1
|
Hu S, Hu C, Xu J, Yu P, Yuan L, Li Z, Liang H, Zhang Y, Chen J, Wei Q, Zhang S, Yang L, Su D, Du Y, Xu Z, Bai F, Cheng X. The estrogen response in fibroblasts promotes ovarian metastases of gastric cancer. Nat Commun 2024; 15:8447. [PMID: 39349474 PMCID: PMC11443007 DOI: 10.1038/s41467-024-52615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Younger premenopausal women are more prone to developing ovarian metastases (OM) of gastric cancer (GC) than metastases of other organs; however, the molecular mechanisms remain unclear. Here we perform single-cell RNA sequencing on 45 tumor samples from 18 GC patients with OM. Interestingly, fibroblasts in OM of GC express high levels of estrogen receptor (ER) and midkine (MDK), interacting with tumor cells through activating ER-MDK-LRP1 (low-density lipoprotein receptor-related protein 1) signaling axis. Functional experiments demonstrate that estrogen stimulation induces MDK secretion by ovarian fibroblasts, and binding of MDK to LRP1 increases GC cell migration and invasion. Furthermore, in vivo, estrogen stimulation remarkably augments ovarian engraftment and metastasis of LRP1+ GC cells. Collectively, our findings reveal that ER+ ovarian fibroblasts secrete MDK under estrogen influence, driving OM of GC via the MDK-LRP1 axis. Our study holds the potential to catalyze innovative therapeutic strategies aimed at intercepting and managing OM in GC.
Collapse
Affiliation(s)
- Simeng Hu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Pengfei Yu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ziyu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Haohong Liang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiahui Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qing Wei
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Litao Yang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dan Su
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yian Du
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
2
|
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, Persani L. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne) 2024; 15:1464803. [PMID: 39391877 PMCID: PMC11466302 DOI: 10.3389/fendo.2024.1464803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Primary ovarian insufficiency (POI) is a disorder of insufficient ovarian follicle function before the age of 40 years with an estimated prevalence of 3.7% worldwide. Its relevance is emerging due to the increasing number of women desiring conception late or beyond the third decade of their lives. POI clinical presentation is extremely heterogeneous with a possible exordium as primary amenorrhea due to ovarian dysgenesis or with a secondary amenorrhea due to different congenital or acquired abnormalities. POI significantly impacts non only on the fertility prospect of the affected women but also on their general, psychological, sexual quality of life, and, furthermore, on their long-term bone, cardiovascular, and cognitive health. In several cases the underlying cause of POI remains unknown and, thus, these forms are still classified as idiopathic. However, we now know the age of menopause is an inheritable trait and POI has a strong genetic background. This is confirmed by the existence of several candidate genes, experimental and natural models. The most common genetic contributors to POI are the X chromosome-linked defects. Moreover, the variable expressivity of POI defect suggests it can be considered as a multifactorial or oligogenic defect. Here, we present an updated review on clinical findings and on the principal X-linked and autosomal genes involved in syndromic and non-syndromic forms of POI. We also provide current information on the management of the premature hypoestrogenic state as well as on fertility preservation in subjects at risk of POI.
Collapse
Affiliation(s)
- Silvia Federici
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisabetta V. Munari
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Frixou
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
3
|
Wu P, Wang X, Ge C, Jin L, Ding Z, Liu F, Zhang J, Gao F, Du W. pSTAT3 activation of Foxl2 initiates the female pathway underlying temperature-dependent sex determination. Proc Natl Acad Sci U S A 2024; 121:e2401752121. [PMID: 39226347 PMCID: PMC11406301 DOI: 10.1073/pnas.2401752121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Ovarian development was traditionally recognized as a "default" sexual outcome and therefore received much less scientific attention than testis development. In turtles with temperature-dependent sex determination (TSD), how the female pathway is initiated to induce ovary development remains unknown. In this study, we have found that phosphorylation of the signal transducer and activator of transcription 3 (pSTAT3) and Foxl2 exhibit temperature-dependent sexually dimorphic patterns and tempo-spatial coexpression in early embryos of the red-eared slider turtle (Trachemys scripta elegans). Inhibition of pSTAT3 at a female-producing temperature of 31 °C induces 64.7% female-to-male sex reversal, whereas activation of pSTAT3 at a male-producing temperature of 26 °C triggers 75.6% male-to-female sex reversal. In addition, pSTAT3 directly binds to the locus of the female sex-determining gene Foxl2 and promotes Foxl2 transcription. Overexpression or knockdown of Foxl2 can rescue the sex reversal induced by inhibition or activation of pSTAT3. This study has established a direct genetic link between warm temperature-induced STAT3 phosphorylation and female pathway initiation in a TSD system, highlighting the critical role of pSTAT3 in the cross talk between female and male pathways.
Collapse
Affiliation(s)
- Pengfei Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Chutian Ge
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, People's Republic of China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, People's Republic of China
| | - Lin Jin
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, People's Republic of China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, People's Republic of China
| | - Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ju Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
4
|
Pulcastro H, Ziv-Gal A. Parabens effects on female reproductive health - Review of evidence from epidemiological and rodent-based studies. Reprod Toxicol 2024; 128:108636. [PMID: 38876430 DOI: 10.1016/j.reprotox.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Parabens have been used as antimicrobial preservatives since the 1920s. The prevalent use of parabens increases their detection in the environment and in women's biological samples including reproductive tissues. Recent studies suggest parabens may alter endocrine function and thus female reproductive health may be affected. In this literature review, we summarize findings on parabens and female reproduction while focusing on epidemiological and rodent-based studies. The topics reviewed include paraben effects on cyclicity, pregnancy, newborn and pubertal development, reproductive hormones, and ovarian and uterine specific outcomes. Overall, the scientific literature on paraben effects on female reproduction is limited and with some conflicting results. Yet, some epidemiological and/or rodent-based experimental studies report significant findings in relation to paraben effects on cyclicity, fertility, gestation length, birth weight, postnatal development and pubertal onset, hormone levels, and hormone signaling in reproductive tissues. Future epidemiological and experimental studies are needed to better understand paraben effects on female reproduction while focusing on human related exposures including mixtures, physiologic concentrations of parabens, and multi-generational studies.
Collapse
Affiliation(s)
- Hannah Pulcastro
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ayelet Ziv-Gal
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Wen F, Ding Y, Wang M, Du J, Zhang S, Kee K. FOXL2 and NR5A1 induce human fibroblasts into steroidogenic ovarian granulosa-like cells. Cell Prolif 2024; 57:e13589. [PMID: 38192172 PMCID: PMC11056703 DOI: 10.1111/cpr.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Human granulosa cells in different stages are essential for maintaining normal ovarian function, and granulosa cell defect is the main cause of ovarian dysfunction. To address this problem, it is necessary to induce functional granulosa cells at different stages in vitro. In this study, we established a reprogramming method to induce early- and late-stage granulosa cells with different steroidogenic abilities. We used an AMH-fluorescence-reporter system to screen candidate factors for cellular reprogramming and generated human induced granulosa-like cells (hiGC) by overexpressing FOXL2 and NR5A1. AMH-EGFP+ hiGC resembled human cumulus cells in transcriptome profiling and secreted high levels of oestrogen and progesterone, similar to late-stage granulosa cells at antral or preovulatory stage. Moreover, we identified CD55 as a cell surface marker that can be used to isolate early-stage granulosa cells. CD55+ AMH-EGFP- hiGC secreted high levels of oestrogen but low levels of progesterone, and their transcriptome profiles were more similar to early-stage granulosa cells. More importantly, CD55+ hiGC transplantation alleviated polycystic ovary syndrome (PCOS) in a mouse model. Therefore, hiGC provides a cellular model to study the developmental program of human granulosa cells and has potential to treat PCOS.
Collapse
Affiliation(s)
- Fan Wen
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Yuxi Ding
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Mingming Wang
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Jing Du
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Shen Zhang
- Reproductive Medicine Center, The First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Kehkooi Kee
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
6
|
Herman L, Amo A, Legois B, Di Carlo C, Veitia RA, Todeschini AL. A cellular model provides insights into the pathogenicity of the oncogenic FOXL2 somatic variant p.Cys134Trp. Br J Cancer 2024; 130:1453-1462. [PMID: 38429437 PMCID: PMC11059147 DOI: 10.1038/s41416-024-02613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND FOXL2 is a transcription factor expressed in ovarian granulosa cells. A somatic variant of FOXL2 (c.402 C > G, p.Cys134Trp) is the hallmark of adult-type granulosa cell tumours. METHODS We generated KGN cell clones either heterozygous for this variant (MUT) or homozygous for the wild-type (WT) allele by CRISPR/Cas9 editing. They underwent RNA-Seq and bioinformatics analyses to uncover pathways impacted by deregulated genes. Cell morphology and migration were studied. RESULTS The differentially expressed genes (DEGs) between WT/MUT and WT/WT KGN cells (DEGs-WT/MUT), pointed to several dysregulated pathways, like TGF-beta pathway, cell adhesion and migration. Consistently, WT/MUT cells were rounder than WT/WT cells and displayed a different distribution of stress fibres and paxillin staining. A comparison of the DEGs-WT/MUT with those found when FOXL2 was knocked down (KD) in WT/WT KGN cells showed that most DEGs-WT/MUT cells were not so in the KD experiment, supporting a gain-of-function (GOF) scenario. MUT-FOXL2 also displayed a stronger interaction with SMAD3. CONCLUSIONS Our work, aiming at better understanding the GOF scenario, shows that the dysregulated genes and pathways are consistent with this idea. Besides, we propose that GOF might result from an enhanced interaction with SMAD3 that could underlie an ectopic capacity of mutated FOXL2 to bind SMAD4.
Collapse
Affiliation(s)
- Laetitia Herman
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Angélique Amo
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Berangère Legois
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Reiner A Veitia
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Université Paris Saclay, Paris, France
- Institut de Biologie François Jacob, CEA, Fontenay aux Roses, Paris, France
| | | |
Collapse
|
7
|
Migale R, Neumann M, Mitter R, Rafiee MR, Wood S, Olsen J, Lovell-Badge R. FOXL2 interaction with different binding partners regulates the dynamics of ovarian development. SCIENCE ADVANCES 2024; 10:eadl0788. [PMID: 38517962 PMCID: PMC10959415 DOI: 10.1126/sciadv.adl0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
The transcription factor FOXL2 is required in ovarian somatic cells for female fertility. Differential timing of Foxl2 deletion, in embryonic versus adult mouse ovary, leads to distinctive outcomes, suggesting different roles across development. Here, we comprehensively investigated FOXL2's role through a multi-omics approach to characterize gene expression dynamics and chromatin accessibility changes, coupled with genome-wide identification of FOXL2 targets and on-chromatin interacting partners in somatic cells across ovarian development. We found that FOXL2 regulates more targets postnatally, through interaction with factors regulating primordial follicle formation and steroidogenesis. Deletion of one interactor, ubiquitin-specific protease 7 (Usp7), results in impairment of somatic cell differentiation, germ cell nest breakdown, and ovarian development, leading to sterility. Our datasets constitute a comprehensive resource for exploration of the molecular mechanisms of ovarian development and causes of female infertility.
