortages of donor organs. Decellularization is an attractive technique for scaffold preparation in stem cell-based liver engineering, as the resulting material can potentially retain the liver architecture, native vessel network and specific extracellular matrix (ECM). Thus, the reconstruction of functional and practical liver tissue using decellularized scaffolds becomes possible. This review focuses on the current understanding of liver tissue engineering, whole-organ liver decellularization techniques, cell sources for recellularization and potential clinical applications and challenges.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Rd., Hangzhou, 310003, China
| | | | | |
Collapse
|
35
|
Kauffman AL, Ekert JE, Gyurdieva AV, Rycyzyn MA, Hornby PJ. Directed differentiation protocols for successful human intestinal organoids derived from multiple induced pluripotent stem cell lines. ACTA ACUST UNITED AC 2015. [DOI: 10.7243/2054-717x-2-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Garcia-Lavandeira M, Diaz-Rodriguez E, Bahar D, Garcia-Rendueles AR, Rodrigues JS, Dieguez C, Alvarez CV. Pituitary Cell Turnover: From Adult Stem Cell Recruitment through Differentiation to Death. Neuroendocrinology 2015; 101:175-92. [PMID: 25662152 DOI: 10.1159/000375502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022]
Abstract
The recent demonstration using genetic tracing that in the adult pituitary stem cells are normally recruited from the niche in the marginal zone and differentiate into secretory cells in the adenopituitary has elegantly confirmed the proposal made when the pituitary stem cell niche was first discovered 5 years ago. Some of the early controversies have also been resolved. However, many questions remain, such as which are the markers that make a pituitary stem cell truly unique and the exact mechanisms that trigger recruitment from the niche. Little is known about the processes of commitment and differentiation once a stem cell has left the niche. Moreover, the acceptance that pituitary cells are renewed by stem cells implies the existence of regulated mechanisms of cell death in differentiated cells which must themselves be explained. The demonstration of an apoptotic pathway mediated by RET/caspase 3/Pit-1/Arf/p53 in normal somatotrophs is therefore an important step towards understanding how pituitary cell number is regulated. Further work will elucidate how the rates of the three processes of cell renewal, differentiation and apoptosis are balanced in tissue homeostasis after birth, but altered in pituitary hyperplasia in response to physiological stimuli such as puberty and lactation. Thus, we can aim to understand the mechanisms underlying human disease due to insufficient (hypopituitarism) or excess (pituitary tumor) cell numbers.
Collapse
Affiliation(s)
- Montserrat Garcia-Lavandeira
- Neoplasia and Endocrine Differentiation, Centre for Investigations in Medicine (CIMUS), Instituto de Investigaciones Sanitarias, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Ovchinnikov DA, Titmarsh DM, Fortuna PR, Hidalgo A, Alharbi S, Whitworth DJ, Cooper-White JJ, Wolvetang EJ. Transgenic human ES and iPS reporter cell lines for identification and selection of pluripotent stem cells in vitro. Stem Cell Res 2014; 13:251-61. [DOI: 10.1016/j.scr.2014.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/22/2014] [Accepted: 05/31/2014] [Indexed: 01/08/2023] Open
|
38
|
Faravelli I, Bucchia M, Rinchetti P, Nizzardo M, Simone C, Frattini E, Corti S. Motor neuron derivation from human embryonic and induced pluripotent stem cells: experimental approaches and clinical perspectives. Stem Cell Res Ther 2014; 5:87. [PMID: 25157556 PMCID: PMC4100331 DOI: 10.1186/scrt476] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Motor neurons are cells located in specific areas of the central nervous system, such as brain cortex (upper motor neurons), brain stem, and spinal cord (lower motor neurons), which maintain control over voluntary actions. Motor neurons are affected primarily by a wide spectrum of neurological disorders, generally indicated as motor neuron diseases (MNDs): these disorders share symptoms related to muscular atrophy and paralysis leading to death. No effective treatments are currently available. Stem cell-derived motor neurons represent a promising research tool in disease modeling, drug screening, and development of therapeutic approaches for MNDs and spinal cord injuries. Directed differentiation of human pluripotent stem cells - human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) - toward specific lineages is the first crucial step in order to extensively employ these cells in early human development investigation and potential clinical applications. Induced pluripotent stem cells (iPSCs) can be generated from patients' own somatic cells (for example, fibroblasts) by reprogramming them with specific factors. They can be considered embryonic stem cell-like cells, which express stem cell markers and have the ability to give rise to all three germ layers, bypassing the ethical concerns. Thus, hiPSCs constitute an appealing alternative source of motor neurons. These motor neurons might be a great research tool, creating a model for investigating the cellular and molecular interactions underlying early human brain development and pathologies during neurodegeneration. Patient-specific iPSCs may also provide the premises for autologous cell replacement therapies without related risks of immune rejection. Here, we review the most recent reported methods by which hESCs or iPSCs can be differentiated toward functional motor neurons with an overview on the potential clinical applications.
