1
|
van Hoorn E, Rademaker D, van der Wel A, DeVries J, Franx A, van Rijn B, Kooy A, Siegelaar S, Roseboom T, Ozanne S, Hooijmans C, Painter R. Fetal and post-natal outcomes in offspring after intrauterine metformin exposure: A systematic review and meta-analysis of animal experiments. Diabet Med 2024; 41:e15243. [PMID: 37845186 PMCID: PMC7617357 DOI: 10.1111/dme.15243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
AIMS The impact of maternal metformin use during pregnancy on fetal, infant, childhood and adolescent growth, development, and health remains unclear. Our objective was to systematically review the available evidence from animal experiments on the effects of intrauterine metformin exposure on offspring's anthropometric, cardiovascular and metabolic outcomes. METHODS A systematic search was conducted in PUBMED and EMBASE from inception (searched on 12th April 2023). We extracted original, controlled animal studies that investigated the effects of maternal metformin use during pregnancy on offspring anthropometric, cardiovascular and metabolic measurements. Subsequently, risk of bias was assessed and meta-analyses using the standardized mean difference and a random effects model were conducted for all outcomes containing data from 3 or more studies. Subgroup analyses were planned for species, strain, sex and type of model in the case of 10 comparisons or more per subgroup. RESULTS We included 37 articles (n = 3133 offspring from n = 716 litters, containing n = 51 comparisons) in this review, mostly (95%) on rodent models and 5% pig models. Follow-up of offspring ranged from birth to 2 years of age. Thirty four of the included articles could be included in the meta-analysis. No significant effects in the overall meta-analysis of metformin on any of the anthropometric, cardiovascular and metabolic offspring outcome measures were identified. Between-studies heterogeneity was high, and risk of bias was unclear in most studies as a consequence of poor reporting of essential methodological details. CONCLUSION This systematic review was unable to establish effects of metformin treatment during pregnancy on anthropometric, cardiovascular and metabolic outcomes in non-human offspring. Heterogeneity between studies was high and reporting of methodological details often limited. This highlights a need for additional high-quality research both in humans and model systems to allow firm conclusions to be established. Future research should include focus on the effects of metformin in older offspring age groups, and on outcomes which have gone uninvestigated to date.
Collapse
Affiliation(s)
- E.G.M. van Hoorn
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - D. Rademaker
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center location AMC, Amsterdam, The Netherlands
| | - A.W.T. van der Wel
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center location AMC, Amsterdam, The Netherlands
| | - J.H. DeVries
- Department of Internal Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Franx
- Department of Obstetrics and Gynecology Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - B.B. van Rijn
- Department of Obstetrics and Gynecology Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A. Kooy
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Bethesda Diabetes Research Center, Hoogeveen, The Netherlands
- Department of Internal Medicine, Care Group Treant, Location Bethesda Hoogeveen, Hoogeveen, The Netherlands
| | - S.E. Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - T.J. Roseboom
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center location AMC, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - S.E. Ozanne
- Welcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - C.R. Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Center, Nijmegen, The Netherlands
| | - R.C. Painter
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Schoonejans JM, Ozanne SE. Developmental programming by maternal obesity: Lessons from animal models. Diabet Med 2021; 38:e14694. [PMID: 34553414 DOI: 10.1111/dme.14694] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
The obesity epidemic has led to more women entering pregnancy overweight or obese. In addition to adverse short-term outcomes, maternal obesity and/or gestational diabetes predispose offspring to developing obesity, type 2 diabetes and cardiovascular disease in adulthood through developmental programming. Human epidemiological studies, although vital in identifying associations, are often unable to address causality and mechanistic studies can be limited by the lack of accessibility of key metabolic tissues. Furthermore, multi-generational studies take many years to complete. Integration of findings from human studies with those from animal models has therefore been critical in moving forward this field that has been termed the 'Developmental Origins of Health and Disease'. This review summarises the evidence from animal models and highlights how animal models provide valuable insight into the maternal factors responsible for developmental programming, potential critical developmental windows, sexual dimorphism, molecular mechanisms and age-related offspring outcomes throughout life. Moreover, we describe how animal models are vital to explore clinically relevant interventions to prevent adverse offspring outcomes in obese or glucose intolerant pregnancy, such as antioxidant supplementation, exercise and maternal metformin treatment.
Collapse
Affiliation(s)
- Josca Mariëtte Schoonejans
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Susan Elizabeth Ozanne
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Faure MC, Khoueiry R, Quanico J, Acloque H, Guerquin MJ, Bertoldo MJ, Chevaleyre C, Ramé C, Fournier I, Salzet M, Dupont J, Froment P. In Utero Exposure to Metformin Reduces the Fertility of Male Offspring in Adulthood. Front Endocrinol (Lausanne) 2021; 12:750145. [PMID: 34745014 PMCID: PMC8565088 DOI: 10.3389/fendo.2021.750145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is a drug used for the treatment of type 2 diabetes and disorders associated with insulin resistance. Metformin is also used in the treatment of pregnancy disorders such as gestational diabetes. However, the consequences of foetal exposure to metformin on the fertility of exposed offspring remain poorly documented. In this study, we investigated the effect of in utero metformin exposure on the fertility of female and male offspring. We observed that metformin is detectable in the blood of the mother and in amniotic fluid and blood of the umbilical cord. Metformin was not measurable in any tissues of the embryo, including the gonads. The effect of metformin exposure on offspring was sex specific. The adult females that had been exposed to metformin in utero presented no clear reduction in fertility. However, the adult males that had been exposed to metformin during foetal life exhibited a 30% reduction in litter size compared with controls. The lower fertility was not due to a change in sperm production or the motility of sperm. Rather, the phenotype was due to lower sperm head quality - significantly increased spermatozoa head abnormality with greater DNA damage - and hypermethylation of the genomic DNA in the spermatozoa associated with lower expression of the ten-eleven translocation methylcytosine dioxygenase 1 (TET1) protein. In conclusion, while foetal metformin exposure did not dramatically alter gonad development, these results suggest that metabolic modification by metformin during the foetal period could change the expression of epigenetic regulators such as Tet1 and perturb the genomic DNA in germ cells, changes that might contribute to a reduced fertility.