Collapse
Affiliation(s)
- Roberta Migale
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Michelle Neumann
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mahmoud-Reza Rafiee
- RNA Networks Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sophie Wood
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jessica Olsen
- Genetic Modification Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
8
|
Zhao M, Meng X, Wang J, Wang T. Novel FOXL2 variants in two Chinese families with blepharophimosis, ptosis, and epicanthus inversus syndrome. Front Genet 2024; 15:1343411. [PMID: 38410153 PMCID: PMC10894958 DOI: 10.3389/fgene.2024.1343411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction: Blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES) is a rare inherited disorder. This study was aimed to identify and functionally validate FOXL2 variants in two Chinese families with BPES. Methods: The proband and his family members were subjected to whole-exome sequencing to identify disease-associated variants. Several bioinformatic tools were used to computationally predict altered proteins. In vitro functional assays were conducted by transfecting wild-type and mutant FOXL2 cDNAs into HEK-293 cells, followed by subcellular localization assays, luciferase reporter gene assays, and quantitative real-time polymerase chain reaction. Results: The clinical features of BPES, including small palpebral fissures, ptosis, telecanthus, and epicanthus inversus, were present in all affected patients. Two novel mutations were detected, c.292T>A and c.383G>T. Whole-exome sequencing analysis and prediction software suggested that these mutations were pathogenic. Functional studies showed that these two point mutations decreased FOXL2 protein expression, resulting in subcellular mislocalization and aberrant transcriptional activity of the steroidogenic acute regulatory protein gene promoter. Conclusion: Our results add to the current understanding of known FOXL2 variants in, and our in vitro experiments provide reference data and insights into the etiology of BPES. Further studies are needed to identify the possible mechanisms underlying the action of this mutation on the development of BPES.
Collapse
Affiliation(s)
- Mingyu Zhao
- The Department of Facial and Neck Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolu Meng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Wang
- The Department of Facial and Neck Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tailing Wang
- The Department of Facial and Neck Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Shirafuta Y, Tamura I, Shiroshita A, Fujimura T, Maekawa R, Taketani T, Sugino N. Analysis of cell-cell interaction between mural granulosa cells and cumulus granulosa cells during ovulation using single-cell RNA sequencing data of mouse ovary. Reprod Med Biol 2024; 23:e12564. [PMID: 38361634 PMCID: PMC10867398 DOI: 10.1002/rmb2.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Purpose We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge. Methods We performed clustering, pseudotime, and interactome analyses utilizing reported single-cell RNA sequencing data of mouse ovary at 6 h after eCG-hCG injection. Results Clustering analysis classified granulosa cells into two distinct populations, MGCs and CGCs. Pseudotime analysis divided granulosa cells into before and after the LH surge, and further divided them into two branches, the ovulatory MGCs and the ovulatory CGCs. Interactome analysis was performed to identify the interactions between MGCs and CGCs. Twenty-six interactions were acting from CGCs toward MGCs, involving ovulation and steroidogenesis. Thirty-six interactions were acting from MGCs toward CGCs, involving hyaluronan synthesis. There were 25 bidirectional interactions, involving the EGFR pathway. In addition, we found three novel interactions: Ephrins-Ephs pathway and Wnt-Lrp6 pathway from CGCs to MGCs, associated with steroidogenesis and lipid transport, respectively, and TGF-β-TGFBR1 pathway from MGCs to CGCs, associated with hyaluronan synthesis. Conclusions MGCs and CGCs interact with each other in the preovulatory follicle after the LH surge, and their interactions have roles in corpus luteum formation, oocyte maturation, and follicle rupture.
Collapse
Affiliation(s)
- Yuichiro Shirafuta
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Amon Shiroshita
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Taishi Fujimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryo Maekawa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Toshiaki Taketani
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
10
|
Zhang L, Sun H, Chen X. Long noncoding RNAs in human reproductive processes and diseases. Mol Reprod Dev 2024; 91:e23728. [PMID: 38282314 DOI: 10.1002/mrd.23728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Infertility has become a global disease burden. Although assisted reproductive technologies are widely used, the assisted reproduction birth rate is no more than 30% worldwide. Therefore, understanding the mechanisms of reproduction can provide new strategies to improve live birth rates and clinical outcomes of enhanced implantation. Long noncoding RNAs (lncRNAs) have been reported to exert regulatory roles in various biological processes and diseases in many species. In this review, we especially focus on the role of lncRNAs in human reproduction. We summarize the function and mechanisms of lncRNAs in processes vital to reproduction, such as spermatogenesis and maturation, sperm motility and morphology, follicle development and maturation, embryo development and implantation. Then, we highlight the importance and diverse potential of lncRNAs as good diagnostic molecular biomarkers and therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hailong Sun
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiujuan Chen
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
11
|
Liu L, Hao M, Zhang J, Chen Z, Zhou J, Wang C, Zhang H, Wang J. FSHR-mTOR-HIF1 signaling alleviates mouse follicles from AMPK-induced atresia. Cell Rep 2023; 42:113158. [PMID: 37733588 DOI: 10.1016/j.celrep.2023.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The majority of activated ovarian follicles undergo atresia during reproductive life in mammals, and only a small number of follicles are ovulated. Though hormone treatment has been widely used to promote folliculogenesis, the molecular mechanism behind follicle selection and atresia remains under debate due to inconsistency among investigation models. Using a high-throughput molecular pathology strategy, we depicted a transcriptional atlas of mouse follicular granulosa cells (GCs) under physiological condition and obtained molecular signatures in healthy and atresia GCs during development. Functional results revealed hypoxia-inducible factor 1 (HIF1) as a major effector downstream of follicle-stimulating hormone (FSH), and HIF1 activation is essential for follicle growth. Energy shortage leads to prevalent AMP-activated protein kinase (AMPK) activation and drives follicular atresia. FSHR-mTOR-HIF1 signaling helps follicles escape from the atresia fate, while energy stress persists. Our work provides a comprehensive understanding of the molecular network behind follicle selection and atresia under physiological condition.
Collapse
Affiliation(s)
- Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School, Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials, Digital Medical Devices, Beijing 100081, P.R. China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Potiyanadech W, Choomee C, Chotigeat W. Transcriptome profiling of banana shrimp (Fenneropenaeus merguiensis) ovaries and testes: Insights into FoxL2. PLoS One 2023; 18:e0292782. [PMID: 37824467 PMCID: PMC10569530 DOI: 10.1371/journal.pone.0292782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
The banana shrimp is found in the Pacific and Indian Oceans. Female shrimp are preferred for consumption because they are larger than males. Understanding the mechanism of sex differentiation is important for developing techniques to increase the number of female shrimp for economic benefits. This study investigates the reproductive development of F. merguiensis using transcriptome analysis. Sxl2, dsx, AGH, FEM-1, and Nrg-X2 were classified as essential genes for testes development during the juvenile stage. Several genes were required for both juvenile and adult male development. Additionally, the expression of several genes was shown to be required for juvenile and adult ovarian development, including SOP1, SOP2, Ptgr1, EST, Vgr, Vmol1, and TR-beta A. Interestingly, high levels of FoxL2 expression were observed in the testes, in contrast to previous studies in humans and other mammals. The binding of FoxL2 to the Vtg promoter was demonstrated in silico with the highest relative binding score (RS = 0.89) using the JASPAR program. Knock-down of the FoxL2 gene with dsRNA significantly suppressed FoxL2 at 2, 4, and 6 d. As a result, Vtg expression increased when compared with the control at 2, 4, and 6 d, indicating that FoxL2 plays an important role in Vtg expression in the ovary. Our findings highlight the role of FoxL2 in banana shrimp reproduction and provide valuable information on the genes associated with the F. merguiensis reproductive system.
Collapse
Affiliation(s)
- Wutthipat Potiyanadech
- Biological Science Division, Molecular Biology and Bioinformatics Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chaturawit Choomee
- Biological Science Division, Molecular Biology and Bioinformatics Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Wilaiwan Chotigeat
- Biological Science Division, Molecular Biology and Bioinformatics Program, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
13
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Coxir SA, Costa GMJ, Santos CFD, Alvarenga RDLLS, Lacerda SMDSN. From in vivo to in vitro: exploring the key molecular and cellular aspects of human female gametogenesis. Hum Cell 2023:10.1007/s13577-023-00921-7. [PMID: 37237248 DOI: 10.1007/s13577-023-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Human oogenesis is a highly complex and not yet fully understood process due to ethical and technological barriers that limit studies in the field. In this context, replicating female gametogenesis in vitro would not only provide a solution for some infertility problems, but also be an excellent study model to better understand the biological mechanisms that determine the formation of the female germline. In this review, we explore the main cellular and molecular aspects involved in human oogenesis and folliculogenesis in vivo, from the specification of primordial germ cells (PGCs) to the formation of the mature oocyte. We also sought to describe the important bidirectional relationship between the germ cell and the follicular somatic cells. Finally, we address the main advances and different methodologies used in the search for obtaining cells of the female germline in vitro.
Collapse
Affiliation(s)
- Sarah Abreu Coxir
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Camilla Fernandes Dos Santos
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Samyra Maria Dos Santos Nassif Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
15
|
Razmi K, Tran NK, Patil JG. Gonad Ontogeny and Sex Differentiation in a Poeciliid, Gambusia holbrooki: Transition from a Bi- to a Mono-Lobed Organ. BIOLOGY 2023; 12:731. [PMID: 37237542 PMCID: PMC10215382 DOI: 10.3390/biology12050731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Despite their uniqueness, the ontogeny and differentiation of the single-lobed gonads in the poeciliids are very poorly understood. To address this, we employed both cellular and molecular approaches to systematically map the development of the testes and ovary in Gambusia holbrooki from pre-parturition to adulthood, encompassing well over 19 developmental stages. The results show that putative gonads form prior to the completion of somitogenesis in this species, a comparatively early occurrence among teleosts. Remarkably, the species recapitulates the typical bi-lobed origin of the gonads during early development that later undergoes steric metamorphosis to form a single-lobed organ. Thereafter, the germ cells undergo mitotic proliferation in a sex-dependent manner before the acquisition of the sexual phenotype. The differentiation of the ovary preceded that of the testes, which occurred before parturition, where the genetic females developed meiotic primary oocytes stage I, indicating ovarian differentiation. However, genetic males showed gonial stem cells in nests with slow mitotic proliferation at the same developmental stage. Indeed, the first signs of male differentiation were obvious only post-parturition. The expression pattern of the gonadosoma markers foxl2, cyp19a1a, amh and dmrt1 in pre- and post-natal developmental stages were consistent with morphological changes in early gonad; they were activated during embryogenesis, followed by the onset of gonad formation, and a sex-dimorphic expression pattern concurrent with sex differentiation of the ovary (foxl2, cyp19a1a) and testes (amh and dmrt1). In conclusion, this study documents for the first time the underlying events of gonad formation in G. holbrooki and shows that this occurs relatively earlier than those previously described for ovi- and viviparous fish species, which may contribute to its reproductive and invasive prowess.
