1
|
Jentoft IMA, Bäuerlein FJB, Welp LM, Cooper BH, Petrovic A, So C, Penir SM, Politi AZ, Horokhovskyi Y, Takala I, Eckel H, Moltrecht R, Lénárt P, Cavazza T, Liepe J, Brose N, Urlaub H, Fernández-Busnadiego R, Schuh M. Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices. Cell 2023; 186:5308-5327.e25. [PMID: 37922900 DOI: 10.1016/j.cell.2023.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Mammalian oocytes are filled with poorly understood structures called cytoplasmic lattices. First discovered in the 1960s and speculated to correspond to mammalian yolk, ribosomal arrays, or intermediate filaments, their function has remained enigmatic to date. Here, we show that cytoplasmic lattices are sites where oocytes store essential proteins for early embryonic development. Using super-resolution light microscopy and cryoelectron tomography, we show that cytoplasmic lattices are composed of filaments with a high surface area, which contain PADI6 and subcortical maternal complex proteins. The lattices associate with many proteins critical for embryonic development, including proteins that control epigenetic reprogramming of the preimplantation embryo. Loss of cytoplasmic lattices by knocking out PADI6 or the subcortical maternal complex prevents the accumulation of these proteins and results in early embryonic arrest. Our work suggests that cytoplasmic lattices enrich maternally provided proteins to prevent their premature degradation and cellular activity, thereby enabling early mammalian development.
Collapse
Affiliation(s)
- Ida M A Jentoft
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Felix J B Bäuerlein
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Arsen Petrovic
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Chun So
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Antonio Z Politi
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Iina Takala
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Heike Eckel
- Kinderwunschzentrum Göttingen, 37081 Göttingen, Germany
| | | | - Peter Lénárt
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Tommaso Cavazza
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Nils Brose
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Henning Urlaub
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany; Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute for Neuropathology, University Medical Center Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany; Faculty of Physics, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Baran V, Mayer A. Checkpoint Kinase 1 Is a Key Signal Transducer of DNA Damage in the Early Mammalian Cleavage Embryo. Int J Mol Sci 2023; 24:ijms24076778. [PMID: 37047751 PMCID: PMC10095474 DOI: 10.3390/ijms24076778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
After fertilization, remodeling of the oocyte and sperm genome is essential for the successful initiation of mitotic activity in the fertilized oocyte and subsequent proliferative activity of the early embryo. Despite the fact that the molecular mechanisms of cell cycle control in early mammalian embryos are in principle comparable to those in somatic cells, there are differences resulting from the specific nature of the gene totipotency of the blastomeres of early cleavage embryos. In this review, we focus on the Chk1 kinase as a key transduction factor in monitoring the integrity of DNA molecules during early embryogenesis.
Collapse
Affiliation(s)
- Vladimír Baran
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Šoltésovej 4, 040 00 Košice, Slovakia
| | - Alexandra Mayer
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University, 12000 Prague, Czech Republic
| |
Collapse
|
3
|
Chen F, Ma B, Lin Y, Luo X, Xu T, Zhang Y, Chen F, Li Y, Zhang Y, Luo B, Zhang Q, Xie X. Comparative maternal protein profiling of mouse biparental and uniparental embryos. Gigascience 2022; 11:6691138. [PMID: 36056732 PMCID: PMC9440387 DOI: 10.1093/gigascience/giac084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022] Open
Abstract
Background Maternal proteins have important roles during early embryonic development. However, our understanding of maternal proteins is still very limited. The integrated analysis of mouse uniparental (parthenogenetic) and biparental (fertilized) embryos at the protein level creates a protein expression landscape that can be used to explore preimplantation mouse development. Results Using label-free quantitative mass spectrometry (MS) analysis, we report on the maternal proteome of mouse parthenogenetic embryos at pronucleus, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages and highlight dynamic changes in protein expression. In addition, comparison of proteomic profiles of parthenogenotes and fertilized embryos highlights the different fates of maternal proteins. Enrichment analysis uncovered a set of maternal proteins that are strongly correlated with the subcortical maternal complex, and we report that in parthenogenotes, some of these maternal proteins escape the fate of protein degradation. Moreover, we identified a new maternal factor-Fbxw24, and highlight its importance in early embryonic development. We report that Fbxw24 interacts with Ddb1-Cul4b and may regulate maternal protein degradation in mouse. Conclusions Our study provides an invaluable resource for mechanistic analysis of maternal proteins and highlights the role of the novel maternal factor Fbw24 in regulating maternal protein degradation during preimplantation embryo development.
Collapse
Affiliation(s)
- Fumei Chen
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Buguo Ma
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yongda Lin
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Xin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Tao Xu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yuan Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Fang Chen
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yanfei Li
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Yaoyao Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Qingmei Zhang
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China.,Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P. R. China
| |
Collapse
|
4
|
Ju JQ, Li XH, Pan MH, Xu Y, Sun MH, Xu Y, Sun SC. CHK1 monitors spindle assembly checkpoint and DNA damage repair during the first cleavage of mouse early embryos. Cell Prolif 2020; 53:e12895. [PMID: 32914523 PMCID: PMC7574881 DOI: 10.1111/cpr.12895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES DNA damage and errors of accurate chromosome segregation lead to aneuploidy and foetal defects. DNA repair and the spindle assembly checkpoint (SAC) are the mechanisms developed to protect from these defects. Checkpoint kinase 1 (CHK1) is reported to be an important DNA damage response protein in multiple models, but its functions remain unclear in early mouse embryos. MATERIALS AND METHODS Immunofluorescence staining, immunoblotting and real-time reverse transcription polymerase chain reaction were used to perform the analyses. Reactive oxygen species levels and Annexin-V were also detected. RESULTS Loss of CHK1 activity accelerated progress of the cell cycle at the first cleavage; however, it disturbed the development of early embryos to the morula/blastocyst stages. Further analysis indicated that CHK1 participated in spindle assembly and chromosome alignment, possibly due to its regulation of kinetochore-microtubule attachment and recruitment of BubR1 and p-Aurora B to the kinetochores, indicating its role in SAC activity. Loss of CHK1 activity led to embryonic DNA damage and oxidative stress, which further induced early apoptosis and autophagy, indicating that CHK1 is responsible for interphase DNA damage repair. CONCLUSIONS Our results indicate that CHK1 is a key regulator of the SAC and DNA damage repair during early embryonic development in mice.
Collapse
Affiliation(s)
- Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Toralova T, Kinterova V, Chmelikova E, Kanka J. The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 2020; 77:3177-3194. [PMID: 32095869 PMCID: PMC11104927 DOI: 10.1007/s00018-020-03482-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
The degradation of maternally provided molecules is a very important process during early embryogenesis. However, the vast majority of studies deals with mRNA degradation and protein degradation is only a very little explored process yet. The aim of this article was to summarize current knowledge about the protein degradation during embryogenesis of mammals. In addition to resuming of known data concerning mammalian embryogenesis, we tried to fill the gaps in knowledge by comparison with facts known about protein degradation in early embryos of non-mammalian species. Maternal protein degradation seems to be driven by very strict rules in terms of specificity and timing. The degradation of some maternal proteins is certainly necessary for the normal course of embryonic genome activation (EGA) and several concrete proteins that need to be degraded before major EGA have been already found. Nevertheless, the most important period seems to take place even before preimplantation development-during oocyte maturation. The defects arisen during this period seems to be later irreparable.
Collapse
Affiliation(s)
- Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic.
| | - Eva Chmelikova
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
6
|
Pan MH, Ju JQ, Li XH, Xu Y, Wang JD, Ren YP, Lu X, Sun SC. Inhibition of survivin induces spindle disorganization, chromosome misalignment, and DNA damage during mouse embryo development. Cell Cycle 2020; 19:2148-2157. [PMID: 32687433 DOI: 10.1080/15384101.2020.1794545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The early embryonic development is important for the subsequent embryo implantation, and any defects in this process can lead to embryonic aneuploidy, which causes miscarriage and birth defects. Survivin is the member of inhibitor of apoptosis protein (IAP) family, and it is also an essential subunit of chromosomal passenger complex (CPC), which regulates both apoptosis and cell cycle control in many models. However, the roles of survivin in mouse early embryos remain unclear. In the present study, we showed that survivin activity was essential for mouse early embryo development. Our results showed that survivin mainly accumulated at chromosomes at metaphase stage and located at the spindle midzone at anaphase and telophase stages during the first cleavage. Loss of survivin activity led to the failure of cleavage in early mouse embryos. Further analysis indicated that survivin involved into spindle organization and chromosome alignment. Moreover, inhibition of survivin induced oxidative stress and DNA damage, showing with the increase of ROS level, the positive γH2A signal, and the increase of Rad51 level. We also observed the occurrence of autophagy and apoptosis in the survivin-inhibited embryos. In summary, our study suggested that survivin was a critical regulator for early embryo development through its regulation on spindle organization, chromosome alignment, and DNA damage.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| | - Jie-Dong Wang
- College of Basic Medical Sciences, Zunyi Medical University , Zunyi, China
| | - Yan-Ping Ren
- College of Basic Medical Sciences, Zunyi Medical University , Zunyi, China
| | - Xiang Lu
- College of Basic Medical Sciences, Zunyi Medical University , Zunyi, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing, China
| |
Collapse
|
7
|
Li XH, Li WJ, Ju JQ, Pan MH, Xu Y, Sun MH, Li M, Sun SC. CHK2 is essential for spindle assembly and DNA repair during the first cleavage of mouse embryos. Aging (Albany NY) 2020; 12:10415-10426. [PMID: 32484784 PMCID: PMC7346029 DOI: 10.18632/aging.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022]
Abstract
The quality of the early embryo is critical for embryonic development and implantation. Errors during cleavage lead to aneuploidy in embryos. As a cell cycle checkpoint protein, CHK2 participates in DNA replication, cell cycle arrest and spindle assembly. However, the functions of CHK2 in early development of the mouse embryo remain largely unknown. In this study, we show that CHK2 is localized on the spindle in metaphase and mainly accumulates at spindle poles in anaphase/telophase during the first cleavage of the mouse embryo. CHK2 inhibition led to cleavage failure in early embryonic development, accompanied by abnormal spindle assembly and misaligned chromosomes. Moreover, the loss of CHK2 activity increased the level of cellular DNA damage, which resulted in oxidative stress. Then, apoptosis and autophagy were found to be active in these embryos. In summary, our results suggest that CHK2 is an essential regulator of spindle assembly and DNA repair during early embryonic development in mice.
