1
|
Fairey A, Paproski RJ, Pink D, Sosnowski DL, Vasquez C, Donnelly B, Hyndman E, Aprikian A, Kinnaird A, Beatty PH, Lewis JD. Clinical analysis of EV-Fingerprint to predict grade group 3 and above prostate cancer and avoid prostate biopsy. Cancer Med 2023; 12:15797-15808. [PMID: 37329212 PMCID: PMC10469644 DOI: 10.1002/cam4.6216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND There is an unmet clinical need for minimally invasive diagnostic tests to improve the detection of grade group (GG) ≥3 prostate cancer relative to prostate antigen-specific risk calculators. We determined the accuracy of the blood-based extracellular vesicle (EV) biomarker assay (EV Fingerprint test) at the point of a prostate biopsy decision to predict GG ≥3 from GG ≤2 and avoid unnecessary biopsies. METHODS This study analyzed 415 men referred to urology clinics and scheduled for a prostate biopsy, were recruited to the APCaRI 01 prospective cohort study. The EV machine learning analysis platform was used to generate predictive EV models from microflow data. Logistic regression was then used to analyze the combined EV models and patient clinical data and generate the patients' risk score for GG ≥3 prostate cancer. RESULTS The EV-Fingerprint test was evaluated using the area under the curve (AUC) in discrimination of GG ≥3 from GG ≤2 and benign disease on initial biopsy. EV-Fingerprint identified GG ≥3 cancer patients with high accuracy (0.81 AUC) at 95% sensitivity and 97% negative predictive value. Using a 7.85% probability cutoff, 95% of men with GG ≥3 would have been recommended a biopsy while avoiding 144 unnecessary biopsies (35%) and missing four GG ≥3 cancers (5%). Conversely, a 5% cutoff would have avoided 31 unnecessary biopsies (7%), missing no GG ≥3 cancers (0%). CONCLUSIONS EV-Fingerprint accurately predicted GG ≥3 prostate cancer and would have significantly reduced unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Adrian Fairey
- Kipnes Urology Centre, Kaye Edmonton ClinicEdmontonAlbertaCanada
- Nanostics Inc.EdmontonAlbertaCanada
| | - Robert J. Paproski
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - Desmond Pink
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - Deborah L. Sosnowski
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - Catalina Vasquez
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - Bryan Donnelly
- Prostate Cancer CentreUniversity of CalgaryCalgaryAlbertaCanada
| | - Eric Hyndman
- Nanostics Inc.EdmontonAlbertaCanada
- Prostate Cancer CentreUniversity of CalgaryCalgaryAlbertaCanada
| | - Armen Aprikian
- Nanostics Inc.EdmontonAlbertaCanada
- Department of SurgeryMcGill University, Montreal General HospitalMontrealQuebecCanada
| | - Adam Kinnaird
- Kipnes Urology Centre, Kaye Edmonton ClinicEdmontonAlbertaCanada
| | - Perrin H. Beatty
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - John D. Lewis
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Chen Y, Han X, Wang L, Wen Q, Li L, Sun L, Chen Q. Multiple roles of ghrelin in breast cancer. Int J Biol Markers 2022; 37:241-248. [PMID: 35763463 DOI: 10.1177/03936155221110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breast cancer is one of the most threatening malignant tumors in women worldwide; hence, investigators are continually performing novel research in this field. However, an accurate prediction of its prognosis and postoperative recovery remains difficult. The severity of breast cancer is patient-specific and affected by several health factors; thus, unknown mechanisms may affect its progression. This article analyzes existing literature on breast cancer, ranging from the discovery of ghrelin to its present use, and aims to provide a reference for future research into breast cancer mechanisms and treatment-plan improvement. Various parts of ghrelin have been associated with breast cancer by direct or indirect evidence. The ghrelin system may encompass the direction of expanding breast cancer treatment methods and prognostic indicators. Therefore, we compiled almost all studies on the relationship between the ghrelin system and breast cancer, including unacylated ghrelin, its GHRL gene, ghrelin O-acyltransferase, the receptor growth hormone secretagogue receptor, and several splice variants of ghrelin to lay the foundation for future research.