Collapse
Affiliation(s)
- Komeil Razmi
- Laboratory of Molecular Biology, Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia; (K.R.); (N.K.T.)
| | - Ngoc Kim Tran
- Laboratory of Molecular Biology, Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia; (K.R.); (N.K.T.)
- Department of Aquaculture, Faculty of Agriculture and Natural Resources, An Giang University, a Vietnam National University Ho Chi Minh City, Long Xuyen City 880000, Vietnam
| | - Jawahar G. Patil
- Laboratory of Molecular Biology, Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia; (K.R.); (N.K.T.)
| |
Collapse
|
16
|
Li J, Gao L, Wang A, Qian H, Zhu J, Ji S, Chen J, Liu Z, Ji C. Forkhead box L2 is a target of miR-133b and plays an important role in the pathogenesis of non-small cell lung cancer. Cancer Med 2023; 12:9826-9842. [PMID: 36846934 PMCID: PMC10166978 DOI: 10.1002/cam4.5746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/21/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Forkhead box L2 (FOXL2) has been recognized as a transcription factor in the progression of many malignancies, but its role in non-small cell lung cancer (NSCLC) remains unclear. This research clarified on the role of FOXL2 and the specific molecular mechanism in NSCLC. METHODS RNA and protein levels were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting assays. Cell proliferation was examined by cell counting kit-8 (CCK-8) and clonogenic assays. Transwell and wound healing assays were used to detect cell invasion and migration. Cell cycle alterations were assessed by flow cytometry. The relationship between FOXL2 and miR-133b was verified by dual-luciferase reporter assays. In vivo metastasis was monitored in the tail vein-injected mice. RESULTS FOXL2 was upregulated in NSCLC cells and tissues. Downregulation of FOXL2 restrained cell proliferation, migration, and invasion and arrested the cell cycle of NSCLC cells. Moreover, FOXL2 promoted the epithelial-mesenchymal transition (EMT) process of NSCLC cells by inducing the transforming growth factor-β (TGF-β)/Smad signaling pathway. miR-133b directly targeted the 3'-UTR of FOXL2 and negatively regulated FOXL2 expression. Knockdown of FOXL2 blocked metastasis in vivo. CONCLUSIONS miR-133b downregulates FOXL2 by targeting the 3'-UTR of FOXL2, thereby inhibiting cell proliferation, EMT and metastasis induced by the TGF-β/Smad signaling pathway in NSCLC. FOXL2 may be a potential molecular target for treating NSCLC.
Collapse
Affiliation(s)
- Juan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Lirong Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China
| | - Huiwen Qian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Shundong Ji
- Jiangsu Institute of Hematology, MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou, China.,Institute of Respiratory Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
18
|
Llano E, Todeschini AL, Felipe-Medina N, Corte-Torres MD, Condezo YB, Sanchez-Martin M, López-Tamargo S, Astudillo A, Puente XS, Pendas AM, Veitia RA. The Oncogenic FOXL2 C134W Mutation Is a Key Driver of Granulosa Cell Tumors. Cancer Res 2023; 83:239-250. [PMID: 36409821 DOI: 10.1158/0008-5472.can-22-1880] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Adult-type granulosa cell tumors (AGCT) are the most common type of malignant ovarian sex cord-stromal tumors. Most AGCTs carry the somatic variant c.402C>G (p.C134W) affecting the transcription factor FOXL2. Germline dominant variants in FOXL2 are responsible for blepharophimosis syndrome, which is characterized by underdevelopment of the eyelid. In this work, we generated a mouse model harboring the C134W variant of FOXL2 to evaluate in vivo the poorly understood oncogenic role of FOXL2. The mutation was dominant regarding eyelid hypoplasia, reminiscent of blepharophimosis syndrome. Interestingly, Foxl2+/C134W female mice had reduced fertility and developed AGCTs through a progression from abnormal ovaries with aberrant granulosa cells to ovaries with stromal hyperplasia and atypia and on to tumors in adut mice. The genes dysregulated in mouse AGCTs exhibited the hallmarks of cancer and were consistent with a gain-of-function of the mutated allele affecting TGFβ signaling. A comparison of these data with previous results on human AGCTs indicated similar deregulated pathways. Finally, a mutational analysis of mouse AGCT transcriptomic data suggested the absence of additional driver mutations apart from FOXL2-C134W. These results provide a clear in vivo example in which a single mutational hit triggers tumor development associated with profound transcriptomic alterations. SIGNIFICANCE A newly generated mouse model carrying a FOXL2 mutation characteristic of adult-type granulosa cell tumors shows that FOXL2 C134W shifts the transcriptome towards a signature of granulosa cell cancer and drives tumorigenesis.
Collapse
Affiliation(s)
- Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biologıía Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.,Departamento de Fisiología, Universidad de Salamanca, Salamanca, Spain
| | | | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biologıía Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - María D Corte-Torres
- Instituto de Investigación Sanitaria de Asturias, Hospital Universitario del Principado de Asturias, Oviedo, Spain
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biologıía Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | | | - Sara López-Tamargo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria de Asturias, Hospital Universitario del Principado de Asturias, Oviedo, Spain
| | - Xose S Puente
- Departamento de Bioquímica, Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biologıía Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Reiner A Veitia
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.,Université Paris Saclay, Paris, France.,Institut de Biologie François Jacob, CEA, Fontenay-aux-Roses, Paris, France
| |
Collapse
|
19
|
Zhang T, He M, Zhang J, Tong Y, Chen T, Wang C, Pan W, Xiao Z. Mechanisms of primordial follicle activation and new pregnancy opportunity for premature ovarian failure patients. Front Physiol 2023; 14:1113684. [PMID: 36926197 PMCID: PMC10011087 DOI: 10.3389/fphys.2023.1113684] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Primordial follicles are the starting point of follicular development and the basic functional unit of female reproduction. Primordial follicles are formed around birth, and most of the primordial follicles then enter a dormant state. Since primordial follicles are limited in number and can't be renewed, dormant primordial follicles cannot be reversed once they enter the growing state. Thus, the orderly occurrence of primordial follicles selective activation directly affects the rate of follicle consumption and thus determines the length of female reproductive lifespan. Studies have found that appropriately inhibiting the activation rate of primordial follicles can effectively slow down the rate of follicle consumption, maintain fertility and delay ovarian aging. Based on the known mechanisms of primordial follicle activation, primordial follicle in vitro activation (IVA) technique has been clinically developed. IVA can help patients with premature ovarian failure, middle-aged infertile women, or infertile women due to gynecological surgery treatment to solve infertility problems. The study of the mechanism of selective activation of primordial follicles can contribute to the development of more efficient and safe IVA techniques. In this paper, recent mechanisms of primordial follicle activation and its clinical application are reviewed.
Collapse
Affiliation(s)
- Tuo Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingjing Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuntong Tong
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China.,Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ziwen Xiao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
A model to study human ovotesticular syndrome. Differentiation 2023; 129:60-78. [PMID: 35164980 DOI: 10.1016/j.diff.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 01/25/2023]
Abstract
Ovotesticular syndrome is a rare disorder of sex development characterized by the presence of testicular and ovarian tissue. The histologic characteristics of human testicular tissue are well defined by the presence of seminiferous cords or tubules containing TSPY-positive germ cells and Sox9-positive Sertoli cells surrounded by interstitial tissue containing cytochrome P450-positive Leydig cells and smooth muscle α-actin-positive peritubular myoid cells. The histological characteristics of the ovary can be defined by germ cell nests and the development of follicles. In contrast to the testis, the ovary has a paucity of defined specific protein markers, with the granulosa cell marker FOXL2 being the most widely used. In practice, defining the ovarian component of the ovotestis can be quite difficult. We developed a model of human ovotesticular syndrome by combining fetal human testis and ovary in a xenograft model. Ovotesticular xenografts were grown under the renal capsules of gonadectomized athymic nude mice for 6-32 weeks along with age matched control grafts of fetal testis and ovary. Forty ovotesticular xenografts and their controls were analyzed by histology, immunohistochemistry, and fluorescent in situ hybridization to determine the protein expression and karyotype of the cells within the grafts. The ovotesticular xenografts exhibited recognizable testicular and ovarian tissue based on testis-specific and ovary-specific markers defined above. The xenografts simulated a bipolar ovotestis in which the testicular and ovarian elements retain their separate histological characteristics and are separated by a well-defined border. This contrasts with the compartmentalized ovotestis previously described in the literature where the testicular tissue is surrounded by ovarian tissue or a mixed histology where testicular and ovarian tissues are interspersed throughout the gonad. In conclusion, we have characterized a human model of ovotestis which will allow a deeper understanding of ovotestis development in humans and facilitate a more accurate diagnosis of the ovotesticular syndrome.
Collapse
|
21
|
Yu J, Xie X, Ma Y, Yang Y, Wang C, Xia G, Ding X, Liu X. Effects and potential mechanism of Ca 2+/calmodulin‑dependent protein kinase II pathway inhibitor KN93 on the development of ovarian follicle. Int J Mol Med 2022; 50:121. [PMID: 35929517 PMCID: PMC9387563 DOI: 10.3892/ijmm.2022.5177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Adequate regulation of the speed of follicular development has been reported to prolong the reproductive life of the ovary. The aim of the present study was to assess the potential effects and mechanism of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathway on the development of ovarian follicle. In the present study, the expression of CaMKII was measured in the ovary of mice at different developmental stages by immunofluorescence, confirming that CaMKII has a role in follicular development. Subsequently, the 17.5 days post-coitus (dpc) embryonic ovaries were collected and cultured with KN93 for 4 days in vitro. It was revealed that KN93 inhibited the development of follicles, where it reduced the expression levels of oocyte and granulosa cell markers DEAD-box helicase 4 (DDX4) and forkhead box L2 (FOXL2). These results suggested that KN93 could delay follicular development. Proteomics technology was then used to find that 262 proteins of KN93 treated 17.5 dpc embryonic ovaries were significantly altered after in vitro culture. Bioinformatics analysis was used to analyze these altered proteins. In total, four important Kyoto Encyclopedia of Genes and Genome pathways, namely steroid biosynthesis, p53 signaling pathway and retinol metabolism and metabolic pathways, were particularly enriched. Further analysis revealed that the upregulated proteins NADP-dependent steroid dehydrogenase-like (Nsdhl), lanosterol synthase (Lss), farnesyl-diphosphate farnesyltransferase 1 (Fdft1), cytochrome P450 family 51 family A member 1 (Cyp51a1), hydroxymethylglutaryl-CoA synthase 1 (Hmgcs1), fatty acid synthase (Fasn) and dimethylallyltranstransferase (Fdps) were directly interacting with each other in the four enriched pathways. In summary, the potential mechanism of KN93 in slowing down follicular development most likely lies in its inhibitory effects on CaMKII, which upregulated the expression of Nsdhl, Lss, Fdft1, Cyp51a1, Hmgcs1, Fasn and Fdps. This downregulated the expression of oocyte and granulosa cell markers DDX4 and FOXL2 in the follicles, thereby delaying follicular development. Overall, these results provide novel insight into the potential mechanism by which KN93 and CaMKII can delay follicular development.
