1
|
Reed RM, Shojaee-Moradie F, Whelehan G, Jackson N, Witard OC, Umpleby M, Fielding BA, Whyte MB, Goff LM. Ethnic differences in postprandial fatty acid trafficking and utilization between overweight and obese White European and Black African-Caribbean men. Am J Physiol Endocrinol Metab 2024; 327:E585-E597. [PMID: 39082902 PMCID: PMC11482259 DOI: 10.1152/ajpendo.00164.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/28/2024]
Abstract
Black African-Caribbean (BAC) populations are at greater risk of cardiometabolic disease than White Europeans (WE), despite exhibiting lower fasting triacylglycerol (TAG) concentrations. However, limited data exist regarding postprandial fatty acid metabolism in BAC populations. This study determined the ethnic differences in postprandial fatty acid metabolism between overweight and obese WE and BAC men. WE [n = 10, age 33.3 ± 1.7 yr; body mass index (BMI) = 26.8 (25.8-31.0) kg/m2] and BAC [n = 9, age 27.9 ± 1.0 yr; BMI = 27.5 (26.0-28.6) kg/m2] men consumed two consecutive (at 0 and 300 min) moderate-to-high-fat meals-the first labeled with [U-13C]palmitate. The plasma concentration and appearance of meal-derived fatty acids in very-low-density lipoprotein (VLDL)-TAG, chylomicron-TAG, and nonesterified fatty acid (NEFA) were determined over an 8-h postprandial period. Indirect calorimetry with 13CO2 enrichment determined total and meal-derived fatty acid oxidation rates, and plasma β-hydroxybutyrate (3-OHB) concentration was measured to assess ketogenesis. BAC exhibited lower postprandial TAG [area under the curve (AUC0-480) = 671 (563-802) vs. 469 (354-623) mmol/L/min, P = 0.022] and VLDL-TAG [AUC0-480 = 288 ± 30 vs. 145 ± 27 mmol/L/min, P = 0.003] concentrations than WE. The appearance of meal-derived fatty acids in VLDL-TAG was lower in BAC than in WE (AUC0-480 = 133 ± 12 vs. 78 ± 13 mmol/L/min, P = 0.007). Following the second meal, BAC showed a trend for lower chylomicron-TAG concentration [AUC300-480 = 69 (51-93) vs. 43 (28-67) mmol/L/min, P = 0.057]. There were no ethnic differences in the appearance of chylomicron-TAG, cumulative fatty acid oxidation, and the NEFA:3-OHB ratio (P > 0.05). In conclusion, BAC exhibit lower postprandial TAG concentrations compared with WE men, driven by lower VLDL-TAG concentrations and possibly lower chylomicron-TAG in the late postprandial period. These findings suggest that postprandial fatty acid trafficking may be a less important determinant of cardiometabolic risk in BAC than in WE men.NEW & NOTEWORTHY Postprandial TAG is lower in Black African-Caribbean men than in White European men, and this is likely driven by lower meal-derived VLDL-TAG in Black African-Caribbean men. This observation could suggest that fatty acid trafficking may be a less important determinant of cardiometabolic risk in Black Africans than in White European men.
Collapse
Affiliation(s)
- Reuben M Reed
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Fariba Shojaee-Moradie
- Centre for Endocrinology, Diabetes and Research, Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| | - Gráinne Whelehan
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Leicester, United Kingdom
| | - Nicola Jackson
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Oliver C Witard
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Margot Umpleby
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Barbara A Fielding
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Martin B Whyte
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louise M Goff
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Leicester, United Kingdom
| |
Collapse
|
2
|
Mezincescu AM, Rudd A, Cheyne L, Horgan G, Philip S, Cameron D, van Loon L, Whitfield P, Gribbin R, Hu MK, Delibegovic M, Fielding B, Lobley G, Thies F, Newby DE, Gray S, Henning A, Dawson D. Comparison of intramyocellular lipid metabolism in patients with diabetes and male athletes. Nat Commun 2024; 15:3690. [PMID: 38750012 PMCID: PMC11096352 DOI: 10.1038/s41467-024-47843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Despite opposing insulin sensitivity and cardiometabolic risk, both athletes and patients with type 2 diabetes have increased skeletal myocyte fat storage: the so-called "athlete's paradox". In a parallel non-randomised, non-blinded trial (NCT03065140), we characterised and compared the skeletal myocyte lipid signature of 29 male endurance athletes and 30 patients with diabetes after undergoing deconditioning or endurance training respectively. The primary outcomes were to assess intramyocellular lipid storage of the vastus lateralis in both cohorts and the secondary outcomes were to examine saturated and unsaturated intramyocellular lipid pool turnover. We show that athletes have higher intramyocellular fat saturation with very high palmitate kinetics, which is attenuated by deconditioning. In contrast, type 2 diabetes patients have higher unsaturated intramyocellular fat and blunted palmitate and linoleate kinetics but after endurance training, all were realigned with those of deconditioned athletes. Improved basal insulin sensitivity was further associated with better serum cholesterol/triglycerides, glycaemic control, physical performance, enhanced post insulin receptor pathway signalling and metabolic sensing. We conclude that insulin-resistant, maladapted intramyocellular lipid storage and turnover in patients with type 2 diabetes show reversibility after endurance training through increased contributions of the saturated intramyocellular fatty acid pools. Clinical Trial Registration: NCT03065140: Muscle Fat Compartments and Turnover as Determinant of Insulin Sensitivity (MISTY).