Collapse
Affiliation(s)
- Yiding Chen
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuke Han
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Wang
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Wen
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liufu Li
- Pengshan District People's Hospital of Meishan City, Meishan, China
| | - Lisha Sun
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Jiménez-Vacas JM, Montero-Hidalgo AJ, Gómez-Gómez E, Fuentes-Fayos AC, Ruiz-Pino F, Guler I, Camargo A, Anglada FJ, Carrasco-Valiente J, Tena-Sempere M, Sarmento-Cabral A, Castaño JP, Gahete MD, Luque RM. In1-Ghrelin Splicing Variant as a Key Element in the Pathophysiological Association Between Obesity and Prostate Cancer. J Clin Endocrinol Metab 2021; 106:e4956-e4968. [PMID: 34255835 DOI: 10.1210/clinem/dgab516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CONTEXT Recent studies emphasize the importance of considering the metabolic status to develop personalized medicine approaches. This is especially relevant in prostate cancer (PCa), wherein the diagnostic capability of prostate-specific antigen (PSA) dramatically drops when considering patients with PSA levels ranging from 3 to 10 ng/mL, the so-called grey zone. Hence, additional noninvasive diagnostic and/or prognostic PCa biomarkers are urgently needed, especially in the metabolic-status context. OBJECTIVE To assess the potential relation of urine In1-ghrelin (a ghrelin-splicing variant) levels with metabolic-related/pathological conditions (eg, obesity, diabetes, body mass index, insulin and glucose levels) and to define its potential clinical value in PCa (diagnostic/prognostic capacity) and relationship with PCa risk in patients with PSA in the grey zone. METHODS Urine In1-ghrelin levels were measured by radioimmunoassay in a clinically, metabolically, pathologically well-characterized cohort of patients without (n = 397) and with (n = 213) PCa with PSA in the grey zone. RESULTS Key obesity-related factors associated with PCa risk (BMI, diabetes, glucose and insulin levels) were strongly correlated to In1-ghrelin levels. Importantly, In1-ghrelin levels were higher in PCa patients compared to control patients with suspect of PCa but negative biopsy). Moreover, high In1-ghrelin levels were associated with increased PCa risk and linked to PCa aggressiveness (eg, tumor stage, lymphovascular invasion). In1-ghrelin levels added significant diagnostic value to a clinical model consisting of age, suspicious digital rectal exam, previous biopsy, and PSA levels. Furthermore, a multivariate model consisting of clinical and metabolic variables, including In1-ghrelin levels, showed high specificity and sensitivity to diagnose PCa (area under the receiver operating characteristic curve = 0.740). CONCLUSIONS Urine In1-ghrelin levels are associated with obesity-related factors and PCa risk and aggressiveness and could represent a novel and valuable noninvasive PCa biomarker, as well as a potential link in the pathophysiological relationship between obesity and PCa.
Collapse
Affiliation(s)
- Juan M Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Francisco Ruiz-Pino
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Ipek Guler
- Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), Katholiek Universiteit (KU) Leuven, University of Leuven, Leuven, Belgium
| | - Antonio Camargo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, Spain
| | - Francisco J Anglada
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Manuel Tena-Sempere
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Reina Sofia University Hospital (HURS), Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, Spain
| |
Collapse
|
5
|
Keegan NP, Fletcher S. A spotter's guide to SNPtic exons: The common splice variants underlying some SNP-phenotype correlations. Mol Genet Genomic Med 2021; 10:e1840. [PMID: 34708937 PMCID: PMC8801146 DOI: 10.1002/mgg3.1840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cryptic exons are typically characterised as deleterious splicing aberrations caused by deep intronic mutations. However, low-level splicing of cryptic exons is sometimes observed in the absence of any pathogenic mutation. Five recent reports have described how low-level splicing of cryptic exons can be modulated by common single-nucleotide polymorphisms (SNPs), resulting in phenotypic differences amongst different genotypes. METHODS We sought to investigate whether additional 'SNPtic' exons may exist, and whether these could provide an explanatory mechanism for some of the genotype-phenotype correlations revealed by genome-wide association studies. We thoroughly searched the literature for reported cryptic exons, cross-referenced their genomic coordinates against the dbSNP database of common SNPs, then screened out SNPs with no reported phenotype associations. RESULTS This method discovered five probable SNPtic exons in the genes APC, FGB, GHRL, MYPBC3 and OTC. For four of these five exons, we observed that the phenotype associated with the SNP was compatible with the predicted splicing effect of the nucleotide change, whilst the fifth (in GHRL) likely had a more complex splice-switching effect. CONCLUSION Application of our search methods could augment the knowledge value of future cryptic exon reports and aid in generating better hypotheses for genome-wide association studies.
