1
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|
2
|
Huang J, Siyar S, Sharma R, Herrig I, Wise L, Aidt S, List E, Kopchick JJ, Puri V, Lee KY. Adipocyte Subpopulations Mediate Growth Hormone-induced Lipolysis and Glucose Tolerance in Male Mice. Endocrinology 2023; 164:bqad151. [PMID: 37897489 DOI: 10.1210/endocr/bqad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023]
Abstract
In adipose tissue, growth hormone (GH) stimulates lipolysis, leading to an increase in plasma free fatty acid levels and a reduction in insulin sensitivity. In our previous studies, we have found that GH increases lipolysis by reducing peroxisome proliferator-activated receptor γ (PPARγ) transcription activity, leading to a reduction of tat-specific protein 27 (FSP27, also known as CIDEC) expression. In previous studies, our laboratory uncovered 3 developmentally distinct subpopulations of white adipocytes. In this manuscript, we show that one of the subpopulations, termed type 2 adipocytes, has increased GH-induced signaling and lipolysis compared to other adipocyte subtypes. To assess the physiological role of GH-mediated lipolysis mediated by this adipocyte subpopulation, we specifically expressed human FSP27 (hFSP27) transgene in type 2 adipocytes (type2Ad-hFSP27tg mice). Systemically, male type2Ad-hFSP27tg mice displayed reduced serum glycerol release and nonesterified fatty acids levels after acute GH treatment, and improvement in acute, but not chronic, GH-induced glucose intolerance. Furthermore, we demonstrate that type2Ad-hFSP27tg mice displayed improved hepatic insulin signaling. Taken together, these results indicate that this adipocyte subpopulation is a critical regulator of the GH-mediated lipolytic and metabolic response. Thus, further investigation of adipocyte subpopulations may provide novel treatment strategies to regulate GH-induced glucose intolerance in patients with growth and metabolic disorders.
Collapse
Affiliation(s)
- Jun Huang
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sohana Siyar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Rita Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Isabella Herrig
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Lauren Wise
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Spencer Aidt
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Edward List
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
3
|
Bell S, Young JA, List EO, Basu R, Geitgey DK, Lach G, Lee K, Swegan D, Caggiano LJ, Okada S, Kopchick JJ, Berryman DE. Increased Fibrosis in White Adipose Tissue of Male and Female bGH Transgenic Mice Appears Independent of TGF-β Action. Endocrinology 2023; 164:7069260. [PMID: 36869769 DOI: 10.1210/endocr/bqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
Fibrosis is a pathological state caused by excess deposition of extracellular matrix proteins in a tissue. Male bovine growth hormone (bGH) transgenic mice experience metabolic dysfunction with a marked decrease in lifespan and with increased fibrosis in several tissues including white adipose tissue (WAT), which is more pronounced in the subcutaneous (Sc) depot. The current study expanded on these initial findings to evaluate WAT fibrosis in female bGH mice and the role of transforming growth factor (TGF)-β in the development of WAT fibrosis. Our findings established that female bGH mice, like males, experience a depot-dependent increase in WAT fibrosis, and bGH mice of both sexes have elevated circulating levels of several markers of collagen turnover. Using various methods, TGF-β signaling was found unchanged or decreased-as opposed to an expected increase-despite the marked fibrosis in WAT of bGH mice. However, acute GH treatments in vivo, in vitro, or ex vivo did elicit a modest increase in TGF-β signaling in some experimental systems. Finally, single nucleus RNA sequencing confirmed no perturbation in TGF-β or its receptor gene expression in any WAT cell subpopulations of Sc bGH WAT; however, a striking increase in B lymphocyte infiltration in bGH WAT was observed. Overall, these data suggest that bGH WAT fibrosis is independent of the action of TGF-β and reveals an intriguing shift in immune cells in bGH WAT that should be further explored considering the increasing importance of B cell-mediated WAT fibrosis and pathology.
Collapse
Affiliation(s)
- Stephen Bell
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Jonathan A Young
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | | | - Grace Lach
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Kevin Lee
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Deborah Swegan
- College of Arts and Sciences, Ohio University, Athens, OH 45701, USA
| | | | - Shigeru Okada
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
| | - Darlene E Berryman
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
4
|
Zhao L, Jiang H. Growth hormone stimulates lipolysis in mice but not in adipose tissue or adipocyte culture. Front Endocrinol (Lausanne) 2023; 13:1028191. [PMID: 36686475 PMCID: PMC9846043 DOI: 10.3389/fendo.2022.1028191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
The inhibitory effect of growth hormone (GH) on adipose tissue growth and the stimulatory effect of GH on lipolysis are well known, but the mechanisms underlying these effects are not completely understood. In this study, we revisited the effects of GH on adipose tissue growth and lipolysis in the lit/lit mouse model. The lit/lit mice are GH deficient because of a mutation in the GH releasing hormone receptor gene. We found that the lit/lit mice had more subcutaneous fat and larger adipocytes than their heterozygous lit/+ littermates and that these differences were partially reversed by 4-week GH injection. We also found that GH injection to the lit/lit mice caused the mature adipose tissue and adipocytes to reduce in size. These results demonstrate that GH inhibits adipose tissue growth at least in part by stimulating lipolysis. To determine the mechanism by which GH stimulates lipolysis, we cultured adipose tissue explants and adipocytes derived from lit/lit mice with GH and/or isoproterenol, an agonist of the beta-adrenergic receptors. These experiments showed that whereas isoproterenol, expectedly, stimulated potent lipolysis, GH, surprisingly, had no effect on basal lipolysis or isoproterenol-induced lipolysis in adipose tissue explants or adipocytes. We also found that both isoproterenol-induced lipolysis and phosphorylation of hormone-sensitive lipase were not different between lit/lit and lit/+ mice. Taken together, these results support the conclusion that GH has lipolytic effect in mice but argue against the notion that GH stimulates lipolysis by directly acting on adipocytes or by enhancing β-adrenergic receptors-mediated lipolysis.
