1
|
Li L, Lin W, Wang Z, Huang R, Xia H, Li Z, Deng J, Ye T, Huang Y, Yang Y. Hormone Regulation in Testicular Development and Function. Int J Mol Sci 2024; 25:5805. [PMID: 38891991 PMCID: PMC11172568 DOI: 10.3390/ijms25115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
2
|
Fang F, Li Z, Zhang X, Huang Q, Lu S, Wang X. Divergent Roles of KLF4 During Primordial Germ Cell Fate Induction from Human Embryonic Stem Cells. Reprod Sci 2024; 31:727-735. [PMID: 37884729 DOI: 10.1007/s43032-023-01360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
As a core transcriptional factor regulating pluripotency, Krüppel-like factor 4 (KLF4) has gained much attention in the field of stem cells during the past decades. However, few research have focused on the function of KLF4 during human primordial germ cell (PGC) specification. Here, we induced human PGC-like cells (hPGCLCs) from human embryonic stem cells (hESCs) and the derived hPGCLCs upregulated PGC-related genes, like SOX17, BLIMP1, TFAP2C, NANOS3, and the naïve pluripotency gene KLF4. The KLF4-knockout hESCs formed typical multicellular colonies with clear borders, expressed pluripotency genes, such as NANOG, OCT4, and SOX2, and exhibited no differences in proliferation capacity compared with wild type hESCs. Notably, KLF4 deletion in hESCs did not influence the induction of PGCLCs in vitro. In contrast, overexpression of KLF4 during PGC induction process inhibited the efficiency of PGCLC formation from hESCs in vitro. Overexpression of KLF4 may regenerate the naïve ground state in hESCs and results in repression for PGC specification. Thus, KLF4 could be a downstream target of human PGC program and the upregulation of KLF4 is prepared for late stage of germline development.
Collapse
Affiliation(s)
- Fang Fang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoke Zhang
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qi Huang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shi Lu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Xiao Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical Collage, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Wu J, Wang Z, Cai M, Wang X, Lo B, Li Q, He JC, Lee K, Fu J. GPR56 Promotes Diabetic Kidney Disease Through eNOS Regulation in Glomerular Endothelial Cells. Diabetes 2023; 72:1652-1663. [PMID: 37579299 PMCID: PMC10588296 DOI: 10.2337/db23-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Although glomerular endothelial dysfunction is well recognized as contributing to the pathogenesis of diabetic kidney disease (DKD), the molecular pathways contributing to DKD pathogenesis in glomerular endothelial cells (GECs) are only partially understood. To uncover pathways that are differentially regulated in early DKD that may contribute to disease pathogenesis, we recently conducted a transcriptomic analysis of isolated GECs from diabetic NOS3-null mice. The analysis identified several potential mediators of early DKD pathogenesis, one of which encoded an adhesion G protein-coupled receptor-56 (GPR56), also known as ADGRG1. Enhanced glomerular expression of GPR56 was observed in human diabetic kidneys, which was negatively associated with kidney function. Using cultured mouse GECs, we observed that GPR56 expression was induced with exposure to advanced glycation end products, as well as in high-glucose conditions, and its overexpression resulted in decreased phosphorylation and expression of endothelial nitric oxide synthase (eNOS). This effect on eNOS by GPR56 was mediated by coupling of Gα12/13-RhoA pathway activation and Gαi-mediated cAMP/PKA pathway inhibition. The loss of GPR56 in mice led to a significant reduction in diabetes-induced albuminuria and glomerular injury, which was associated with reduced oxidative stress and restoration of eNOS expression in GECs. These findings suggest that GPR56 promotes DKD progression mediated, in part, through enhancing glomerular endothelial injury and dysfunction. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jinshan Wu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihong Wang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minchao Cai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xuan Wang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Benjamin Lo
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
- Renal Program, James J. Peters Veterans Affairs Medical Center at Bronx, Bronx, NY
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jia Fu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
4
|
Akin AT, Toluk A, Ozdamar S, Taheri S, Kaymak E, Mehmetbeyoglu E. Effects of adriamycin on cell differentiation and proliferation in rat testis. Biotech Histochem 2023; 98:523-533. [PMID: 37655584 DOI: 10.1080/10520295.2023.2248880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Although adriamycin (ADR) is used to treat many cancers, it can be toxic to healthy organs including the testis. We investigated the effects of ADR on pluripotency in rat testis. Testicular damage was induced by either cumulative or single dose single dose administration of ADR in Wistar albino rats. Rats were divided randomly into three groups: untreated control, cumulative dose ADR group (2 mg/kg ADR every three days for 30 days) and single dose ADR group (15 mg/kg, single dose ADR). Testicular damage was evaluated and seminiferous tubule diameters were measured using light microscopy. Expression levels of Oct4, Sox2, Klf4, c-Myc, Utf1 and Dazl were assessed by immunohistochemistry and real time PCR. Serum testosterone levels were measured using ELISA assay. Histopathologic scores were lower and mean seminiferous tubule diameters were less compared to the ADR groups. Oct4, Sox2, Klf4 and Utf1 expressions were decreased significantly in spermatogenic cells of both cumulative and single dose ADR groups compared to the control group. We found that c-Myc expression in spermatogenic and Leydig cells were increased significantly in both ADR groups compared to the control group. Dazl expression was decreased in the cumulative adriamycin group compared to the control group, but increased in the single dose ADR group compared to both the control and cumulative ADR groups. Serum testosterone levels were decreased in both ADR groups compared to the control group. Our findings suggest that ADR is detrimental to regulation and maintenance of pluripotency in rat testis.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Ayse Toluk
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embryology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Serpil Taheri
- Medical Biology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embryology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Ecmel Mehmetbeyoglu
- Betul-Ziya Eren Genome and Stem Cell Center, Medical Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
5
|
Su J, Song Y, Yang Y, Li Z, Zhao F, Mao F, Wang D, Cao G. Study on the changes of LHR, FSHR and AR with the development of testis cells in Hu sheep. Anim Reprod Sci 2023; 256:107306. [PMID: 37541020 DOI: 10.1016/j.anireprosci.2023.107306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
The process of testis development in mammals is accompanied by the proliferation and maturation of Sertoli, Leydig and germ cells. Spermatogenesis depends on hormone regulation, which must bind to a receptor to exert its biological effects. The changes in Hu sheep testis cell composition and FSHR, LHR and AR expression during different developmental stages are unclear (newborn, puberty and adulthood). To address this, using single-cell RNA sequencing, we analyzed testis cell composition and hormone receptor expression changes during three important developmental stages of Hu sheep. We observed significant changes in the composition of somatic and germ cells in different Hu sheep testis developmental stages. Furthermore, we analyzed the FSHR, LHR and AR distribution and expression changes at three important periods and verified them by qRT-PCR and immunofluorescence. Our results suggest that after birth, the proportion of germ cells increased gradually, peaking in adulthood; the proportion of Sertoli cells decreased gradually, reaching the lowest in adulthood; and the proportion of Leydig cells increased and then decreased, reaching the lowest in adulthood. In addition, FSHR, LHR and AR are mainly located in Sertoli, Leydig and germ cells. LHR and FSHR expression decreased with increasing age, while AR expression increased and then decreased with increasing age.