Collapse
|
39
|
Young JS, Morshed RA, Kim JW, Balyasnikova IV, Ahmed AU, Lesniak MS. Advances in stem cells, induced pluripotent stem cells, and engineered cells: delivery vehicles for anti-glioma therapy. Expert Opin Drug Deliv 2014; 11:1733-46. [PMID: 25005767 DOI: 10.1517/17425247.2014.937420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION A limitation of small molecule inhibitors, nanoparticles (NPs) and therapeutic adenoviruses is their incomplete distribution within the entirety of solid tumors such as malignant gliomas. Currently, cell-based carriers are making their way into the clinical setting as they offer the potential to selectively deliver many types of therapies to cancer cells. AREAS COVERED Here, we review the properties of stem cells, induced pluripotent stem cells and engineered cells that possess the tumor-tropic behavior necessary to serve as cell carriers. We also report on the different types of therapeutic agents that have been delivered to tumors by these cell carriers, including: i) therapeutic genes; ii) oncolytic viruses; iii) NPs; and iv) antibodies. The current challenges and future promises of cell-based drug delivery are also discussed. EXPERT OPINION While the emergence of stem cell-mediated therapy has resulted in promising preclinical results and a human clinical trial utilizing this approach is currently underway, there is still a need to optimize these delivery platforms. By improving the loading of therapeutic agents into stem cells and enhancing their migratory ability and persistence, significant improvements in targeted cancer therapy may be achieved.
Collapse
Affiliation(s)
- Jacob S Young
- The University of Chicago Pritzker School of Medicine , 5841 South Maryland Ave., M/C 3026, Chicago, IL 60637 , USA
| | | | | | | | | | | |
Collapse
|
40
|
Induced pluripotent stem (iPS) cells: A new source for cell-based therapeutics? J Control Release 2014; 185:37-44. [DOI: 10.1016/j.jconrel.2014.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
41
|
Bradamante S, Barenghi L, Maier JAM. Stem Cells toward the Future: The Space Challenge. Life (Basel) 2014; 4:267-80. [PMID: 25370198 PMCID: PMC4187162 DOI: 10.3390/life4020267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Astronauts experience weightlessness-induced bone loss due to an unbalanced process of bone remodeling that involves bone mesenchymal stem cells (bMSCs), as well as osteoblasts, osteocytes, and osteoclasts. The effects of microgravity on osteo-cells have been extensively studied, but it is only recently that consideration has been given to the role of bone MSCs. These live in adult bone marrow niches, are characterized by their self-renewal and multipotent differentiation capacities, and the published data indicate that they may lead to interesting returns in the biomedical/bioengineering fields. This review describes the published findings concerning bMSCs exposed to simulated/real microgravity, mainly concentrating on how mechanosignaling, mechanotransduction and oxygen influence their proliferation, senescence and differentiation. A comprehensive understanding of bMSC behavior in microgravity and their role in preventing bone loss will be essential for entering the future age of long-lasting, manned space exploration.
Collapse
Affiliation(s)
- Silvia Bradamante
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Livia Barenghi
- CNR-ISTM, Institute of Molecular Science and Technologies, Via Golgi 19, 20133 Milano, Italy.
| | - Jeanette A M Maier
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Via GB Grassi 74, 20157 Milano, Italy.
| |
Collapse
|
42
|
Herreros-Villanueva M, Bujanda L, Billadeau DD, Zhang JS. Embryonic stem cell factors and pancreatic cancer. World J Gastroenterol 2014; 20:2247-2254. [PMID: 24605024 PMCID: PMC3942830 DOI: 10.3748/wjg.v20.i9.2247] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/15/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy.
Collapse
|
43
|
Achyut BR, Varma NRS, Arbab AS. Application of Umbilical Cord Blood Derived Stem Cells in Diseases of the Nervous System. ACTA ACUST UNITED AC 2014; 4. [PMID: 25599002 DOI: 10.4172/2157-7633.1000202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Umbilical cord blood (UCB) derived multipotent stem cells are capable of giving rise hematopoietic, epithelial, endothelial and neural progenitor cells. Thus suggested to significantly improve graft-versus-host disease and represent the distinctive therapeutic option for several malignant and non-malignant diseases. Recent advances in strategies to isolate, expand and shorten the timing of UCB stem cells engraftment have tremendously improved the efficacy of transplantations. Nervous system has limited regenerative potential in disease conditions such as cancer, neurodegeneration, stroke, and several neural injuries. This review focuses on application of UCB derived stem/progenitor cells in aforementioned pathological conditions. We have discussed the possible attempts to make use of UCB therapies to generate neural cells and tissues with developmental and functional similarities to neuronal cells. In addition, emerging applications of UCB derived AC133+ (CD133+) endothelial progenitor cells (EPCs) as imaging probe, regenerative agent, and gene delivery vehicle are mentioned that will further improve the understanding of use of UCB cells in therapeutic modalities. However, safe and effective protocols for cell transplantations are still required for therapeutic efficacy.