Collapse
Affiliation(s)
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Miyazaki K, Saito Y, Ichimura-Shimizu M, Imura S, Ikemoto T, Yamada S, Tokuda K, Morine Y, Tsuneyama K, Shimada M. Defective endoplasmic reticulum stress response via X box-binding protein 1 is a major cause of poor liver regeneration after partial hepatectomy in mice with non-alcoholic steatohepatitis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2022; 29:1241-1252. [PMID: 35325502 DOI: 10.1002/jhbp.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Poor regeneration after hepatectomy in NAFLD is well recognized, but the mechanism is unclear. Endoplasmic reticulum (ER) stress plays an important role in the development of NAFLD. Here, we show that an impaired ER stress response contributes to poor liver regeneration in partially hepatectomized mice. METHODS Non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis (NASH) was induced in mice using our patented feed and 70% partial hepatectomy (PH) was performed. Mice were sacrificed 0, 4, 8, 24, or 48 hours, or 7 days after PH, and liver regeneration and the mRNA expression of ER stress markers were assessed. RESULTS Non-alcoholic fatty liver disease activity score was calculated as 4-6 points for NAFL and 7 points for NASH. NASH was characterized by inflammation and high ER stress marker expression before PH. After PH, NASH mice showed poorer liver regeneration than controls. High expression of proinflammatory cytokine genes was present in NASH mice 4 hours after PH. Xbp1-s mRNA expression was high in control and NAFL mice after PH, but no higher in NASH mice. CONCLUSIONS Dysfunction of the ER stress response might be a cause of poor liver regeneration in NASH.
Collapse
Affiliation(s)
| | - Yu Saito
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | - Satoru Imura
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | - Kazunori Tokuda
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Important Hormones Regulating Lipid Metabolism. Molecules 2022; 27:molecules27207052. [PMID: 36296646 PMCID: PMC9607181 DOI: 10.3390/molecules27207052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
There is a wide variety of kinds of lipids, and complex structures which determine the diversity and complexity of their functions. With the basic characteristic of water insolubility, lipid molecules are independent of the genetic information composed by genes to proteins, which determine the particularity of lipids in the human body, with water as the basic environment and genes to proteins as the genetic system. In this review, we have summarized the current landscape on hormone regulation of lipid metabolism. After the well-studied PI3K-AKT pathway, insulin affects fat synthesis by controlling the activity and production of various transcription factors. New mechanisms of thyroid hormone regulation are discussed, receptor α and β may mediate different procedures, the effect of thyroid hormone on mitochondria provides a new insight for hormones regulating lipid metabolism. Physiological concentration of adrenaline induces the expression of extrapituitary prolactin in adipose tissue macrophages, which promotes fat weight loss. Manipulation of hormonal action has the potential to offer a new therapeutic horizon for the global burden of obesity and its associated complications such as morbidity and mortality.
Collapse
|
7
|
Li T, Bai H, Fang H, Yang L, Yan P. Growth hormone inhibits adipogenic differentiation and induces browning in bovine subcutaneous adipocytes. Growth Horm IGF Res 2022; 66:101498. [PMID: 36007464 DOI: 10.1016/j.ghir.2022.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It is well established that growth hormone (GH) has the ability to stimulate lipolysis. The effects of GH on adipocyte differentiation and browning have not been clearly described. Therefore, the present study aimed to elucidate the role of GH in the differentiation and browning of bovine subcutaneous adipocytes as well as its underlying molecular mechanisms. METHODS We first treated bovine subcutaneous preadipocytes with different concentrations (0, 10, 100, and 500 ng/mL) of GH for 8 days and measured lipid accumulation and gene expression. Afterward, we treated preadipocytes and mature adipocytes with 500 ng/mL GH and determined differentiation and browning-related indicators. Finally, we investigated the expression of STAT5B in both preadipocytes and mature adipocytes after GH treatment. RESULTS We demonstrated that GH inhibited lipid accumulation and decreased the expression levels of adipogenic key genes (SCD1, SREBP1, PPARγ, and CEBPα) during adipocyte differentiation. Moreover, we observed that the inhibitory effect of GH on the early stage of adipocyte differentiation (0-2 days) was stronger than that on the later stage of adipocyte differentiation (2-8 days). We also found that GH promoted the expression levels of browning-related genes such as uncoupling protein 1 (UCP1) in mature adipocytes. Concurrently, GH promoted mitochondrial biogenesis and increased the expression levels of mitochondrial biogenesis-related genes. In addition, GH promoted phosphorylation of signal transducers and activator of transcription 5 b (STAT5B) and contributed to translocation of STAT5B to nucleus. After blocking the expression of STAT5B protein, GH weakened the inhibition of adipogenic key genes and reduced the promotion of browning-related genes in bovine subcutaneous adipocytes. CONCLUSIONS GH can inhibit adipocyte differentiation and promote adipocyte browning by regulating STAT5B in bovine subcutaneous adipocytes.
Collapse
Affiliation(s)
- Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoyuan Fang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) are essential to normal growth, metabolism, and body composition, but in acromegaly, excesses of these hormones strikingly alter them. In recent years, the use of modern methodologies to assess body composition in patients with acromegaly has revealed novel aspects of the acromegaly phenotype. In particular, acromegaly presents a unique pattern of body composition changes in the setting of insulin resistance that we propose herein to be considered an acromegaly-specific lipodystrophy. The lipodystrophy, initiated by a distinctive GH-driven adipose tissue dysregulation, features insulin resistance in the setting of reduced visceral adipose tissue (VAT) mass and intra-hepatic lipid (IHL) but with lipid redistribution, resulting in ectopic lipid deposition in muscle. With recovery of the lipodystrophy, adipose tissue mass, especially that of VAT and IHL, rises, but insulin resistance is lessened. Abnormalities of adipose tissue adipokines may play a role in the disordered adipose tissue metabolism and insulin resistance of the lipodystrophy. The orexigenic hormone ghrelin and peptide Agouti-related peptide may also be affected by active acromegaly as well as variably by acromegaly therapies, which may contribute to the lipodystrophy. Understanding the pathophysiology of the lipodystrophy and how acromegaly therapies differentially reverse its features may be important to optimizing the long-term outcome for patients with this disease. This perspective describes evidence in support of this acromegaly lipodystrophy model and its relevance to acromegaly pathophysiology and the treatment of patients with acromegaly.