Collapse
Affiliation(s)
- Alice M Mezincescu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Amelia Rudd
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Lesley Cheyne
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Sam Philip
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Donnie Cameron
- C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Luc van Loon
- University of Maastricht, Maastricht, The Netherlands
| | | | | | - May Khei Hu
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | | | - Gerald Lobley
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - Frank Thies
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - David E Newby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | | | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
3
|
Reed RM, Whyte MB, Goff LM. Cardiometabolic disease in Black African and Caribbean populations: an ethnic divergence in pathophysiology? Proc Nutr Soc 2023:1-11. [PMID: 38230432 DOI: 10.1017/s0029665123004895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In the UK, populations of Black African and Caribbean (BAC) ethnicity suffer higher rates of cardiometabolic disease than White Europeans (WE). Obesity, leading to increased visceral adipose tissue (VAT) and intrahepatic lipid (IHL), has long been associated with cardiometabolic risk, driving insulin resistance and defective fatty acid/lipoprotein metabolism. These defects are compounded by a state of chronic low-grade inflammation, driven by dysfunctional adipose tissue. Emerging evidence has highlighted associations between central complement system components and adipose tissue, fatty acid metabolism and inflammation; it may therefore sit at the intersection of various cardiometabolic disease risk factors. However, increasing evidence suggests an ethnic divergence in pathophysiology, whereby current theories fail to explain the high rates of cardiometabolic disease in BAC populations. Lower fasting and postprandial TAG has been reported in BAC, alongside lower VAT and IHL deposition, which are paradoxical to the high rates of cardiometabolic disease exhibited by this ethnic group. Furthermore, BAC have been shown to exhibit a more anti-inflammatory profile, with lower TNF-α and greater IL-10. In contrast, recent evidence has revealed greater complement activation in BAC compared to WE, suggesting its dysregulation may play a greater role in the high rates of cardiometabolic disease experienced by this population. This review outlines the current theories of how obesity is proposed to drive cardiometabolic disease, before discussing evidence for ethnic differences in disease pathophysiology between BAC and WE populations.
Collapse
Affiliation(s)
- Reuben M Reed
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Martin B Whyte
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7WG, UK
| | - Louise M Goff
- Leicester Diabetes Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
4
|
Yang RJ, Zou J, Liu JY, Dai JK, Wan JB. Click chemistry-based enrichment strategy for tracing cellular fatty acid metabolism by LC-MS/MS. J Pharm Anal 2023; 13:1221-1231. [PMID: 38024853 PMCID: PMC10657974 DOI: 10.1016/j.jpha.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 12/01/2023] Open
Abstract
Fatty acids (FAs), which were initially recognized as energy sources and essential building blocks of biomembranes, serve as the precursors of important signaling molecules. Tracing FA metabolism is essential to understanding the biochemical activity and role of FAs in physiological and pathological events. Inspired by the advances in click chemistry for protein enrichment, we herein established a click chemistry-based enrichment (CCBE) strategy for tracing the cellular metabolism of eicosapentaenoic acid (EPA, 20:5 n-3) in neural cells. Terminal alkyne-labeled EPA (EPAA) used as a surrogate was incubated with N2a, mouse neuroblastoma cells, and alkyne-labeled metabolites (ALMs) were selectively captured by an azide-modified resin via a Cu(I)-catalyzed azide-alkyne cycloaddition reaction for enrichment. After removing unlabeled metabolites, ALMs containing a triazole moiety were cleaved from solid-phase resins and subjected to liquid chromatography mass spectrometry (LC-MS) analysis. The proposed CCBE strategy is highly selective for capturing and enriching alkyne-labeled metabolites from the complicated matrices. In addition, this method can overcome current detection limits by enhancing MS sensitivity of targets, improving the chromatographic separation of sn-position glycerophospholipid regioisomers, facilitating structural characterization of ALMs by a specific MS/MS fragmentation signature, and providing versatile fluorescence detection of ALMs for cellular distribution. This CCBE strategy might be expanded to trace the metabolism of other FAs, small molecules, or drugs.