Collapse
Affiliation(s)
- Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Jing Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Israel S, Casser E, Drexler HCA, Fuellen G, Boiani M. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days. BMC Genomics 2019; 20:755. [PMID: 31638890 PMCID: PMC6805607 DOI: 10.1186/s12864-019-6106-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background While DNA and RNA methods are routine to disrupt the expression of specific genes, complete understanding of developmental processes requires also protein methods, because: oocytes and early embryos accumulate proteins and these are not directly affected by DNA and RNA methods. When proteins in the oocyte encounter a specific antibody and the TRIpartite Motiv-containing 21 (TRIM21) ubiquitin-protein ligase, they can be committed to degradation in the proteasome, producing a transient functional knock-out that reveals the role of the protein. However, there are doubts about whether this targeted proteolysis could be successfully used to study mammalian development, because duration of the transient effect is unknown, and also because amounts of reagents delivered must be adequate in relation to the amount of target protein, which is unknown, too. Results We show that the mouse egg contains up to 1E-02 picomoles/protein, as estimated by mass spectrometry using the intensity-based absolute quantification (iBAQ) algorithm. However, the egg can only accommodate ≈1E-04 picomoles of antibody or TRIM21 without incurring toxic effects. Within this framework, we demonstrate that TRIM21-mediated protein depletion efficiently disrupts the embryonic process of trophectoderm formation, which critically depends on the TEA domain family member 4 (Tead4) gene. TEAD4 depletion starting at the 1-cell stage lasts for 3 days prior to a return of gene and protein expression to baseline. This time period is long enough to result in a phenotype entirely consistent with that of the published null mutation and RNA interference studies: significant underexpression of trophectodermal genes Cdx2 and Gata3 and strongly impaired ability of embryos to cavitate and implant in the uterus. Omics data are available via ProteomeXchange (PXD012613) and GEO (GSE124844). Conclusions TRIM21-mediated protein depletion can be an effective means to disrupt gene function in mouse development, provided the target gene is chosen carefully and the method is tuned accurately. The knowledge gathered in this study provides the basic know-how (prerequisites, requirements, limitations) to expedite the protein depletion of other genes besides Tead4.
Collapse
Affiliation(s)
- Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Ellen Casser
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
9
|
Pimentel RN, Navarro PA, Wang F, Robinson LG, Cammer M, Liang F, Kramer Y, Keefe DL. Amyloid-like substance in mice and human oocytes and embryos. J Assist Reprod Genet 2019; 36:1877-1890. [PMID: 31332596 DOI: 10.1007/s10815-019-01530-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To identify and characterize amyloid-like substance (ALS) in human and mouse oocytes and preimplantation embryos. METHODS An experimental prospective pilot study. A total of 252 mouse oocytes and preimplantation embryos and 50 immature and in vitro matured human oocytes and parthenogenetic human embryos, from 11 consenting fertility patients, ages 18-45. Fluorescence intensity from immunofluorescent staining and data from confocal microscopy were quantified. Data were compared by one-way analysis of variance, with the least square-MEANS post-test, Pearson correlation coefficients (r), and bivariate analyses (t tests). ALS morphology was verified using transmission electron microscopy. RESULTS Immunostaining for ALS appears throughout the zona pellucida, as well as in the cytoplasm and nucleus of mouse and human oocytes, polar bodies, and parthenogenetic embryos, and mouse preimplantation embryos. In mouse, 2-cell embryos exhibited the highest level of ALS (69000187.4 ± 6733098.07). Electron microscopy confirmed the presence of ALS. In humans, fresh germinal vesicle stage oocytes exhibited the highest level of ALS (4164.74088 ± 1573.46) followed by metaphase I and II stages (p = 0.008). There was a significant negative association between levels of ALS and patient body mass index, number of days of ovarian stimulation, dose of gonadotropin used, time between retrieval and fixation, and time after the hCG trigger. Significantly higher levels of ALS were found in patients with AMH between 1 and 3 ng/ml compared to < 1 ng/ml. CONCLUSION We demonstrate for the first time the presence, distribution, and change in ALS throughout some stages of mouse and human oocyte maturation and embryonic development. We also determine associations between ALS in human oocytes with clinical characteristics.
Collapse
Affiliation(s)
- Ricardo N Pimentel
- Research Scientist from the Department of Obstetrics and Gynecology, New York University School of Medicine, 550 First Avenue, NBV 9N1, New York, NY, USA.,Human Reproduction Division, Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Paula A Navarro
- Human Reproduction Division, Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fang Wang
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - LeRoy G Robinson
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - Michael Cammer
- DART Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Fengxia Liang
- DART Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Yael Kramer
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - David Lawrence Keefe
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
10
|
Liang S, Guo J, Choi JW, Shin KT, Wang HY, Jo YJ, Kim NH, Cui XS. Protein phosphatase 2A regulatory subunit B55α functions in mouse oocyte maturation and early embryonic development. Oncotarget 2018; 8:26979-26991. [PMID: 28439046 PMCID: PMC5432312 DOI: 10.18632/oncotarget.15927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 2A regulatory subunit B55α (PP2A-B55α) has been studied in mitosis. However, its functions in mammalian meiosis and early embryonic development remain unknown. Here, we report that PP2A-B55α is critical for mouse oocyte meiosis and preimplantation embryo development. Knockdown of PP2A-B55α in oocytes led to abnormal asymmetric division, disordered spindle dynamics, defects in chromosome congression, an increase in aneuploidy, and induction of the DNA damage response. Moreover, knockdown of PP2A-B55α in fertilized mouse zygotes impaired development to the blastocyst stage. The impairment of embryonic development might have been due to induction of sustained DNA damage in embryos, which caused apoptosis and inhibited cell proliferation and outgrowth potential at the blastocyst stage. Overall, these results provide a novel insight into the role of PP2A-B55α as a novel meiotic and embryonic competence factor at the onset of life.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Jing Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Jeong-Woo Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Kyung-Tae Shin
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Hai-Yang Wang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Yu-Jin Jo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| |
Collapse
|
11
|
Ntostis P, Carter D, Iles D, Huntriss J, Tzetis M, Miller D. Potential sperm contributions to the murine zygote predicted by in silico analysis. Reproduction 2017; 154:777-788. [DOI: 10.1530/rep-17-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/17/2022]
Abstract
Paternal contributions to the zygote are thought to extend beyond delivery of the genome and paternal RNAs have been linked to epigenetic transgenerational inheritance in different species. In addition, sperm–egg fusion activates several downstream processes that contribute to zygote formation, including PLC zeta-mediated egg activation and maternal RNA clearance. Since a third of the preimplantation developmental period in the mouse occurs prior to the first cleavage stage, there is ample time for paternal RNAs or their encoded proteins potentially to interact and participate in early zygotic activities. To investigate this possibility, a bespoke next-generation RNA sequencing pipeline was employed for the first time to characterise and compare transcripts obtained from isolated murine sperm, MII eggs and pre-cleavage stage zygotes. Gene network analysis was then employed to identify potential interactions between paternally and maternally derived factors during the murine egg-to-zygote transition involving RNA clearance, protein clearance and post-transcriptional regulation of gene expression. Ourin silicoapproach looked for factors in sperm, eggs and zygotes that could potentially interact co-operatively and synergistically during zygote formation. At least five sperm RNAs (Hdac11,Fbxo2,Map1lc3a,Pcbp4andZfp821) met these requirements for a paternal contribution, which with complementary maternal co-factors suggest a wider potential for extra-genomic paternal involvement in the developing zygote.