Collapse
Affiliation(s)
- Pamela U. Freda
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Yang L, Jia X, Fang D, Cheng Y, Zhai Z, Deng W, Du B, Lu T, Wang L, Yang C, Gao Y. Metformin Inhibits Lipid Droplets Fusion and Growth via Reduction in Cidec and Its Regulatory Factors in Rat Adipose-Derived Stem Cells. Int J Mol Sci 2022; 23:ijms23115986. [PMID: 35682666 PMCID: PMC9181043 DOI: 10.3390/ijms23115986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Metformin is still being investigated due to its potential use as a therapeutic agent for managing overweight or obesity. However, the underlying mechanisms are not fully understood. Inhibiting the adipogenesis of adipocyte precursors may be a new therapeutic opportunity for obesity treatments. It is still not fully elucidated whether adipogenesis is also involved in the weight loss mechanisms by metformin. We therefore used adipose-derived stem cells (ADSCs) from inguinal and epididymal fat pads to investigate the effects and mechanisms of metformin on adipogenesis in vitro. Our results demonstrate the similar effect of metformin inhibition on lipid accumulation, lipid droplets fusion, and growth in adipose-derived stem cells from epididymal fat pads (Epi-ADSCs) and adipose-derived stem cells from inguinal fat pads (Ing-ADSCs) cultures. We identified that cell death-inducing DFFA-like effector c (Cidec), Perilipin1, and ras-related protein 8a (Rab8a) expression increased ADSCs differentiation. In addition, we found that metformin inhibits lipid droplets fusion and growth by decreasing the expression of Cidec, Perilipin1, and Rab8a. Activation of AMPK pathway signaling in part involves metformin inhibition on Cidec, Perilipin1, and Rab8a expression. Collectively, our study reveals that metformin inhibits lipid storage, fusion, and growth of lipid droplets via reduction in Cidec and its regulatory factors in ADSCs cultures. Our study supports the development of clinical trials on metformin-based therapy for patients with overweight and obesity.
Collapse
Affiliation(s)
- Lijing Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Xiaowei Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Dongliang Fang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Yuan Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Zhaoyi Zhai
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Wenyang Deng
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
| | - Baopu Du
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
| | - Chun Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Correspondence: (C.Y.); (Y.G.)
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (L.Y.); (X.J.); (D.F.); (Z.Z.); (W.D.); (B.D.); (T.L.); (L.W.)
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China
- Department of Experimental Center for Basic Medical Teaching, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Correspondence: (C.Y.); (Y.G.)
| |
Collapse
|
10
|
Slayton M, Balakrishnan B, Gupta A, Jobe S, Puri I, Neely S, Tamori Y, Russ DW, Yildirim G, Yakar S, Sharma VM, Puri V. Fsp27 plays a crucial role in muscle performance. Am J Physiol Endocrinol Metab 2022; 322:E331-E343. [PMID: 35157807 PMCID: PMC8957325 DOI: 10.1152/ajpendo.00255.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/31/2022]
Abstract
Fsp27 was previously identified as a lipid droplet-associated protein in adipocytes. Various studies have shown that it plays a role in the regulation of lipid homeostasis in adipose tissue and liver. However, its function in muscle, which also accumulate and metabolize fat, remains completely unknown. Our present study identifies a novel role of Fsp27 in muscle performance. Here, we demonstrate that Fsp27-/- and Fsp27+/- mice, both males and females, had severely impaired muscle endurance and exercise capacity compared with wild-type controls. Liver and muscle glycogen stores were similar among all groups fed or fasted, and before or after exercise. Reduced muscle performance in Fsp27-/- and Fsp27+/- mice was associated with severely decreased fat content in the muscle. Furthermore, results in heterozygous Fsp27+/- mice indicate that Fsp27 haploinsufficiency undermines muscle performance in both males and females. In summary, our physiological findings reveal that Fsp27 plays a critical role in muscular fat storage, muscle endurance, and muscle strength.NEW & NOTEWORTHY This is the first study identifying Fsp27 as a novel protein associated with muscle metabolism. The Fsp27-knockout model shows that Fsp27 plays a role in muscular-fat storage, muscle endurance, and muscle strength, which ultimately impacts limb movement. In addition, our study suggests a potential metabolic paradox in which FSP27-knockout mice presumed to be metabolically healthy based on glucose utilization and oxidative metabolism are unhealthy in terms of exercise capacity and muscular performance.
Collapse
Affiliation(s)
- Mark Slayton
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Bijinu Balakrishnan
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Abhishek Gupta
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Scott Jobe
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Ishika Puri
- Honors Tutorial College, Ohio University, Athens, Ohio
| | - Savannah Neely
- College of Arts and Sciences, Ohio University, Athens, Ohio
| | - Yoshikazu Tamori
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - David W Russ
- School of Physical Therapy and Rehabilitation Sciences, USF Health Morsani College of Medicine, University of Southern Florida, Tampa, Florida
| | - Gozde Yildirim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York City, New York
| | - Shoshana Yakar
- Department of Molecular Pathobiology, New York University College of Dentistry, New York City, New York
| | - Vishva M Sharma
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| |
Collapse
|
11
|
Richard AJ, Hang H, Allerton TD, Zhao P, Mendoza T, Ghosh S, Elks CM, Stephens JM. Loss of Adipocyte STAT5 Confers Increased Depot-Specific Adiposity in Male and Female Mice That Is Not Associated With Altered Adipose Tissue Lipolysis. Front Endocrinol (Lausanne) 2022; 13:812802. [PMID: 35464049 PMCID: PMC9022209 DOI: 10.3389/fendo.2022.812802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/24/2022] [Indexed: 01/05/2023] Open
Abstract
STATs (Signal Transducers and Activators of Transcription) 5A and 5B are induced during adipocyte differentiation and are primarily activated by growth hormone (GH) and prolactin in fat cells. Previous studies in mice lacking adipocyte GH receptor or STAT5 support their roles in lipolysis-mediated reduction of adipose tissue mass. Male and female mice harboring adipocyte-specific deletion of both STAT5 genes (STAT5AKO) exhibit increased subcutaneous or inguinal adipose tissue mass, but no changes in visceral or gonadal fat mass. Both depots display substantial increases in adipocyte size with no changes in lipolysis in adipose tissue explants. RNA sequencing analysis of subcutaneous adipose tissue and indirect calorimetry experiments reveal sex-dependent differences in adipose gene expression and whole-body energy expenditure, respectively, resulting from the loss of adipocyte STAT5.