Collapse
Affiliation(s)
- Jie Su
- Department of Medical Neurobiology, Inner Mongolia Medical University, Huhhot 010030, China; Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Huhhot 010021, China
| | - Yanyan Yang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, China
| | - Zhijun Li
- Department of Medical Neurobiology, Inner Mongolia Medical University, Huhhot 010030, China
| | - Feifei Zhao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Fei Mao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| | - Daqing Wang
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China; Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, China
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Science, Inner Mongolia Agriculture University, Hohhot 010018, China.
| |
Collapse
|
6
|
Penke LR, Speth JM, Huang SK, Fortier SM, Baas J, Peters-Golden M. KLF4 is a therapeutically tractable brake on fibroblast activation which promotes resolution of pulmonary fibrosis. JCI Insight 2022; 7:160688. [PMID: 35852857 PMCID: PMC9462506 DOI: 10.1172/jci.insight.160688] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022] Open
Abstract
There is a paucity of information about potential molecular brakes on the activation of fibroblasts that drive tissue fibrosis. The transcription factor Krüppel-like factor 4 (KLF4) is best known as a determinant of cell stemness and a tumor suppressor. We found that its expression was diminished in fibroblasts from fibrotic lung. Gain- and loss-of-function studies showed that KLF4 inhibited fibroblast proliferation, collagen synthesis, and differentiation to myofibroblasts, while restoring their sensitivity to apoptosis. Conditional deletion of KLF4 from fibroblasts potentiated the peak degree of pulmonary fibrosis and abrogated the subsequent spontaneous resolution in a model of transient fibrosis. A small molecule inducer of KLF4 was able to restore its expression in fibrotic fibroblasts and elicit resolution in an experimental model characterized by more clinically relevant persistent pulmonary fibrosis. These data identify KLF4 as a pivotal brake on fibroblast activation whose induction represents a therapeutic approach in fibrosis of the lung and perhaps other organs.
Collapse
|
7
|
Wang JM, Li ZF, Yang WX, Tan FQ. Follicle-stimulating hormone signaling in Sertoli cells: a licence to the early stages of spermatogenesis. Reprod Biol Endocrinol 2022; 20:97. [PMID: 35780146 PMCID: PMC9250200 DOI: 10.1186/s12958-022-00971-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Follicle-stimulating hormone signaling is essential for the initiation and early stages of spermatogenesis. Follicle-stimulating hormone receptor is exclusively expressed in Sertoli cells. As the only type of somatic cell in the seminiferous tubule, Sertoli cells regulate spermatogenesis not only by controlling their own number and function but also through paracrine actions to nourish germ cells surrounded by Sertoli cells. After follicle-stimulating hormone binds to its receptor and activates the follicle-stimulating hormone signaling pathway, follicle-stimulating hormone signaling will establish a normal Sertoli cell number and promote their differentiation. Spermatogonia pool maintenance, spermatogonia differentiation and their entry into meiosis are also positively regulated by follicle-stimulating hormone signaling. In addition, follicle-stimulating hormone signaling regulates germ cell survival and limits their apoptosis. Our review summarizes the aforementioned functions of follicle-stimulating hormone signaling in Sertoli cells. We also describe the clinical potential of follicle-stimulating hormone treatment in male patients with infertility. Furthermore, our review may be helpful for developing better therapies for treating patients with dysfunctional follicle-stimulating hormone signaling in Sertoli cells.
Collapse
Affiliation(s)
- Jia-Ming Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
8
|
Gupta A, Vats A, Ghosal A, Mandal K, Sarkar R, Bhattacharya I, Das S, Pal R, Majumdar SS. Follicle-stimulating hormone-mediated decline in miR-92a-3p expression in pubertal mice Sertoli cells is crucial for germ cell differentiation and fertility. Cell Mol Life Sci 2022; 79:136. [PMID: 35181820 PMCID: PMC11072849 DOI: 10.1007/s00018-022-04174-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023]
Abstract
Sertoli cells (Sc) are the sole target of follicle-stimulating hormone (FSH) in the testis and attain functional maturation post-birth to significantly augment germ cell (Gc) division and differentiation at puberty. Despite having an operational microRNA (miRNA) machinery, limited information is available on miRNA-mediated regulation of Sc maturation and male fertility. We have shown before that miR-92a-3p levels decline in pubertal rat Sc. In response to FSH treatment, the expressions of FSH Receptor, Claudin11 and Klf4 were found to be elevated in pubertal rat Sc coinciding with our finding of FSH-induced decline in miR-92a-3p levels. To investigate the association of miR-92a-3p and spermatogenesis, we generated transgenic mice where such pubertal decline of miR-92a-3p was prevented by its overexpression in pubertal Sc under proximal Rhox5 promoter, which is known to be activated specifically at puberty, in Sc. Our in vivo observations provided substantial evidence that FSH-induced decline in miR-92a-3p expression during Sc maturation acts as an essential prerequisite for the pubertal onset of spermatogenesis. Elevated expression of miR-92a-3p in post-pubertal testes results into functionally compromised Sc, leading to impairment of the blood-testis barrier formation and apoptosis of pre-meiotic Gc, ultimately culminating into infertility. Collectively, our data suggest that regulation of miR-92a-3p expression is crucial for Sc-mediated induction of active spermatogenesis at puberty and regulation of male fertility.