Collapse
Affiliation(s)
- Mélanie C. Faure
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jusal Quanico
- Université Lille 1, INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, Génétique Animale et Biologie Intégrative (GABI), Jouy-en-Josas, France
| | - Marie-Justine Guerquin
- UMR967 INSERM, Commissariat à l'Énergie Atomique (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut de Radiobiologie Cellulaire et Moléculaire (iRCM)/Service Cellules Souches et Radiation (SCSR)/LDG, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Laboratory of Development of the Gonads, Fontenay aux Roses, France
| | - Michael J. Bertoldo
- Fertility and Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Claire Chevaleyre
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Christelle Ramé
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Isabelle Fournier
- Université Lille 1, INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France
| | - Michel Salzet
- Université Lille 1, INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France
| | - Joëlle Dupont
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Pascal Froment
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| |
Collapse
|
5
|
Maternal Metformin Intervention during Obese Glucose-Intolerant Pregnancy Affects Adiposity in Young Adult Mouse Offspring in a Sex-Specific Manner. Int J Mol Sci 2021; 22:ijms22158104. [PMID: 34360870 PMCID: PMC8347264 DOI: 10.3390/ijms22158104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Metformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring. Methods: C57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR. Results: Gestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p < 0.05), exaggerated adipocyte hyperplasia (p < 0.05 vs. Con and Ob offspring), increased macrophage infiltration measured via histology (p < 0.05) and the mRNA expression of F4/80 (p < 0.05). These changes were not observed in female Ob-Met offspring. Conclusions: Maternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT.
Collapse
|
6
|
Jorquera G, Echiburú B, Crisosto N, Sotomayor-Zárate R, Maliqueo M, Cruz G. Metformin during Pregnancy: Effects on Offspring Development and Metabolic Function. Front Pharmacol 2020; 11:653. [PMID: 32625081 PMCID: PMC7311748 DOI: 10.3389/fphar.2020.00653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal obesity during pregnancy and gestational diabetes mellitus (GDM) are both associated with of several postnatal diseases in the offspring, including obesity, early onset hypertension, diabetes mellitus, and reproductive alterations. Metformin is an oral drug that is being evaluated to treat GDM, obesity-associated insulin resistance, and polycystic ovary syndrome (PCOS) during pregnancy. The beneficial effects of metformin on glycemia and pregnancy outcomes place it as a good alternative for its use during pregnancy. In this line of thought, improving the metabolic status of the pregnant mother by using metformin should avoid the consequences of insulin resistance on the offspring's fetal and postnatal development. However, some human and animal studies have shown that metformin during pregnancy could amplify these alterations and be associated with excessive postnatal weight gain and obesity. In this minireview, we discuss not only the clinical and experimental evidence that supports the benefits of using metformin during pregnancy but also the evidence showing a possible negative impact of this drug on the offspring's development.
Collapse
Affiliation(s)
- Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valpararaíso, Chile
| | - Bárbara Echiburú
- Laboratory of Endocrinology and Metabolism, West Division, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, West Division, Faculty of Medicine, University of Chile, Santiago, Chile.,Unit of Endocrinology, Clínica Las Condes, Santiago, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valpararaíso, Chile
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, West Division, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valpararaíso, Chile
| |
Collapse
|
7
|
Jazwiec PA, Sloboda DM. Nutritional adversity, sex and reproduction: 30 years of DOHaD and what have we learned? J Endocrinol 2019; 242:T51-T68. [PMID: 31013473 DOI: 10.1530/joe-19-0048] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
It is well established that early life environmental signals, including nutrition, set the stage for long-term health and disease risk - effects that span multiple generations. This relationship begins early, in the periconceptional period and extends into embryonic, fetal and early infant phases of life. Now known as the Developmental Origins of Health and Disease (DOHaD), this concept describes the adaptations that a developing organism makes in response to early life cues, resulting in adjustments in homeostatic systems that may prove maladaptive in postnatal life, leading to an increased risk of chronic disease and/or the inheritance of risk factors across generations. Reproductive maturation and function is similarly influenced by early life events. This should not be surprising, since primordial germ cells are established early in life and thus vulnerable to early life adversity. A multitude of 'modifying' cues inducing developmental adaptations have been identified that result in changes in reproductive development and impairments in reproductive function. Many types of nutritional challenges including caloric restriction, macronutrient excess and micronutrient insufficiencies have been shown to induce early life adaptations that produce long-term reproductive dysfunction. Many pathways have been suggested to underpin these associations, including epigenetic reprogramming of germ cells. While the mechanisms still remain to be fully investigated, it is clear that a lifecourse approach to understanding lifetime reproductive function is necessary. Furthermore, investigations of the impacts of early life adversity must be extended to include the paternal environment, especially in epidemiological and clinical studies of offspring reproductive function.
Collapse
Affiliation(s)
- Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- The Farncombe Family Digestive Diseases Research Institute, McMaster University, Hamilton, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- The Farncombe Family Digestive Diseases Research Institute, McMaster University, Hamilton, Canada
- Department of Pediatrics and Obstetrics and Gynecology, McMaster University, Hamilton, Canada
| |
Collapse
|