Collapse
Affiliation(s)
- Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Hardy Hang
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Timothy D. Allerton
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Peng Zhao
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Tamra Mendoza
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disease Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Carrie M. Elks
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
12
|
Towards Understanding the Direct and Indirect Actions of Growth Hormone in Controlling Hepatocyte Carbohydrate and Lipid Metabolism. Cells 2021; 10:cells10102532. [PMID: 34685512 PMCID: PMC8533955 DOI: 10.3390/cells10102532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) is critical for achieving normal structural growth. In addition, GH plays an important role in regulating metabolic function. GH acts through its GH receptor (GHR) to modulate the production and function of insulin-like growth factor 1 (IGF1) and insulin. GH, IGF1, and insulin act on multiple tissues to coordinate metabolic control in a context-specific manner. This review will specifically focus on our current understanding of the direct and indirect actions of GH to control liver (hepatocyte) carbohydrate and lipid metabolism in the context of normal fasting (sleep) and feeding (wake) cycles and in response to prolonged nutrient deprivation and excess. Caveats and challenges related to the model systems used and areas that require further investigation towards a clearer understanding of the role GH plays in metabolic health and disease are discussed.
Collapse
|
13
|
PPAR Gamma and Viral Infections of the Brain. Int J Mol Sci 2021; 22:ijms22168876. [PMID: 34445581 PMCID: PMC8396218 DOI: 10.3390/ijms22168876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.
Collapse
|
14
|
Duran-Ortiz S, Corbin KL, Jahan I, Whitticar NB, Morris SE, Bartholomew AN, Slepchenko KG, West HL, Max Harry IM, List EO, Kopchick JJ, Nunemaker CS. Loss of growth hormone signaling in the mouse germline or in adulthood reduces islet mass and alters islet function with notable sex differences. Am J Physiol Endocrinol Metab 2021; 320:E1158-E1172. [PMID: 33938235 PMCID: PMC8285598 DOI: 10.1152/ajpendo.00075.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the endocrine pancreas, growth hormone (GH) is known to promote pancreatic islet growth and insulin secretion. In this study, we show that GH receptor (GHR) loss in the germline and in adulthood impacts islet mass in general but more profoundly in male mice. GHR knockout (GHRKO) mice have enhanced insulin sensitivity and low circulating insulin. We show that the total cross-sectional area of isolated islets (estimated islet mass) was reduced by 72% in male but by only 29% in female GHRKO mice compared with wild-type controls. Also, islets from GHRKO mice secreted ∼50% less glucose-stimulated insulin compared with size-matched islets from wild-type mice. We next used mice with a floxed Ghr gene to knock down the GHR in adult mice at 6 mo of age (6mGHRKO) and examined the impact on glucose and islet metabolism. By 12 mo of age, female 6mGHRKO mice had increased body fat and reduced islet mass but had no change in glucose tolerance or insulin sensitivity. However, male 6mGHRKO mice had nearly twice as much body fat, substantially reduced islet mass, and enhanced insulin sensitivity, but no change in glucose tolerance. Despite large losses in islet mass, glucose-stimulated insulin secretion from isolated islets was not significantly different between male 6mGHRKO and controls, whereas isolated islets from female 6mGHRKO mice showed increased glucose-stimulated insulin release. Our findings demonstrate the importance of GH to islet mass throughout life and that unique sex-specific adaptations to the loss of GH signaling allow mice to maintain normal glucose metabolism.NEW & NOTEWORTHY Growth hormone (GH) is important for more than just growth. GH helps to maintain pancreatic islet mass and insulin secretion throughout life. Sex-specific adaptations to the loss of GH signaling allow mice to maintain normal glucose regulation despite losing islet mass.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Ishrat Jahan
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Nicholas B Whitticar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Sarah E Morris
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Ania N Bartholomew
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Kira G Slepchenko
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Hannah L West
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Ibiagbani Mercy Max Harry
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Ohio University, Athens, Ohio
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
- Diabetes Institute, Ohio University, Athens, Ohio
| |
Collapse
|
15
|
Fan M, Du X, Chen X, Bai H, Loor JJ, Shen T, Liang Y, Sun X, Xu Q, Song Y, Wang Z, Liu G, Yang L, Li X, Li X, Gao W. Inhibition of cell death inducing DNA fragmentation factor-α-like effector c (CIDEC) by tumor necrosis factor-α induces lipolysis and inflammation in calf adipocytes. J Dairy Sci 2021; 104:6134-6145. [PMID: 33685683 DOI: 10.3168/jds.2020-19319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023]
Abstract
Dairy cows with ketosis exhibit signs of pronounced adipose tissue lipolysis and systemic inflammation, both of which exacerbate this metabolic disorder. In nonruminants, CIDEC plays a pivotal role in the formation of large unilocular lipid droplets. The present study aimed to ascertain the role of CIDEC in the lipolytic and inflammatory response of white adipose tissue (WAT) in vivo and in vitro. Subcutaneous adipose tissue and blood samples were collected from 15 healthy cows (blood β-hydroxybutyrate concentration < 1.2 mM) and 15 cows with clinical ketosis (blood β-hydroxybutyrate concentration > 3.0 mM) that had a similar number of lactations (median = 3, range = 2-4) and days in milk (median = 6 d, range = 3-9). Adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were used for in vitro studies. Isolated adipocytes were treated with 0, 0.1, 1, or 10 ng/mL TNF-α for 3 h, transfected with CIDEC small interfering RNA for 48 h, or transfected with CIDEC overexpression adenovirus for 48 h followed by treatment with TNF-α (0.1 ng/mL) for 3 h. Serum concentrations of fatty acids were greater, and dry matter intake, milk yield, and serum glucose concentrations lower in cows with clinical ketosis. Protein and mRNA abundance of CIDEC were lesser in subcutaneous WAT of clinically ketotic versus healthy cows. Furthermore, the ratio of phosphorylated hormone sensitive lipase (p-LIPE) to LIPE, phosphorylated RELA (p-RELA) to RELA, and protein abundance of PNPLA2 and phosphorylated inhibitor of κBα (p-NFKBIA) were greater in dairy cows with clinical ketosis. The mRNA abundance of proinflammatory cytokines TNFA and IL1B were greater, and the anti-inflammatory cytokine IL10 was lower in WAT of dairy cows with clinical ketosis. In calf adipocytes, exogenous TNF-α (0.1, 1, or 10 ng/mL) decreased protein and mRNA abundance of CIDEC. In addition, exogenous TNF-α or knockdown of CIDEC reduced the secretion of the anti-inflammatory cytokine IL-10, but increased the ratio of p-LIPE to LIPE, p-RELA to RELA, protein abundance of PNPLA2 and p-NFKBIA, glycerol content, and the secretion of IL-1β in calf adipocytes. Overexpression of CIDEC in TNFα-treated adipocytes attenuated lipolysis and activation of the NF-κB signaling pathway. Overall, these data suggest that inhibition of lipid droplet-associated protein CIDEC by TNF-α contributes to the pronounced lipolysis and inflammation of calf adipocytes, and CIDEC is a relevant target in clinically ketotic cows.