Collapse
Affiliation(s)
- Alka Gupta
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, USA
| | - Amandeep Vats
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Anindita Ghosal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Kamal Mandal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Rajesh Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Department of Medicine, University of Chicago, Chicago, USA
| | - Indrashis Bhattacharya
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
- Dept. of Zoology, H. N. B. Garhwal University, Srinagar, Uttarakhand, India
| | - Sanjeev Das
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Rahul Pal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India
| | - Subeer S Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, 110067, India.
- Genes and Protein Engineering Laboratory, National Institute of Animal Biotechnology, Hyderabad, India.
| |
Collapse
|
9
|
Blum A, Mostow K, Jackett K, Kelty E, Dakpa T, Ryan C, Hagos E. KLF4 Regulates Metabolic Homeostasis in Response to Stress. Cells 2021; 10:830. [PMID: 33917010 PMCID: PMC8067718 DOI: 10.3390/cells10040830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Cancerous cells are detrimental to the human body and can be incredibly resilient against treatments because of the complexities of molecular carcinogenic pathways. In particular, cancer cells are able to sustain increased growth under metabolic stress due to phenomena like the Warburg effect. Krüppel-like factor 4 (KLF4), a context-dependent transcription factor that can act as both a tumor suppressor and an oncogene, is involved in many molecular pathways that respond to low glucose and increased reactive oxygen species (ROS), raising the question of its role in metabolic stress as a result of increased proliferation of tumor cells. In this study, metabolic assays were performed, showing enhanced efficiency of energy production in cells expressing KLF4. Western blotting showed that KLF4 increases the expression of essential glycolytic proteins. Furthermore, we used immunostaining to show that KLF4 increases the localization of glucose transporter 1 (GLUT1) to the cellular membrane. 2',7'-Dichlorodihydrofluorescein diacetate (H2DCF-DA) was used to analyze the production of ROS, and we found that KLF4 reduces stress-induced ROS within cells. Finally, we demonstrated increased autophagic death in KLF4-expressing cells in response to glucose starvation. Collectively, these results relate KLF4 to non-Warburg metabolic behaviors that support its role as a tumor suppressor and could make KLF4 a target for new cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Engda Hagos
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.B.); (K.M.); (K.J.); (E.K.); (T.D.); (C.R.)
| |
Collapse
|
10
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
11
|
Choi H, Roh J. LH-induced Transcriptional Regulation of Klf4 Expression in Granulosa Cells Occurs via the cAMP/PKA Pathway and Requires a Putative Sp1 Binding Site. Int J Mol Sci 2020; 21:ijms21197385. [PMID: 33036290 PMCID: PMC7582263 DOI: 10.3390/ijms21197385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Krüppel-like factor 4 (Klf4) plays an important role in the transition from proliferation to differentiation in a wide variety of cells. Previous studies demonstrated its critical role in the luteal transition of preovulatory granulosa cells (GCs). This study used cultured rat preovulatory GCs to investigate the mechanism by which luteinizing hormone (LH) regulates Klf4 gene expression. Klf4 mRNA and protein were rapidly and transiently induced by LH treatment, reaching peak levels after 45 min and declining to basal levels by 3 h. Pretreatment with the protein synthesis inhibitor cycloheximide had no effect on LH-stimulated Klf4 expression, indicating that Klf4 is an immediate early gene in response to LH. To investigate the signaling pathway involved in LH-induced Klf4 regulation, the protein kinase A (PKA) and protein kinase C (PKC) pathways were evaluated. A-kinase agonists, but not a C-kinase agonist, mimicked LH in inducing Klf4 transcription. In addition, specific inhibitors of A-kinase abolished the stimulatory effect of LH on Klf4 expression. Truncation of a Klf4 expression construct to −715 bp (pKlf4-715/luc) had no effect on transcriptional activity, whereas deletion to −402 bp (pKlf4-402/luc) dramatically reduced it. ChIP analysis revealed in vivo binding of endogenous Sp1 to the −715/−500 bp region and maximal transcriptional responsiveness to LH required the Sp1 binding element at −698/−688 bp, which is highly conserved in mice, rats, and humans. These findings demonstrate that Klf4 is activated by LH via the cAMP/PKA pathway and a putative Sp1 binding element at −698/−688 bp is indispensable for activation and suggest that Klf4 could be a target for strategies for treating luteal phase insufficiency induced by an aberrant response to the LH surge.
Collapse
|
12
|
E4 Transcription Factor 1 (E4F1) Regulates Sertoli Cell Proliferation and Fertility in Mice. Animals (Basel) 2020; 10:ani10091691. [PMID: 32962114 PMCID: PMC7552733 DOI: 10.3390/ani10091691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Male fertility relies on the generation of functional sperm in seminiferous tubules of the testis. In mammals, Sertoli cells are the only somatic cells that directly interact with spermatogenic cells. Compelling evidences suggest that the number of Sertoli cells determines testis size and sperm output, however, molecular mechanisms regulating Sertoli cell proliferation and maturation are not well-understood. Using a Sertoli cell specific loss-of-function approach, here we showed that transcription factor E4F1 played an important role in murine Sertoli cell proliferation. Compared with their littermate control, E4f1 conditional knockout male mice sired a significantly low number of pups. E4f1 deletion resulted in reduced Sertoli cell number and testis size. Further analyses revealed that E4f1 deletion affected Sertoli cell proliferation in the neonatal testis and caused an increase in apoptosis of spermatogenic cells without affecting normal development of spermatogonia, meiotic and post-meiotic germ cells. These findings have shed new light on molecular controlling of spermatogenesis in mice and a similar mechanism likely exists in other animals. Abstract In the mammalian testes, Sertoli cells are the only somatic cells in the seminiferous tubules that provide structural, nutritional and regulatory support for developing spermatogenic cells. Sertoli cells only proliferate during the fetal and neonatal periods and enter a quiescent state after puberty. Functional evidences suggest that the size of Sertoli cell population determines sperm production and fertility. However, factors that direct Sertoli cell proliferation and maturation are not fully understood. Transcription factor E4F1 is a multifunctional protein that serves essential roles in cell fate decisions and because it interacts with pRB, a master regulator of Sertoli cell function, we hypothesized that E4F1 may have a functional role in Sertoli cells. E4f1 mRNA was present in murine testis and immunohistochemical staining confirmed that E4F1 was enriched in mature Sertoli cells. We generated a conditional knockout mouse model using Amh-cre and E4f1flox/flox lines to study E4F1 fucntion in Sertoli cells and the results showed that E4f1 deletion caused a significant reduction in testis size and fertility. Further analyses revealed that meiosis progression and spermiogenesis were normal, however, Sertoli cell proliferation was impaired and germ cell apoptosis was elevated in the testis of E4f1 conditional knockout mice. On the basis of these findings, we concluded that E4F1 was expressed in murine Sertoli cells and served important functions in regulating Sertoli cell proliferation and fertility.