Collapse
Affiliation(s)
- Ru-Jie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jia-Yue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
5
|
Molecular Mechanism for Hepatic Glycerolipid Partitioning of n-6/n-3 Fatty Acid Ratio in an Obese Animal Biomodels. Int J Mol Sci 2023; 24:ijms24021576. [PMID: 36675096 PMCID: PMC9864240 DOI: 10.3390/ijms24021576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The n-6/n-3 metabolic pathway associated with hepatic glycerolipid portioning plays a key role in preventing obesity. In this nutrition metabolism study, we used in vivo monitoring techniques with 40 obese male Sprague-Dawley strain rats attached with jugular-vein cannula after obesity was induced by a high-fat diet to determine the molecular mechanism associated with hepatic glycerolipid partitioning involving the n-6/n-3 metabolic pathway. Rats were randomly assigned to four groups (10 animals per group), including one control group (CON, n-6/n-3 of 71:1) and three treatment groups (n-6/n-3 of 4:1, 15:1 and 30:1). They were fed with experimental diets for 60 days. Incorporation rates of [14C]-labeling lipid into glycerolipid in the liver were 28.87−37.03% in treatment groups fed with diets containing an n-6/n-3 ratio of 4:1, 15:1 and 30:1, which were significantly (p < 0.05) lower than that in the CON (40.01%). However, 14CO2 emission % of absorbed dose showed the opposite trend. It was significantly (p < 0.05) higher in a treatment groups (n-6/n-3 of 4:1, 15:1 and 30:1, 30.35−45.08%) than in CON (27.71%). Regarding the metabolic distribution of glycerolipid to blood from livers, phospholipid/total glycerolipid (%) was significantly (p < 0.05) lower in CON at 11.04% than in treatment groups at 18.15% to 25.15%. Moreover, 14CO2/[14C]-total glycerolipid (%) was significantly (p < 0.05) higher in treatment groups at 44.16−78.50% than in CON at 39.50%. Metabolic distribution of fatty acyl moieties flux for oxidation and glycerolipid synthesis in the liver were significantly (p < 0.05) better in order of 4:1 > 15:1 > 30:1 than in the CON. Our data demonstrate that n-6/n-3 of 4:1 could help prevent obesity by controlling the mechanism of hepatic partitioning through oxidation and esterification of glycerolipid in an obese animal biomodel.
Collapse
|
6
|
Andrew R, Stimson RH. Mapping endocrine networks by stable isotope tracing. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100381. [PMID: 39185272 PMCID: PMC11344083 DOI: 10.1016/j.coemr.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hormones regulate metabolic homeostasis through interlinked dynamic networks of proteins and small molecular weight metabolites, and state-of-the-art chemical technologies have been developed to decipher these complex pathways. Stable-isotope tracers have largely replaced radiotracers to measure flux in humans, building on advances in nuclear magnetic resonance spectroscopy and mass spectrometry. These technologies are now being applied to localise molecules within tissues. Radiotracers are still highly valuable both preclinically and in 3D imaging by positron emission tomography. The coming of age of vibrational spectroscopy in conjunction with stable-isotope tracing offers detailed cellular insights to map complex biological processes. Together with computational modelling, these approaches are poised to coalesce into multi-modal platforms to provide hitherto inaccessible dynamic and spatial insights into endocrine signalling.