Collapse
Affiliation(s)
- Minghe Fan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Xiliang Du
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Xiying Chen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Hongxu Bai
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Taiyu Shen
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Xudong Sun
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Qiushi Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Yuxiang Song
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Zhe Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China.
| | - Wenwen Gao
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province 130062, China.
| |
Collapse
|
16
|
Ohira M, Watanabe Y, Yamaguchi T, Onda H, Yamaoka S, Abe K, Nakamura S, Tanaka S, Kawagoe N, Nabekura T, Saiki A, Oshiro T, Nagayama D, Tatsuno I. The Relationship between Serum Insulin-Like Growth Factor-1 Levels and Body Composition Changes after Sleeve Gastrectomy. Obes Facts 2021; 14:641-649. [PMID: 34649248 PMCID: PMC8740143 DOI: 10.1159/000519610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION We previously reported that preoperative serum insulin-like growth factor-1 (IGF-1) is a predictor of total weight loss percentage (%TWL) after laparoscopic sleeve gastrectomy (LSG). IGF-1 may suppress muscle loss after surgery. IGF-1 almost accurately reflects the growth hormone (GH) secretion status, and GH has lipolytic effects. Therefore, IGF-1 may influence both the maintenance of skeletal muscle and the reduction of adipose tissue after LSG. The identification of the relationship between preoperative serum IGF-1 and body composition changes after LSG can help in understanding the pathophysiology of obesity. METHODS We retrospectively reviewed 72 patients with obesity who underwent LSG and were followed up for 12 months. We analyzed the relationship between preoperative serum IGF-1 levels and body composition changes after LSG. A multiple regression model was used. RESULTS LSG led to a significant reduction in body weight. Both body fat mass and skeletal muscle mass decreased after LSG. Preoperative serum IGF-1 levels significantly correlated with %TWL, changes in skeletal muscle mass, and body fat mass after LSG. The multiple regression model showed that preoperative serum IGF-1 levels were related to decreased body fat mass and maintaining skeletal muscle mass after LSG. DISCUSSION/CONCLUSION Preoperative IGF-1 measurement helps predict not only successful weight loss but also decreases body fat mass and maintains skeletal muscle mass after LSG.
Collapse
Affiliation(s)
- Masahiro Ohira
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
- *Masahiro Ohira,
| | - Yasuhiro Watanabe
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Takashi Yamaguchi
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Hiroki Onda
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Shuhei Yamaoka
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Kazuki Abe
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Shoko Nakamura
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Shou Tanaka
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Naoyuki Kawagoe
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Taiki Nabekura
- Department of Surgery, Toho University Sakura Medical Center, Chiba, Japan
| | - Atsuhito Saiki
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Takashi Oshiro
- Department of Surgery, Toho University Sakura Medical Center, Chiba, Japan
| | - Daiji Nagayama
- Department of Internal Medicine, Nagayama Clinic, Tochigi, Japan
| | - Ichiro Tatsuno
- Center for Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
- Chiba Prefectural University of Health Sciences, Chiba, Japan
| |
Collapse
|
17
|
The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules 2020; 10:biom10121699. [PMID: 33371437 PMCID: PMC7767423 DOI: 10.3390/biom10121699] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Since the lipid profile is altered by physical activity, the study of lipid metabolism is a remarkable element in understanding if and how physical activity affects the health of both professional athletes and sedentary subjects. Although not fully defined, it has become clear that resistance exercise uses fat as an energy source. The fatty acid oxidation rate is the result of the following processes: (a) triglycerides lipolysis, most abundant in fat adipocytes and intramuscular triacylglycerol (IMTG) stores, (b) fatty acid transport from blood plasma to muscle sarcoplasm, (c) availability and hydrolysis rate of intramuscular triglycerides, and (d) transport of fatty acids through the mitochondrial membrane. In this review, we report some studies concerning the relationship between exercise and the aforementioned processes also in light of hormonal controls and molecular regulations within fat and skeletal muscle cells.
Collapse
|
18
|
Sharma R, Kopchick JJ, Puri V, Sharma VM. Effect of growth hormone on insulin signaling. Mol Cell Endocrinol 2020; 518:111038. [PMID: 32966863 PMCID: PMC7606590 DOI: 10.1016/j.mce.2020.111038] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone that coordinates an array of physiological processes, including effects on bone, muscle, and fat, ultimately resulting in growth. Metabolically, GH promotes anabolic action in most tissues except adipose, where its catabolic action causes the breakdown of stored triglycerides into free fatty acids (FFA). GH antagonizes insulin action via various molecular pathways. Chronic GH secretion suppresses the anti-lipolytic action of insulin and increases FFA flux into the systemic circulation; thus, promoting lipotoxicity, which causes pathophysiological problems, including insulin resistance. In this review, we will provide an update on GH-stimulated adipose lipolysis and its consequences on insulin signaling in liver, skeletal muscle, and adipose tissue. Furthermore, we will discuss the mechanisms that contribute to the diabetogenic action of GH.
