1
|
Zhu C, Yang Q, Xu Q, Song Y, Tang C. The role of heart and neural crest derivatives-expressed protein factors in pregnancy. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167639. [PMID: 39725090 DOI: 10.1016/j.bbadis.2024.167639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Heart and neural crest derivatives-expressed protein 1 (HAND1) and Heart and neural crest derivatives-expressed protein 2 (HAND2), members of the Twist-family of basic Helix-Loop-Helix (bHLH) proteins, act as critical transcription factors that play a key role in various developmental processes, including placental development and fetal growth during pregnancy. This review aims to explore the current understanding of HAND1 and HAND2 in pregnant maintenance and their potential implications for maternal and fetal health. We will summarize the mechanisms of action of HAND1 and HAND2 in pregnancy, their expression regulation and association with pregnancy complications such as preterm birth and preeclampsia. Furthermore, we will discuss the potential therapeutic implications of targeting HAND1 and HAND2 in pregnancy-related disorders. This review highlights the importance of HAND1 and HAND2 in pregnancy and their potential as targets for future research and therapeutic interventions of gestational disorders.
Collapse
Affiliation(s)
- Chongying Zhu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Qiwei Yang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China, 200100
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
2
|
Savolainen A, Kapiainen E, Ronkainen VP, Izzi V, Matzuk MM, Monsivais D, Prunskaite-Hyyryläinen R. 3DMOUSEneST: a volumetric label-free imaging method evaluating embryo-uterine interaction and decidualization efficacy. Development 2024; 151:dev202938. [PMID: 39023143 PMCID: PMC11385321 DOI: 10.1242/dev.202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Effective interplay between the uterus and the embryo is essential for pregnancy establishment; however, convenient methods to screen embryo implantation success and maternal uterine response in experimental mouse models are currently lacking. Here, we report 3DMOUSEneST, a groundbreaking method for analyzing mouse implantation sites based on label-free higher harmonic generation microscopy, providing unprecedented insights into the embryo-uterine dynamics during early pregnancy. The 3DMOUSEneST method incorporates second-harmonic generation microscopy to image the three-dimensional structure formed by decidual fibrillar collagen, named 'decidual nest', and third-harmonic generation microscopy to evaluate early conceptus (defined as the embryo and extra-embryonic tissues) growth. We demonstrate that decidual nest volume is a measurable indicator of decidualization efficacy and correlates with the probability of early pregnancy progression based on a logistic regression analysis using Smad1/5 and Smad2/3 conditional knockout mice with known implantation defects. 3DMOUSEneST has great potential to become a principal method for studying decidual fibrillar collagen and characterizing mouse models associated with early embryonic lethality and fertility issues.
Collapse
Affiliation(s)
- Audrey Savolainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Emmi Kapiainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | | | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
3
|
Kubota K. Molecular approaches to mammalian uterine receptivity for conceptus implantation. J Reprod Dev 2024; 70:207-212. [PMID: 38763760 PMCID: PMC11310385 DOI: 10.1262/jrd.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
- Present: Research Promotion Office, Core Technology Research Headquaters, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8517, Japan
| |
Collapse
|
4
|
Dias Da Silva I, Wuidar V, Zielonka M, Pequeux C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024; 13:1236. [PMID: 39120268 PMCID: PMC11312103 DOI: 10.3390/cells13151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.
Collapse
Grants
- J.0165.24, 7.6529.23, J.0153.22, 7.4580.21F, 7.6518.21, J.0131.19 Fund for Scientific Research
- FSR-F-2023-FM, FSR-F-2022-FM, FSR-F-2021-FM, FSR-F-M-19/6761 University of Liège
- 2020, 2021, 2022 Fondation Léon Fredericq
Collapse
Affiliation(s)
| | | | | | - Christel Pequeux
- Tumors and Development, Estrogen-Sensitive Tissues and Cancer Team, GIGA-Cancer, Laboratory of Biology, University of Liège, 4000 Liège, Belgium; (I.D.D.S.); (V.W.); (M.Z.)