Collapse
|
12
|
Anastácio A, Rodriguez-Wallberg KA, Chardonnet S, Pionneau C, Fédérici C, Almeida Santos T, Poirot C. Protein profile of mouse ovarian follicles grown in vitro. Mol Hum Reprod 2017; 23:827-841. [PMID: 29069483 PMCID: PMC5909860 DOI: 10.1093/molehr/gax056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/28/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION Could the follicle proteome be mapped by identifying specific proteins that are common or differ between three developmental stages from the secondary follicle (SF) to the antrum-like stage? SUMMARY ANSWER From a total of 1401 proteins identified in the follicles, 609 were common to the three developmental stages investigated and 444 were found uniquely at one of the stages. WHAT IS KNOWN ALREADY The importance of the follicle as a functional structure has been recognized; however, up-to-date the proteome of the whole follicle has not been described. A few studies using proteomics have previously reported on either isolated fully-grown oocytes before or after meiosis resumption or cumulus cells. STUDY DESIGN, SIZE, DURATION The experimental design included a validated mice model for isolation and individual culture of SFs. The system was chosen as it allows continuous evaluation of follicle growth and selection of follicles for analysis at pre-determined developmental stages: SF, complete Slavjanski membrane rupture (SMR) and antrum-like cavity (AF). The experiments were repeated 13 times independently to acquire the material that was analyzed by proteomics. PARTICIPANTS/MATERIALS, SETTING, METHODS SFs (n = 2166) were isolated from B6CBA/F1 female mice (n = 42), 12 days old, from 15 l. About half of the follicles isolated as SF were analyzed as such (n = 1143) and pooled to obtain 139 μg of extracted protein. Both SMR (n = 359) and AF (n = 124) were obtained after individual culture of 1023 follicles in a microdrop system under oil, selected for analysis and pooled, to obtain 339 μg and 170 μg of protein, respectively. The follicle proteome was analyzed combining isoelectric focusing (IEF) fractionation with 1D and 2D LC-MS/MS analysis to enhance protein identification. The three protein lists were submitted to the 'Compare gene list' tool in the PANTHER website to gain insights on the Gene Ontology Biological processes present and to Ingenuity Pathway Analysis to highlight protein networks. A label-free quantification was performed with 1D LC-MS/MS analyses to emphasize proteins with different expression profiles between the three follicular stages. Supplementary western blot analysis (using new biological replicates) was performed to confirm the expression variations of three proteins during follicle development in vitro. MAIN RESULTS AND THE ROLE OF CHANCE It was found that 609 out of 1401 identified proteins were common to the three follicle developmental stages investigated. Some proteins were identified uniquely at one stage: 71 of the 775 identified proteins in SF, 181 of 1092 in SMR and 192 of 1100 in AF. Additional qualitative and quantitative analysis highlighted 44 biological processes over-represented in our samples compared to the Mus musculus gene database. In particular, it was possible to identify proteins implicated in the cell cycle, calcium ion binding and glycolysis, with specific expressions and abundance, throughout in vitro follicle development. LARGE SCALE DATA Data are available via ProteomeXchange with identifier PXD006227. LIMITATIONS, REASONS FOR CAUTION The proteome analyses described in this study were performed after in vitro development. Despite fractionation of the samples before LC-MS/MS, proteomic approaches are not exhaustive, thus proteins that are not identified in a group are not necessarily absent from that group, although they are likely to be less abundant. WIDER IMPLICATIONS OF THE FINDINGS This study allowed a general view of proteins implicated in follicle development in vitro and it represents the most complete catalog of the whole follicle proteome available so far. Not only were well known proteins of the oocyte identified but also proteins that are probably expressed only in granulosa cells. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Portuguese Foundation for Science and Technology, FCT (PhD fellowship SFRH/BD/65299/2009 to A.A.), the Swedish Childhood Cancer Foundation (PR 2014-0144 to K.A.R-.W.) and Stockholm County Council to K.A.R-.W. The authors of the study have no conflict of interest to report.
Collapse
Affiliation(s)
- Amandine Anastácio
- Université Paris VI (UPMC), Paris, France
- Department of Oncology-Pathology, Karolinska Institutet and Laboratory of Translational Fertility Preservation, Cancer Center Karolinska (CCK), Stockholm, Sweden
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Karolinska Institutet and Laboratory of Translational Fertility Preservation, Cancer Center Karolinska (CCK), Stockholm, Sweden
- Reproductive Medicine, Department of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden
| | - Solenne Chardonnet
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme P3S, Paris, France
| | - Cédric Pionneau
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMS Omique, Plateforme P3S, Paris, France
| | | | - Teresa Almeida Santos
- Department of Human Reproduction, University Hospital of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catherine Poirot
- Université Paris VI (UPMC), Paris, France
- Service d’Hématologie-Unité AJA, Hôpital Saint Louis, Paris, France
| |
Collapse
|
13
|
Abe T, Lee A, Sitharam R, Kesner J, Rabadan R, Shapira SD. Germ-Cell-Specific Inflammasome Component NLRP14 Negatively Regulates Cytosolic Nucleic Acid Sensing to Promote Fertilization. Immunity 2017; 46:621-634. [PMID: 28423339 DOI: 10.1016/j.immuni.2017.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/31/2017] [Accepted: 02/15/2017] [Indexed: 12/19/2022]
Abstract
Cytosolic sensing of nucleic acids initiates tightly regulated programs to limit infection. Oocyte fertilization represents a scenario wherein inappropriate responses to exogenous yet non-pathogen-derived nucleic acids would have negative consequences. We hypothesized that germ cells express negative regulators of nucleic acid sensing (NAS) in steady state and applied an integrated data-mining and functional genomics approach to identify a rheostat of DNA and RNA sensing-the inflammasome component NLRP14. We demonstrated that NLRP14 interacted physically with the nucleic acid sensing pathway and targeted TBK1 (TANK binding kinase 1) for ubiquitination and degradation. We further mapped domains in NLRP14 and TBK1 that mediated the inhibitory function. Finally, we identified a human nonsense germline variant associated with male sterility that results in loss of NLRP14 function and hyper-responsiveness to nucleic acids. The discovery points to a mechanism of nucleic acid sensing regulation that may be of particular importance in fertilization.
Collapse
Affiliation(s)
- Takayuki Abe
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Albert Lee
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Ramaswami Sitharam
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Jordan Kesner
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
14
|
Inhibition of Rac1 GTPase activity affects porcine oocyte maturation and early embryo development. Sci Rep 2016; 6:34415. [PMID: 27694954 PMCID: PMC5046063 DOI: 10.1038/srep34415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022] Open
Abstract
Mammalian oocyte asymmetric division relies on the eccentric positioning of the spindle, resulting in the polar body formation. Small signaling G protein Rac1 is a member of GTPases, which regulates a diverse array of cellular events, including the control of cell growth, cytoskeletal reorganization, and the activation of protein kinases. However, effects of Rac1 on the porcine oocyte maturation and early embryo development are not fully understood. In present study we investigated the role of Rac1 in oocyte maturation and embryo cleavage. We first found that Rac1 localized at the cortex of the porcine oocytes, and disrupting the Rac1 activities by treating with NSC 23766 led to the failure of polar body emission. In addition, a majority of treated oocytes exhibited abnormal spindle morphology, indicating that Rac1 may involve into porcine oocyte spindle formation. This might be due to the regulation of Rac1 on MAPK, since p-MAPK expression decreased after NSC 23766 treatments. Moreover, we found that the position of most meiotic spindles in treated oocytes were away from the cortex, indicating the roles of Rac1 on meiotic spindle positioning. Our results also showed that inhibition of Rac1 activity caused the failure of early embryo development. Therefore, our study showed the critical roles of Rac1 GTPase on porcine oocyte maturation and early embryo cleavage.
Collapse
|
15
|
Poli M, Ori A, Child T, Jaroudi S, Spath K, Beck M, Wells D. Characterization and quantification of proteins secreted by single human embryos prior to implantation. EMBO Mol Med 2016; 7:1465-79. [PMID: 26471863 PMCID: PMC4644378 DOI: 10.15252/emmm.201505344] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The use of in vitro fertilization (IVF) has revolutionized the treatment of infertility and is now responsible for 1–5% of all births in industrialized countries. During IVF, it is typical for patients to generate multiple embryos. However, only a small proportion of them possess the genetic and metabolic requirements needed in order to produce a healthy pregnancy. The identification of the embryo with the greatest developmental capacity represents a major challenge for fertility clinics. Current methods for the assessment of embryo competence are proven inefficient, and the inadvertent transfer of non-viable embryos is the principal reason why most IVF treatments (approximately two-thirds) end in failure. In this study, we investigate how the application of proteomic measurements could improve success rates in clinical embryology. We describe a procedure that allows the identification and quantification of proteins of embryonic origin, present in attomole concentrations in the blastocoel, the enclosed fluid-filled cavity that forms within 5-day-old human embryos. By using targeted proteomics, we demonstrate the feasibility of quantifying multiple proteins in samples derived from single blastocoels and that such measurements correlate with aspects of embryo viability, such as chromosomal (ploidy) status. This study illustrates the potential of high-sensitivity proteomics to measure clinically relevant biomarkers in minute samples and, more specifically, suggests that key aspects of embryo competence could be measured using a proteomic-based strategy, with negligible risk of harm to the living embryo. Our work paves the way for the development of “next-generation” embryo competence assessment strategies, based on functional proteomics.