Collapse
Affiliation(s)
- Rita Sharma
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA
| | - Vishva M Sharma
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA; Diabetes Institute, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
19
|
Hjelholt A, Høgild M, Bak AM, Arlien-Søborg MC, Bæk A, Jessen N, Richelsen B, Pedersen SB, Møller N, Lunde Jørgensen JO. Growth Hormone and Obesity. Endocrinol Metab Clin North Am 2020; 49:239-250. [PMID: 32418587 DOI: 10.1016/j.ecl.2020.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth hormone (GH) exerts IGF-I dependent protein anabolic and direct lipolytic effects. Obesity reversibly suppresses GH secretion driven by elevated FFA levels, whereas serum IGF-I levels remain normal or elevated due to elevated portal insulin levels. Fasting in lean individuals suppresses hepatic IGF-I production and increases pituitary GH release, but this pattern is less pronounced in obesity. Fasting in obesity is associated with increased sensitivity to the insulin-antagonistic effects of GH. GH treatment in obesity induces a moderate reduction in fat mass and an increase in lean body mass but the therapeutic potential is uncertain.
Collapse
Affiliation(s)
- Astrid Hjelholt
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Morten Høgild
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Ann Mosegaard Bak
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Mai Christiansen Arlien-Søborg
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Amanda Bæk
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bjørn Richelsen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Steen Bønløkke Pedersen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Jens Otto Lunde Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark; Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N 8200, Denmark.
| |
Collapse
|
20
|
Kopchick JJ, Berryman DE, Puri V, Lee KY, Jorgensen JOL. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat Rev Endocrinol 2020; 16:135-146. [PMID: 31780780 PMCID: PMC7180987 DOI: 10.1038/s41574-019-0280-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
The ability of growth hormone (GH) to induce adipose tissue lipolysis has been known for over five decades; however, the molecular mechanisms that mediate this effect and the ability of GH to inhibit insulin-stimulated glucose uptake have scarcely been documented. In this same time frame, our understanding of adipose tissue has evolved to reveal a complex structure with distinct types of adipocyte, depot-specific differences, a biologically significant extracellular matrix and important endocrine properties mediated by adipokines. All these aforementioned features, in turn, can influence lipolysis. In this Review, we provide a historical and current overview of the lipolytic effect of GH in humans, mice and cultured cells. More globally, we explain lipolysis in terms of GH-induced intracellular signalling and its effect on obesity, insulin resistance and lipotoxicity. In this regard, findings that define molecular mechanisms by which GH induces lipolysis are described. Finally, data are presented for the differential effect of GH on specific adipose tissue depots and on distinct classes of metabolically active adipocytes. Together, these cellular, animal and human studies reveal novel cellular phenotypes and molecular pathways regulating the metabolic effects of GH on adipose tissue.
Collapse
Affiliation(s)
- John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA.
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA.
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Vishwajeet Puri
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Kevin Y Lee
- The Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Diabetes, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Høyer KL, Høgild ML, List EO, Lee KY, Kissinger E, Sharma R, Erik Magnusson N, Puri V, Kopchick JJ, Jørgensen JOL, Jessen N. The acute effects of growth hormone in adipose tissue is associated with suppression of antilipolytic signals. Physiol Rep 2020; 8:e14373. [PMID: 32073221 PMCID: PMC7029434 DOI: 10.14814/phy2.14373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
AIM Since GH stimulates lipolysis in vivo after a 2-hr lag phase, we studied whether this involves GH signaling and gene expression in adipose tissue (AT). METHODS Human subjects (n = 9) each underwent intravenous exposure to GH versus saline with measurement of serum FFA, and GH signaling, gene array, and protein in AT biopsies after 30-120 min. Human data were corroborated in adipose-specific GH receptor knockout (FaGHRKO) mice versus wild-type mice. Expression of candidate genes identified in the array were investigated in 3T3-L1 adipocytes. RESULTS GH increased serum FFA and AT phosphorylation of STAT5b in human subjects. This was replicated in wild-type mice, but not in FaGHRKO mice. The array identified 53 GH-regulated genes, and Ingenuity Pathway analysis showed downregulation of PDE3b, an insulin-dependent antilipolytic signal, upregulation of PTEN that inhibits insulin-dependent antilipolysis, and downregulation of G0S2 and RASD1, both encoding antilipolytic proteins. This was confirmed in 3T3-L1 adipocytes, except for PDE3B, including reciprocal effects of GH and insulin on mRNA expression of PTEN, RASD1, and G0S2. CONCLUSION (a) GH directly stimulates AT lipolysis in a GHR-dependent manner, (b) this involves suppression of antilipolytic signals at the level of gene expression, (c) the underlying GH signaling pathways remain to be defined.
Collapse
Affiliation(s)
- Katrine L. Høyer
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Morten L. Høgild
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Edward O. List
- The Edison Biotechnology InstituteAthensOHUSA
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Kevin Y. Lee
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Emily Kissinger
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Rita Sharma
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Nils Erik Magnusson
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Vishwajeet Puri
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - John J. Kopchick
- The Edison Biotechnology InstituteAthensOHUSA
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Jens O. L. Jørgensen
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Niels Jessen
- Department of Clinical PharmacologyUniversity of AarhusAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| |
Collapse
|
22
|
Herrera-Marcos LV, Sancho-Knapik S, Gabás-Rivera C, Barranquero C, Gascón S, Romanos E, Martínez-Beamonte R, Navarro MA, Surra JC, Arnal C, García-de-Jalón JA, Rodríguez-Yoldi MJ, Tena-Sempere M, Sánchez-Ramos C, Monsalve M, Osada J. Pgc1a is responsible for the sex differences in hepatic Cidec/Fsp27β mRNA expression in hepatic steatosis of mice fed a Western diet. Am J Physiol Endocrinol Metab 2020; 318:E249-E261. [PMID: 31846369 DOI: 10.1152/ajpendo.00199.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fat-specific protein 27 [cell death-inducing DNA fragmentation effector protein C (Cidec)/Fsp27] mRNA levels have been associated with hepatic lipid droplet extent under certain circumstances. To address its hepatic expression under different dietary conditions and in both sexes, apolipoprotein E (Apoe)-deficient mice were subjected to different experimental conditions for 11 wk to test the influence of cholesterol, Western diet, squalene, oleanolic acid, sex, and surgical castration on Cidec/Fsp27 mRNA expression. Dietary cholesterol increased hepatic Cidec/Fsp27β expression, an effect that was suppressed when cholesterol was combined with saturated fat as represented by Western diet feeding. Using the latter diet, neither oleanolic acid nor squalene modified its expression. Females showed lower levels of hepatic Cidec/Fsp27β expression than males when they were fed Western diets, a result that was translated into a lesser amount of CIDEC/FSP27 protein in lipid droplets and microsomes. This was also confirmed in low-density lipoprotein receptor (Ldlr)-deficient mice. Incubation with estradiol resulted in decreased Cidec/Fsp27β expression in AML12 cells. Whereas male surgical castration did not modify the expression, ovariectomized females did show increased levels compared with control females. Females also showed increased expression of peroxisome proliferator-activated receptor-γ coactivator 1-α (Pgc1a), suppressed by ovariectomy, and the values were significantly and inversely associated with those of Cidec/Fsp27β. When Pgc1a-deficient mice were used, the sex differences in Cidec/Fsp27β expression disappeared. Therefore, hepatic Cidec/Fsp27β expression has a complex regulation influenced by diet and sex hormonal milieu. The mRNA sex differences are controlled by Pgc1a.