Collapse
|
13
|
Chen PY, Qin L, Li G, Malagon-Lopez J, Wang Z, Bergaya S, Gujja S, Caulk AW, Murtada SI, Zhang X, Zhuang ZW, Rao DA, Wang G, Tobiasova Z, Jiang B, Montgomery RR, Sun L, Sun H, Fisher EA, Gulcher JR, Fernandez-Hernando C, Humphrey JD, Tellides G, Chittenden TW, Simons M. Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell 2020; 26:542-557.e11. [PMID: 32243809 PMCID: PMC7182079 DOI: 10.1016/j.stem.2020.02.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/27/2019] [Accepted: 02/21/2020] [Indexed: 11/29/2022]
Abstract
The etiology of aortic aneurysms is poorly understood, but it is associated with atherosclerosis, hypercholesterolemia, and abnormal transforming growth factor β (TGF-β) signaling in smooth muscle. Here, we investigated the interactions between these different factors in aortic aneurysm development and identified a key role for smooth muscle cell (SMC) reprogramming into a mesenchymal stem cell (MSC)-like state. SMC-specific ablation of TGF-β signaling in Apoe-/- mice on a hypercholesterolemic diet led to development of aortic aneurysms exhibiting all the features of human disease, which was associated with transdifferentiation of a subset of contractile SMCs into an MSC-like intermediate state that generated osteoblasts, chondrocytes, adipocytes, and macrophages. This combination of medial SMC loss with marked increases in non-SMC aortic cell mass induced exuberant growth and dilation of the aorta, calcification and ossification of the aortic wall, and inflammation, resulting in aneurysm development.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Guangxin Li
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong Province, China
| | - Jose Malagon-Lopez
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXiNextCODE, Cambridge, MA, USA; Complex Biological Systems Alliance, Medford, MA, USA
| | - Zheng Wang
- School of Basic Medicine, Qingdao University, Shandong, China
| | - Sonia Bergaya
- Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and the Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York, NY, USA
| | - Sharvari Gujja
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXiNextCODE, Cambridge, MA, USA; Complex Biological Systems Alliance, Medford, MA, USA
| | - Alexander W Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen W Zhuang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guilin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Zuzana Tobiasova
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lele Sun
- Genomics Laboratory, WuXiNextCODE, Shanghai, China
| | - Hongye Sun
- Genomics Laboratory, WuXiNextCODE, Shanghai, China
| | - Edward A Fisher
- Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and the Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York, NY, USA
| | | | - Carlos Fernandez-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| | - Thomas W Chittenden
- Computational Statistics and Bioinformatics Group, Advanced Artificial Intelligence Research Laboratory, WuXiNextCODE, Cambridge, MA, USA; Complex Biological Systems Alliance, Medford, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Coskun ZM, Ersoz M, Adas M, Hancer VS, Boysan SN, Gonen MS, Acar A. Kruppel-Like Transcription Factor-4 Gene Expression and DNA Methylation Status in Type 2 Diabetes and Diabetic Nephropathy Patients. Arch Med Res 2019; 50:91-97. [PMID: 31495395 DOI: 10.1016/j.arcmed.2019.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/12/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND/AIM Diabetic nephropathy (DN) is one of the most serious microvascular complications in diabetic patients. The kruppel-like transcription factor-4 (KLF-4) affects the expression of genes involved in the pathogenesis of DN. The present study aims to identify the KLF-4 expression and DNA methylation (DNAMe) status in patients with type-2 diabetes (T2D) and DN and to reveal the contribution of the KLF-4 to the development of DN. MATERIAL AND METHODS The cohort study was performed with blood samples from 120 individuals; T2D group (n = 40), DN group (n = 40) and control group (n = 40). The expression level of the KLF-4 gene was analyzed using the real-time polymerase chain reaction (qRT-PCR) and the methylation profile detected using the methylation-specific PCR (MS-PCR) technique. RESULTS According to our findings, KLF-4 mRNA expression in the T2D group was 1.60 fold lower than in the control group (p = 0.001). In the DN group, the expression of KLF-4 mRNA was 2.92-fold less than that of the T2D group (p = 0.001). There was no significant alteration in the DNAMe status among the groups. CONCLUSION Our findings showed that regardless of the DNAMe status, KLF-4 gene expression may play a role in the development of T2D and DN. This suggests that the KLF-4 gene may be the target gene in understanding the mechanism of nephropathy, which is the most important complication of diabetes, and planning nephropathy-related treatments, but the data should be supported with more studies.
Collapse
Affiliation(s)
- Zeynep Mine Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey.
| | - Melike Ersoz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Mine Adas
- Department of Endocrinology, Ministry of Health Okmeydani Research and Training Hospital, Health Sciences University, Istanbul, Turkey
| | - Veysel Sabri Hancer
- Department Medical Genetics, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Serife Nur Boysan
- Department of Endocrinology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Mustafa Sait Gonen
- Department of Endocrinology, Faculty of Cerrahpasa Medicine, Istanbul University, Istanbul, Turkey
| | - Aynur Acar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| |
Collapse
|
15
|
Choi H, Ryu KY, Roh J. Krüppel-like factor 4 plays a role in the luteal transition in steroidogenesis by downregulating Cyp19A1 expression. Am J Physiol Endocrinol Metab 2019; 316:E1071-E1080. [PMID: 30939050 DOI: 10.1152/ajpendo.00238.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transition from granulosa cell (GC) to luteal cell involves a change from estrogen production to predominantly progesterone production. We analyzed the role of Krüppel-like factor 4 (Klf4), a transcriptional repressor used to generate pluripotent cells, in that transition. After luteinizing hormone (LH)/human chorionic gonadotropin treatment of preovulatory follicles, a major but transient increase in Klf4 transcript levels was detected. Therefore, we enquired whether Klf4 is involved in the rapid decline of aromatase, the key estrogen-producing enzyme, using preovulatory GCs obtained from pregnant mare serum gonadotropin-primed immature rat ovaries. Cyp19A1 expression in GCs transfected with FLAG-Klf4 or Klf4-specific siRNA was analyzed by real-time PCR and immunofluorescence staining. Cyp19A1 decreased when Klf4 was overexpressed, and Cyp19A1 and estradiol biosynthesis increased when Klf4 was knocked down. The mechanism by which Klf4 regulates Cyp19A1 expression was investigated using Cyp19A1 promoter-luciferase reporter assays and chromatin immunoprecipitation assays. The results revealed that the steroidogenic factor-1 (SF1)-binding motif, but not the specificity protein 1 (Sp1) binding element or the CACCC motif, was required for Klf4-mediated repression of Cyp19A1 promoter activity. Here we showed that Klf4 suppressed endogenous Cyp19A1 transcript and protein production, and this resulted from direct binding of Klf4 to the SF1 recognition motif in the Cyp19A1 promoter. These findings suggest that Klf4 is a physiologic regulator of Cyp19A1 expression in response to the LH surge in preovulatory GCs and that it has an essential role in the luteal transition in steroidogenesis.