Collapse
Affiliation(s)
- Jianjie Yu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xianguo Xie
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yabo Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Chao Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R.China
| | - Guoliang Xia
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, P.R. China
| | - Xinfeng Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750021, P.R. China
| |
Collapse
|
22
|
Baddela VS, Michaelis M, Sharma A, Plinski C, Viergutz T, Vanselow J. Estradiol production of granulosa cells is unaffected by the physiological mix of non-esterified fatty acids in follicular fluid. J Biol Chem 2022; 298:102477. [PMID: 36096202 PMCID: PMC9576879 DOI: 10.1016/j.jbc.2022.102477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cycle is controlled by circulating levels of the steroid hormone 17-β-estradiol, which is predominantly synthesized by the granulosa cells (GCs) of ovarian follicles. Our earlier studies showed that unsaturated fatty acids (USFs) downregulate and saturated fatty acids (SFAs) upregulate estradiol production in GCs. However, it was unclear whether pituitary gonadotropins induce accumulation of free fatty acids (FFAs) in the follicular fluid since follicle-stimulating hormone induces and luteinizing hormone inhibits estradiol production in the mammalian ovary. Interestingly, we show here the gas chromatography analysis of follicular fluid revealed no differential accumulation of FFAs between pre- and post-luteinizing hormone surge follicles. We therefore wondered how estradiol production is regulated in the physiological context, as USFs and SFAs are mutually present in the follicular fluid. We thus performed in vitro primary GC cultures with palmitate, palmitoleate, stearate, oleate, linoleate, and alpha-linolenate, representing >80% of the FFA fraction in the follicular fluid, and analyzed 62 different cell culture conditions to understand the regulation of estradiol biosynthesis under diverse FFA combinations. Our analyses showed co-supplementation of SFAs with USFs rescued estradiol production by restoring gonadotropin receptors and aromatase, antagonizing the inhibitory effects of USFs. Furthermore, transcriptome data of oleic acid–treated GCs indicated USFs induce the ERK and Akt signaling pathways. We show SFAs inhibit USF-induced ERK1/2 and Akt activation, wherein ERK1/2 acts as a negative regulator of estradiol synthesis. We propose SFAs are vital components of the follicular fluid, without which gonadotropin signaling and the ovarian cycle would probably be shattered by USFs.
Collapse
Affiliation(s)
- Vijay Simha Baddela
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany.
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Arpna Sharma
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Christian Plinski
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
23
|
Wang H, Qu M, Tang W, Liu S, Ding S. Transcriptome Profiling and Expression Localization of Key Sex-Related Genes in a Socially-Controlled Hermaphroditic Clownfish, Amphiprion clarkii. Int J Mol Sci 2022; 23:ijms23169085. [PMID: 36012348 PMCID: PMC9409170 DOI: 10.3390/ijms23169085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Clownfish can be an excellent research model for investigating the socially-controlled sexual development of sequential hermaphrodite teleosts. However, the molecular cascades underlying the social cues that orchestrate the sexual development process remain poorly understood. Here, we performed a comparative transcriptomic analysis of gonads from females, males, and nonbreeders of Amphiprion clarkii, which constitute a complete social group, allowing us to investigate the molecular regulatory network under social control. Our analysis highlighted that the gonads of nonbreeders and males exhibited high similarities but were far from females, both in global transcriptomic profiles and histological characteristics, and identified numerous candidate genes involved in sexual development, some well-known and some novel. Significant upregulation of cyp19a1a, foxl2, nr5a1a, wnt4a, hsd3b7, and pgr in females provides strong evidence for the importance of steroidogenesis in ovarian development and maintenance, with cyp19a1a playing a central role. Amh and sox8 are two potential key factors that may regulate testicular tissue development in early and late stages, respectively, as they are expressed at higher levels in males than in females, but with slightly different expression timings. Unlike previous descriptions in other fishes, the unique expression pattern of dmrt1 in A. clarkii implied its potential function in both male and female gonads, and we speculated that it might play promoting roles in the early development of both testicular and ovarian tissues.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Qu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou 511458, China
| | - Wei Tang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (S.D.)
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Correspondence: (S.L.); (S.D.)
| |
Collapse
|
24
|
Crites BR, Carr SN, Anderson LH, Matthews JC, Bridges PJ. Form of dietary selenium affects mRNA encoding interferon-stimulated and progesterone-induced genes in the bovine endometrium and conceptus length at maternal recognition of pregnancy. J Anim Sci 2022; 100:skac137. [PMID: 35772751 PMCID: PMC9246668 DOI: 10.1093/jas/skac137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Widespread regions of the southeast United States have soils, and hence forages, deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal immune function, growth, and fertility. We have reported that supplementation with an isomolar 1:1 mix (MIX) of inorganic (ISe) and organic (OSe) forms of Se increases early luteal phase (LP) concentrations of progesterone (P4) above that in cows on ISe or OSe alone. Increased early LP P4 advances embryonic development. Our objective was to determine the effects of the form of Se on the development of the bovine conceptus and the endometrium using targeted real-time PCR (qPCR) on day 17 of gestation, the time of maternal recognition of pregnancy (MRP). Angus-cross yearling heifers underwent 45-d Se-depletion then repletion periods, then at least 90 d of supplementation (TRT) with 35 ppm Se per day as either ISe (n = 10) or MIX (n = 10). Heifers were inseminated to a single sire after detected estrus (day 0). On day 17 of gestation, caruncular (CAR) and intercaruncular (ICAR) endometrial samples and the developing conceptus were recovered from pregnant heifers (ISe, n = 6 and MIX, n = 6). qPCR was performed to determine the relative abundance of targeted transcripts in CAR and ICAR samples, with the expression data subjected to one-way ANOVA to determine TRT effects. The effect of TRT on conceptus development was analyzed using a one-tailed Student's t-test. When compared with ISe-treated heifers, MIX heifers had decreased (P < 0.05) abundance of several P4-induced and interferon-stimulated mRNA transcripts, including IFIT3, ISG15, MX1, OAS2, RSAD2, DGAT2, FGF2 in CAR and DKK1 in ICAR samples and tended (P ≤ 0.10) to have decreased mRNA abundance of IRF1, IRF2, FOXL2, and PGR in CAR samples, and HOXA10 and PAQR7 in ICAR samples. In contrast, MIX-supplemented heifers had increased (P < 0.05) mRNA abundance of MSTN in ICAR samples and an increase in conceptus length (ISe: 17.45 ± 3.08 cm vs. MIX: 25.96 ± 3.95 cm; P = 0.05). Notably, myostatin increases glucose secretion into histotroph and contributes to advanced conceptus development. This advancement in conceptus development occurred in the presence of similar concentrations of serum P4 (P = 0.88) and whole blood Se (P = 0.07) at MRP.
Collapse
Affiliation(s)
- Benjamin R Crites
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sarah N Carr
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Leslie H Anderson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
25
|
Ma X, Liu F, Chen Q, Sun W, Shen J, Wu K, Zheng Z, Huang J, Chen J, Qian G, Ge C. Foxl2 is required for the initiation of the female pathway in a temperature-dependent sex determination system in Trachemys scripta. Development 2022; 149:275948. [DOI: 10.1242/dev.200863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
KDM6B-mediated epigenetic modification of the testicular regulator Dmrt1 has previously been identified as the primary switch of the male pathway in a temperature-dependent sex-determination (TSD) system; however, the molecular network of the female pathway has not yet been established. Here, we have functionally characterized for the first time an upstream regulator of the female pathway, the forkhead transcription factor FOXL2, in Trachemys scripta, a turtle species with a TSD system. FOXL2 exhibited temperature-dependent female-specific expression patterns before the onset of gonadal differentiation and was preferentially localized in ovarian somatic cells. Foxl2 responded rapidly to temperature shifts and estrogen. Importantly, forced expression of Foxl2 at the male-producing temperature led to male-to-female sex reversal, as evidenced by the formation of an ovary-like structure, and upregulation of the ovarian regulators Cyp19a1 and R-spondin1. Additionally, knockdown of Foxl2 caused masculinization at the female-producing temperature, which was confirmed by loss of the female phenotype, development of seminiferous tubules, and elevated expression of Dmrt1 and Sox9. Collectively, we demonstrate that Foxl2 expression is necessary and sufficient to drive ovarian determination in T. scripta, suggesting a crucial role of Foxl2 in female sex determination in the TSD system.
Collapse
Affiliation(s)
- Xiaohui Ma
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
- College of Fisheries and Life Sciences, Shanghai Ocean University 2 , Shanghai 201306 , China
| | - Fang Liu
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
- College of Fisheries and Life Sciences, Shanghai Ocean University 2 , Shanghai 201306 , China
| | - Qiran Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
- College of Marine Life Sciences, Ocean University of China 3 MOE Key Laboratory of Marine Genetics and Breeding , , Qingdao 266003 , China
| | - Wei Sun
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Jiadong Shen
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Kaiyue Wu
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Ziyan Zheng
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Jiaqi Huang
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Jiawen Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| | - Chutian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University 1 , Ningbo 315100 , China
| |
Collapse
|
26
|
Wang C, Liu Y, Zhang Y, Yang Y, Li G, Wang X, Gong S, Chen S, Wang H, He D. Molecular characterization and expression profiling of FOXL2 gene in goose (Anser cygnoides). Reprod Biol 2022; 22:100640. [DOI: 10.1016/j.repbio.2022.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 11/29/2022]
|
27
|
Roberts JF, Jeff Huang CC. Bovine models for human ovarian diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:101-154. [PMID: 35595347 DOI: 10.1016/bs.pmbts.2022.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During early embryonic development, late fetal growth, puberty, adult reproductive years, and advanced aging, bovine and human ovaries closely share molecular pathways and hormonal signaling mechanisms. Other similarities between these species include the size of ovaries, length of gestation, ovarian follicular and luteal dynamics, and pathophysiology of ovarian diseases. As an economically important agriculture species, cattle are a foundational species in fertility research with decades of groundwork using physiologic, genetic, and therapeutic experimental techniques. Many technologies used in modern reproductive medicine, such as ovulation induction using hormonal therapy, were first used in cows before human trials. Human ovarian diseases with naturally occurring bovine correlates include premature ovary insufficiency (POI), polycystic ovarian syndrome (PCOS), and sex-cord stromal tumors (SCSTs). This article presents an overview of bovine ovary research related to causes of infertility, ovarian diseases, diagnostics, and therapeutics, emphasizing where the bovine model can offer advantages over other lab animals for translational applications.