Collapse
Affiliation(s)
- Luis V Herrera-Marcos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Sara Sancho-Knapik
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Clara Gabás-Rivera
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Barranquero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Gascón
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Romanos
- Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María A Navarro
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín C Surra
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela Politécnica Superior de Huesca Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - José A García-de-Jalón
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
| | - María J Rodríguez-Yoldi
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Tena-Sempere
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba e Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - María Monsalve
- Instituto de Investigaciones Biomedicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón-Universidad de Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Obesity is a pandemic, yet preventable healthcare problem. Insulin resistance, diabetes mellitus, dyslipidemia, and cardiovascular complications are core manifestation of obesity. While adipose tissue is a primary site of energy storage, it is also an endocrine organ, secreting a large number of adipokines and cytokines. Nonetheless in obesity, the secretion of cytokines and free fatty acids increases significantly and is associated with the degree of adiposity and insulin resistance. Fat-specific protein 27 (FSP27) has emerged as one of the major proteins that promote physiological storage of fat in adipose tissue. RECENT FINDINGS Review of number of recent findings suggests that FSP27 plays a crucial role in physiological storage of fat within the adipose tissue especially in humans. However, in disease conditions such as obesity, FSP27 may contribute to ectopic fat accumulation in non-adipose tissue. More studies are required to highlight the tissue-specific role of FSP27, especially in humans.
Collapse
Affiliation(s)
- Shakun Karki
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, 88 East Newton St, Boston, MA, 02118, USA.
| |
Collapse
|
24
|
Hjelholt AJ, Lee KY, Arlien-Søborg MC, Pedersen SB, Kopchick JJ, Puri V, Jessen N, Jørgensen JOL. Temporal patterns of lipolytic regulators in adipose tissue after acute growth hormone exposure in human subjects: A randomized controlled crossover trial. Mol Metab 2019; 29:65-75. [PMID: 31668393 PMCID: PMC6731350 DOI: 10.1016/j.molmet.2019.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
Objective Growth hormone (GH) stimulates lipolysis, but the underlying mechanisms remain incompletely understood. We examined the effect of GH on the expression of lipolytic regulators in adipose tissue (AT). Methods In a randomized, placebo-controlled, cross-over study, nine men were examined after injection of 1) a GH bolus and 2) a GH-receptor antagonist (pegvisomant) followed by four AT biopsies. In a second study, eight men were examined in a 2 × 2 factorial design including GH infusion and 36-h fasting with AT biopsies obtained during a basal period and a hyperinsulinemic-euglycemic clamp. Expression of GH-signaling intermediates and lipolytic regulators were studied by PCR and western blotting. In addition, mechanistic experiments in mouse models and 3T3-L1 adipocytes were performed. Results The GH bolus increased circulating free fatty acids (p < 0.0001) together with phosphorylation of signal transducer and activator of transcription 5 (STAT5) (p < 0.0001) and mRNA expression of the STAT5-dependent genes cytokine-inducible SH2-containing protein (CISH) and IGF-1 in AT. This was accompanied by suppressed mRNA expression of G0/G1 switch gene 2 (G0S2) (p = 0.007) and fat specific protein 27 (FSP27) (p = 0.002) and upregulation of phosphatase and tensin homolog (PTEN) mRNA expression (p = 0.03). Suppression of G0S2 was also observed in humans after GH infusion and fasting, as well as in GH transgene mice, and in vitro studies suggested MEK-PPARγ signaling to be involved. Conclusions GH-induced lipolysis in human subjects in vivo is linked to downregulation of G0S2 and FSP27 and upregulation of PTEN in AT. Mechanistically, in vitro data suggest that GH acts via MEK to suppress PPARγ-dependent transcription of G0S2. ClinicalTrials.govNCT02782221 and NCT01209429. Acute GH exposure in human subjects in vivo stimulates lipolysis and release of FFA together with GH signaling in adipose tissue. GH-induced lipolysis is associated with suppression of G0S2 and FSP27 and upregulation of PTEN in human subjects in vivo. Inhibition of MEK and activation of PPARγ abrogate GH-induced suppression of G0S2 mRNA expression in vitro.