Collapse
Affiliation(s)
- Niall Patrick Keegan
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,Perron Institute, Perth, Western Australia, Australia
| | - Sue Fletcher
- Murdoch University, Murdoch, Western Australia, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Perth, Western Australia, Australia.,University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Maugham ML, Seim I, Thomas PB, Crisp GJ, Shah ET, Herington AC, Gregory LS, Nelson CC, Jeffery PL, Chopin LK. Limited short-term effects on human prostate cancer xenograft growth and epidermal growth factor receptor gene expression by the ghrelin receptor antagonist [D-Lys 3]-GHRP-6. Endocrine 2019; 64:393-405. [PMID: 30390209 DOI: 10.1007/s12020-018-1796-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE The ghrelin axis regulates many physiological functions (including appetite, metabolism, and energy balance) and plays a role in disease processes. As ghrelin stimulates prostate cancer proliferation, the ghrelin receptor antagonist [D-Lys3]-GHRP-6 is a potential treatment for castrate-resistant prostate cancer and for preventing the metabolic consequences of androgen-targeted therapies. We therefore explored the effect of [D-Lys3]-GHRP-6 on PC3 prostate cancer xenograft growth. METHODS NOD/SCID mice with PC3 prostate cancer xenografts were administered 20 nmoles/mouse [D-Lys3]-GHRP-6 daily by intraperitoneal injection for 14 days and tumour volume and weight were measured. RNA sequencing of tumours was conducted to investigate expression changes following [D-Lys3]-GHRP-6 treatment. A second experiment, extending treatment time to 18 days and including a higher dose of [D-Lys3]-GHRP-6 (200 nmoles/mouse/day), was undertaken to ensure repeatability. RESULTS We demonstrate here that daily intraperitoneal injection of 20 nmoles/mouse [D-Lys3]-GHRP-6 reduces PC3 prostate cancer xenograft tumour volume and weight in NOD/SCID mice at two weeks post treatment initiation. RNA-sequencing revealed reduced expression of epidermal growth factor receptor (EGFR) in these tumours. Further experiments demonstrated that the effects of [D-Lys3]-GHRP-6 are transitory and lost after 18 days of treatment. CONCLUSIONS We show that [D-Lys3]-GHRP-6 has transitory effects on prostate xenograft tumours in mice, which rapidly develop an apparent resistance to the antagonist. Although further studies on [D-Lys3]-GHRP-6 are warranted, we suggest that daily treatment with the antagonist is not a suitable treatment for advanced prostate cancer.