Collapse
Affiliation(s)
- Maurizio Poli
- Nuffield Department of Obstetrics and Gynaecology, Institute of Reproductive Sciences University of Oxford, Oxford, UK Oxford Fertility Unit, Institute of Reproductive Sciences, Oxford, UK Reprogenetics UK, Institute of Reproductive Sciences, Oxford, UK
| | - Alessandro Ori
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Tim Child
- Nuffield Department of Obstetrics and Gynaecology, Institute of Reproductive Sciences University of Oxford, Oxford, UK Oxford Fertility Unit, Institute of Reproductive Sciences, Oxford, UK
| | - Souraya Jaroudi
- Reprogenetics UK, Institute of Reproductive Sciences, Oxford, UK
| | - Katharina Spath
- Nuffield Department of Obstetrics and Gynaecology, Institute of Reproductive Sciences University of Oxford, Oxford, UK Reprogenetics UK, Institute of Reproductive Sciences, Oxford, UK
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Dagan Wells
- Nuffield Department of Obstetrics and Gynaecology, Institute of Reproductive Sciences University of Oxford, Oxford, UK Reprogenetics UK, Institute of Reproductive Sciences, Oxford, UK
| |
Collapse
|
16
|
Wang B, Pfeiffer MJ, Drexler HCA, Fuellen G, Boiani M. Proteomic Analysis of Mouse Oocytes Identifies PRMT7 as a Reprogramming Factor that Replaces SOX2 in the Induction of Pluripotent Stem Cells. J Proteome Res 2016; 15:2407-21. [PMID: 27225728 DOI: 10.1021/acs.jproteome.5b01083] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093.
Collapse
Affiliation(s)
- Bingyuan Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing 100193, China
| | - Martin J Pfeiffer
- Max Planck Institute for Molecular Biomedicine , Röntgenstraße 20, 48149 Münster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine , Bioanalytical Mass Spectrometry Facility, Röntgenstraße 20, 48149 Münster, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine , Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
17
|
Boiani M, Cibelli JB. What we can learn from single-cell analysis in development. Mol Hum Reprod 2016; 22:160-71. [DOI: 10.1093/molehr/gaw014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
Swegen A, Aitken RJ. Prospects for immunocontraception in feral horse population control: exploring novel targets for an equine fertility vaccine. Reprod Fertil Dev 2016; 28:853-863. [DOI: 10.1071/rd14280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/11/2014] [Indexed: 12/12/2022] Open
Abstract
Feral horses populate vast land areas and often induce significant ecological and economic damage throughout the landscape. Non-lethal population control methods are considered favourable in light of animal welfare, social and ethical considerations; however, no single effective, safe and species-specific contraceptive agent is currently available for use in free-ranging wild and feral horses. This review explores aspects of equine reproductive physiology that may provide avenues for the development of specific and long-lasting immunocontraceptive vaccines and some of the novel strategies that may be employed to facilitate appropriate antigen discovery in future research. Potential antigen targets pertaining to spermatozoa, the ovary and oocyte, as well as the early conceptus and its associated factors, are reviewed in the context of their suitability for immunocontraceptive vaccine development.
Collapse
|
19
|
Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Fröhlich T, Arnold GJ, Grümmer R, Horsthemke B, Eichenlaub-Ritter U. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod 2016; 31:133-49. [PMID: 26577303 PMCID: PMC5853592 DOI: 10.1093/humrep/dev279] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Is the postovulatory aging-dependent differential decrease of mRNAs and polyadenylation of mRNAs coded by maternal effect genes associated with altered abundance and distribution of maternal effect and RNA-binding proteins (MSY2)? SUMMARY ANSWER Postovulatory aging results in differential reduction in abundance of maternal effect proteins, loss of RNA-binding proteins from specific cytoplasmic domains and critical alterations of pericentromeric proteins without globally affecting protein abundance. WHAT IS KNOWN ALREADY Oocyte postovulatory aging is associated with differential alteration in polyadenylation and reduction in abundance of mRNAs coded by selected maternal effect genes. RNA-binding and -processing proteins are involved in storage, polyadenylation and degradation of mRNAs thus regulating stage-specific recruitment of maternal mRNAs, while chromosomal proteins that are stage-specifically expressed at pericentromeres, contribute to control of chromosome segregation and regulation of gene expression in the zygote. STUDY DESIGN, SIZE, DURATION Germinal vesicle (GV) and metaphase II (MII) oocytes from sexually mature C57B1/6J female mice were investigated. Denuded in vivo or in vitro matured MII oocytes were postovulatory aged and analyzed by semiquantitative confocal microscopy for abundance and localization of polyadenylated RNAs, proteins of maternal effect genes (transcription activator BRG1 also known as ATP-dependent helicase SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and NOD-like receptor family pyrin domain containing 5 (NLRP5) also known as MATER), RNA-binding proteins (MSY2 also known as germ cell-specific Y-box-binding protein, YBX2), and post-transcriptionally modified histones (trimethylated histone H3K9 and acetylated histone H4K12), as well as pericentromeric ATRX (alpha thalassemia/mental retardation syndrome X-linked, also termed ATP-dependent helicase ATRX or X-linked nuclear protein (XNP)). For proteome analysis five replicates of 30 mouse oocytes were analyzed by selected reaction monitoring (SRM). MATERIAL AND METHODS GV and MII oocytes were obtained from large antral follicles or ampullae of sexually mature mice, respectively. Denuded MII oocytes were aged for 24 h post ovulation. For analysis of distribution and abundance of polyadenylated RNAs fixed oocytes were in situ hybridized to Cy5 labeled oligo(dT)20 nucleotides. Absolute quantification of protein concentration per oocyte of selected proteins was done by SRM proteome analysis. Relative abundance of ATRX was assessed by confocal laser scanning microscopy (CLSM) of whole mount formaldehyde fixed oocytes or after removal of zona and spreading. MSY2 protein distribution and abundance was studied in MII oocytes prior to, during and after exposure to nocodazole, or after aging for 2 h in presence of H2O2 or for 24 h in presence of a glutathione donor, glutathione ethylester (GEE). MAIN RESULTS AND ROLE OF CHANCE The significant reduction in abundance of proteins (P < 0.001) translated from maternal mRNAs was independent of polyadenylation status, while their protein localization was not significantly changed by aging. Most of other proteins quantified by SRM analysis did not significantly change in abundance upon aging except MSY2 and GTSF1. MSY2 was enriched in the subcortical RNP domain (SCRD) and in the spindle chromosome complex (SCC) in a distinct pattern, right and left to the chromosomes. There was a significant loss of MSY2 from the SCRD (P < 0.001) and the spindle after postovulatory aging. Microtubule de- and repolymerization caused reversible loss of MSY2 spindle-association whereas H2O2 stress did not significantly decrease MSY2 abundance. Aging in presence of GEE decreased significantly (P < 0.05) the aging-related overall and cytoplasmic loss of MSY2. Postovulatory aging increased significantly spindle abnormalities, unaligned chromosomes, and abundance of acetylated histone H4K12, and decreased pericentromeric trimethylated histone H3K9 (all P < 0.001). Spreading revealed a highly significant increase in pericentromeric ATRX (P < 0.001) upon ageing. Thus, the significantly reduced abundance of MSY2 protein, especially at the SCRD and the spindle may disturb the spatial control and timely recruitment, deadenylation and degradation of developmentally important RNAs. An autonomous program of degradation appears to exist which transiently and specifically induces the loss and displacement of transcripts and specific maternal proteins independent of fertilization in aging oocytes and thereby can critically affect chromosome segregation and gene expression in the embryo after fertilization. LIMITATION, REASONS FOR CAUTION We used the mouse oocyte to study processes associated with postovulatory aging, which may not entirely reflect processes in aging human oocytes. However, increases in spindle abnormalities, unaligned chromosomes and H4K12 acetylated histones, as well as in mRNA abundance and polyadenylation have been observed also in aged human oocytes suggesting conserved processes in aging. WIDER IMPLICATIONS OF THE FINDINGS Postovulatory aging precociously induces alterations in expression and epigenetic modifications of chromatin by ATRX and in histone pattern in MII oocytes that normally occur after fertilization, possibly contributing to disturbances in the oocyte-to-embryo transition (OET) and the zygotic gene activation (ZGA). These observations in mouse oocytes are also relevant to explain disturbances and reduced developmental potential of aged human oocytes and caution to prevent oocyte aging in vivo and in vitro. STUDY FUNDING/COMPETING INTERESTS The study has been supported by the German Research Foundation (DFG) (EI 199/7-1 | GR 1138/12-1 | HO 949/21-1 and FOR 1041). There is no competing interest.