Collapse
Affiliation(s)
- Ruth Andrew
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Roland H Stimson
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|
7
|
Hazlehurst JM, Lim TR, Charlton C, Miller JJ, Gathercole LL, Cornfield T, Nikolaou N, Harris SE, Moolla A, Othonos N, Heather LC, Marjot T, Tyler DJ, Carr C, Hodson L, McKeating J, Tomlinson JW. Acute intermittent hypoxia drives hepatic de novo lipogenesis in humans and rodents. Metabol Open 2022; 14:100177. [PMID: 35313531 PMCID: PMC8933516 DOI: 10.1016/j.metop.2022.100177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 02/09/2023] Open
Abstract
Background and aims Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition. It is tightly associated with an adverse metabolic phenotype (including obesity and type 2 diabetes) as well as with obstructive sleep apnoea (OSA) of which intermittent hypoxia is a critical component. Hepatic de novo lipogenesis (DNL) is a significant contributor to hepatic lipid content and the pathogenesis of NAFLD and has been proposed as a key pathway to target in the development of pharmacotherapies to treat NAFLD. Our aim is to use experimental models to investigate the impact of hypoxia on hepatic lipid metabolism independent of obesity and metabolic disease. Methods Human and rodent studies incorporating stable isotopes and hyperinsulinaemic euglycaemic clamp studies were performed to assess the regulation of DNL and broader metabolic phenotype by intermittent hypoxia. Cell-based studies, including pharmacological and genetic manipulation of hypoxia-inducible factors (HIF), were used to examine the underlying mechanisms. Results Hepatic DNL increased in response to acute intermittent hypoxia in humans, without alteration in glucose production or disposal. These observations were endorsed in a prolonged model of intermittent hypoxia in rodents using stable isotopic assessment of lipid metabolism. Changes in DNL were paralleled by increases in hepatic gene expression of acetyl CoA carboxylase 1 and fatty acid synthase. In human hepatoma cell lines, hypoxia increased both DNL and fatty acid uptake through HIF-1α and -2α dependent mechanisms. Conclusions These studies provide robust evidence linking intermittent hypoxia and the regulation of DNL in both acute and sustained in vivo models of intermittent hypoxia, providing an important mechanistic link between hypoxia and NAFLD.
Collapse
Affiliation(s)
- Jonathan M. Hazlehurst
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK
- Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Teegan Reina Lim
- Department of Gastro & Hepatology, Singapore General Hospital, Outram Road, 544894, Singapore
| | - Catriona Charlton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jack J. Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, University of Oxford, Oxford, OX1 3PT, UK
- Department of Physics, Clarendon Laboratory, Parks Road, OX1 3PUT, Oxford, UK
| | - Laura L. Gathercole
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Shelley E. Harris
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Ahmad Moolla
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Nantia Othonos
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Lisa C. Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Damian J. Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, University of Oxford, Oxford, OX1 3PT, UK
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, University of Oxford, Oxford, OX1 3PT, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jane McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jeremy W. Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| |
Collapse
|
8
|
Gómez-Vilarrubla A, Mas-Parés B, Díaz M, Xargay-Torrent S, Carreras-Badosa G, Jové M, Martin-Gari M, Bonmatí-Santané A, de Zegher F, Ibañez L, López-Bermejo A, Bassols J. Fatty acids in the placenta of appropiate- versus small-for-gestational-age infants at term birth. Placenta 2021; 109:4-10. [PMID: 33895685 DOI: 10.1016/j.placenta.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Fatty acids are essential nutrients for the fetus and are supplied by the mother through the placenta. Desaturase and elongase enzymes play an important role in modulating the fatty acid composition of body tissues. We aimed to compare the fatty acid profile and the estimated desaturase and elongase activities in the placenta of appropriate (AGA) versus small-for-gestational-age (SGA), and to determine their relationship with the offspring size at birth. METHODS The placental fatty acid profile was analyzed by gas chromatography in 84 infants (45 AGA and 30 SGA) from a prenatal cohort study. The estimated desaturase and elongase activities were calculated from product-precursor fatty acid ratios. Results were associated with maternal (age, body mass index and weight gain during gestation) and neonatal (gestational age, sex, birth weight and birth length) parameters. RESULTS Differences in placental fatty acid composition between AGA and SGA infants rather than correlations thereof with neonatal parameters were observed. Placentas from SGA infants contained lower levels of omega-3 (ALA, EPA, DPA, and DHA) and high omega-6/omega-3 ratios (AA/DHA and LA/ALA), as well as low elongase (Elovl5) and high desaturase (D9Dn7 and D5Dn6) activity as compared to AGA infants (all p < 0.0001). DISCUSSION Placentas of AGA and SGA infants differed in fatty acids profile as well as in estimated desaturase and elongase activities. A striking feature of SGA placentas was the low availability of omega-3. Hence, omega-3 fatty acid status deserves further attention, as a potential target of prenatal interventions.
Collapse
Affiliation(s)
- Ariadna Gómez-Vilarrubla
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Berta Mas-Parés
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Marta Díaz
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950, Esplugues, Barcelona, Spain; CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029, Madrid, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | - Meritxell Martin-Gari
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida, Lleida, Spain
| | | | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, 3000, Leuven, Belgium
| | - Lourdes Ibañez
- Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, 08950, Esplugues, Barcelona, Spain; CIBERDEM (Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders), ISCIII, 28029, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain; Department of Pediatrics, Dr. Josep Trueta Hospital, 17007, Girona, Spain.