Collapse
Affiliation(s)
- John F Roberts
- Department of Comparative, Diagnostic & Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States.
| | - Chen-Che Jeff Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
28
|
Ascension AM, Arauzo-Bravo MJ. BigMPI4py: Python Module for Parallelization of Big Data Objects Discloses Germ Layer Specific DNA Demethylation Motifs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1507-1522. [PMID: 33301409 DOI: 10.1109/tcbb.2020.3043979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than 231 bytes, we developed BigMPI4py, a Python module that wraps mpi4py, supporting object sizes beyond this boundary. BigMPI4py automatically determines the optimal object distribution strategy, and uses vectorized methods, achieving higher parallelization efficiency. BigMPI4py facilitates the implementation of Python for Big Data applications in multicore workstations and High Performance Computer systems. We use BigMPI4py to speed-up the search for germ line specific de novo DNA methylated/unmethylated motifs from the 59 whole genome bisulfite sequencing DNA methylation samples from 27 human tissues of the ENCODE project. We developed a parallel implementation of the Kruskall-Wallis test to find CpGs with differential methylation across germ layers. The parallel evaluation of the significance of 55 million CpG achieved a 22x speedup with 25 cores allowing us an efficient identification of a set of hypermethylated genes in ectoderm and mesoderm-related tissues, and another set in endoderm-related tissues and finally, the discovery of germ layer specific DNA demethylation motifs. Our results point out that DNA methylation signal provide a higher degree of information for the demethylated state than for the methylated state. BigMPI4py is available at https://https://www.arauzolab.org/tools/bigmpi4py and https://gitlab.com/alexmascension/bigmpi4py and the Jupyter Notebook with WGBS analysis at https://gitlab.com/alexmascension/wgbs-analysis.
Collapse
|
29
|
Tanaka M, Fujii T, Mon H, Lee JM, Kakino K, Fukumori H, Ebihara T, Nagasato T, Hino M, Tonooka Y, Moriyama T, Fujita R, Banno Y, Kusakabe T. Silkworm FoxL21 plays important roles as a regulator of ovarian development in both oogenesis and ovariole development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103737. [PMID: 35101566 DOI: 10.1016/j.ibmb.2022.103737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The ovary is an important organ in reproduction. In insects, especially lepidopteran insects, the oocytes and reproductive organs develop rapidly during the pupal stage. Despite their drastic morphological changes, the molecular mechanisms of ovary development are not fully understood. In this study, it is found that forkhead box transcription factor L2, member 1 (FoxL21), which is known to be involved in ovarian differentiation and maintenance in vertebrates, is required for the development of the ovary in the silkworm, Bombyx mori. FoxL21 was expressed in the ovary and ovariole during the larval and pupal stage, respectively. In silkworms in which FoxL21 was knocked out by genome editing, multiple ovarian dysfunctions, such as, abnormal egg formation, thinning of the ovariole sheaths, and defective connection of the oviductus geminus with the ovariole were observed. Finally, ovarian transplantation experiments using the knockout silkworms revealed that FoxL21 functions in the ovariole, but not in the oviductus geminus.
Collapse
Affiliation(s)
- Miyu Tanaka
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hisayoshi Fukumori
- Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeru Ebihara
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takumi Nagasato
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masato Hino
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshino Tonooka
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takato Moriyama
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yutaka Banno
- Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
30
|
Khan UW, Newmark PA. Somatic regulation of female germ cell regeneration and development in planarians. Cell Rep 2022; 38:110525. [PMID: 35294875 PMCID: PMC8994625 DOI: 10.1016/j.celrep.2022.110525] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022] Open
Abstract
Female germ cells develop into oocytes, with the capacity for totipotency. In most animals, these remarkable cells are specified during development and cannot be regenerated. By contrast, planarians, known for their regenerative prowess, can regenerate germ cells. To uncover mechanisms required for female germ cell development and regeneration, we generated gonad-specific transcriptomes and identified genes whose expression defines progressive stages of female germ cell development. Strikingly, early female germ cells share molecular signatures with the pluripotent stem cells driving planarian regeneration. We observe spatial heterogeneity within somatic ovarian cells and find that a regionally enriched foxL homolog is required for oocyte differentiation, but not specification, suggestive of functionally distinct somatic compartments. Unexpectedly, a neurotransmitter-biosynthetic enzyme, aromatic L-amino acid decarboxylase (AADC), is also expressed in somatic gonadal cells, and plays opposing roles in female and male germ cell development. Thus, somatic gonadal cells deploy conserved factors to regulate germ cell development and regeneration in planarians.
Collapse
Affiliation(s)
- Umair W Khan
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA; Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Phillip A Newmark
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA; Howard Hughes Medical Institute, Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
31
|
Chen H, Chen Q, Zhu Y, Yuan K, Li H, Zhang B, Jia Z, Zhou H, Fan M, Qiu Y, Zhuang Q, Lei Z, Li M, Huang W, Liang L, Yan Q, Wang C. MAP3K1 Variant Causes Hyperactivation of Wnt4/β-Catenin/FOXL2 Signaling Contributing to 46,XY Disorders/Differences of Sex Development. Front Genet 2022; 13:736988. [PMID: 35309143 PMCID: PMC8927045 DOI: 10.3389/fgene.2022.736988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
Background: 46,XY disorders/differences of sex development (46,XY DSD) are congenital conditions that result from abnormal gonadal development (gonadal dysgenesis) or abnormalities in androgen synthesis or action. During early embryonic development, several genes are involved in regulating the initiation and maintenance of testicular or ovarian-specific pathways. Recent reports have shown that MAP3K1 genes mediate the development of the 46,XY DSD, which present as complete or partial gonadal dysgenesis. Previous functional studies have demonstrated that some MAP3K1 variants result in the gain of protein function. However, data on possible mechanisms of MAP3K1 genes in modulating protein functions remain scant. Methods: This study identified a Han Chinese family with the 46,XY DSD. To assess the history and clinical manifestations for the 46,XY DSD patients, the physical, operational, ultra-sonographical, pathological, and other examinations were performed for family members. Variant analysis was conducted using both trio whole-exome sequencing (trio WES) and Sanger sequencing. On the other hand, we generated transiently transfected testicular teratoma cells (NT2/D1) and ovary-derived granular cells (KGN), with mutant or wild-type MAP3K1 gene. We then performed functional assays such as determination of steady-state levels of gender related factors, protein interaction and luciferase assay system. Results: Two affected siblings were diagnosed with 46,XY DSD. Our analysis showed a missense c.556A > G/p.R186G variant in the MAP3K1 gene. Functional assays demonstrated that the MAP3K1R186G variant was associated with significantly decreased affinity to ubiquitin (Ub; 43–49%) and increased affinity to RhoA, which was 3.19 ± 0.18 fold, compared to MAP3K1. The MAP3K1R186G led to hyperphosphorylation of p38 and GSK3β, and promoted hyperactivation of the Wnt4/β-catenin signaling. In addition, there was increased recruitment of β-catenin into the nucleus, which enhanced the expression of pro-ovarian transcription factor FOXL2 gene, thus contributing to the 46,XY DSD. Conclusion: Our study identified a missense MAP3K1 variant associated with 46,XY DSD. We demonstrated that MAP3K1R186G variant enhances binding to the RhoA and improves its own stability, resulting in the activation of the Wnt4/β-catenin/FOXL2 pathway. Taken together, these findings provide novel insights into the molecular mechanisms of 46,XY DSD and promotes better clinical evaluation.
Collapse
Affiliation(s)
- Hong Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Qingqing Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yilin Zhu
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Yuan
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huizhu Li
- Department of Pediatrics, Lishui City People’s Hospital, Lishui, China
| | - Bingtao Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zexiao Jia
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mingjie Fan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yue Qiu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qianqian Zhuang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhaoying Lei
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mengyao Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Li Liang
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chunlin Wang, , Qingfeng Yan, , Li Liang,
| | - Qingfeng Yan
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, China
- *Correspondence: Chunlin Wang, , Qingfeng Yan, , Li Liang,
| | - Chunlin Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Chunlin Wang, , Qingfeng Yan, , Li Liang,
| |
Collapse
|
32
|
Effects of Sex Steroid Receptor Agonists and Antagonists on the Expression of the FOXL2 Transcription Factor and its Target Genes AMH and CYP19A1 in the Neonatal Porcine Ovary. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Recently, we have demonstrated that neonatal exposure to androgen and estrogen agonists or antagonists influenced the number of ovarian follicles in piglets. Since the FOXL2 transcription factor is required for proper ovarian follicle formation and activation, the objective of the study was to examine effects of exposure of the neonatal porcine ovary to testosterone propionate (TP; an androgen), flutamide (FLU; an antiandrogen), 4-tert-octylphenol (OP; compound with estrogenic activity), ICI 182,780 (ICI; an antiestrogen), and methoxychlor (MXC; compound with estrogenic, antiestrogenic and antiandrogenic properties) on FOXL2 expression and expression of its target genes, AMH and CYP19A1. Piglets were injected subcutaneously with TP, FLU, OP, ICI, MXC, or corn oil (control) between postnatal days 1 and 10 (n = 4/each group). Ovaries were excised from the 11-day-old piglets and the expression of FOXL2, AMH and CYP19A1 was examined using immunohistochemistry and/or real-time PCR and Western blot. FOXL2 was localized in stroma cells surrounding egg nests and in granulosa cells. TP, OP and MXC increased both FOXL2 and AMH mRNAs, while FLU and ICI decreased CYP19A1 mRNA. The increased FOXL2 protein abundance was found in all examined groups. In addition, TP, OP, ICI and MXC increased AMH protein abundance, while TP, FLU and OP decreased CYP19A1 protein abundance. In conclusion, neonatal exposure to sex steroid receptor agonists and antagonists increased FOXL2 expression at mRNA and/or protein levels and affected FOXL2 target genes in the ovaries of 11-day-old piglets. Therefore, it seems that impaired ovarian folliculogenesis induced by altered steroid milieu during the neonatal development period in pigs may, at least in part, involve FOXL2.