Collapse
Affiliation(s)
- Bhagelu R Achyut
- Tumor Angiogenesis Lab, Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Ali S Arbab
- Tumor Angiogenesis Lab, Cancer Center, Georgia Regents University, Augusta, GA 30912, USA
| |
Collapse
|
44
|
Mason PJ, Perdigones N, Bessler M. Using induced human pluripotent stem cells to study Diamond-Blackfan anemia: an outlook on the clinical possibilities. Expert Rev Hematol 2013; 6:627-9. [PMID: 24219546 DOI: 10.1586/17474086.2013.859521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philip J Mason
- Department of Pediatrics, Comprehensive Bone Marrow Failure Center, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
45
|
Mazzoccoli G, Tevy MF, Borghesan M, Delle Vergini MR, Vinciguerra M. Caloric restriction and aging stem cells: the stick and the carrot? Exp Gerontol 2013; 50:137-48. [PMID: 24211426 DOI: 10.1016/j.exger.2013.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/28/2013] [Indexed: 12/24/2022]
Abstract
Adult tissue stem cells have the ability to adjust to environmental changes and affect also the proliferation of neighboring cells, with important consequences on tissue maintenance and regeneration. Stem cell renewal and proliferation is strongly regulated during aging of the organism. Caloric restriction is the most powerful anti-aging strategy conserved throughout evolution in the animal kingdom. Recent studies relate the properties of caloric restriction to its ability in reprogramming stem-like cell states and in prolonging the capacity of stem cells to self-renew, proliferate, differentiate, and replace cells in several adult tissues. However this general paradigm presents with exceptions. The scope of this review is to highlight how caloric restriction impacts on diverse stem cell compartments and, by doing so, might differentially delay aging in the tissues of lower and higher organisms.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy.
| | - Maria Florencia Tevy
- Genomics and Bioinformatics Centre, Major University of Santiago, Santiago, Chile
| | - Michela Borghesan
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom
| | - Maria Rita Delle Vergini
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy
| | - Manlio Vinciguerra
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, FG, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; University College London, Institute for Liver and Digestive Health, Division of Medicine, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
46
|
Lakshmanan R, Krishnan UM, Sethuraman S. Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration. Macromol Biosci 2013; 13:1119-34. [PMID: 23982911 DOI: 10.1002/mabi.201300223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/05/2013] [Indexed: 12/13/2022]
Abstract
The constantly expanding repository of novel polymers and stem cells has opened up new vistas in the field of cardiac tissue engineering. Successful regeneration of the complex cardiac tissue mainly centres on the appropriate scaffold material with topographical features that mimic the native environment. The integration of stem cells on these scaffolds is expected to enhance the regeneration potential. This review elaborates on the interplay of these vital factors in achieving the functional cardiac tissue. The recent advances in polymers, nanocomposites, and stem cells from different sources are highlighted. Special emphasis is laid on the clinical trials involving stem cells and the state-of-the-art materials to obtain a balanced perspective on the translational potential of this strategy.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | | | | |
Collapse
|
47
|
Ulrich D, Muralitharan R, Gargett CE. Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther 2013; 13:1387-400. [PMID: 23930703 DOI: 10.1517/14712598.2013.826187] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Bone marrow is a widely used source of mesenchymal stem cells (MSCs) for cell-based therapies. Recently, endometrium - the highly regenerative lining of the uterus - and menstrual blood have been identified as more accessible sources of MSCs. These uterine MSCs include two related cell types: endometrial MSCs (eMSCs) and endometrial regenerative cells (ERCs). AREAS COVERED The properties of eMSCs and ERCs and their application in preclinical in vitro and in vivo studies for pelvic organ prolapse, heart disorders and ischemic conditions are reviewed. Details of the first clinical Phase I and Phase II studies will be provided. EXPERT OPINION The authors report that eMSCs and ERCs are a readily available source of adult stem cells. Both eMSCs and ERCs fulfill the key MSC criteria and have been successfully used in preclinical models to treat various diseases. Data on clinical trials are sparse. More research is needed to determine the mechanism of action of eMSCs and ERCs in these regenerative medicine models and to determine the long-term benefits and any adverse effects after their administration.