Collapse
Affiliation(s)
- Michelle L Maugham
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Skeletal Biology and Forensic Anthropology Research Laboratory, Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Inge Seim
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Patrick B Thomas
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gabrielle J Crisp
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Esha T Shah
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adrian C Herington
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Laura S Gregory
- Skeletal Biology and Forensic Anthropology Research Laboratory, Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Penny L Jeffery
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Lisa K Chopin
- Ghrelin Research Group, Institute of Health and Biomedical Innovation, Translational Research Institute and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
- Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
- Comparative and Endocrine Biology Laboratory, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Hormaechea-Agulla D, Gahete MD, Jiménez-Vacas JM, Gómez-Gómez E, Ibáñez-Costa A, L-López F, Rivero-Cortés E, Sarmento-Cabral A, Valero-Rosa J, Carrasco-Valiente J, Sánchez-Sánchez R, Ortega-Salas R, Moreno MM, Tsomaia N, Swanson SM, Culler MD, Requena MJ, Castaño JP, Luque RM. The oncogenic role of the In1-ghrelin splicing variant in prostate cancer aggressiveness. Mol Cancer 2017; 16:146. [PMID: 28851363 PMCID: PMC5576296 DOI: 10.1186/s12943-017-0713-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Background The Ghrelin-system is a complex, pleiotropic family composed of several peptides, including native-ghrelin and its In1-ghrelin splicing variant, and receptors (GHSR 1a/b), which are dysregulated in various endocrine-related tumors, where they associate to pathophysiological features, but the presence, functional role, and mechanisms of actions of In1-ghrelin splicing variant in prostate-cancer (PCa), is completely unexplored. Herein, we aimed to determine the presence of key ghrelin-system components (native-ghrelin, In1-ghrelin, GHSR1a/1b) and their potential pathophysiological role in prostate cancer (PCa). Methods In1-ghrelin and native-ghrelin expression was evaluated by qPCR in prostate tissues from patients with high PCa-risk (n = 52; fresh-tumoral biopsies), and healthy-prostates (n = 12; from cystoprostatectomies) and correlated with clinical parameters using Spearman-test. In addition, In1-ghrelin and native-ghrelin was measured in plasma from an additional cohort of PCa-patients with different risk levels (n = 30) and control-healthy patients (n = 20). In vivo functional (proliferation/migration) and mechanistic (gene expression/signaling-pathways) assays were performed in PCa-cell lines in response to In1-ghrelin and native-ghrelin treatment, overexpression and/or silencing. Finally, tumor progression was monitored in nude-mice injected with PCa-cells overexpressing In1-ghrelin, native-ghrelin and empty vector (control). Results In1-ghrelin, but not native-ghrelin, was overexpressed in high-risk PCa-samples compared to normal-prostate (NP), and this expression correlated with that of PSA. Conversely, GHSR1a/1b expression was virtually absent. Remarkably, plasmatic In1-ghrelin, but not native-ghrelin, levels were also higher in PCa-patients compared to healthy-controls. Furthermore, In1-ghrelin treatment/overexpression, and to a much lesser extent native-ghrelin, increased aggressiveness features (cell-proliferation, migration and PSA secretion) of NP and PCa cells. Consistently, nude-mice injected with PC-3-cells stably-transfected with In1-ghrelin, but not native-ghrelin, presented larger tumors. These effects were likely mediated by ERK1/2-signaling activation and involved altered expression of key oncogenes/tumor suppressor genes. Finally, In1-ghrelin silencing reduced cell-proliferation and PSA secretion from PCa cells. Conclusions Altogether, our results indicate that In1-ghrelin levels (in tissue) and circulating levels (in plasma) are increased in PCa where it can regulate key pathophysiological processes, thus suggesting that In1-ghrelin may represent a novel biomarker and a new therapeutic target in PCa. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0713-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Hormaechea-Agulla
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Juan M Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Fernando L-López
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - Esther Rivero-Cortés
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - André Sarmento-Cabral
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,CIBERobn, Córdoba, Spain.,ceiA3, Córdoba, Spain
| | - José Valero-Rosa
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Julia Carrasco-Valiente
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Anatomical Pathology Service, HURS/IMIBIC, Córdoba, Spain
| | - Rosa Ortega-Salas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Anatomical Pathology Service, HURS/IMIBIC, Córdoba, Spain
| | - María M Moreno
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Anatomical Pathology Service, HURS/IMIBIC, Córdoba, Spain
| | | | - Steve M Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | | | - María J Requena
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Reina Sofia University Hospital (HURS), Córdoba, Spain.,Urology Service, HURS/IMIBIC, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain. .,Reina Sofia University Hospital (HURS), Córdoba, Spain. .,CIBERobn, Córdoba, Spain. .,ceiA3, Córdoba, Spain.
| | - Raúl M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain. .,Reina Sofia University Hospital (HURS), Córdoba, Spain. .,CIBERobn, Córdoba, Spain. .,ceiA3, Córdoba, Spain.
| |
Collapse
|
8
|
Is Ghrelin Synthesized in the Central Nervous System? Int J Mol Sci 2017; 18:ijms18030638. [PMID: 28294994 PMCID: PMC5372651 DOI: 10.3390/ijms18030638] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.