| |
Collapse
|
5
|
Thapa R, Marmo K, Ma L, Torry DS, Bany BM. The Long Non-Coding RNA Gene AC027288.3 Plays a Role in Human Endometrial Stromal Fibroblast Decidualization. Cells 2024; 13:778. [PMID: 38727314 PMCID: PMC11083667 DOI: 10.3390/cells13090778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
During the secretory phase of the menstrual cycle, endometrial fibroblast cells begin to change into large epithelial-like cells called decidual cells in a process called decidualization. This differentiation continues more broadly in the endometrium and forms the decidual tissue during early pregnancy. The cells undergoing decidualization as well as the resulting decidual cells, support successful implantation and placentation during early pregnancy. This study was carried out to identify new potentially important long non-coding RNA (lncRNA) genes that may play a role in human endometrial stromal fibroblast cells (hESF) undergoing decidualization in vitro, and several were found. The expression of nine was further characterized. One of these, AC027288.3, showed a dramatic increase in the expression of hESF cells undergoing decidualization. When AC027288.3 expression was targeted, the ability of the cells to undergo decidualization as determined by the expression of decidualization marker protein-coding genes was significantly altered. The most affected markers of decidualization whose expression was significantly reduced were FOXO1, FZD4, and INHBA. Therefore, AC027288.3 may be a major upstream regulator of the WNT-FOXO1 pathway and activin-SMAD3 pathways previously shown as critical for hESF decidualization. Finally, we explored possible regulators of AC027288.3 expression during human ESF decidualization. Expression was regulated by cAMP and progesterone. Our results suggest that AC027288.3 plays a role in hESF decidualization and identifies several other lncRNA genes that may also play a role.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Kevin Marmo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donald S. Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M. Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA; (R.T.)
| |
Collapse
|
6
|
Hai L, Maurya VK, DeMayo FJ, Lydon JP. Establishment of Murine Pregnancy Requires the Promyelocytic Leukemia Zinc Finger Transcription Factor. Int J Mol Sci 2024; 25:3451. [PMID: 38542422 PMCID: PMC10970820 DOI: 10.3390/ijms25063451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Using an established human primary cell culture model, we previously demonstrated that the promyelocytic leukemia zinc finger (PLZF) transcription factor is a direct target of the progesterone receptor (PGR) and is essential for progestin-dependent decidualization of human endometrial stromal cells (HESCs). These in vitro findings were supported by immunohistochemical analysis of human endometrial tissue biopsies, which showed that the strongest immunoreactivity for endometrial PLZF is detected during the progesterone (P4)-dominant secretory phase of the menstrual cycle. While these human studies provided critical clinical support for the important role of PLZF in P4-dependent HESC decidualization, functional validation in vivo was not possible due to the absence of suitable animal models. To address this deficiency, we recently generated a conditional knockout mouse model in which PLZF is ablated in PGR-positive cells of the mouse (Plzf d/d). The Plzf d/d female was phenotypically analyzed using immunoblotting, real-time PCR, and immunohistochemistry. Reproductive function was tested using the timed natural pregnancy model as well as the artificial decidual response assay. Even though ovarian activity is not affected, female Plzf d/d mice exhibit an infertility phenotype due to an inability of the embryo to implant into the Plzf d/d endometrium. Initial cellular and molecular phenotyping investigations reveal that the Plzf d/d endometrium is unable to develop a transient receptive state, which is reflected at the molecular level by a blunted response to P4 exposure with a concomitant unopposed response to 17-β estradiol. In addition to a defect in P4-dependent receptivity, the Plzf d/d endometrium fails to undergo decidualization in response to an artificial decidual stimulus, providing the in vivo validation for our earlier HESC culture findings. Collectively, our new Plzf d/d mouse model underscores the physiological importance of the PLZF transcription factor not only in endometrial stromal cell decidualization but also uterine receptivity, two uterine cellular processes that are indispensable for the establishment of pregnancy.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (L.H.); (V.K.M.)
| |
Collapse
|
7
|
Matsuyama S, Whiteside S, Li SY. Implantation and Decidualization in PCOS: Unraveling the Complexities of Pregnancy. Int J Mol Sci 2024; 25:1203. [PMID: 38256276 PMCID: PMC10816633 DOI: 10.3390/ijms25021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age, affecting 5-15% globally with a large proportion undiagnosed. This review explores the multifaceted nature of PCOS and its impact on pregnancy, including challenges in fertility due to hormonal imbalances and insulin resistance. Despite restoring ovulation pharmacologically, women with PCOS face lower pregnancy rates and higher risks of implantation failure and miscarriage. Our review focuses on the complexities of hormonal and metabolic imbalances that impair endometrial receptivity and decidualization in PCOS. Disrupted estrogen signaling, reduced integrity of endometrial epithelial tight junctions, and insulin resistance impair the window of endometrial receptivity. Furthermore, progesterone resistance adversely affects decidualization. Our review also examines the roles of various immune cells and inflammatory processes in the endometrium, contributing to the condition's reproductive challenges. Lastly, we discuss the use of rodent models in understanding PCOS, particularly those induced by hormonal interventions, offering insights into the syndrome's impact on pregnancy and potential treatments. This comprehensive review underscores the need for advanced understanding and treatment strategies to address the reproductive complications associated with PCOS, emphasizing its intricate interplay of hormonal, metabolic, and immune factors.