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research (IDIBGI), 17190, Salt, Spain.
| |
Collapse
|
9
|
Lin P, Dai L, Crooks DR, Neckers LM, Higashi RM, Fan TWM, Lane AN. NMR Methods for Determining Lipid Turnover via Stable Isotope Resolved Metabolomics. Metabolites 2021; 11:202. [PMID: 33805301 PMCID: PMC8065598 DOI: 10.3390/metabo11040202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022] Open
Abstract
Lipids comprise diverse classes of compounds that are important for the structure and properties of membranes, as high-energy fuel sources and as signaling molecules. Therefore, the turnover rates of these varied classes of lipids are fundamental to cellular function. However, their enormous chemical diversity and dynamic range in cells makes detailed analysis very complex. Furthermore, although stable isotope tracers enable the determination of synthesis and degradation of complex lipids, the numbers of distinguishable molecules increase enormously, which exacerbates the problem. Although LC-MS-MS (Liquid Chromatography-Tandem Mass Spectrometry) is the standard for lipidomics, NMR can add value in global lipid analysis and isotopomer distributions of intact lipids. Here, we describe new developments in NMR analysis for assessing global lipid content and isotopic enrichment of mixtures of complex lipids for two cell lines (PC3 and UMUC3) using both 13C6 glucose and 13C5 glutamine tracers.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA; (P.L.); (R.M.H.); (T.W-M.F.)
| | - Li Dai
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.D.); (D.R.C.); (L.M.N.)
| | - Daniel R. Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.D.); (D.R.C.); (L.M.N.)
| | - Leonard M. Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (L.D.); (D.R.C.); (L.M.N.)
| | - Richard M. Higashi
- Center for Environmental and Systems Biochemistry, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA; (P.L.); (R.M.H.); (T.W-M.F.)
- Department Toxicology & Cancer Biology, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA; (P.L.); (R.M.H.); (T.W-M.F.)
- Department Toxicology & Cancer Biology, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA; (P.L.); (R.M.H.); (T.W-M.F.)
- Department Toxicology & Cancer Biology, University of Kentucky, 789 S. Limestone St, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Behl T, Kaur I, Sehgal A, Zengin G, Brisc C, Brisc MC, Munteanu MA, Nistor-Cseppento DC, Bungau S. The Lipid Paradox as a Metabolic Checkpoint and Its Therapeutic Significance in Ameliorating the Associated Cardiovascular Risks in Rheumatoid Arthritis Patients. Int J Mol Sci 2020; 21:ijms21249505. [PMID: 33327502 PMCID: PMC7764917 DOI: 10.3390/ijms21249505] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023] Open
Abstract
While the most common manifestations associated with rheumatoid arthritis (RA) are synovial damage and inflammation, the systemic effects of this autoimmune disorder are life-threatening, and are prevalent in 0.5–1% of the population, mainly associated with cardiovascular disorders (CVDs). Such effects have been instigated by an altered lipid profile in RA patients, which has been reported to correlate with CV risks. Altered lipid paradox is related to inflammatory burden in RA patients. The review highlights general lipid pathways (exogenous and endogenous), along with the changes in different forms of lipids and lipoproteins in RA conditions, which further contribute to elevated risks of CVDs like ischemic heart disease, atherosclerosis, myocardial infarction etc. The authors provide a deep insight on altered levels of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs) in RA patients and their consequence on the cardiovascular health of the patient. This is followed by a detailed description of the impact of anti-rheumatoid therapy on the lipid profile in RA patients, comprising DMARDs, corticosteroids, anti-TNF agents, anti-IL-6 agents, JAK inhibitors and statins. Furthermore, this review elaborates on the prospects to be considered to optimize future investigation on management of RA and treatment therapies targeting altered lipid paradigms in patients.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.)
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Correspondence: (T.B.); (S.B.); Tel.: +40-726-776-588 (S.B.)