Collapse
Affiliation(s)
- Astrid Johannesson Hjelholt
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark.
| | - Kevin Y Lee
- Heritage College of Osteopathic Medicine, Ohio University, 204 Grosvenor Hall, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Konneker Research Center 108, Athens, OH 45701, USA
| | - Mai Christiansen Arlien-Søborg
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
| | - Steen Bønløkke Pedersen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 2., 8200 Aarhus N, Denmark
| | - John J Kopchick
- Heritage College of Osteopathic Medicine, Ohio University, 204 Grosvenor Hall, Athens, OH 45701, USA; The Edison Biotechnology Institute, Ohio University, Konneker Research Center, 172 Water Tower Dr., Athens, OH 45701, USA
| | - Vishwajeet Puri
- Heritage College of Osteopathic Medicine, Ohio University, 204 Grosvenor Hall, Athens, OH 45701, USA; The Diabetes Institute, Ohio University, Konneker Research Center 108, Athens, OH 45701, USA
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Hedeager 3, 2., 8200 Aarhus N, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Wilh. Meyers Allé 4, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, Vennelyst Boulevard 4, 8000 Aarhus C, Denmark
| | - Jens Otto L Jørgensen
- Medical Research Laboratory, Department of Clinical Medicine, Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200 Aarhus N, Denmark
| |
Collapse
|
25
|
Slayton M, Gupta A, Balakrishnan B, Puri V. CIDE Proteins in Human Health and Disease. Cells 2019; 8:cells8030238. [PMID: 30871156 PMCID: PMC6468517 DOI: 10.3390/cells8030238] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022] Open
Abstract
Cell death-Inducing DNA Fragmentation Factor Alpha (DFFA)-like Effector (CIDE) proteins have emerged as lipid droplet-associated proteins that regulate fat metabolism. There are three members in the CIDE protein family—CIDEA, CIDEB, and CIDEC (also known as fat-specific protein 27 (FSP27)). CIDEA and FSP27 are primarily expressed in adipose tissue, while CIDEB is expressed in the liver. Originally, based upon their homology with DNA fragmentation factors, these proteins were identified as apoptotic proteins. However, recent studies have changed the perception of these proteins, redefining them as regulators of lipid droplet dynamics and fat metabolism, which contribute to a healthy metabolic phenotype in humans. Despite various studies in humans and gene-targeting studies in mice, the physiological roles of CIDE proteins remains elusive. This review will summarize the known physiological role and metabolic pathways regulated by the CIDE proteins in human health and disease.
Collapse
Affiliation(s)
- Mark Slayton
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Abhishek Gupta
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Bijinu Balakrishnan
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| |
Collapse
|
26
|
Vila G, Jørgensen JOL, Luger A, Stalla GK. Insulin Resistance in Patients With Acromegaly. Front Endocrinol (Lausanne) 2019; 10:509. [PMID: 31417493 PMCID: PMC6683662 DOI: 10.3389/fendo.2019.00509] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Acromegaly is characterized by chronic overproduction of growth hormone (GH) that leads to insulin resistance, glucose intolerance and, ultimately, diabetes. The GH-induced sustained stimulation of lipolysis plays a major role not only in the development of insulin resistance and prediabetes/diabetes, but also in the reduction of lipid accumulation, making acromegaly a unique case of severe insulin resistance in the presence of reduced body fat. In the present review, we elucidate the effects of GH hypersecretion on metabolic organs, describing the pathophysiology of impaired glucose tolerance in acromegaly, as well as the impact of acromegaly-specific therapies on glucose metabolism. In addition, we highlight the role of insulin resistance in the development of acromegaly-associated complications such as hypertension, cardiac disease, sleep apnea, polycystic ovaries, bone disease, and cancer. Taken together, insulin resistance is an important metabolic hallmark of acromegaly, which is strongly related to disease activity, the development of comorbidities, and might even impact the response to drugs used in the treatment of acromegaly.
Collapse
Affiliation(s)
- Greisa Vila
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jens Otto L. Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anton Luger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Günter K. Stalla
- Max Planck Institute of Psychiatry, Munich, Germany
- *Correspondence: Günter K. Stalla ;
| |
Collapse
|
27
|
Ali Abulmeaty MM, Almajwal AM, ElSadek MF, Berika MY, Razak S. Metabolic Effects of Testosterone Hormone Therapy in Normal and Orchiectomized Male Rats: From Indirect Calorimetry to Lipolytic Enzymes. Int J Endocrinol 2019; 2019:7546385. [PMID: 31871453 PMCID: PMC6906878 DOI: 10.1155/2019/7546385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIM Changes in total energy expenditure (TEE) and substrate metabolism may help explain the metabolic actions of testosterone (T). This study measured respiratory quotient (RQ), TEE, ghrelin, insulin, and key lipolysis enzyme concentrations in relation to body weight (wt) and food intake (FI) in both normal and bilaterally orchiectomized rats with/without T treatment. METHODS In total, thirty-two male Wistar rats (300-400 g) were divided into four groups (n = 8/group), including (a) sham-operated and vehicle-injected group (Sham), (b) T-treated sham group (T-Sham) for which sham-operated rats were injected with IM testosterone undecanoate (100 mg/kg, for one week), (c) orchiectomy and vehicle-injected group (Orch), and (d) T-replaced orchiectomy group (T-Orch). After one week, FI and wt were automatically recorded, indirect calorimetry parameters were measured, and blood samples were collected to measure T, ghrelin, insulin, growth hormone (GH), glucose, hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL), free fatty acids (FFA), and lipid profiles. RESULTS Orchiectomy decreased ghrelin, GH, and insulin levels, increased TEE and RQ, and lowered FI and wt. The T-Orch group exhibited increased levels of ghrelin (3-fold), insulin, GH, blood levels of lipolysis products, TEE, and FI in addition to reduced glucose levels (P < 0.05). This group demonstrated no significant changes in wt. In the T-Sham group, T increased ghrelin and insulin levels (P < 0.05) with strong positive correlations (r = 0.663 and 0.644, respectively, P < 0.05), increased ATGL levels, RQ toward carbohydrate utilization ranges, and TEE, and reduced HSL levels (P < 0.05) with insignificant changes in FI or wt. CONCLUSIONS T administration in orchiectomized rats significantly increased orexigenic mediators such as ghrelin and insulin without inducing any significant changes in wt. The mechanism for this finding might be the increased TEE and the stimulation of lipolysis through the ATGL enzyme. The associated rise of GH might help in interference with accumulation of lipid in adipose tissue. Apart from the effect on GH, T-Sham showed similar effects of T supplementation.
Collapse
Affiliation(s)
- Mahmoud Mustafa Ali Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Medical Physiology Department, School of Medicine, Zagazig University, Zagazig, Egypt
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Farouk ElSadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Helwan, Egypt
| | - Mohamed Y Berika
- Rehabilitation Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|