Collapse
Affiliation(s)
- T Trapphoff
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - M Heiligentag
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| | - D Dankert
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - H Demond
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - D Deutsch
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - T Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - G J Arnold
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - R Grümmer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - B Horsthemke
- Institute of Human Genetics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - U Eichenlaub-Ritter
- Institute of Gene Technology/Microbiology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
20
|
Levitan S, Sher N, Brekhman V, Ziv T, Lubzens E, Lotan T. The making of an embryo in a basal metazoan: Proteomic analysis in the sea anemoneNematostella vectensis. Proteomics 2015; 15:4096-104. [DOI: 10.1002/pmic.201500255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 07/25/2015] [Accepted: 09/09/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Shimrit Levitan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Noa Sher
- Bioinformatics Service Unit; University of Haifa; Haifa Israel
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| | - Tamar Ziv
- Faculty of Biology; Technion - Israel Institute of Technology; Haifa Israel
| | - Esther Lubzens
- Faculty of Biology; Technion - Israel Institute of Technology; Haifa Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences; University of Haifa; Haifa Israel
| |
Collapse
|
21
|
Benkhalifa M, Madkour A, Louanjli N, Bouamoud N, Saadani B, Kaarouch I, Chahine H, Sefrioui O, Merviel P, Copin H. From global proteome profiling to single targeted molecules of follicular fluid and oocyte: contribution to embryo development and IVF outcome. Expert Rev Proteomics 2015; 12:407-23. [DOI: 10.1586/14789450.2015.1056782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Pfeiffer MJ, Taher L, Drexler H, Suzuki Y, Makałowski W, Schwarzer C, Wang B, Fuellen G, Boiani M. Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice. Proteomics 2015; 15:675-87. [PMID: 25367296 DOI: 10.1002/pmic.201400334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Abstract
Current models of early mouse development assign roles to stochastic processes and epigenetic regulation, which are considered to be as influential as the genetic differences that exist between strains of the species Mus musculus. The aim of this study was to test whether mouse oocytes vary from each other in the abundance of gene products that could influence, prime, or even predetermine developmental trajectories and features of derivative embryos. Using the paradigm of inbred mouse strains, we quantified 2010 protein groups (SILAC LC-MS/MS) and 15205 transcripts (RNA deep sequencing) present simultaneously in oocytes of four strains tested (129/Sv, C57Bl/6J, C3H/HeN, DBA/2J). Oocytes differed according to donor strain in the abundance of catalytic and regulatory proteins, as confirmed for a subset (bromodomain adjacent to zinc finger domain, 1B [BAZ1B], heme oxygenase 1 [HMOX1], estrogen related receptor, beta [ESRRB]) via immunofluorescence in situ. Given a Pearson's r correlation coefficient of 0.18-0.20, the abundance of oocytic proteins could not be predicted from that of cognate mRNAs. Our results document that a prerequisite to generate embryo diversity, namely the different abundances of maternal proteins in oocytes, can be studied in the model of inbred mouse strains. Thus, we highlight the importance of proteomic quantifications in modern embryology. All MS data have been deposited in the ProteomeXchange with identifier PXD001059 (http://proteomecentral.proteomexchange.org/dataset/PXD001059).
Collapse
Affiliation(s)
- Martin J Pfeiffer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Akoury E, Zhang L, Ao A, Slim R. NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod 2014; 30:159-69. [PMID: 25358348 DOI: 10.1093/humrep/deu291] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
STUDY QUESTION What is the subcellular localization in human oocytes and preimplantation embryos, of the two maternal-effect proteins, NLRP7 and KHDC3L, responsible for recurrent hydatidiform moles (RHMs)? SUMMARY ANSWER NLRP7 and KHDC3L localize to the oocyte cytoskeleton and are polar and absent from the cell-to-cell contact region in early preimplantation embryos. WHAT IS KNOWN ALREADY NLRP7 and KHDC3L expression has been described at the RNA level in some stages of human oocytes and preimplantation embryos and at the protein level by immunohistochemistry in human and bovine ovaries. NLRP7 and KHDC3L co-localize to the microtubule organizing center and/or the Golgi apparatus in human hematopoietic cells. STUDY DESIGN, SIZE, DURATION A total of 164 spare human oocytes and embryos from patients undergoing in vitro fertilization were used. PARTICIPANTS/MATERIALS, SETTING, METHODS Oocytes and early cleavage-stage embryos were fixed, immunostained with NLRP7 and/or KHDC3L antibodies, and analyzed using high-resolution confocal immunofluorescence and electron microscopies. MAIN RESULTS AND THE ROLE OF CHANCE NLRP7 and KHDC3L localize to the cytoskeleton and are predominant at the cortical region in growing oocytes. After the first cellular division, these two maternal-effect proteins become asymmetrically confined to the outer cortical region and excluded from the cell-to-cell contact region until the blastocyst stage where NLRP7 and KHDC3L homogeneously redistribute to the cytoplasm and the nucleus, respectively. LIMITATIONS, REASONS FOR CAUTION We could not analyze fresh human oocytes and embryos. The analyzed materials were donated by patients undergoing assisted reproductive technologies and released for research 1-3 days after their collection and the transfer of embryos to the patients. WIDER IMPLICATIONS OF THE FINDINGS Our study is the first comprehensive and high-resolution localization of the only two known maternal-effect proteins, NLRP7 and KHDC3L, in human oocytes and preimplantation embryos. Our data contribute to a better understanding of the roles of these two proteins in the integrity of the oocytes, post-zygotic divisions, and cell-lineage differentiation. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Canadian Institute of Health Research (86546 to R.S.); E.A. was supported by fellowships from the Research Institute of the McGill University Health Centre and a CREATE award from the Réseau Québécois en Reproduction. All authors declare no conflict of interest.
Collapse
Affiliation(s)
- Elie Akoury
- Department of Human Genetics, McGill University Health Center, Montreal, QC, Canada Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| | - Li Zhang
- Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| | - Asangla Ao
- Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Center, Montreal, QC, Canada Department of Obstetrics and Gynecology, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
24
|
Van Gorp H, Kuchmiy A, Van Hauwermeiren F, Lamkanfi M. NOD-like receptors interfacing the immune and reproductive systems. FEBS J 2014; 281:4568-82. [PMID: 25154302 DOI: 10.1111/febs.13014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022]
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) are intracellular proteins that are chiefly known for their critical functions in inflammatory responses and host defense against microbial pathogens. Several NLRs have been demonstrated to assemble inflammasomes or to engage transcriptional signaling cascades that result in the production of pro-inflammatory cytokines and bactericidal factors. In recent years, NLRs have also emerged as key regulators of early mammalian embryogenesis and reproduction. A subset of phylogenetically related NLRs represents a new class of maternal effect genes that are highly expressed in maturing oocytes and pre-implantation embryos. Mutations in several of these NLRs have been linked to hereditary reproductive defects and imprinting diseases. In this review, we discuss the expression profiles, the emerging functions and molecular mode of action of these NLRs with newly recognized roles at the interfaces of the immune and reproductive systems. In addition, we provide an overview of coding mutations in NLRs that have been associated with human reproductive diseases, and outline crucial outstanding questions in this emerging research field.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
25
|
Holland A, Ohlendieck K. Comparative profiling of the sperm proteome. Proteomics 2014; 15:632-48. [DOI: 10.1002/pmic.201400032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Ashling Holland
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| |
Collapse
|
26
|
Lotan T, Chalifa-Caspi V, Ziv T, Brekhman V, Gordon MM, Admon A, Lubzens E. Evolutionary conservation of the mature oocyte proteome. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Wang B, Pfeiffer MJ, Schwarzer C, Araúzo-Bravo MJ, Boiani M. DNA replication is an integral part of the mouse oocyte's reprogramming machinery. PLoS One 2014; 9:e97199. [PMID: 24836291 PMCID: PMC4023938 DOI: 10.1371/journal.pone.0097199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/14/2014] [Indexed: 11/26/2022] Open
Abstract
Many of the structural and mechanistic requirements of oocyte-mediated nuclear reprogramming remain elusive. Previous accounts that transcriptional reprogramming of somatic nuclei in mouse zygotes may be complete in 24–36 hours, far more rapidly than in other reprogramming systems, raise the question of whether the mere exposure to the activated mouse ooplasm is sufficient to enact reprogramming in a nucleus. We therefore prevented DNA replication and cytokinesis, which ensue after nuclear transfer, in order to assess their requirement for transcriptional reprogramming of the key pluripotency genes Oct4 (Pou5f1) and Nanog in cloned mouse embryos. Using transcriptome and allele-specific analysis, we observed that hundreds of mRNAs, but not Oct4 and Nanog, became elevated in nucleus-transplanted oocytes without DNA replication. Progression through the first round of DNA replication was essential but not sufficient for transcriptional reprogramming of Oct4 and Nanog, whereas cytokinesis and thereby cell-cell interactions were dispensable for transcriptional reprogramming. Responses similar to clones also were observed in embryos produced by fertilization in vitro. Our results link the occurrence of reprogramming to a previously unappreciated requirement of oocyte-mediated nuclear reprogramming, namely DNA replication. Nuclear transfer alone affords no immediate transition from a somatic to a pluripotent gene expression pattern unless DNA replication is also in place. This study is therefore a resource to appreciate that the quest for always faster reprogramming methods may collide with a limit that is dictated by the cell cycle.
Collapse
Affiliation(s)
- Bingyuan Wang
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
- * E-mail:
| |
Collapse
|
28
|
Proteomes of animal oocytes: what can we learn for human oocytes in the in vitro fertilization programme? BIOMED RESEARCH INTERNATIONAL 2014; 2014:856907. [PMID: 24804254 PMCID: PMC3996292 DOI: 10.1155/2014/856907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Oocytes are crucial cells for mammalian reproduction, yet the molecular principles underlying oocyte development are only partially understood. Therefore, contemporary proteomic approaches have been used increasingly to provide new insights into oocyte quality and maturation in various species such as mouse, pig, and cow. Especially, animal studies have helped in elucidating the molecular status of oocytes during in vitro maturation and other procedures of assisted reproduction. The aim of this review is to summarize the literature on mammalian oocyte proteome and secretome research in the light of natural and assisted reproduction and on lessons to be learned for human oocytes, which have so far remained inaccessible for proteome analysis.
Collapse
|
29
|
Duan X, Chen KL, Zhang Y, Cui XS, Kim NH, Sun SC. ROCK inhibition prevents early mouse embryo development. Histochem Cell Biol 2014; 142:227-33. [PMID: 24562870 DOI: 10.1007/s00418-014-1201-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2014] [Indexed: 12/13/2022]
Abstract
ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.