| |
Collapse
|
11
|
From a "Metabolomics fashion" to a sound application of metabolomics in research on human nutrition. Eur J Clin Nutr 2020; 74:1619-1629. [PMID: 33087891 DOI: 10.1038/s41430-020-00781-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/02/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
|
12
|
Shah AM, Wondisford FE. Tracking the carbons supplying gluconeogenesis. J Biol Chem 2020; 295:14419-14429. [PMID: 32817317 PMCID: PMC7573258 DOI: 10.1074/jbc.rev120.012758] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/12/2020] [Indexed: 11/06/2022] Open
Abstract
As the burden of type 2 diabetes mellitus (T2DM) grows in the 21st century, the need to understand glucose metabolism heightens. Increased gluconeogenesis is a major contributor to the hyperglycemia seen in T2DM. Isotope tracer experiments in humans and animals over several decades have offered insights into gluconeogenesis under euglycemic and diabetic conditions. This review focuses on the current understanding of carbon flux in gluconeogenesis, including substrate contribution of various gluconeogenic precursors to glucose production. Alterations of gluconeogenic metabolites and fluxes in T2DM are discussed. We also highlight ongoing knowledge gaps in the literature that require further investigation. A comprehensive analysis of gluconeogenesis may enable a better understanding of T2DM pathophysiology and identification of novel targets for treating hyperglycemia.
Collapse
Affiliation(s)
- Ankit M Shah
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
13
|
Othonos N, Marjot T, Woods C, Hazlehurst JM, Nikolaou N, Pofi R, White S, Bonaventura I, Webster C, Duffy J, Cornfield T, Moolla A, Isidori AM, Hodson L, Tomlinson JW. Co-administration of 5α-reductase Inhibitors Worsens the Adverse Metabolic Effects of Prescribed Glucocorticoids. J Clin Endocrinol Metab 2020; 105:5864156. [PMID: 32594135 PMCID: PMC7500580 DOI: 10.1210/clinem/dgaa408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/28/2020] [Indexed: 12/20/2022]
Abstract
CONTEXT Glucocorticoids (GCs) are commonly prescribed, but their use is associated with adverse metabolic effects. 5α-reductase inhibitors (5α-RI) are also frequently prescribed, mainly to inhibit testosterone conversion to dihydrotestosterone. However, they also prevent the inactivation of GCs. OBJECTIVE We hypothesized that 5α-RI may worsen the adverse effects of GCs. DESIGN Prospective, randomized study. PATIENTS A total of 19 healthy male volunteers (age 45 ± 2 years; body mass index 27.1 ± 0.7kg/m2). INTERVENTIONS Participants underwent metabolic assessments; 2-step hyperinsulinemic, euglycemic clamp incorporating stable isotopes, adipose tissue microdialysis, and biopsy. Participants were then randomized to either prednisolone (10 mg daily) or prednisolone (10 mg daily) plus a 5α-RI (finasteride 5 mg daily or dutasteride 0.5 mg daily) for 7 days; metabolic assessments were then repeated. MAIN OUTCOME MEASURES Ra glucose, glucose utilization (M-value), glucose oxidation, and nonesterified fatty acids (NEFA) levels. RESULTS Co-administration of prednisolone with a 5α-RI increased circulating prednisolone levels (482 ± 96 vs 761 ± 57 nmol/L, P = 0.029). Prednisolone alone did not alter Ra glucose (2.55 ± 0.34 vs 2.62 ± 0.19 mg/kg/minute, P = 0.86), M-value (3.2 ± 0.5 vs 2.7 ± 0.7 mg/kg/minute, P = 0.37), or glucose oxidation (0.042 ± 0.007 vs 0.040 ± 0.004 mmol/hr/kg/minute, P = 0.79). However, co-administration with a 5α-RI increased Ra glucose (2.67 ± 0.16 vs 3.05 ± 0.18 mg/kg/minute, P < 0.05) and decreased M-value (4.0 ± 0.5 vs 2.6 ± 0.4 mg/kg/minute, P < 0.05), and oxidation (0.043 ± 0.003 vs 0.036 ± 0.002 mmol/hr/kg, P < 0.01). Similarly, prednisolone did not impair insulin-mediated suppression of circulating NEFA (43.1 ± 28.9 vs 36.8 ± 14.3 μmol/L, P = 0.81), unless co-administered with a 5α-RI (49.8 ± 8.6 vs 88.5 ± 13.5 μmol/L, P < 0.01). CONCLUSIONS We have demonstrated that 5α-RIs exacerbate the adverse effects of prednisolone. This study has significant translational implications, including the need to consider GC dose adjustments, but also the necessity for increased vigilance for the development of adverse effects.