Collapse
|
33
|
Du Y, Liu J, Liu S, Hu J, Wang S, Cui K, Yan K, Liu X, Wu NR, Yang X, Liang X. Mogroside-rich extract from Siraitia grosvenorii fruits protects against the depletion of ovarian reserves in aging mice by ameliorating inflammatory stress. Food Funct 2022; 13:121-130. [PMID: 34897342 DOI: 10.1039/d1fo03194e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mogroside-rich extract (MGE), the main bioactive component of dried Siraitia grosvenorii fruit, has long been used as a natural sweetener and traditional Chinese medicine. This extract possesses various types of pharmacological activities, such as anti-inflammatory, antioxidative, hypoglycemic and hypolipemic activities. Moreover, we recently revealed that MGE has beneficial effects on female reproduction. Increasing maternal age leads to a rapid reduction in female fertility; in particular, it dramatically decreases ovarian function. Nevertheless, whether MGE can alleviate ovarian aging and the underlying mechanisms have not yet been explored. In this study, mice were treated with MGE by supplementation in drinking water from 10 to 44 weeks of age. Then, ovarian function and molecular changes were determined. Our findings showed that MGE treatment protected aged mice from estrous cycle disorder. Moreover, MGE treatment significantly increased the ovarian reserves of aged mice. RNA-seq data showed that MGE upregulated the expression of genes related to gonad development, follicular development, and hormone secretion in ovarian tissue. Additionally, inflammatory stress was induced, as indicated by upregulation of inflammation-related gene expression and elevated TNF-α levels in the ovarian tissues of aged mice; however, MGE treatment attenuated inflammatory stress. In summary, our findings demonstrate that MGE can ameliorate age-related estrous cycle disorder and ovarian reserve decline in mice, possibly by alleviating ovarian inflammatory stress.
Collapse
Affiliation(s)
- Ya Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shaoyuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiahao Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Nian-Rong Wu
- Rid Testing & Certification (Guangxi) Inc., No.19-1 South of Renmin Road, Lingui District, Guilin, Guangxi, 541100, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi 530004, China. .,College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
34
|
Wu J, Liu Y, Song Y, Wang L, Ai J, Li K. Aging conundrum: A perspective for ovarian aging. Front Endocrinol (Lausanne) 2022; 13:952471. [PMID: 36060963 PMCID: PMC9437485 DOI: 10.3389/fendo.2022.952471] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive loss of physiological integrity and accumulation of degenerative changes leading to functional impairment and increased susceptibility to diseases are the main features of aging. The ovary, the key organ that maintains female reproductive and endocrine function, enters aging earlier and faster than other organs and has attracted extensive attention from society. Ovarian aging is mainly characterized by the progressive decline in the number and quality of oocytes, the regulatory mechanisms of which have yet to be systematically elucidated. This review discusses the hallmarks of aging to further highlight the main characteristics of ovarian aging and attempt to explore its clinical symptoms and underlying mechanisms. Finally, the intervention strategies related to aging are elaborated, especially the potential role of stem cells and cryopreservation of embryos, oocytes, or ovarian tissue in the delay of ovarian aging.
Collapse
Affiliation(s)
| | | | | | - Lingjuan Wang
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Jihui Ai
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Kezhen Li
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| |
Collapse
|
35
|
Chu K, He Y, Li Z, Jiang Z, Wang L, Ji Y, Wang X, Pang W, Sun N, Yang F, Li W. Novel LAT Pathogenic Variants in a POI Family and Its Role in the Ovary. Front Genet 2021; 12:764160. [PMID: 34868246 PMCID: PMC8640088 DOI: 10.3389/fgene.2021.764160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Premature ovarian insufficiency (POI) affects about 1% of women under 40 years and leads most often to definitive infertility with adverse health outcomes. Genetic factor has been reported to play an important role in POI. However, the genetic etiology remains unknown in the majority of the POI patients. Whole-exome sequencing and variant analysis were carried out in a POI pedigree. In vitro studies of the wild-type and mutant proteins were conducted in primary granulosa cells (GCs) and granulosa cell line. The result showed that the patients carried compound heterozygous nonsynonymous mutations (c.245C > T and c.181C > G) in LAT gene, which were identified to be transmitted from their parents. The two variants were assessed to affect residues that were conserved across different species examined, and were predicted to be deleterious by software predictions. Protein structure predicting result indicated that the two variants could alter their interactions with surrounding residues, which may change the internal structure of the LAT protein. Moreover, LAT protein expression in GCs was demonstrated for the first time, and further functional assays suggested that this mutation could reduce LAT expression and influence GC survival, which may contribute to the etiology of POI. In summary, we detect novel LAT pathogenic variants in a POI pedigree and report for the first time that LAT is present and functional in the GCs of the ovary. Our findings not only shed new light on the role of LAT in GCs, but also broaden the spectrum of genetic causes of POI.
Collapse
Affiliation(s)
- Kun Chu
- Center of Reproductive Medicine, Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Obstetrics and Gynecology, the PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yi He
- Center of Reproductive Medicine, Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Obstetrics and Gynecology, No. 905 Hospital of PLA Navy, Shanghai, China
| | - Ziyuan Li
- Center of Reproductive Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhongxin Jiang
- Center of Reproductive Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Wang
- Center of Reproductive Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yixuan Ji
- Center of Reproductive Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiang Wang
- Department of Obstetrics and Gynecology, No. 905 Hospital of PLA Navy, Shanghai, China
| | - Wenjuan Pang
- Center of Reproductive Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ningxia Sun
- Center of Reproductive Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Wen Li
- Center of Reproductive Medicine, Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Bonus ML, Pothast R, Lamb JD, Feinberg EC, Bernardi LA. Planned oocyte cryopreservation in women with blepharophimosis-ptosis-epicanthus inversus syndrome: a case series. F S Rep 2021; 2:332-337. [PMID: 34553160 PMCID: PMC8441554 DOI: 10.1016/j.xfre.2021.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Objective To describe the experiences of three women with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) who desired to pursue planned oocyte cryopreservation. Design Case series. Setting An academic institution and a private clinic. Patient(s) Three nulligravid women aged 23, 25, and 34 years who desired to pursue planned oocyte cryopreservation. Two women had BPES diagnosed when they were infants and one had BPES diagnosed after presenting to discuss oocyte cryopreservation. Intervention(s) All three women underwent ovarian stimulation. One woman underwent three oocyte retrievals. Main Outcomes Measure(s) Vitrification of metaphase II oocytes. Result(s) One woman had a total of eight metaphase II oocytes vitrified. In addition, she underwent genetic testing that confirmed type 1 BPES. The other two women, who had BPES diagnosed when they were newborns, each underwent two cycles of ovarian stimulation. Neither of these two women responded to ovarian stimulation and both cycles were cancelled before oocyte retrieval. Conclusion(s) BPES is a rare condition that can lead to primary ovarian insufficiency. Early identification of this condition is important to allow for timely reproductive counseling so that oocyte cryopreservation can be offered at a young age before oocyte depletion. Careful counseling is critical for these patients, because this case series demonstrated that not all women with BPES will respond to stimulation. Further, outcomes with cryopreserved oocytes have not yet been described in women with BPES.
Collapse
Affiliation(s)
- Marissa L Bonus
- Division of Reproductive Endocrinology and Infertility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rachel Pothast
- Division of Clinical Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Julie D Lamb
- Pacific Northwest Fertility and In Vitro Fertlity Specialists, Seattle, Washington
| | - Eve C Feinberg
- Division of Reproductive Endocrinology and Infertility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lia A Bernardi
- Division of Reproductive Endocrinology and Infertility, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
37
|
Olbrecht S, Busschaert P, Qian J, Vanderstichele A, Loverix L, Van Gorp T, Van Nieuwenhuysen E, Han S, Van den Broeck A, Coosemans A, Van Rompuy AS, Lambrechts D, Vergote I. High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification. Genome Med 2021; 13:111. [PMID: 34238352 PMCID: PMC8268616 DOI: 10.1186/s13073-021-00922-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND High-grade serous tubo-ovarian cancer (HGSTOC) is characterised by extensive inter- and intratumour heterogeneity, resulting in persistent therapeutic resistance and poor disease outcome. Molecular subtype classification based on bulk RNA sequencing facilitates a more accurate characterisation of this heterogeneity, but the lack of strong prognostic or predictive correlations with these subtypes currently hinders their clinical implementation. Stromal admixture profoundly affects the prognostic impact of the molecular subtypes, but the contribution of stromal cells to each subtype has poorly been characterised. Increasing the transcriptomic resolution of the molecular subtypes based on single-cell RNA sequencing (scRNA-seq) may provide insights in the prognostic and predictive relevance of these subtypes. METHODS We performed scRNA-seq of 18,403 cells unbiasedly collected from 7 treatment-naive HGSTOC tumours. For each phenotypic cluster of tumour or stromal cells, we identified specific transcriptomic markers. We explored which phenotypic clusters correlated with overall survival based on expression of these transcriptomic markers in microarray data of 1467 tumours. By evaluating molecular subtype signatures in single cells, we assessed to what extent a phenotypic cluster of tumour or stromal cells contributes to each molecular subtype. RESULTS We identified 11 cancer and 32 stromal cell phenotypes in HGSTOC tumours. Of these, the relative frequency of myofibroblasts, TGF-β-driven cancer-associated fibroblasts, mesothelial cells and lymphatic endothelial cells predicted poor outcome, while plasma cells correlated with more favourable outcome. Moreover, we identified a clear cell-like transcriptomic signature in cancer cells, which correlated with worse overall survival in HGSTOC patients. Stromal cell phenotypes differed substantially between molecular subtypes. For instance, the mesenchymal, immunoreactive and differentiated signatures were characterised by specific fibroblast, immune cell and myofibroblast/mesothelial cell phenotypes, respectively. Cell phenotypes correlating with poor outcome were enriched in molecular subtypes associated with poor outcome. CONCLUSIONS We used scRNA-seq to identify stromal cell phenotypes predicting overall survival in HGSTOC patients. These stromal features explain the association of the molecular subtypes with outcome but also the latter's weakness of clinical implementation. Stratifying patients based on marker genes specific for these phenotypes represents a promising approach to predict prognosis or response to therapy.
Collapse
Affiliation(s)
- Siel Olbrecht
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium.
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium.
- VIB Centre for Cancer Biology, Leuven, Belgium.
| | - Pieter Busschaert
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Junbin Qian
- VIB Centre for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Adriaan Vanderstichele
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Liselore Loverix
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Toon Van Gorp
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Els Van Nieuwenhuysen
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Sileny Han
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - Annick Van den Broeck
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumour Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Anne-Sophie Van Rompuy
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
- Department of Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- VIB Centre for Cancer Biology, Leuven, Belgium.