Collapse
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
30
|
Sun SC, Wang QL, Gao WW, Xu YN, Liu HL, Cui XS, Kim NH. Actin nucleator Arp2/3 complex is essential for mouse preimplantation embryo development. Reprod Fertil Dev 2013; 25:617-23. [PMID: 22951093 DOI: 10.1071/rd12011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/15/2012] [Indexed: 12/15/2022] Open
Abstract
The Arp2/3 complex is a critical actin nucleator, which promotes actin assembly and is widely involved in a diverse range of actin-related processes such as cell locomotion, phagocytosis and the establishment of cell polarity. Previous studies showed that the Arp2/3 complex regulates spindle migration and asymmetric division during mouse oocyte maturation; however, the role of the Arp2/3 complex in early mouse embryo development is still unknown. The results of the present study show that the Arp2/3 complex is critical for cytokinesis during mouse embryo development. The Arp2/3 complex was concentrated at the cortex of each cell at the 2- to 8-cell stage and the peripheral areas of the morula and blastocyst. Inhibition of the Arp2/3 complex by the specific inhibitor CK666 at the zygote stage caused a failure in cell division; mouse embryos failed to undergo compaction and lost apical-basal polarity. The actin level decreased in the CK666-treated group, and two or more nuclei were observed within a single cell, indicating a failure of cell division. Addition of CK666 at the 8-cell stage caused a failure of blastocyst formation, and CDX2 staining confirmed the loss of embryo polarity and the failure of trophectoderm and inner cell mass formation. Taken together, these data suggest that the Arp2/3 complex may regulate mouse embryo development via its effect on cell division.
Collapse
Affiliation(s)
- Shao-Chen Sun
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang QC, Liu J, Wang F, Duan X, Dai XX, Wang T, Liu HL, Cui XS, Sun SC, Kim NH. Role of nucleation-promoting factors in mouse early embryo development. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:559-564. [PMID: 23552571 DOI: 10.1017/s1431927613000032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.
Collapse
Affiliation(s)
- Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li L, Lu X, Dean J. The maternal to zygotic transition in mammals. Mol Aspects Med 2013; 34:919-38. [PMID: 23352575 DOI: 10.1016/j.mam.2013.01.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/15/2022]
Abstract
Prior to activation of the embryonic genome, the initiating events of mammalian development are under maternal control and include fertilization, the block to polyspermy and processing sperm DNA. Following gamete union, the transcriptionally inert sperm DNA is repackaged into the male pronucleus which fuses with the female pronucleus to form a 1-cell zygote. Embryonic transcription begins during the maternal to zygotic transfer of control in directing development. This transition occurs at species-specific times after one or several rounds of blastomere cleavage and is essential for normal development. However, even after activation of the embryonic genome, successful development relies on stored maternal components without which embryos fail to progress beyond initial cell divisions. Better understanding of the molecular basis of maternal to zygotic transition including fertilization, the activation of the embryonic genome and cleavage-stage development will provide insight into early human development that should translate into clinical applications for regenerative medicine and assisted reproductive technologies.
Collapse
Affiliation(s)
- Lei Li
- Division of Molecular Embryonic Development, State Key Laboratory of Reproductive Biology, Institute of Zoology/Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | |
Collapse
|
33
|
RNAi phenotypes are influenced by the genetic background of the injected strain. BMC Genomics 2013; 14:5. [PMID: 23324472 PMCID: PMC3574008 DOI: 10.1186/1471-2164-14-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/19/2012] [Indexed: 12/22/2022] Open
Abstract
Background RNA interference (RNAi) is a powerful tool to study gene function in organisms that are not amenable to classical forward genetics. Hence, together with the ease of comprehensively identifying genes by new generation sequencing, RNAi is expanding the scope of animal species and questions that can be addressed in terms of gene function. In the case of genetic mutants, the genetic background of the strains used is known to influence the phenotype while this has not been described for RNAi experiments. Results Here we show in the red flour beetle Tribolium castaneum that RNAi against Tc-importin α1 leads to different phenotypes depending on the injected strain. We rule out off target effects and show that sequence divergence does not account for this difference. By quantitatively comparing phenotypes elicited by RNAi knockdown of four different genes we show that there is no general difference in RNAi sensitivity between these strains. Finally, we show that in case of Tc-importin α1 the difference depends on the maternal genotype. Conclusions These results show that in RNAi experiments strain specific differences have to be considered and that a proper documentation of the injected strain is required. This is especially important for the increasing number of emerging model organisms that are being functionally investigated using RNAi. In addition, our work shows that RNAi is suitable to systematically identify the differences in the gene regulatory networks present in populations of the same species, which will allow novel insights into the evolution of animal diversity.
Collapse
|
34
|
Monti M, Zanoni M, Calligaro A, Ko MSH, Mauri P, Redi CA. Developmental arrest and mouse antral not-surrounded nucleolus oocytes. Biol Reprod 2013; 88:2. [PMID: 23136301 DOI: 10.1095/biolreprod.112.103887] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The antral compartment in the ovary consists of two populations of oocytes that differ by their ability to resume meiosis and to develop to the blastocyst stage. For reasons still not entirely clear, antral oocytes termed surrounded nucleolus (SN; 70% of the population of antral oocytes) develop to the blastocyst stage, whereas those called not-surrounded nucleolus (NSN) arrest at two cells. We profiled transcriptomic, proteomic, and morphological characteristics of antral oocytes and observed that NSN oocyte arrest is associated with lack of cytoplasmic lattices coincident with reduced expression of MATER and ribosomal proteins. Cytoplasmic lattices have been shown to store maternally derived mRNA and ribosomes in mammalian oocytes and embryos, and MATER has been shown to be required for cytoplasmic lattice formation. Thus, we isolated antral oocytes from a Mater(tm/tm) mouse and we observed that 84% of oocytes are of the NSN type. Our results provide the first molecular evidence to account for inability of NSN-derived embryos to progress beyond the two-cell stage; these results may be relevant to naturally occurring preimplantation embryo demise in mammals.
Collapse
Affiliation(s)
- Manuela Monti
- Scientific Department, Research Center for Regenerative Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Egg activation is the final transition that an oocyte goes through to become a developmentally competent egg. This transition is usually triggered by a calcium-based signal that is often, but not always, initiated by fertilization. Activation encompasses a number of changes within the egg. These include changes to the egg's membranes and outer coverings to prevent polyspermy and to support the developing embryo, as well as resumption and completion of the meiotic cell cycle, mRNA polyadenylation, translation of new proteins, and the degradation of specific maternal mRNAs and proteins. The transition from an arrested, highly differentiated cell, the oocyte, to a developmentally active, totipotent cell, the activated egg or embryo, represents a complete change in cellular state. This is accomplished by altering ion concentrations and by widespread changes in both the proteome and the suite of mRNAs present in the cell. Here, we review the role of calcium and zinc in the events of egg activation, and the importance of macromolecular changes during this transition. The latter include the degradation and translation of proteins, protein posttranslational regulation through phosphorylation, and the degradation, of maternal mRNAs.
Collapse
Affiliation(s)
- Amber R Krauchunas
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
36
|
Abstract
Since the early twentieth century, inheritance was seen as the inheritance of genes. Concurrent with the acceptance of the genetic theory of inheritance was the rejection of the idea that the cytoplasm of the oocyte could also play a role in inheritance and a corresponding devaluation of embryology as a discipline critical for understanding human development. Development, and variation in development, came to be viewed solely as matters of genetic inheritance and genetic variation. We now know that inheritance is a matter of both genetic and cytoplasmic inheritance. A growing awareness of the centrality of the cytoplasm in explaining both human development and phenotypic variation has been promoted by two contemporaneous developments: the continuing elaboration of the molecular mechanisms of epigenetics and the global rise of artificial reproductive technologies. I review recent developments in the ongoing elaboration of the role of the cytoplasm in human inheritance and development.
Collapse
Affiliation(s)
- Evan Charney
- Sanford School of Public Policy, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Gala A, Fang Y, Woltedji D, Zhang L, Han B, Feng M, Li J. Changes of proteome and phosphoproteome trigger embryo–larva transition of honeybee worker (Apis mellifera ligustica). J Proteomics 2013; 78:428-46. [DOI: 10.1016/j.jprot.2012.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/20/2012] [Accepted: 10/12/2012] [Indexed: 01/26/2023]
|
38
|
Report of four new patients with protein-truncating mutations in C6orf221/KHDC3L and colocalization with NLRP7. Eur J Hum Genet 2012; 21:957-64. [PMID: 23232697 DOI: 10.1038/ejhg.2012.274] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/01/2012] [Accepted: 11/13/2012] [Indexed: 11/08/2022] Open
Abstract
To date, two maternal-effect genes have been shown to have causative roles in recurrent hydatidiform moles (RHMs); NLRP7 that is mutated in 48-60% of patients with RHMs and C6orf221 (HUGO-approved nomenclature is now KHDC3L), a recently identified gene, that is mutated in 14% of patients with RHMs who are negative for NLRP7 mutations. We sequenced KHDC3L in 97 patients with RHMs and reproductive loss who are mostly negative for NLRP7 mutations. We identified three unrelated patients, each homozygous for one of the two protein-truncating mutations, a novel 4-bp deletion resulting in a frameshift, c.299_302delTCAA, p.Ile100Argfs*2, and a previously described 4-bp deletion, c.322_325delGACT, p.Asp108Ilefs*30, transmitted on a shared haplotype to three patients from different populations. We show that five HM tissues from one of these patients are diploid and biparental similar to HMs from patients with two defective NLRP7 mutations. Using immunofluorescence, we show that KHDC3L protein displays a juxta perinuclear signal and colocalizes with NLRP7 in lymphoblastoid cell lines from normal subjects. Using cell lines from patients, we demonstrate that the KHDC3L mutations do not change the subcellular localization of the protein in hematopoietic cells. Our data highlight the similarities between the two causative genes for RHMs, KHDC3L and NLRP7, in their subcellular localization, the parental contribution to the HM tissues caused by them, and the presence of several founder mutations and variants in both of them indicating positive selection and adaptation.