Collapse
Affiliation(s)
- Hyeonhae Choi
- Laboratory of Reproductive Endocrinology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University , Seoul , South Korea
| | - Ki-Young Ryu
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University , Seoul , South Korea
| | - Jaesook Roh
- Laboratory of Reproductive Endocrinology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University , Seoul , South Korea
| |
Collapse
|
16
|
Pinel L, Mandon M, Cyr DG. Tissue regeneration and the epididymal stem cell. Andrology 2019; 7:618-630. [PMID: 31033244 DOI: 10.1111/andr.12635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/24/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In most pseudostratified epithelia, basal cells represent a multipotent adult stem cell population. These cells generally remain in a quiescent state, until they are stimulated to respond to tissue damage by initiating epithelial regeneration. In the epididymis, cell proliferation occurs at a relatively slow rate under normal physiological conditions. Epididymal basal cells have been shown to share common properties with multipotent adult stem cells. The development of organoids from stem cells represents a novel approach for understanding cellular differentiation and characterization of stem cells. OBJECTIVE To review the literature on tissue regeneration in the epididymis and demonstrate the presence of an epididymal stem cell population. METHODS PubMed database was searched for studies reporting on cell proliferation, regeneration, and stem cells in the epididymis. Three-dimensional cell culture of epididymal cells was used to determine whether these can develop into organoids in a similar fashion to stem cells from other tissues. RESULTS The epididymal epithelium can rapidly regenerate following orchidectomy or efferent duct ligation, in order to maintain epithelial integrity. Studies have isolated a highly purified fraction of rat epididymal basal cells and reported that these cells displayed properties similar to those of multipotent adult stem cells. In two-dimensional cell culture conditions, these cells differentiated into cells which expressed connexin 26, a marker of columnar cells, and cytokeratin 8. Furthermore, three-dimensional cell culture of epididymal cells resulted in the formation of organoids, a phenomenon associated with the proliferation and differentiation of stem cells in vitro. CONCLUSIONS The rapid proliferation and tissue regeneration of the epididymal epithelium to preserve its integrity following tissue damage as well as the ability of cells to differentiate into organoids in vitro support the notion of a resident progenitor/stem cell population in the adult epididymis.
Collapse
Affiliation(s)
- L Pinel
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - M Mandon
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - D G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| |
Collapse
|
17
|
Li S, Zhai J, Liu J, Di F, Sun Y, Li W, Chen ZJ, Du Y. Erythropoietin-producing hepatocellular A7 triggering ovulation indicates a potential beneficial role for polycystic ovary syndrome. EBioMedicine 2018; 36:539-552. [PMID: 30292674 PMCID: PMC6197718 DOI: 10.1016/j.ebiom.2018.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background The ovulatory dysfunction mechanisms underlying polycystic ovary syndrome (PCOS) are not completely understood. And the roles of EPHA7 and EPHA7-regulated pathway factors in the pathogenesis of anovulation remain to be elucidated. Methods We used human granulosa cells (hGCs) of PCOS and non-PCOS patients to measure EPHA7 and other target gene expressions. We performed in vitro experiments in KGN cells to verify the molecular mechanisms. Additionally, we conducted in vivo loss- and gain-of-function studies using EPHA7 shRNA lentivirus and recombinant EPHA7-Fc protein injection to identify the ovulation effects of EPHA7. Findings EPHA7 functions as a critically positive upstream factor for the expression of ERK1/2-mediated C/EBPβ. This protein, in turn, induced the expression of KLF4 and then ADAMTS1. Moreover, decreased abundance of EPHA7 was positively correlated with that of its downstream factors in hGCs of PCOS patients. Additionally, a 1-week functional EPHA7 shRNA lentivirus in rat ovaries contributed to decreased numbers of retrieved oocytes, and a 3-week functional lentivirus led to menstrual disorders and morphological polycystic changes in rat ovaries. More importantly, we found that EPHA7 triggered ovulation in rats, and it improved polycystic ovarian changes induced by DHEA in PCOS rats. Interpretation Our findings demonstrate a new role of EPHA7 in PCOS, suggesting that EPHA7 is an effective target for the development of innovative medicines to induce ovulation. Fund National Key Research and Development Program of China, National Natural Science Foundation, Shanghai Municipal Education Commission--Gaofeng Clinical Medicine, and Shanghai Commission of Science and Technology.