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Ignace Vergote
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Gynaecologic Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|
39
|
Sasaki K, Oguchi A, Cheng K, Murakawa Y, Okamoto I, Ohta H, Yabuta Y, Iwatani C, Tsuchiya H, Yamamoto T, Seita Y, Saitou M. The embryonic ontogeny of the gonadal somatic cells in mice and monkeys. Cell Rep 2021; 35:109075. [PMID: 33951437 DOI: 10.1016/j.celrep.2021.109075] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
In the early fetal stage, the gonads are bipotent and only later become the ovary or testis, depending on the genetic sex. Despite many studies examining how sex determination occurs from biopotential gonads, the spatial and temporal organization of bipotential gonads and their progenitors is poorly understood. Here, using lineage tracing in mice, we find that the gonads originate from a T+ primitive streak through WT1+ posterior intermediate mesoderm and appear to share origins anteriorly with the adrenal glands and posteriorly with the metanephric mesenchyme. Comparative single-cell transcriptomic analyses in mouse and cynomolgus monkey embryos reveal the convergence of the lineage trajectory and genetic programs accompanying the specification of biopotential gonadal progenitor cells. This process involves sustained expression of epithelial genes and upregulation of mesenchymal genes, thereby conferring an epithelial-mesenchymal hybrid state. Our study provides key resources for understanding early gonadogenesis in mice and primates.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Keren Cheng
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Yasunari Seita
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Bell Research Center for Reproductive Health and Cancer, Nagoya 460-0003, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
40
|
Rehnitz J, Youness B, Nguyen XP, Dietrich JE, Roesner S, Messmer B, Strowitzki T, Vogt PH. FMR1 expression in human granulosa cells and variable ovarian response: control by epigenetic mechanisms. Mol Hum Reprod 2021; 27:6119639. [PMID: 33493269 DOI: 10.1093/molehr/gaab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
In humans, FMR1 (fragile X mental retardation 1) is strongly expressed in granulosa cells (GCs) of the female germline and apparently controls efficiency of folliculogenesis. Major control mechanism(s) of the gene transcription rate seem to be based on the rate of CpG-methylation along the CpG island promoter. Conducting CpG-methylation-specific bisulfite-treated PCR assays and subsequent sequence analyses of both gene alleles, revealed three variably methylated CpG domains (FMR1-VMR (variably methylated region) 1, -2, -3) and one completely unmethylated CpG-region (FMR1-UMR) in this extended FMR1-promoter-region. FMR1-UMR in the core promoter was exclusively present only in female GCs, suggesting expression from both gene alleles, i.e., escaping the female-specific X-inactivation mechanism for the second gene allele. Screening for putative target sites of transcription factors binding with CpG methylation dependence, we identified a target site for the transcriptional activator E2F1 in FMR1-VMR3. Using specific electrophoretic mobility shift assays, we found E2F1 binding efficiency to be dependent on CpG-site methylation in its target sequence. Comparative analysis of these CpGs revealed that CpG 94-methylation in primary GCs of women with normal and reduced efficiency of folliculogenesis statistically significant differences. We therefore conclude that E2F1 binding to FMR1-VMR3 in human GCs is part of an epigenetic mechanism regulating the efficiency of human folliculogenesis. Our data indicate that epigenetic mechanisms may control GC FMR1-expression rates.
Collapse
Affiliation(s)
- Julia Rehnitz
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany.,Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Berthe Youness
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Xuan Phuoc Nguyen
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Jens E Dietrich
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Sabine Roesner
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Birgitta Messmer
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynecologic Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| | - Peter H Vogt
- Division of Reproduction Genetics, Department of Gynecological Endocrinology and Fertility Disorders, University Women Hospital, Heidelberg, Germany
| |
Collapse
|
41
|
Idrees M, Kumar V, Joo MD, Ali N, Lee KW, Kong IK. SHP2 Nuclear/Cytoplasmic Trafficking in Granulosa Cells Is Essential for Oocyte Meiotic Resumption and Maturation. Front Cell Dev Biol 2021; 8:611503. [PMID: 33553147 PMCID: PMC7862566 DOI: 10.3389/fcell.2020.611503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Src-homology-2-containing phosphotyrosine phosphatase (SHP2), a classic cytoplasmic protein and a major regulator of receptor tyrosine kinases and G protein-coupled receptors, plays a significant role in preimplantation embryo development. In this study, we deciphered the role of SHP2 in the somatic compartment of oocytes during meiotic maturation. SHP2 showed nuclear/cytoplasmic localization in bovine cumulus and human granulosa (COV434) cells. Follicle-stimulating hormone (FSH) treatment significantly enhanced cytoplasmic SHP2 localization, in contrast to the E2 treatment, which augmented nuclear localization. Enhanced cytoplasmic SHP2 was found to negatively regulate the expression of the ERα-transcribed NPPC and NPR2 mRNAs, which are vital for oocyte meiotic arrest. The co-immunoprecipitation results revealed the presence of the SHP2/ERα complex in the germinal vesicle-stage cumulus-oocyte complexes, and this complex significantly decreased with the progression of meiotic maturation. The complex formation between ERα and SHP2 was also confirmed by using a series of computational modeling methods. To verify the correlation between SHP2 and NPPC/NPR2, SHP2 was knocked down via RNA interference, and NPPC and NPR2 mRNAs were analyzed in the control, E2, and FSH-stimulated COV434 cells. Furthermore, phenyl hydrazonopyrazolone sulfonate 1, a site-directed inhibitor of active SHP2, showed no significant effect on the ERα-transcribed NPPC and NPR2 mRNAs. Taken together, these findings support a novel nuclear/cytoplasmic role of SHP2 in oocyte meiotic resumption and maturation.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Vikas Kumar
- Division of Applied Life Science, Department of Bio and Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Niaz Ali
- Institute of Basic Medical Sciences, Khybar Medical University, Peshawar, Pakistan
| | - Keun-Woo Lee
- Division of Applied Life Science, Department of Bio and Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea.,The King Kong Corp. Ltd., Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
42
|
Li J, Zhou Y, Zhou Z, Lin C, Wei J, Qin Y, Xiang Z, Ma H, Zhang Y, Zhang Y, Yu Z. Comparative transcriptome analysis of three gonadal development stages reveals potential genes involved in gametogenesis of the fluted giant clam (Tridacna squamosa). BMC Genomics 2020; 21:872. [PMID: 33287701 PMCID: PMC7720611 DOI: 10.1186/s12864-020-07276-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gonad development and differentiation is an essential function for all sexually reproducing species, and many aspects of these developmental processes are highly conserved among the metazoa. However, the mechanisms underlying gonad development and gametogenesis remain unclear in Tridacna squamosa, a large-size bivalve of great ecological value. They are protandrous simultaneous hermaphrodites, with the male gonad maturing first, eventually followed by the female gonads. In this study, nine gonad libraries representing resting, male and hermaphrodite stages in T. squamosa were performed to identify the molecular mechanisms. RESULTS Sixteen thousand four hundred ninety-one unigenes were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 5091 and 7328 unigenes were assigned to Gene Ontology categories and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database, respectively. A total of 4763 differentially expressed genes (DEGs) were identified by comparing male to resting gonads, consisting of 3499 which were comparatively upregulated in males and 1264 which were downregulated in males. Six hundred-ninteen DEGs between male and hermaphroditic gonads were identified, with 518 DEGs more strongly expressed in hermaphrodites and 101 more strongly expressed in males. GO (Gene Ontology) and KEGG pathway analyses revealed that various biological functions and processes, including functions related to the endocrine system, oocyte meiosis, carbon metabolism, and the cell cycle, were involved in regulating gonadal development and gametogenesis in T. squamosa. Testis-specific serine/threonine kinases 1 (TSSK1), TSSK4, TSSK5, Doublesex- and mab-3-related transcription factor 1 (DMRT1), SOX, Sperm surface protein 17 (SP17) and other genes were involved in male gonadal development in Tridacna squamosal. Both spermatogenesis- (TSSK4, spermatogenesis-associated protein 17, spermatogenesis-associated protein 8, sperm motility kinase X, SP17) and oogenesis-related genes (zona pellucida protein, Forkhead Box L2, Vitellogenin, Vitellogenin receptor, 5-hydroxytryptamine, 5-hydroxytryptamine receptor) were simultaneously highly expressed in the hermaphroditic gonad to maintain the hermaphroditism of T. squamosa. CONCLUSION All these results from our study will facilitate better understanding of the molecular mechanisms underlying giant clam gonad development and gametogenesis, which can provided a base on obtaining excellent gametes during the seed production process for giant clams.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yinyin Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihua Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanxu Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jinkuan Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yanpin Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
43
|
Zhao H, Jiang A, Yu M, Bao H. Identification of biomarkers correlated with diagnosis and prognosis of endometrial cancer using bioinformatics analysis. J Cell Biochem 2020; 121:4908-4921. [PMID: 32692884 DOI: 10.1002/jcb.29819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Endometrial cancer (EC) is one of the most common malignancies in the female genital system, characterized by high mortality and recurrence rates. This study attempted to screen key genes and potential prognostic biomarkers for EC using bioinformatics analysis. Twenty-seven normal endometrial tissues and 135 EC samples were collected from four Gene Expression Omnibus (GEO) databases, then we identified the differentially expressed genes (DEGs) and conducted downstream analyses. Moreover, we screened hub genes by constructing a protein-protein interaction (PPI) network. Finally, we assessed the prognostic values and molecular mechanism of the potential prognostic genes using the Kaplan-Meier curve and Gene Set Enrichment Analysis (GSEA). As a result, 28 upregulated and 94 downregulated genes were determined after gene integration of these four GEO data sets. Gene Ontology analysis indicated that DEGs were mainly involved in transcriptional regulation and cell proliferation. The Kyoto Encyclopedia of Gene and Genome pathway analysis primarily related to transcriptional misregulation and apoptosis. Moreover, the PPI analysis revealed 10 hub genes (JUN, UBE2I, GATA2, WT1, PIAS1, FOXL2, RUNXI, EZR, TCF4, and NR2F2) with a high degree of connectivity, among them, the expression tendency of nine genes except UBE2I were consistent with messenger RNA level from The Cancer Genome Atlas data. Furthermore, only FOXL2, TCF4, and NR2F2 were significantly correlated with prognosis of EC patients, and their low expression associated biological pathways were enriched in the cell cycle and fatty acid metabolism. In conclusion, this study identified three key genes as biomarkers and potential therapeutic targets of EC on the basis of integrated bioinformatics analysis. The findings will improve our comprehension of the molecular mechanisms underlying the pathogenesis and prognosis of EC.