Collapse
|
39
|
Potential role of peptidylarginine deiminase enzymes and protein citrullination in cancer pathogenesis. Biochem Res Int 2012; 2012:895343. [PMID: 23019525 PMCID: PMC3457611 DOI: 10.1155/2012/895343] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/31/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022] Open
Abstract
The peptidylarginine deiminases (PADs) are a family of posttranslational modification enzymes that catalyze the conversion of positively charged protein-bound arginine and methylarginine residues to the uncharged, nonstandard amino acid citrulline. This enzymatic activity is referred to as citrullination or, alternatively, deimination. Citrullination can significantly affect biochemical pathways by altering the structure and function of target proteins. Five mammalian PAD family members (PADs 1–4 and 6) have been described and show tissue-specific distribution. Recent reviews on PADs have focused on their role in autoimmune diseases. Here, we will discuss the potential role of PADs in tumor progression and tumor-associated inflammation. In the context of cancer, increasing clinical evidence suggests that PAD4 (and possibly PAD2) has important roles in tumor progression. The link between PADs and cancer is strengthened by recent findings showing that treatment of cell lines and mice with PAD inhibitors significantly suppresses tumor growth and, interestingly, inflammatory symptoms. At the molecular level, transcription factors, coregulators, and histones are functional targets for citrullination by PADs, and citrullination of these targets can affect gene expression in multiple tumor cell lines. Next generation isozyme-specific PAD inhibitors may have therapeutic potential to regulate both the inflammatory tumor microenvironment and tumor cell growth.
Collapse
|
40
|
Chandramouli KH, Reish D, Qian PY. Gel-based and gel-free identification of proteins and phosphopeptides during egg-to-larva transition in polychaete Neanthes arenaceodentata. PLoS One 2012; 7:e38814. [PMID: 22719953 PMCID: PMC3376139 DOI: 10.1371/journal.pone.0038814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
The polychaete Neanthes arenaceodentata- is cosmopolitan in distribution-, has been used as a laboratory test animal. Life history of this species has several unique features; the female dies after spawning and the male incubates the fertilized eggs through the 21-segmented stage. The larvae leave the tube and commence feeding. Changes in protein abundance and phosphorylation were examined during early development of N. arenaceodentata. A gel-based approach and gel-free enrichment of phosphopeptides coupled with mass spectrometry were used to identify proteins and phosphopeptides in fertilized ova and larval stages. Patterns of proteins and phosphoproteins changed from fertilized ova to larval stages. Twelve proteins occurred in phosphorylated form and nine as stage specific proteins. Cytoskeletal proteins have exhibited differential phosphorylation from ova to larval stages; whereas, other proteins exhibited stage-specific phosphorylation patterns. Ten phosphopeptides were identified that showed phosphorylation sites on serine or threonine residues. Sixty percent of the identified proteins were related to structural reorganization and others with protein synthesis, stress response and attachment. The abundance and distribution of two cytoskeleton proteins were examined further by 2-DE Western blot analysis. This is the first report on changes in protein expression and phosphorylation sites at Thr/Ser in early development of N. arenaceodentata. The 2-DE proteome maps and identified phosphoproteins contributes toward understanding the state of fertilized ova and early larval stages and serves as a basis for further studies on proteomics changes under different developmental conditions in this and other polychaete species.
Collapse
Affiliation(s)
| | - Donald Reish
- Department of Biological Sciences, California State University, Long Beach, California, United States of America
- * E-mail: (DR); (PYQ)
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- * E-mail: (DR); (PYQ)
| |
Collapse
|
41
|
Abstract
The evolution of the egg is dynamic, and eggs have numerous species-specific properties across vertebrates and invertebrates. Interestingly, although the structure and function of the egg have remained relatively conserved over time, some constituents of the egg's extracellular barriers are undergoing rapid evolution. In this article, we review current ideas regarding sperm-egg interactions, discuss genetic approaches used to elucidate egg gene functions, and highlight the interesting differences that have evolved across taxa. We suggest that the rapid evolution of egg components and the mechanisms behind sperm-egg interactions are integrally connected, and delve in depth into each component of the egg's extracellular matrices. Finally, we discuss the promising future of reproductive research and how high-throughput genomics and proteomics have the potential to revolutionize the field and provide new evidence that will challenge previously held views about the fertilization process.
Collapse
Affiliation(s)
- Katrina G Claw
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065, USA.
| | | |
Collapse
|
42
|
Cardoen D, Ernst UR, Boerjan B, Bogaerts A, Formesyn E, de Graaf DC, Wenseleers T, Schoofs L, Verleyen P. Worker Honeybee Sterility: A Proteomic Analysis of Suppressed Ovary Activation. J Proteome Res 2012; 11:2838-50. [DOI: 10.1021/pr201222s] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dries Cardoen
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
- Laboratory of Entomology, KU Leuven, Belgium
| | - Ulrich R. Ernst
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
- Laboratory of Entomology, KU Leuven, Belgium
| | - Bart Boerjan
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
| | - Annelies Bogaerts
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
| | | | | | | | - Liliane Schoofs
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
| | - Peter Verleyen
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
| |
Collapse
|
43
|
Yu L, Wang SF, Yao YQ. Special nutrition in mouse developmental oocytes. Exp Ther Med 2012; 3:823-827. [PMID: 22969976 DOI: 10.3892/etm.2012.489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/30/2012] [Indexed: 11/06/2022] Open
Abstract
Investigation of nutrition-related proteins in mouse oocytes and zygotes is crucial for the development of an effective therapy for patients with infertility. Currently, we are concerned with the role of nutrition in the process of oocyte development in order to better reveal the relationship between nutrition and infertility. We collected mouse oocytes at three different developmental stages: germinal vesicle (GV) stage, metaphase II-arrested (MII) stage and fertilized oocytes (zygotes). Semi-quantitative mass spectrometry and GeneMapper software were used to analyze nutrition-related proteins in these oocytes. Various specific proteins were abundantly expressed in the mouse oocytes. These proteins included heat shock proteins and Ybx2. Additional proteins which exist in important meta bolism pathways also demonstrated differential expression among the three stages. We identified additional nutrition elements required for oocyte development and fertilization. The present study contributed to increased understanding of nutrition in the process of oocyte development, which may enhance the efficacy of therapy for patients with infertility.
Collapse
Affiliation(s)
- Ling Yu
- The General Hospital of the People's Liberation Army, Beijing 100875, P.R. China
| | | | | |
Collapse
|
44
|
Demant M, Trapphoff T, Fröhlich T, Arnold GJ, Eichenlaub-Ritter U. Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Hum Reprod 2012; 27:1096-111. [PMID: 22258663 DOI: 10.1093/humrep/der453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Vitrification is a fast and effective method to cryopreserve ovarian tissue, but it might influence mitochondrial activity and affect gene expression to cause persistent alterations in the proteome of oocytes that grow and mature following cryopreservation. METHODS In part one of the study, the inner mitochondrial membrane potential (Ψ(mit)) of JC-1 stained oocytes from control and CryoTop vitrified pre-antral follicles was analyzed by confocal microscopy at Day 0, or after culture of follicles for 1 or 12 days. In part two, proteins of in vivo grown germinal vesicle (GV) oocytes were subjected to proteome analysis by SDS polyacrylamide gel electrophoresis, tryptic in-gel digestion of gel slices, and one-dimensional-nano-liquid chromatography of peptides on a multi-dimensional-nano-liquid chromatography system followed by mass spectrometry (LC-MS/MS) and Uniprot Gene Ontology (GO) analysis. In part three, samples containing the protein amount of 40 GV and metaphase II (MII) oocytes, respectively, from control and vitrified pre-antral follicles cultured for 12 or 13 days were subjected to 2D DIGE saturation labeling and separated by isoelectric focusing and SDS gel electrophoresis (2D DIGE), followed by DeCyder(Tm) analysis of spot patterns in three independent biological replicates. Statistical and hierarchical cluster analysis was employed to compare control and vitrified groups. RESULTS (i) Mitochondrial inner membrane potential differs significantly between control and vitrified GV oocytes at Day 0 and Day 1, but is similar at Day 12 of culture. (ii) LC-MS/MS analysis of SDS gel fractionated protein lysates of 988 mouse GV oocytes revealed identification of 1123 different proteins with a false discovery rate of <1%. GO analysis assigned 811 proteins to the 'biological process' subset. Thirty-five percent of the proteins corresponded to metabolic processes, about 15% to mitochondrion and transport, each, and close to 8% to oxidation-reduction processes. (iii) From the 2D-saturation DIGE analysis 1891 matched spots for GV-stage and 1718 for MII oocyte proteins were detected and the related protein abundances in vitrified and control oocytes were quantified. None of the spots was significantly altered in intensity, and hierarchical cluster analysis as well as histograms of p and q values suggest that vitrification at the pre-antral stage does not significantly alter the proteome of GV or MII oocytes compared with controls. CONCLUSIONS Vitrification appears to be associated with a significant transient increase in Ψ(mit) in oocyte mitochondria, which disappears when oocyte/cumulus cell apposition is restored upon development to the antral stage. The nano-LC-MS/MS analysis of low numbers of oocytes is useful to obtain information on relevant biological signaling pathways based on protein identifications. For quantitative comparisons, saturation 2D DIGE analysis is superior to LC-MS/MS due to its high sensitivity in cases where the biological material is very limited. Genetic background, age of the female, and/or stimulation protocol appear to influence the proteome pattern. However, the quantitative 2D DIGE approach provides evidence that vitrification does not affect the oocyte proteome after recovery from transient loss of cell-cell interactions, in vitro growth and in vitro maturation under tested conditions. Therefore, transient changes in mitochondrial activity by vitrification do not appear causal to persistent alterations in the mitochondrial or overall oocyte proteome.