Collapse
|
9
|
Seim I, Crisp G, Shah ET, Jeffery PL, Chopin LK. Abundant ghrelin gene expression by monocytes: Putative implications for fat accumulation and obesity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.obmed.2016.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Au CC, Furness JB, Brown KA. Ghrelin and Breast Cancer: Emerging Roles in Obesity, Estrogen Regulation, and Cancer. Front Oncol 2017; 6:265. [PMID: 28119851 PMCID: PMC5220482 DOI: 10.3389/fonc.2016.00265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 01/26/2023] Open
Abstract
Local and systemic factors have been shown to drive the growth of breast cancer cells in postmenopausal obese women, who have increased risk of estrogen receptor-positive breast cancer. Estrogens, produced locally in the breast fat by the enzyme aromatase, have an important role in promoting cancer cell proliferation. Ghrelin, a 28-amino acid peptide hormone, may also influence cancer growth. This peptide is produced in the stomach and acts centrally to regulate appetite and growth hormone release. Circulating levels of ghrelin, and its unacylated form, des-acyl ghrelin, are almost always inversely correlated with obesity, and these peptide hormones have recently been shown to inhibit adipose tissue aromatase expression. Ghrelin and des-acyl ghrelin have also been shown to be produced by some tumor cells and influence tumor growth. The ghrelin/des-acyl ghrelin–cancer axis is complex, one reason being that tumor cells have been shown to express splice variants of ghrelin, and ghrelin and des-acyl ghrelin might act at receptors other than the cognate ghrelin receptor, growth hormone secretagogue receptor 1a, in tumors. Effects of ghrelin and des-acyl ghrelin on energy homeostasis may also affect tumor development and growth. This review will summarize our current understanding of the role of ghrelin and des-acyl ghrelin in hormone-dependent cancers, breast cancer in particular.
Collapse
Affiliation(s)
- CheukMan Cherie Au
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne and Florey Institute of Neuroscience and Mental Health , Parkville, VIC , Australia
| | - Kristy A Brown
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Seim I, Jeffery PL, Thomas PB, Walpole CM, Maugham M, Fung JNT, Yap PY, O’Keeffe AJ, Lai J, Whiteside EJ, Herington AC, Chopin LK. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide. Endocrine 2016; 52:609-17. [PMID: 26792793 PMCID: PMC4879156 DOI: 10.1007/s12020-015-0848-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022]
Abstract
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Collapse
Affiliation(s)
- Inge Seim
- />Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| | - Penny L. Jeffery
- />Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| | - Patrick B. Thomas
- />Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| | - Carina M. Walpole
- />Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| | - Michelle Maugham
- />Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| | - Jenny N. T. Fung
- />Molecular Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Pei-Yi Yap
- />Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006 Australia
| | - Angela J. O’Keeffe
- />Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| | - John Lai
- />Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| | - Eliza J. Whiteside
- />Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| | - Adrian C. Herington
- />Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| | - Lisa K. Chopin
- />Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation (TRI-IHBI), Queensland University of Technology, Woolloongabba, QLD 4102 Australia
- />Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, Queensland University of Technology, Woolloongabba, QLD 4102 Australia
| |
Collapse
|
12
|
Ibáñez-Costa A, Gahete MD, Rivero-Cortés E, Rincón-Fernández D, Nelson R, Beltrán M, de la Riva A, Japón MA, Venegas-Moreno E, Gálvez MÁ, García-Arnés JA, Soto-Moreno A, Morgan J, Tsomaia N, Culler MD, Dieguez C, Castaño JP, Luque RM. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features. Sci Rep 2015; 5:8714. [PMID: 25737012 PMCID: PMC4649711 DOI: 10.1038/srep08714] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/02/2015] [Indexed: 01/26/2023] Open