Collapse
Affiliation(s)
| | | | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.M.); (S.W.)
| |
Collapse
|
8
|
Thapa R, Druessel L, Ma L, Torry DS, Bany BM. ATOH8 Expression Is Regulated by BMP2 and Plays a Key Role in Human Endometrial Stromal Cell Decidualization. Endocrinology 2023; 165:bqad188. [PMID: 38060684 PMCID: PMC10729865 DOI: 10.1210/endocr/bqad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/21/2023]
Abstract
During the secretory phase of the menstrual cycle, elongated fibroblast-like mesenchymal cells in the uterine endometrium begin to transdifferentiate into polygonal epithelioid-like (decidual) cells. This decidualization process continues more broadly during early pregnancy, and the resulting decidual tissue supports successful embryo implantation and placental development. This study was carried out to determine if atonal basic helix-loop-helix transcription factor 8 (ATOH8) plays a role in human endometrial stromal fibroblast (ESF) decidualization. ATOH8 messenger RNA and protein expression levels significantly increased in human ESF cells undergoing in vitro decidualization, with the protein primarily localized to the nucleus. When ATOH8 expression was silenced, the ability of the cells to undergo decidualization was significantly diminished. Overexpression of ATOH8 enhanced the expression of many decidualization markers. Silencing the expression of ATOH8 reduced the expression of FZD4, FOXO1, and several known FOXO1-downstream targets during human ESF cell decidualization. Therefore, ATOH8 may be a major upstream regulator of the WNT/FZD-FOXO1 pathway, previously shown to be critical for human endometrial decidualization. Finally, we explored possible regulators of ATOH8 expression during human ESF decidualization. BMP2 significantly enhanced ATOH8 expression when cells were stimulated to undergo decidualization, while an ALK2/3 inhibitor reduced ATOH8 expression. Finally, although the steroids progesterone plus estradiol did not affect ATOH8 expression, the addition of cyclic adenosine monophosphate (cAMP) analogue alone represented the major effect of ATOH8 expression when cells were stimulated to undergo decidualization. Our results suggest that ATOH8 plays a crucial role in human ESF decidualization and that BMP2 plus cAMP are major regulators of ATOH8 expression.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Logan Druessel
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63018, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
9
|
Yang M, Ong J, Meng F, Zhang F, Shen H, Kitt K, Liu T, Tao W, Du P. Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells. Cell 2023; 186:4271-4288.e24. [PMID: 37699390 DOI: 10.1016/j.cell.2023.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/04/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Endometrial decidualization connecting embryo implantation and placentation is transient but essential for successful pregnancy, which, however, is not systematically investigated. Here, we use a scStereo-seq technology to spatially visualize and define the dynamic functional decidual hubs assembled by distinct immune, endothelial, trophoblast, and decidual stromal cells (DSCs) in early pregnant mice. We unravel the DSC transdifferentiation trajectory and surprisingly discover a dual-featured type of immune-featured DSCs (iDSCs). We find that immature DSCs attract immune cells and induce decidual angiogenesis at the mesenchymal-epithelial transition hub during decidualization initiation. iDSCs enable immune cell recruitment and suppression, govern vascularization, and promote cytolysis at immune cell assembling and vascular hubs, respectively, to establish decidual homeostasis at a later stage. Interestingly, dysfunctional and spatially disordered iDSCs cause abnormal accumulation of immune cells in the vascular hub, which disrupts decidual hub specification and eventually leads to pregnancy complications in DBA/2-mated CBA/J mice.
Collapse
Affiliation(s)
- Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fanju Meng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feixiang Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Kerstin Kitt
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma Co KG, Biberach an der Riss 88400, Germany
| | - Tengfei Liu
- Department of Research Beyond Borders, Boehringer Ingelheim (China) Investment Co., Ltd., Beijing 100027, China
| | - Wei Tao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Žukauskaitė D, Vitkevičienė A, Žlibinaitė A, Baušytė R, Ramašauskaitė D, Navakauskienė R. Histone H4 hyperacetylation but not DNA methylation regulates the expression of decidualization-associated genes during induced human endometrial stromal cells decidualization. Int J Biochem Cell Biol 2023; 156:106362. [PMID: 36621666 DOI: 10.1016/j.biocel.2023.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The efficiency of endometrial stromal cells (ESC) decidualization is a critical player in successful embryo implantation and further pregnancy development. Epigenetic mechanisms strictly regulate massive changes that affect endometrium in each cycle, so investigating epigenetic patterns could help identify endometrial targets for infertility treatment solutions. The aim of our study was to analyze the changes in epigenetic modulators, histone modifications, and DNA methylation during induced human ESC in vitro decidualization. Decidualization markers and epigenetic factors' gene and protein expression levels were assessed during ESC cells in vitro decidualization, performing RT-qPCR and immunoblot tests. Furthermore, chromatin immunoprecipitation (ChIP) and methylated DNA immunoprecipitation (MeDIP) analysis by the following qPCR were conducted to evaluate the level of H4hyperAc and 5-methylcytosine in the decidualization-associated gene promoter and exon regions accordingly. Our results revealed that ESC decidualization caused the down-regulation of HDAC2 and subunits of PRC2. We observed the increased global level of H4hyperAc and H3K27me3. We also demonstrated that H4hyperAc was specifically enriched in the decidualization-associated genes (WNT4, HAND2, STAT5A) promoter regions during ESC decidualization. In contrast, the DNA methylation level in these promoter regions was relatively low before ESC induction and did not vary through ESC decidualization. Our findings demonstrate that specific gene promoters' histone acetylation increases during the induced ESC decidualization, which indicates the importance of epigenetic regulation in endometrial decidualization.