Collapse
Affiliation(s)
- Nantia Othonos
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Thomas Marjot
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Conor Woods
- Department of Endocrinology, Naas General Hospital, Kildare and Tallaght Hospital, Dublin, Ireland
| | - Jonathan M Hazlehurst
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Sarah White
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ilaria Bonaventura
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Craig Webster
- Department of Pathology, University Hospitals Birmingham, NHS Foundation Trust, Birmingham, UK
| | - Joanne Duffy
- Department of Pathology, University Hospitals Birmingham, NHS Foundation Trust, Birmingham, UK
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ahmad Moolla
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
- Correspondence and Reprint Requests: Professor Jeremy Tomlinson, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LJ, UK, E-mail:
| |
Collapse
|
14
|
The lipid paradox in rheumatoid arthritis: the dark horse of the augmented cardiovascular risk. Rheumatol Int 2020; 40:1181-1191. [DOI: 10.1007/s00296-020-04616-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/31/2020] [Indexed: 12/24/2022]
|
15
|
Report of a member-led meeting: how stable isotope techniques can enhance human nutrition research. Proc Nutr Soc 2020; 79:373-379. [PMID: 32495731 DOI: 10.1017/s0029665120007016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Nutrition Society member-led meeting was held on 9 January 2020 at The University of Surrey, UK. Sixty people registered for the event, and all were invited to participate, either through chairing a session, presenting a '3 min lightning talk' or by presenting a poster. The meeting consisted of an introduction to the topic by Dr Barbara Fielding, with presentations from eight invited speakers. There were also eight lightning talks and a poster session. The meeting aimed to highlight recent research that has used stable isotope tracer techniques to understand human metabolism. Such studies have irrefutably shaped our current understanding of metabolism and yet remain a mystery to many. The meeting aimed to de-mystify their use in nutrition research.
Collapse
|
16
|
Park SO, Zammit VA. In vivo monitoring of hepatic glycolipid distribution of n-6 ∕ n-3 in jugular-vein-cannulated rats as a nutritional research model for monogastric animal. Arch Anim Breed 2019; 62:437-446. [PMID: 31807655 PMCID: PMC6852779 DOI: 10.5194/aab-62-437-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
The metabolic distribution via blood from liver of glycerolipids by omega-6
to omega-3 fatty acid (n-6 / n-3) ratio in monogastric animal nutrition is
very important. In vivo monitoring technique using jugular-vein-cannulated
rats as a nutritional model for monogastric animal can yield important
insights into animal nutrition. This study was conducted to determine the
effect of different n-6 / n-3 ratios (71:1, 4:1, 15:1, 30:1) on
metabolic distribution of glycerolipids newly synthesized and secreted in
the liver of the rats and explore the mechanism involved. Regarding
14CO2 released from oxidation of glycerolipid metabolism, it was
the highest (22.5 %) in groups with a n-6 / n-3 ratio of 4:1 (P<0.05).
The control group showed the highest total glycerolipid level, followed by the
30:1, 15:1, and 4:1 groups in order (P<0.05). When secreted
triacylglycerol level of each group was compared with that of the control
group, the 4:1, 15:1, and 30:1 groups were decreased by 36.3 %, 20.9 %, and
13.3 %, respectively (P<0.05). Regarding the distribution of
phospholipid against total glycerolipid compared to the control group, the 4:1, 15:1, and 30:1 groups were 1.38, 1.29, and 1.17 times higher, respectively
(P<0.05). In the comparison of 14CO2 emission against
total glycerolipid compared with the control group, the 4:1, 15:1, and 30:1
groups were 1.61, 1.52, and 1.29 times higher, respectively
(P<0.05). These results demonstrate that a dietary n-6 / n-3 fatty acid
ratio of 4:1 could significantly decrease harmful lipid levels in the blood
by controlling the mechanism of metabolic distribution via blood from
triglyceride and phospholipid newly synthesized in the liver of cannulated
rat.