Collapse
Affiliation(s)
- Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Fangfang Di
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Weiping Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
18
|
de Santi F, Beltrame FL, Hinton BT, Cerri PS, Sasso-Cerri E. Reduced levels of stromal sex hormone-binding globulin and androgen receptor dysfunction in the sperm storage region of the rat epididymis. Reproduction 2018; 155:467-479. [DOI: 10.1530/rep-18-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/29/2018] [Indexed: 01/06/2023]
Abstract
The cauda epididymidis is the major sperm storage region whose androgenic supply, essential for the sperm viability, is provided by the vasculature and is dependent upon testosterone diffusion through the stromal tissue to reach the epithelial cells. We have focused our efforts on examining the regulation of this important epididymal region by evaluating the impact of the androgen disrupter cimetidine on the epithelial–stromal androgenic microenvironment. Male rats received 100 mg/kg cimetidine (CMTG) or saline (CG) for 50 days, serum testosterone levels were measured and the epididymal cauda region was processed for light and transmission electron microscopy. In the proximal cauda region, the duct diameter was measured and birefringent collagen in the stroma was quantified. TUNEL-labeled epithelial cells were quantified, and androgen receptor (AR), karyopherin alpha (KPNA) and sex hormone-binding globulin (SHBG) levels were analyzed by immunofluorescence and Western blot. CMTG showed reduced duct diameter and high number of apoptotic epithelial cells. In the epithelium, the total AR concentration and the KPNA immunoreactivity were reduced, and a weak/absent AR nuclear immunofluorescence was observed in contrast to the enhanced AR immunolabeling observed in the cytoplasm of the epithelial cells. A significant reduction of collagen and SHBG levels in the stroma was also observed. Cimetidine treatment impairs AR nuclear import in the epithelium, causing androgenic dysfunction and subsequent epithelial cell apoptosis and duct atrophy. The connective tissue atrophy and reduction of SHBG stromal levels associated with epithelial androgenic dysfunction indicate a possible role of stromal SHBG in the androgenic supply of the sperm storage region of the epididymis.
Collapse
|
19
|
Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): What we currently know. Gene 2017; 611:27-37. [PMID: 28237823 DOI: 10.1016/j.gene.2017.02.025] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell growth, proliferation, and differentiation. Since its discovery in 1996, KLF4 has been gaining a lot of attention, particularly after it was shown in 2006 as one of four factors involved in the induction of pluripotent stem cells (iPSCs). Here we review the current knowledge about the different functions and roles of KLF4 in various tissue and organ systems.
Collapse
Affiliation(s)
- Amr M Ghaleb
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Vincent W Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
20
|
Adam C, Cyr DG. Role of Specificity Protein-1 and Activating Protein-2 Transcription Factors in the Regulation of the Gap Junction Protein Beta-2 Gene in the Epididymis of the Rat. Biol Reprod 2016; 94:120. [PMID: 27053364 PMCID: PMC6702783 DOI: 10.1095/biolreprod.115.133702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/04/2016] [Indexed: 12/02/2022] Open
Abstract
In prepubertal rats, connexin 26 (GJB2) is expressed between adjacent columnar cells of the epididymis. At 28 days of age, when columnar cells differentiate into adult epithelial cell types, Gjb2 mRNA levels decrease to barely detectable levels. There is no information on the regulation of GJB2 in the epididymis. The present study characterized regulation of the Gjb2 gene promoter in the epididymis. A single transcription start site at position −3829 bp relative to the ATG was identified. Computational analysis revealed several TFAP2A, SP1, and KLF4 putative binding sites. A 1.5-kb fragment of the Gjb2 promoter was cloned into a vector containing a luciferase reporter gene. Transfection of the construct into immortalized rat caput epididymal (RCE-1) cells indicated that the promoter contained sufficient information to drive expression of the reporter gene. Deletion constructs showed that the basal activity of the promoter resides in the first −230 bp of the transcriptional start site. Two response elements necessary for GJB2 expression were identified: an overlapping TFAP2A/SP1 site (−136 to −126 bp) and an SP1 site (−50 bp). Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays confirmed that SP1 and TFAP2A were bound to the promoter. ChIP analysis of chromatin from young and pubertal rats indicated that TFAP2A and SP1 binding decreased with age. SP1 and TFAP2A knockdown indicated that SP1 is necessary for Gjb2 expression. DNA methylation did not appear to be involved in the regulation of Gjb2 expression. Results indicate that SP1 and TFAP2A regulate Gjb2 promoter activity during epididymal differentiation in rat.
Collapse
Affiliation(s)
- Cécile Adam
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| |
Collapse
|
21
|
Nakajima KI, Cui Z, Li C, Meister J, Cui Y, Fu O, Smith AS, Jain S, Lowell BB, Krashes MJ, Wess J. Gs-coupled GPCR signalling in AgRP neurons triggers sustained increase in food intake. Nat Commun 2016; 7:10268. [PMID: 26743492 PMCID: PMC4729878 DOI: 10.1038/ncomms10268] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 11/24/2015] [Indexed: 01/06/2023] Open
Abstract
Agouti-related peptide (AgRP) neurons of the hypothalamus play a key role in regulating food intake and body weight, by releasing three different orexigenic molecules: AgRP; GABA; and neuropeptide Y. AgRP neurons express various G protein-coupled receptors (GPCRs) with different coupling properties, including Gs-linked GPCRs. At present, the potential role of Gs-coupled GPCRs in regulating the activity of AgRP neurons remains unknown. Here we show that the activation of Gs-coupled receptors expressed by AgRP neurons leads to a robust and sustained increase in food intake. We also provide detailed mechanistic data linking the stimulation of this class of receptors to the observed feeding phenotype. Moreover, we show that this pathway is clearly distinct from other GPCR signalling cascades that are operative in AgRP neurons. Our data suggest that drugs able to inhibit this signalling pathway may become useful for the treatment of obesity. Hypothalamic Agouti-related peptide (AgRP) neurons play a key role in regulating food intake. Here, the authors report a novel pathway in which activation of Gs-coupled receptors on AgRP neurons leads to robust, sustained increase in food intake.
Collapse
Affiliation(s)
- Ken-ichiro Nakajima
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Zhenzhong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Chia Li
- Diabetes Endocrine and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Ou Fu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan
| | - Adam S Smith
- Section on Neural Gene Expression, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | - Shalini Jain
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Bradford B Lowell
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael J Krashes
- Diabetes Endocrine and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Fritz AL, Adil MM, Mao SR, Schaffer DV. cAMP and EPAC Signaling Functionally Replace OCT4 During Induced Pluripotent Stem Cell Reprogramming. Mol Ther 2015; 23:952-963. [PMID: 25666918 DOI: 10.1038/mt.2015.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/03/2015] [Indexed: 12/17/2022] Open
Abstract
The advent of induced pluripotent stem cells--generated via the ectopic overexpression of reprogramming factors such as OCT4, SOX2, KLF4, and C-MYC (OSKM) in a differentiated cell type--has enabled groundbreaking research efforts in regenerative medicine, disease modeling, and drug discovery. Although initial studies have focused on the roles of nuclear factors, increasing evidence highlights the importance of signal transduction during reprogramming. By utilizing a quantitative, medium-throughput screen to initially identify signaling pathways that could potentially replace individual transcription factors during reprogramming, we initially found that several pathways--such as Notch, Smoothened, and cyclic AMP (cAMP) signaling--were capable of generating alkaline phosphatase positive colonies in the absence of OCT4, the most stringently required Yamanaka factor. After further investigation, we discovered that cAMP signal activation could functionally replace OCT4 to induce pluripotency, and results indicate that the downstream exchange protein directly activated by cAMP (EPAC) signaling pathway rather than protein kinase A (PKA) signaling is necessary and sufficient for this function. cAMP signaling may reduce barriers to reprogramming by contributing to downstream epithelial gene expression, decreasing mesenchymal gene expression, and increasing proliferation. Ultimately, these results elucidate mechanisms that could lead to new reprogramming methodologies and advance our understanding of stem cell biology.