Abstract
Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas comparedwith normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24–72 h) increased GH and ACTH secretion, Ca2+ and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | - Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | - Esther Rivero-Cortés
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | - David Rincón-Fernández
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | | | - Manuel Beltrán
- Department of Pathology, Puerta del Mar University Hospital, Cádiz
| | - Andrés de la Riva
- Service of Neurosurgery, Hospital Universitario Reina Sofia, 14004 Córdoba, Spain
| | - Miguel A Japón
- Department of Pathology, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Eva Venegas-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Seville, Spain
| | - Ma Ángeles Gálvez
- Service of Endocrinology and Nutrition, Hospital Universitario Reina Sofia, and Instituto Maimónides de Investigación Biomédica de Córdoba, 14004 Córdoba, Spain
| | - Juan A García-Arnés
- Department of Endocrinology and Nutrition, Carlos Haya Hospital, 29010 Málaga, Spain
| | - Alfonso Soto-Moreno
- Metabolism and Nutrition Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), 41013 Seville, Spain
| | | | - Natia Tsomaia
- IPSEN Bioscience, Cambridge, 02142 Massachusetts, USA
| | | | - Carlos Dieguez
- Department of Physiology, University of Santiago de Compostela, and CIBER Fisiopatología de la Obesidad y Nutrición, 15782 Santiago de Compostela, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia; CIBER Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), 14014 Córdoba, Spain
| |
Collapse
|
13
|
Pabalan NA, Seim I, Jarjanazi H, Chopin LK. Associations between ghrelin and ghrelin receptor polymorphisms and cancer in Caucasian populations: a meta-analysis. BMC Genet 2014; 15:118. [PMID: 25376984 PMCID: PMC4228186 DOI: 10.1186/s12863-014-0118-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/22/2014] [Indexed: 12/15/2022] Open
Abstract
Background There is growing evidence that the ghrelin axis, including ghrelin (GHRL) and its receptor, the growth hormone secretagogue receptor (GHSR), play a role in cancer progression. Ghrelin gene and ghrelin receptor gene polymorphisms have been reported to have a range of effects in cancer, from increased risk, to protection from cancer, or having no association. In this study we aimed to clarify the role of ghrelin and ghrelin receptor polymorphisms in cancer by performing a meta-analysis of published case–control studies. We conducted searches of the literature published up to January 2013 in MEDLINE using the PubMed search engine. Individual data on 8,430 cases and 14,008 controls from six case–control studies of an all Caucasian population were evaluated for three ghrelin gene (GHRL; rs696217, rs4684677, rs2075356) and one ghrelin receptor (GHSR; rs572169) polymorphism in breast cancer, esophageal cancer, colorectal cancer and non-Hodgkins lymphoma. Results In the overall analysis, homozygous and recessive associations indicated that the minor alleles of rs696217 and rs2075356 GHRL polymorphisms conferred reduced cancer risk (odds ratio [OR] 0.61-0.78). The risk was unchanged for breast cancer patients when analysed separately (OR 0.73-0.83). In contrast, the rs4684677 GHRL and the rs572169 GHSR polymorphisms conferred increased breast cancer risk (OR 1.97-1.98, p = 0.08 and OR 1.42-1.43, p = 0.08, respectively). All dominant and co-dominant effects showed null effects (OR 0.96-1.05), except for the rs572169 co-dominant effect, with borderline increased risk (OR 1.08, p = 0.05). Conclusions This study suggests that the rs696217 and rs2075356 ghrelin gene (GHRL) polymorphisms may protect carriers against breast cancer, and the rs4684677 GHRL and rs572169 GHSR polymorphisms may increase the risk among carriers. In addition, larger studies are required to confirm these findings.