Collapse
Affiliation(s)
- Sang-O Park
- College of Animal Life Science, Kangwon National University, Chuncheon, Gangwon-do, 24419 Republic of Korea
| | - Victor A Zammit
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
17
|
Bello O, Mohandas C, Shojee-Moradie F, Jackson N, Hakim O, Alberti KGMM, Peacock JL, Umpleby AM, Amiel SA, Goff LM. Black African men with early type 2 diabetes have similar muscle, liver and adipose tissue insulin sensitivity to white European men despite lower visceral fat. Diabetologia 2019; 62:835-844. [PMID: 30729259 PMCID: PMC6450859 DOI: 10.1007/s00125-019-4820-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/27/2018] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is more prevalent in black African than white European populations although, paradoxically, black African individuals present with lower levels of visceral fat, which has a known association with insulin resistance. Insulin resistance occurs at a tissue-specific level; however, no study has simultaneously compared whole body, skeletal muscle, hepatic and adipose tissue insulin sensitivity between black and white men. We hypothesised that, in those with early type 2 diabetes, black (West) African men (BAM) have greater hepatic and adipose tissue insulin sensitivity, compared with white European men (WEM), because of their reduced visceral fat. METHODS Eighteen BAM and 15 WEM with type 2 diabetes underwent a two-stage hyperinsulinaemic-euglycaemic clamp with stable glucose and glycerol isotope tracers to assess tissue-specific insulin sensitivity and a magnetic resonance imaging scan to assess body composition. RESULTS We found no ethnic differences in whole body, skeletal muscle, hepatic or adipose tissue insulin sensitivity between BAM and WEM. This finding occurred in the presence of lower visceral fat in BAM (3.72 vs 5.68 kg [mean difference -1.96, 95% CI -3.30, 0.62]; p = 0.01). There was an association between skeletal muscle and adipose tissue insulin sensitivity in WEM that was not present in BAM (r = 0.78, p < 0.01 vs r = 0.25 p = 0.37). CONCLUSIONS/INTERPRETATION Our data suggest that in type 2 diabetes there are no ethnic differences in whole body, skeletal muscle, hepatic and adipose tissue insulin sensitivity between black and white men, despite differences in visceral adipose tissue, and that impaired lipolysis may not be contributing to skeletal muscle insulin resistance in men of black African ethnicity.
Collapse
Affiliation(s)
- Oluwatoyosi Bello
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, Waterloo Campus, London, SE1 9NH, UK
| | - Cynthia Mohandas
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, Waterloo Campus, London, SE1 9NH, UK
| | | | - Nicola Jackson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Olah Hakim
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, Waterloo Campus, London, SE1 9NH, UK
| | - K George M M Alberti
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, Waterloo Campus, London, SE1 9NH, UK
| | - Janet L Peacock
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - A Margot Umpleby
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Stephanie A Amiel
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, Waterloo Campus, London, SE1 9NH, UK
| | - Louise M Goff
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, Waterloo Campus, London, SE1 9NH, UK.
| |
Collapse
|
18
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW In rheumatoid arthritis (RA), lipid levels are dynamic and can fluctuate along with changes in inflammation. A reduction in inflammation, most commonly as a result of disease-modifying anti-rheumatic drug (DMARD) therapy, is associated with increases in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In this review, we discuss new evidence shedding light on the potential mechanism underlying changes in lipid levels observed with changes in inflammation. RECENT FINDINGS Measured lipid levels in the blood are a result of a balance between synthesis and catabolism or absorption. Recent human studies in active RA show that the catabolic rates of lipids are higher than expected compared to expected rates in the general population. DMARD therapy appears to allow a return to baseline lower catabolic rates, resulting in an apparent increase in lipids. Increases in lipids observed with control of inflammation and RA treatment suggest a return to homeostasis. Studies are underway to understand the overall impact on cardiovascular risk in RA when lipid levels increase as a result of controlling inflammation.
Collapse
Affiliation(s)
- Jorge Plutzky
- Division of Cardiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Katherine P Liao
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Charidemou E, Ashmore T, Griffin JL. The use of stable isotopes in the study of human pathophysiology. Int J Biochem Cell Biol 2017; 93:102-109. [PMID: 28736244 DOI: 10.1016/j.biocel.2017.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022]
Abstract
The growing prevalence of metabolic diseases including fatty liver disease and Type 2 diabetes has increased the emphasis on understanding metabolism at the mechanistic level and how it is perturbed in disease. Metabolomics is a continually expanding field that seeks to measure metabolites in biological systems during a physiological stimulus or a genetic alteration. Typically, metabolomics studies provide total pool sizes of metabolites rather than dynamic flux measurements. More recently there has been a resurgence in approaches that use stable isotopes (e.g. 2H and 13C) for the unambiguous tracking of individual atoms through compartmentalised metabolic networks in humans to determine underlying mechanisms. This is known as metabolic flux analysis and enables the capture of a dynamic picture of the metabolome and its interactions with the genome and proteome. In this review, we describe current approaches using stable isotope labelling in the field of metabolomics and provide examples of studies that led to an improved understanding of glucose, fatty acid and amino acid metabolism in humans, particularly in relation to metabolic disease. Examples include the use of stable isotopes of glucose to study tumour bioenergetics as well as brain metabolism during traumatic brain injury. Lipid tracers have also been used to measure non-esterified fatty acid production whilst amino acid tracers have been used to study the rate of protein digestion on whole body postprandial protein metabolism. In addition, we illustrate the use of stable isotopes for measuring flux in human physiology by providing examples of breath tests to measure insulin resistance and gastric emptying rates.
Collapse
Affiliation(s)
- Evelina Charidemou
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
21
|
|