Collapse
Affiliation(s)
- Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Aihua Jiang
- Department of Anesthesia, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Mingwei Yu
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hongchu Bao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
44
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
45
|
Roly ZY, Godini R, Estermann MA, Major AT, Pocock R, Smith CA. Transcriptional landscape of the embryonic chicken Müllerian duct. BMC Genomics 2020; 21:688. [PMID: 33008304 PMCID: PMC7532620 DOI: 10.1186/s12864-020-07106-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background Müllerian ducts are paired embryonic tubes that give rise to the female reproductive tract in vertebrates. Many disorders of female reproduction can be attributed to anomalies of Müllerian duct development. However, the molecular genetics of Müllerian duct formation is poorly understood and most disorders of duct development have unknown etiology. In this study, we describe for the first time the transcriptional landscape of the embryonic Müllerian duct, using the chicken embryo as a model system. RNA sequencing was conducted at 1 day intervals during duct formation to identify developmentally-regulated genes, validated by in situ hybridization. Results This analysis detected hundreds of genes specifically up-regulated during duct morphogenesis. Gene ontology and pathway analysis revealed enrichment for developmental pathways associated with cell adhesion, cell migration and proliferation, ERK and WNT signaling, and, interestingly, axonal guidance. The latter included factors linked to neuronal cell migration or axonal outgrowth, such as Ephrin B2, netrin receptor, SLIT1 and class A semaphorins. A number of transcriptional modules were identified that centred around key hub genes specifying matrix-associated signaling factors; SPOCK1, HTRA3 and ADGRD1. Several novel regulators of the WNT and TFG-β signaling pathway were identified in Müllerian ducts, including APCDD1 and DKK1, BMP3 and TGFBI. A number of novel transcription factors were also identified, including OSR1, FOXE1, PRICKLE1, TSHZ3 and SMARCA2. In addition, over 100 long non-coding RNAs (lncRNAs) were expressed during duct formation. Conclusions This study provides a rich resource of new candidate genes for Müllerian duct development and its disorders. It also sheds light on the molecular pathways engaged during tubulogenesis, a fundamental process in embryonic development.
Collapse
Affiliation(s)
- Zahida Yesmin Roly
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Rasoul Godini
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Martin A Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Roger Pocock
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.
| |
Collapse
|
46
|
El-Tarabany MS, Saleh AA, El-Araby IE, El-Magd MA. Association of LEPR polymorphisms with egg production and growth performance in female Japanese quails. Anim Biotechnol 2020; 33:599-611. [PMID: 32865111 DOI: 10.1080/10495398.2020.1812617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to screen intron 8 of the leptin receptor (LEPR) gene for polymorphisms in female Japanese quails. Two adjacent novel SNPs (A277G and A304G) were detected using PCR-SSCP and sequencing. These SNPs produced three haplotypes (AA/AA, AG/AG, and GG/GG) that were significantly (p ≤ 0.05) associated with growth and egg production traits. GG/GG haplotype-quails had significantly (p ≤ 0.05) lower egg production, feed intake, growth performance, lipid profile, serum levels of sex hormones (estradiol, progesterone, FSH, LH), and ovarian expressions of survivin, FSHR, and IGF1 than other quails. However, GG/GG quails had significantly (p ≤ 0.05) higher serum levels of LEP and mRNA levels of LEPR, LEP, and caspase 3 in the hypothalamus and ovaries. These higher levels of LEP/LEPR could not only reduce feed intake and body weight gain but also could induce apoptosis of ovarian cells (as indicated by lower survivin and IGF1 and higher caspase3 expression) which could inhibit the development of the follicles and the release of sex hormones with a subsequent decrease in egg production in GG/GG quails. Therefore, with these results, we suggest selecting Japanese quails with AA/AA and AG/AG haplotypes to improve the reproduction and growth performance of this flock.
Collapse
Affiliation(s)
- Mahmoud S El-Tarabany
- Department of Animal Wealth Development, Animal Breeding and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Saleh
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Iman E El-Araby
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Zagazig, Egypt
| |
Collapse
|
47
|
Li R, Wu SP, Zhou L, Nicol B, Lydon JP, Yao HHC, DeMayo FJ. Increased FOXL2 expression alters uterine structures and functions†. Biol Reprod 2020; 103:951-965. [PMID: 32948877 DOI: 10.1093/biolre/ioaa143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
The transcription factor forkhead box L2 (FOXL2) regulates sex differentiation and reproductive function. Elevated levels of this transcription factor have been observed in the diseases of the uterus, such as endometriosis. However, the impact of elevated FOXL2 expression on uterine physiology remains unknown. In order to determine the consequences of altered FOXL2 in the female reproductive axis, we generated mice with over-expression of FOXL2 (FOXL2OE) by crossing Foxl2LsL/+ with the Progesterone receptor Pgrcre model. FOXL2OE uterus showed severe morphological abnormality including abnormal epithelial stratification, blunted adenogenesis, increased endometrial fibrosis, and disrupted myometrial morphology. In contrast, increasing FOXL2 levels specifically in uterine epithelium by crossing the Foxl2LsL/+ with the lactoferrin Ltficre mice resulted in the eFOXL2OE mice with uterine epithelial stratification but without defects in endometrial fibrosis and adenogenesis, demonstrating a role of the endometrial stroma in the uterine abnormalities of the FOXL2OE mice. Transcriptomic analysis of 12 weeks old Pgrcre and FOXL2OE uterus at diestrus stage showed multiple signaling pathways related with cellular matrix, wnt/β-catenin, and altered cell cycle. Furthermore, we found FOXL2OE mice were sterile. The infertility was caused in part by a disruption of the hypophyseal ovarian axis resulting in an anovulatory phenotype. The FOXL2OE mice failed to show decidual responses during artificial decidualization in ovariectomized mice demonstrating the uterine contribution to the infertility phenotype. These data support that aberrantly increased FOXL2 expressions in the female reproductive tract can disrupt ovarian and uterine functions.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lecong Zhou
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
48
|
Phytoestrogen genistein hinders ovarian oxidative damage and apoptotic cell death-induced by ionizing radiation: co-operative role of ER-β, TGF-β, and FOXL-2. Sci Rep 2020; 10:13551. [PMID: 32782329 PMCID: PMC7419553 DOI: 10.1038/s41598-020-70309-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/14/2020] [Indexed: 01/17/2023] Open
Abstract
Radiotherapy is a well-known cause of premature ovarian failure (POF). Therefore, we investigated the molecular influence of genistein (GEN) on the ovarian reserve of rats exposed to ϒ-radiation. Female Sprague Dawley rats were exposed to a 3.2 Gy γ-radiation to induce POF and/or treated with either GEN (5 mg/kg, i.p.) or Ethinyl estradiol (E2; 0.1 mg/kg, s.c.), once daily for 10 days. GEN was able to conserve primordial follicles stock and population of growing follicles accompanied with reduction in atretic follicles. GEN restored the circulating estradiol and anti-Müllerian hormone levels which were diminished after irradiation. GEN has potent antioxidant activity against radiation-mediated oxidative stress through upregulating endogenous glutathione levels and glutathione peroxidase activity. Mechanistically, GEN inhibited the intrinsic pathway of apoptosis by repressing Bax expression and augmenting Bcl-2 expression resulted in reduced Bax/Bcl-2 ratio with subsequent reduction in cytochrome c and caspase 3 expression. These promising effects of GEN are associated with improving granulosa cells proliferation. On the molecular basis, GEN reversed ovarian apoptosis through up-regulation of ER-β and FOXL-2 with downregulation of TGF-β expression, therefore inhibiting transition of primordial follicles to more growing follicles. GEN may constitute a novel therapeutic modality for safeguarding ovarian function of females' cancer survivors.
Collapse
|
49
|
Luo W, Gu L, Li J, Gong Y. Transcriptome sequencing revealed that knocking down FOXL2 affected cell proliferation, the cell cycle, and DNA replication in chicken pre-ovulatory follicle cells. PLoS One 2020; 15:e0234795. [PMID: 32645018 PMCID: PMC7347172 DOI: 10.1371/journal.pone.0234795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Forkhead box L2 (FOXL2) is a single-exon gene encoding a forkhead transcription factor, which is mainly expressed in the ovary, eyelids and the pituitary gland. FOXL2 plays an essential role in ovarian development. To reveal the effects of FOXL2 on the biological process and gene expression of ovarian granulosa cells (GCs), we established stable FOXL2-knockdown GCs and then analysed them using transcriptome sequencing. It was observed that knocking down FOXL2 affected the biological processes of cell proliferation, DNA replication, and apoptosis and affected cell cycle progression. FOXL2 knockdown promoted cell proliferation and DNA replication, decreased cell apoptosis, and promoted mitosis. In addition, by comparing the transcriptome after FOXL2 knockdown, we found a series of DEGs (differentially expressed genes) and related pathways. These results indicated that, through mediating these genes and pathways, the FOXL2 might induce the cell proliferation, cycle, and DNA replication, and play a key role during ovarian development and maintenance.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Guilin Medical University, Guilin, Guangxi, China
| | - Lantao Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Guilin Medical University, Guilin, Guangxi, China
| | - Jinqiu Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
50
|
Ge J, Jiang L, Tian Y, Zheng M, Huang M, Li J. FOXL2 expression might be a novel prognostic biomarker in patients with laryngeal squamous cell carcinoma. J Int Med Res 2020; 48:300060520919252. [PMID: 32517588 PMCID: PMC7218937 DOI: 10.1177/0300060520919252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives This study aimed to explore the expression profile of the Forkhead box protein L2 gene (FOXL2) and to determine its prognostic value and associated epigenetic and genetic alterations in patients with laryngeal squamous cell carcinoma (LSCC). Materials and methods Data for a subset of patients with LSCC (N = 116) were extracted from the head and neck squamous cell carcinoma dataset of The Cancer Genome Atlas and analyzed in relation to FOXL2 expression and survival. Results Aberrant FOXL2 expression was an independent prognostic factor for progression-free survival (PFS) (hazard ratio (HR): 2.63, 95% confidence interval (CI): 1.34–5.18) and overall survival (OS) (HR: 2.39, 95%CI: 1.28–4.46). Two gene-body CpG sites (cg10554436 and cg23637494) were moderately and positively correlated with FOXL2 expression. DNA amplification (+2/+1) was common (82/115, 71%) in LSCC, and FOXL2 expression was significantly upregulated in the high-amplification group (+2) compared with copy-neutral (0) cases. Conclusion Aberrant FOXL2 expression may be a novel prognostic biomarker for PFS and OS among patients with LSCC. FOXL2 upregulation may be related to gene-body hypermethylation and DNA amplification.
Collapse
Affiliation(s)
- Jun Ge
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuke Tian
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Min Zheng
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Meiling Huang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Juan Li
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|