Collapse
Affiliation(s)
- Ashley L Fritz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Maroof M Adil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Sunnie R Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; Department of Bioengineering, University of California, Berkeley, California, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
23
|
Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, Itoh H. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest 2014; 124:2523-37. [PMID: 24812666 DOI: 10.1172/jci69557] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/20/2014] [Indexed: 01/08/2023] Open
Abstract
The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria.
Collapse
|
24
|
Yang L, Wang Y, Zhang Q, Lai Y, Li C, Zhang Q, Huang W, Duan Y, Jiang Z, Li X, Cai Z, Mou L, Gui Y. Identification ofHsf1as a novel androgen receptor-regulated gene in mouse Sertoli cells. Mol Reprod Dev 2014; 81:514-23. [PMID: 24599545 DOI: 10.1002/mrd.22318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/03/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Lihua Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics; Institute of Urology; Peking University Shenzhen Hospital; Shenzhen PKU-HKUST Medical Center; Shenzhen China
- Department of Urological Surgery; Shenzhen Second People's Hospital; The First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Yadong Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics; Institute of Urology; Peking University Shenzhen Hospital; Shenzhen PKU-HKUST Medical Center; Shenzhen China
- Zunyi Medical College Fifth Affiliated Hospital; Zhuhai China
| | - Qiang Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics; Institute of Urology; Peking University Shenzhen Hospital; Shenzhen PKU-HKUST Medical Center; Shenzhen China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics; Institute of Urology; Peking University Shenzhen Hospital; Shenzhen PKU-HKUST Medical Center; Shenzhen China
| | - Cailing Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics; Institute of Urology; Peking University Shenzhen Hospital; Shenzhen PKU-HKUST Medical Center; Shenzhen China
| | - Qiaoxia Zhang
- Department of Urological Surgery; Shenzhen Second People's Hospital; The First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Weiren Huang
- Department of Urological Surgery; Shenzhen Second People's Hospital; The First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Yonggang Duan
- Department of Urological Surgery; Shenzhen Second People's Hospital; The First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Zhimao Jiang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics; Institute of Urology; Peking University Shenzhen Hospital; Shenzhen PKU-HKUST Medical Center; Shenzhen China
| | - Xianxin Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics; Institute of Urology; Peking University Shenzhen Hospital; Shenzhen PKU-HKUST Medical Center; Shenzhen China
| | - Zhiming Cai
- Department of Urological Surgery; Shenzhen Second People's Hospital; The First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Lisha Mou
- Department of Urological Surgery; Shenzhen Second People's Hospital; The First Affiliated Hospital of Shenzhen University; Shenzhen China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics; Institute of Urology; Peking University Shenzhen Hospital; Shenzhen PKU-HKUST Medical Center; Shenzhen China
| |
Collapse
|
25
|
Su C, Sun F, Cunningham RL, Rybalchenko N, Singh M. ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9685. [PMID: 25015774 PMCID: PMC4150906 DOI: 10.1007/s11357-014-9685-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/26/2014] [Indexed: 05/16/2023]
Abstract
Oxidative stress has long been implicated in the pathogenesis of various neurodegenerative disorders such as Alzheimer's disease and stroke. While high levels of oxidative stress are generally associated with cell death, a slight rise of reactive oxygen species (ROS) levels can be protective by "preconditioning" cells to develop a resistance against subsequent challenges. However, the mechanisms underlying such preconditioning (PC)-induced protection are still poorly understood. Previous studies have supported a role of ERK5 (mitogen-activated protein [MAP] kinase 5) in neuroprotection and ischemic tolerance in the hippocampus. In agreement with these findings, our data suggest that ERK5 mediates both hydrogen peroxide (H2O2)-induced PC as well as nerve growth factor (NGF)-induced neuroprotection. Activation of ERK5 partially rescued pheochromocytoma PC12 cells as well as primary hippocampal neurons from H2O2-caused death, while inhibition of ERK5 abolished NGF or PC-induced protection. These results implicate ERK5 signaling as a common downstream pathway for NGF and PC. Furthermore, both NGF and PC increased the expression of the transcription factor, KLF4, which can initiate an anti-apoptotic response in various cell types. Induction of KLF4 by NGF or PC was blocked by siERK5, suggesting that ERK5 is required in this process. siKLF4 can also attenuate NGF- or PC-induced neuroprotection. Overexpression of active MEK5 or KLF4 in H2O2-stressed cells increased Bcl-2/Bax ratio and the expression of NAIP (neuronal apoptosis inhibitory protein). Taken together, our data suggest that ERK5/KLF4 cascade is a common signaling pathway shared by at least two important mechanisms by which neurons can be protected from cell death.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA,
| | | | | | | | | |
Collapse
|
26
|
Zhang J, Hashmi S, Cheema F, Al-Nasser N, Bakheet R, Parhar RS, Al-Mohanna F, Gaugler R, Hussain MM, Hashmi S. Regulation of lipoprotein assembly, secretion and fatty acid β-oxidation by Krüppel-like transcription factor, klf-3. J Mol Biol 2013; 425:2641-55. [PMID: 23639358 DOI: 10.1016/j.jmb.2013.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 04/21/2013] [Indexed: 12/26/2022]
Abstract
Lipid metabolism is coordinately regulated through signaling networks that integrate biochemical pathways of fat assimilation, mobilization and utilization. Excessive diversion of fat for storage is a key risk factor for many fat-related human diseases. Dietary lipids are absorbed from the intestines and transported to various organs and tissues to provide energy and maintain lipid homeostasis. In humans, disparity between triglycerides (TG) synthesis and removal, via mitochondrial β-oxidation and VLDL (very low density lipoprotein) secretion, causes excessive TG accumulation in the liver. The mutation in Caenorhabditis elegans KLF-3 leads to high TG accumulation in the worm's intestine. Our previous data suggested that klf-3 regulates lipid metabolism by promoting fatty acid β-oxidation. Depletion of cholesterol in the diet has no effect on fat deposition in klf-3 (ok1975) mutants. Addition of vitamin D in the diet, however, increases fat levels in klf-3 worms. This suggests that excess vitamin D may be lowering the rate of fatty acid β-oxidation, with the eventual increase in fat accumulation. We also demonstrate that mutation in klf-3 reduces expression of C. elegans dsc-4 and/or vit genes, the orthologs of mammalian microsomal triglyceride transfer protein and apolipoprotein B, respectively. Both microsomal triglyceride transfer protein and apolipoprotein B are essential for mammalian lipoprotein assembly and transport, and mutation in both dsc-4 (qm182) and vit-5 (ok3239) results in high fat accumulation in worm intestine. Genetic interactions between klf-3 and dsc-4, as well as vit-5 genes, suggest that klf-3 may have an important role in regulating lipid assembly and secretion.