Collapse
|
14
|
Menzies M, Seim I, Josh P, Nagaraj SH, Lees M, Walpole C, Chopin LK, Colgrave M, Ingham A. Cloning and tissue distribution of novel splice variants of the ovine ghrelin gene. BMC Vet Res 2014; 10:211. [PMID: 25350131 PMCID: PMC4172912 DOI: 10.1186/s12917-014-0211-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022] Open
Abstract
Background The ghrelin axis is involved in the regulation of metabolism, energy balance, and the immune, cardiovascular and reproductive systems. The manipulation of this axis has potential for improving economically valuable traits in production animals, and polymorphisms in the ghrelin (GHRL) and ghrelin receptor (GHSR) genes have been associated with growth and carcass traits. Here we investigate the structure and expression of the ghrelin gene (GHRL) in sheep, Ovis aries. Results We identify two ghrelin mRNA isoforms, which we have designated Δex2 preproghrelin and Δex2,3 preproghrelin. Expression of Δex2,3 preproghrelin is likely to be restricted to ruminants, and would encode truncated ghrelin and a novel C-terminal peptide. Both Δex2 preproghrelin and canonical preproghrelin mRNA isoforms were expressed in a range of tissues. Expression of the Δex2,3 preproghrelin isoform, however, was restricted to white blood cells (WBC; where the wild-type preproghrelin isoform is not co-expressed), and gastrointestinal tissues. Expression of Δex2 preproghrelin and Δex2,3 preproghrelin mRNA was elevated in white blood cells in response to parasitic worm (helminth) infection in genetically susceptible sheep, but not in resistant sheep. Conclusions The restricted expression of the novel preproghrelin variants and their distinct WBC expression pattern during parasite infection may indicate a novel link between the ghrelin axis and metabolic and immune function in ruminants.
Collapse
|
15
|
Gahete MD, Rincón-Fernández D, Villa-Osaba A, Hormaechea-Agulla D, Ibáñez-Costa A, Martínez-Fuentes AJ, Gracia-Navarro F, Castaño JP, Luque RM. Ghrelin gene products, receptors, and GOAT enzyme: biological and pathophysiological insight. J Endocrinol 2014; 220:R1-24. [PMID: 24194510 DOI: 10.1530/joe-13-0391] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin is a 28-amino acid acylated hormone, highly expressed in the stomach, which binds to its cognate receptor (GHSR1a) to regulate a plethora of relevant biological processes, including food intake, energy balance, hormonal secretions, learning, inflammation, etc. However, ghrelin is, in fact, the most notorious component of a complex, intricate regulatory system comprised of a growing number of alternative peptides (e.g. obestatin, unacylated ghrelin, and In1-ghrelin, etc.), known (GHSRs) and, necessarily unknown receptors, as well as modifying enzymes (e.g. ghrelin-O-acyl-transferase), which interact among them as well as with other regulatory systems in order to tightly modulate key (patho)-physiological processes. This multiplicity of functions and versatility of the ghrelin system arise from a dual, genetic and functional, complexity. Importantly, a growing body of evidence suggests that dysregulation in some of the components of the ghrelin system can lead to or influence the development and/or progression of highly concerning pathologies such as endocrine-related tumors, inflammatory/cardiovascular diseases, and neurodegeneration, wherein these altered components could be used as diagnostic, prognostic, or therapeutic targets. In this context, the aim of this review is to integrate and comprehensively analyze the multiple components and functions of the ghrelin system described to date in order to define and understand its biological and (patho)-physiological significance.
Collapse
Affiliation(s)
- Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, Campus Universitario de Rabanales, Edificio Severo Ochoa (C6), Planta 3, University of Córdoba, 14014-Córdoba; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba; Reina Sofia University Hospital, Córdoba; and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moretti E, Vindigni C, Tripodi SA, Mazzi L, Nuti R, Figura N, Collodel G. Immunolocalisation of ghrelin and obestatin in human testis, seminal vesicles, prostate and spermatozoa. Andrologia 2013; 46:979-85. [PMID: 24147986 DOI: 10.1111/and.12183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/18/2022] Open
Abstract
The role of ghrelin and obestatin in male reproduction has not completely been clarified. We explored ghrelin and obestatin localisation in the male reproductive system. Polyclonal antibodies anti-ghrelin and anti-obestatin were used to detect the expression of these hormones in human testis, prostate and seminal vesicles by immunocytochemistry, while in ejaculated and swim up selected spermatozoa by immunofluorescence. Sertoli cells were positive for both peptides and Leydig cells for ghrelin; germ cells were negative for both hormones. Mild signals for ghrelin and obestatin were observed in rete testis; efferent ductules were the most immune reactive region for both peptides. Epididymis was moderately positive for ghrelin; vas deferens and seminal vesicles showed intense obestatin and moderate ghrelin labelling; prostate tissue expressed obestatin alone. Ejaculated and selected spermatozoa were positive for both peptides in different head and tail regions. This study confirms ghrelin localisation in Leydig and Sertoli cells; the finding that ghrelin is expressed in rete testis, epididymis, vas deferens and seminal vesicles is novel, as well as the localisation of obestatin in almost all tracts of the male reproductive system. This research could offer insights for stimulating other studies, particularly on the role of obestatin in sperm physiology, which is still obscure.