Collapse
Affiliation(s)
- Myriam Demant
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität, München 81377, Germany
| | | | | | | | | |
Collapse
|
45
|
Lekhwani S, Shankar V, Vaswani ND. Proteomics in obstetrics and gynecology. INDIAN JOURNAL OF HUMAN GENETICS 2011; 17:3-6. [PMID: 21814335 PMCID: PMC3144686 DOI: 10.4103/0971-6866.82185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Proteomics helps to understand the basic biological processes critical to normal cellular functions as well as the development of diseases. It identifies the essential components of these processes and exploits these components as targets in the development of new methods to prevent or treat diseases. Proteomics, although in an infancy stage in India, has the potential to complement and further enlarge the wealth of information in medicine, especially in the field of cancer. This article reviews the recent progress in proteomic techniques and their applications in the field of obstetrics and gynecology.
Collapse
Affiliation(s)
- Seema Lekhwani
- Department of Biochemistry, Pt. B. D. Sharma PGIMS, Rohtak, Haryana, India
| | | | | |
Collapse
|
46
|
Pfeiffer MJ, Siatkowski M, Paudel Y, Balbach ST, Baeumer N, Crosetto N, Drexler HCA, Fuellen G, Boiani M. Proteomic analysis of mouse oocytes reveals 28 candidate factors of the "reprogrammome". J Proteome Res 2011; 10:2140-53. [PMID: 21344949 DOI: 10.1021/pr100706k] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oocyte is the only cell of the body that can reprogram transplanted somatic nuclei and sets the gold standard for all reprogramming methods. Therefore, an in-depth characterization of its proteome holds promise to advance our understanding of reprogramming and germ cell biology. To date, limitations on oocyte numbers and proteomic technology have impeded this task, and the search for reprogramming factors has been conducted in embryonic stem (ES) cells instead. Here, we present the proteome of metaphase II mouse oocytes to a depth of 3699 proteins, which substantially extends the number of proteins identified until now in mouse oocytes and is comparable by size to the proteome of undifferentiated mouse ES cells. Twenty-eight oocyte proteins, also detected in ES cells, match the criteria of our multilevel approach to screen for reprogramming factors, namely nuclear localization, chromatin modification, and catalytic activity. Our oocyte proteome catalog thus advances the definition of the "reprogrammome", the set of molecules--proteins, RNAs, lipids, and small molecules--that enable reprogramming.
Collapse
Affiliation(s)
- Martin J Pfeiffer
- Max-Planck Institute for Molecular Biomedicine, Mouse Embryology Laboratory, Röntgenstrasse 20, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Oocyte-targeted deletion reveals that hsp90b1 is needed for the completion of first mitosis in mouse zygotes. PLoS One 2011; 6:e17109. [PMID: 21358806 PMCID: PMC3039677 DOI: 10.1371/journal.pone.0017109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/20/2011] [Indexed: 11/19/2022] Open
Abstract
Background Hsp90b1 is an endoplasmic reticulum (ER) chaperone (also named Grp94, ERp99, gp96,Targ2, Tra-1, Tra1, Hspc4) (MGI:98817) contributing with Hspa5 (also named Grp78, BIP) (MGI:95835) to protein folding in ER compartment. Besides its high protein expression in mouse oocytes, little is known about Hsp90b1 during the transition from oocyte-to-embryo. Because the constitutive knockout of Hsp90b1 is responsible for peri-implantation embryonic lethality, it was not yet known whether Hsp90b1 is a functionally important maternal factor. Methodology/Findings To circumvent embryonic lethality, we established an oocyte-specific conditional knockout line taking advantage of the more recently created floxed Hsp90b1 line (Hsp90b1flox, MGI:3700023) in combination with the transgenic mouse line expressing the cre recombinase under the control of zona pellucida 3 (ZP3) promoter (Zp3-cre, MGI:2176187). Altered expression of Hsp90b1 in growing oocytes provoked a limited, albeit significant reduction of the zona pellucida thickness but no obvious anomalies in follicular growth, meiotic maturation or fertilization. Interestingly, mutant zygotes obtained from oocytes lacking Hsp90b1 were unable to reach the 2-cell stage. They exhibited either a G2/M block or, more frequently an abnormal mitotic spindle leading to developmental arrest. Despite the fact that Hspa5 displayed a similar profile of expression as Hsp90b1, we found that HSPA5 and HSP90B1 did not fully colocalize in zygotes suggesting distinct function for the two chaperones. Consequently, even if HSPA5 was overexpressed in Hsp90b1 mutant embryos, it did not compensate for HSP90B1 deficiency. Finally, further characterization of ER compartment and cytoskeleton revealed a defective organization of the cytoplasmic region surrounding the mutant zygotic spindle. Conclusions Our findings demonstrate that the maternal contribution of Hsp90b1 is critical for the development of murine zygotes. All together our data indicate that Hsp90b1 is involved in unique and specific aspects of the first mitosis, which brings together the maternal and paternal genomes on a single spindle.
Collapse
|
48
|
Arnold GJ, Frohlich T. Dynamic proteome signatures in gametes, embryos and their maternal environment. Reprod Fertil Dev 2011; 23:81-93. [DOI: 10.1071/rd10223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Comprehensive molecular analysis at the level of proteins represents a technically demanding, but indispensable, task since several post-transcriptional regulation mechanisms disable a valid prediction of quantitative protein expression profiles from transcriptome analysis. In crucial steps of gamete and early embryo development, de novo transcription is silenced, meaning that almost all macromolecular events take place at the level of proteins. In this review, we describe selected examples of dynamic proteome signatures addressing capacitation of spermatozoa, in vitro maturation of oocytes, effect of oestrous cycle on oviduct epithelial cells and embryo-induced alterations to the maternal environment. We also present details of the experimental strategies applied and the experiments performed to verify quantitative proteomic data. Far from being comprehensive, examples were selected to cover several mammalian species as well as the most powerful proteomic techniques currently applied. To enable non-experts in the field of proteomics to appraise published proteomic data, our examples are preceded by a customised description of quantitative proteomic methods, covering 2D difference gel electrophoresis (2D-DIGE), nano-liquid chromatography combined with tandem mass spectrometry, and label-free as well as stable-isotope labelling strategies for mass spectrometry-based quantifications.
Collapse
|
49
|
D'Inca R, Marteil G, Bazile F, Pascal A, Guitton N, Lavigne R, Richard-Parpaillon L, Kubiak JZ. Proteomic screen for potential regulators of M-phase entry and quality of meiotic resumption in Xenopus laevis oocytes. J Proteomics 2010; 73:1542-50. [PMID: 20394845 DOI: 10.1016/j.jprot.2010.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/16/2010] [Accepted: 03/25/2010] [Indexed: 11/30/2022]
Abstract
The quality of oocytes depends largely on the capacity to resume meiotic maturation. In Xenopus laevis, only fully grown oocytes react to progesterone stimulation by resumption of meiotic maturation associated with the entry into the meiotic M-phase. Proteins involved in this process are poorly known. To identify novel proteins regulating M-phase entry, we performed a differential proteomic screen. We compared proteomes of fully grown stage VI oocytes characterized as poorly or highly responsive to progesterone treatment. The comparison of 2-D gels allowed us to identify several spots including two specifically present in highly responsive oocytes and two specifically present in poorly responsive ones. By mass spectrometry we identified the two proteins specifically present in highly responsive oocytes as inosine 5'monophosphate cyclohydrolase and YjgF homologues, and the two specifically present in poorly responsive oocytes as elongation factor 2 (EF2) and S-adenosyl-L-homocysteine hydrolase (SAHH). The proteins specifically expressed in highly responsive oocytes may participate in the stimulation of meiotic maturation and M-phase entry, while the proteins specifically present in poorly maturing oocytes may participate in the inhibition of meiotic resumption.
Collapse
Affiliation(s)
- Romain D'Inca
- CNRS UMR 6061/University of Rennes 1, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|