Collapse
Affiliation(s)
- Jun Zhang
- Developmental Biology, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang K, Li N, Yeung C, Li J, Wang H, Cooper T. Oncogenic Wnt/β-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research. ACTA ACUST UNITED AC 2012; 19:57-71. [DOI: 10.1093/molehr/gas051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Yoon O, Roh J. Downregulation of KLF4 and the Bcl-2/Bax ratio in advanced epithelial ovarian cancer. Oncol Lett 2012; 4:1033-1036. [PMID: 23162646 DOI: 10.3892/ol.2012.834] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/26/2012] [Indexed: 11/06/2022] Open
Abstract
Kruppel-like factor 4 (KLF4) is a key transcriptional regulator of cell differentiation and proliferation and an altered expression of KLF4 has been reported in a number of human malignancies. In the present study, we investigated KLF4 expression and its role in cell proliferation in advanced epithelial ovarian cancer (EOC). We compared KLF4, Bcl-2 and Bax transcript levels in ovaries isolated from advanced EOC and normal control ovaries. In addition, the KLF4 gene was transduced into ovarian cancer cells and transcript levels of Bcl-2 and Bax and cell proliferation were analyzed by real-time RT-PCR and MTT assays, respectively. Ovarian KLF4 expression and Bcl-2/Bax ratios were downregulated in most cases of advanced EOC. In addition, KLF4 overexpression in ovarian cancer cells increased the Bcl-2/Bax ratio. However, MTT analysis indicated that the overexpression of KLF4 had no effect on the proliferation of ovarian cancer cells. The inactivation of KLF4 is frequently observed in ovarian cancers and a reduced expression of KLF4 in the ovarian cancers may lead to a reduction in the Bcl-2/Bax ratio. The latter has a role in predicting cancer grade, although its exact role in ovarian carcinogenesis requires clarification.
Collapse
Affiliation(s)
- Ok Yoon
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 133-791, Republic of Korea
| | | |
Collapse
|
29
|
Yeung CH, Wang K, Cooper TG. Why are epididymal tumours so rare? Asian J Androl 2012; 14:465-75. [PMID: 22522502 DOI: 10.1038/aja.2012.20] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epididymal tumour incidence is at most 0.03% of all male cancers. It is an enigma why the human epididymis does not often succumb to cancer, when it expresses markers of stem and cancer cells, and constitutively expresses oncogenes, pro-proliferative and pro-angiogenic factors that allow tumour cells to escape immunosurveillance in cancer-prone tissues. The privileged position of the human epididymis in evading tumourigenicity is reflected in transgenic mouse models in which induction of tumours in other organs is not accompanied by epididymal neoplasia. The epididymis appears to: (i) prevent tumour initiation (it probably lacks stem cells and has strong anti-oxidative mechanisms, active tumour suppressors and inactive oncogene products); (ii) foster tumour monitoring and destruction (by strong immuno-surveillance and -eradication, and cellular senescence); (iii) avert proliferation and angiogenesis (with persistent tight junctions, the presence of anti-angiogenic factors and misplaced pro-angiogenic factors), which together (iv) promote dormancy and restrict dividing cells to hyperplasia. Epididymal cells may be rendered non-responsive to oncogenic stimuli by the constitutive expression of factors generally inducible in tumours, and resistant to the normal epididymal environment, which mimics that of a tumour niche promoting tumour growth. The threshold for tumour initiation may thus be higher in the epididymis than in other organs. Several anti-tumour mechanisms are those that maintain spermatozoa quiescent and immunologically silent, so the low incidence of cancer in the epididymis may be a consequence of its role in sperm maturation and storage. Understanding these mechanisms may throw light on cancer prevention and therapy in general.
Collapse
Affiliation(s)
- Ching-Hei Yeung
- Shandong Stem Cell Engineering and Technology Research Centre, YuHuangDing Hospital, Yantai, China
| | | | | |
Collapse
|
30
|
Klco JM, Kulkarni S, Kreisel FH, Nguyen TDT, Hassan A, Frater JL. Immunohistochemical analysis of monocytic leukemias: usefulness of CD14 and Kruppel-like factor 4, a novel monocyte marker. Am J Clin Pathol 2011; 135:720-30. [PMID: 21502426 DOI: 10.1309/ajcpz46pmmawjrot] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Detection of monocytic differentiation in myeloid neoplasms by immunohistochemical analysis is challenging owing to a lack of sensitive and/or specific antibodies. We tested the usefulness of immunohistochemical analysis for CD14, an antigen commonly detected by flow cytometry, and Krüppel-like factor 4 (KLF4), a potentially novel marker of monocytic differentiation, in a series of myeloid leukemias, including 53 acute myeloid leukemias with monocytic differentiation. These findings were compared with immunohistochemical findings for CD68 (KP-1), CD34, and CD163 and were also correlated with flow cytometric and enzyme cytochemical results. CD163 and CD14 are the most specific markers of monocytic differentiation, followed by KLF4. CD68, in contrast, is the most sensitive monocytic marker, and KLF4 is also significantly more sensitive than CD14 and CD163. These studies show that KLF4 is another marker of monocytic differentiation and that the combination of CD14 and CD163 can increase the diagnostic sensitivity for monocytic neoplasms.
Collapse
|