Collapse
Affiliation(s)
- Daniela Ulrich
- Monash University, Monash Institute of Medical Research, The Ritchie Centre , 27-31 Wright Street, PO Box 5418, Clayton, Melbourne, 3168 , Australia
| | | | | |
Collapse
|
48
|
Wei LN. Non-canonical activity of retinoic acid in epigenetic control of embryonic stem cell. Transcription 2013; 4:158-61. [PMID: 23863198 DOI: 10.4161/trns.25395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Non-canonical cytoplasmic activities and signal transduction of retinoic acid (RA) expand RA's pleiotropic effects in coordinating the epigenome in embryonic stem cell (ESC). Examples include RA-bound cellular retinoic acid binding protein I, which activates ERK2. By engaging both cytosolic and nuclear mediators, RA can efficiently augment ESC's epigenome.
Collapse
Affiliation(s)
- Li-Na Wei
- Department of Pharmacology University of Minnesota Medical School; Minneapolis, MN USA
| |
Collapse
|
49
|
Conese M, Carbone A, Castellani S, Di Gioia S. Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 2013; 197:445-73. [PMID: 23652321 DOI: 10.1159/000348831] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Stem cell-based treatment may represent a hope for the treatment of acute lung injury and pulmonary fibrosis, and other chronic lung diseases, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD). It is well established in preclinical models that bone marrow-derived stem and progenitor cells exert beneficial effects on inflammation, immune responses and repairing of damage in virtually all lung-borne diseases. While it was initially thought that the positive outcome was due to a direct engraftment of these cells into the lung as endothelial and epithelial cells, paracrine factors are now considered the main mechanism through which stem and progenitor cells exert their therapeutic effect. This knowledge has led to the clinical use of marrow cells in pulmonary hypertension with endothelial progenitor cells (EPCs) and in COPD with mesenchymal stromal (stem) cells (MSCs). Bone marrow-derived stem cells, including hematopoietic stem/progenitor cells, MSCs, EPCs and fibrocytes, encompass a wide array of cell subsets with different capacities of engraftment and injured tissue-regenerating potential. The characterization/isolation of the stem cell subpopulations represents a major challenge to improve the efficacy of transplantation protocols used in regenerative medicine and applied to lung disorders.
Collapse
Affiliation(s)
- Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | |
Collapse
|
50
|
Yan X, Yang Y, Liu W, Geng W, Du H, Cui J, Xie X, Hua J, Yu S, Li L, Chen F. Differentiation of neuron-like cells from mouse parthenogenetic embryonic stem cells. Neural Regen Res 2013; 8:293-300. [PMID: 25206669 PMCID: PMC4107530 DOI: 10.3969/j.issn.1673-5374.2013.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/10/2012] [Indexed: 11/23/2022] Open
Abstract
Parthenogenetic embryonic stem cells have pluripotent differentiation potentials, akin to fertilized embryo-derived embryonic stem cells. The aim of this study was to compare the neuronal differentiation potential of parthenogenetic and fertilized embryo-derived embryonic stem cells. Before differentiation, karyotype analysis was performed, with normal karyotypes detected in both parthenogenetic and fertilized embryo-derived embryonic stem cells. Sex chromosomes were identified as XX. Immunocytochemistry and quantitative real-time PCR detected high expression of the pluripotent gene, Oct4, at both the mRNA and protein levels, indicating pluripotent differentiation potential of the two embryonic stem cell subtypes. Embryonic stem cells were induced with retinoic acid to form embryoid bodies, and then dispersed into single cells. Single cells were differentiated in N2 differentiation medium for 9 days. Immunocytochemistry showed parthenogenetic and fertilized embryo-derived embryonic stem cells both express the neuronal cell markers nestin, βIII-tubulin and myelin basic protein. Quantitative real-time PCR found expression of neurogenesis related genes (Sox-1, Nestin, GABA, Pax6, Zic5 and Pitx1) in both types of embryonic stem cells, and Oct4 expression was significantly decreased. Nestin and Pax6 expression in parthenogenetic embryonic stem cells was significantly higher than that in fertilized embryo-derived embryonic stem cells. Thus, our experimental findings indicate that parthenogenetic embryonic stem cells have stronger neuronal differentiation potential than fertilized embryo-derived embryonic stem cells.
Collapse
Affiliation(s)
- Xingrong Yan
- College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Yanhong Yang
- Department of Obstetrics & Gynecology, Tangdu Hospital, the Fourth Military Medical University of Chinese PLA, Xi’an 710038, Shaanxi Province, China
| | - Wei Liu
- College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Wenxin Geng
- College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Huichong Du
- College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Jihong Cui
- College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Xin Xie
- College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625001, Sichuan Province, China
| | - Liwen Li
- College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi’an 710069, Shaanxi Province, China
| |
Collapse
|