Collapse
Affiliation(s)
- E Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Seim I, Jeffery PL, de Amorim L, Walpole CM, Fung J, Whiteside EJ, Lourie R, Herington AC, Chopin LK. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin. Reprod Biol Endocrinol 2013; 11:70. [PMID: 23879975 PMCID: PMC3724588 DOI: 10.1186/1477-7827-11-70] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/05/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. METHODS We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. RESULTS We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. CONCLUSIONS This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.
Collapse
Affiliation(s)
- Inge Seim
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent St, Woolloongabba, Queensland, 4102, Australia
- Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, 199 Ipswich Road, Brisbane, Queensland, 4102, Australia
| | - Penny L Jeffery
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent St, Woolloongabba, Queensland, 4102, Australia
- Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, 199 Ipswich Road, Brisbane, Queensland, 4102, Australia
- Mater Medical Research Institute, Mater Health Services, University of Queensland, South Brisbane, Queensland,, 4103, Australia
| | - Laura de Amorim
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent St, Woolloongabba, Queensland, 4102, Australia
| | - Carina M Walpole
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent St, Woolloongabba, Queensland, 4102, Australia
| | - Jenny Fung
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent St, Woolloongabba, Queensland, 4102, Australia
| | - Eliza J Whiteside
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent St, Woolloongabba, Queensland, 4102, Australia
| | - Rohan Lourie
- Mater Medical Research Institute, Mater Health Services, University of Queensland, South Brisbane, Queensland,, 4103, Australia
- Department of Pathology, Mater Health Services, South Brisbane, Queensland, 4103, Australia
| | - Adrian C Herington
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent St, Woolloongabba, Queensland, 4102, Australia
- Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, 199 Ipswich Road, Brisbane, Queensland, 4102, Australia
| | - Lisa K Chopin
- Ghrelin Research Group, Translational Research Institute - Institute of Health and Biomedical Innovation, Queensland University of Technology, 37 Kent St, Woolloongabba, Queensland, 4102, Australia
- Australian Prostate Cancer Research Centre, Queensland, Princess Alexandra Hospital, 199 Ipswich Road, Brisbane, Queensland, 4102, Australia
| |
Collapse
|
18
|
New players for advanced prostate cancer and the rationalisation of insulin-sensitising medication. Int J Cell Biol 2013; 2013:834684. [PMID: 23573093 PMCID: PMC3614121 DOI: 10.1155/2013/834684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/29/2013] [Indexed: 12/13/2022] Open
Abstract
Obesity and type 2 diabetes are recognised risk factors for the development of some cancers and, increasingly, predict more aggressive disease, treatment failure, and cancer-specific mortality. Many factors may contribute to this clinical observation. Hyperinsulinaemia, dyslipidaemia, hypoxia, ER stress, and inflammation associated with expanded adipose tissue are thought to be among the main culprits driving malignant growth and cancer advancement. This observation has led to the proposal of the potential utility of "old players" for the treatment of type 2 diabetes and metabolic syndrome as new cancer adjuvant therapeutics. Androgen-regulated pathways drive proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen deprivation therapy (ADT) exploits this dependence to systemically treat advanced prostate cancer resulting in anticancer response and improvement of cancer symptoms. However, the initial therapeutic response from ADT eventually progresses to castrate resistant prostate cancer (CRPC) which is currently incurable. ADT rapidly induces hyperinsulinaemia which is associated with more rapid treatment failure. We discuss current observations of cancer in the context of obesity, diabetes, and insulin-lowering medication. We provide an update on current treatments for advanced prostate cancer and discuss whether metabolic dysfunction, developed during ADT, provides a unique therapeutic window for rapid translation of insulin-sensitising medication as combination therapy with antiandrogen targeting agents for the management of advanced prostate cancer.
Collapse
|