Collapse
Affiliation(s)
- Deimantė Žukauskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Aida Vitkevičienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Akvilė Žlibinaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Raminta Baušytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania
| | - Diana Ramašauskaitė
- Centre of Obstetrics and Gynaecology of the Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariškių St, LT-08661 Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
11
|
Yue L, Yu HF, Tian XC, Guo B, Zheng LW. Egr3 as an important regulator of uterine decidualization through targeting Hand2. Cell Biol Int 2023; 47:406-416. [PMID: 36317452 DOI: 10.1002/cbin.11933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 01/13/2023]
Abstract
Early growth response 3 (Egr3) is required for embryogenesis, but little understanding is usable about its function in embryo implantation and decidualization. The present study exhibited an obvious localization of Egr3 in luminal epithelium and subluminal stroma at implantation sites. Administration of estrogen brought about a distinct gather of Egr3 mRNA in uterine luminal and glandular epithelia. Meanwhile, Egr3 was visualized in the decidua where it might facilitate the proliferation of stromal cells via Ccnd3 and accelerate stromal differentiation, testifying the significance of Egr3 in decidualization. In ovariectomized mice uteri or stromal cells, progesterone advanced the expression of Egr3 whose obstruction counteracted the inducement of stromal differentiation by progesterone. Consistently, Egr3 mediated the influence of cAMP and heparin-binding EGF-like growth factor (HB-EGF) on the differentiation program. Additionally, cAMP-protein kinase A (PKA) signaling mediated the adjustment of progesterone on Egr3. Impediment of HB-EGF antagonized the ascendance of Egr3 conferred by cAMP. In stromal cells, Egr3 activated the transcription of Hand2 whose promoter region exhibited the binding enrichment of Egr3. Activation of Hand2 relieved the weakness of stromal differentiation by Egr3 hinderance, whereas knockdown of Hand2 neutralized the guidance of Egr3 overexpression on the differentiation program. Collectively, Egr3 was identified as an important regulator of uterine decidualization through targeting Hand2 in response to progesterone/cAMP/HB-EGF pathway.
Collapse
Affiliation(s)
- Liang Yue
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hai-Fan Yu
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xue-Chao Tian
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Bin Guo
- Department of Animal Histology and Embryology, College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
12
|
Cheng J, Sha Z, Li J, Li B, Luo X, Zhang Z, Zhou Y, Chen S, Wang Y. Progress on the Role of Estrogen and Progesterone Signaling in Mouse Embryo Implantation and Decidualization. Reprod Sci 2023; 30:1746-1757. [PMID: 36694081 DOI: 10.1007/s43032-023-01169-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
Embryo implantation and decidualization are key steps in establishing a successful pregnancy. Defects in embryo implantation and decidualization can cause a series of adverse chain reactions which can contribute to harmful pregnancy outcomes, such as embryo growth retardation, preeclampsia, miscarriage, premature birth, and so on. Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Decidualization, characterized by proliferation and differentiation of uterine stromal cells, is one of the essential conditions for blastocyst implantation, placental formation, and maintenance of pregnancy and is indispensable for the establishment of pregnancy in many species. Embryo implantation and decidualization are closely regulated by estrogen and progesterone secreted by the ovaries. Many cellular events and molecular signaling network pathways are involved in this process. This article reviews the recent advances in the molecular mechanisms of estrogen- and progesterone-regulating uterine receptivity establishment, blastocyst implantation, and decidualization, in order to better understand the underlying molecular mechanisms of hormonal regulation of embryo implantation and to develop new strategies for preventing or treating embryo implantation defects and improving the pregnancy rate of women.
Collapse
Affiliation(s)
- Jianghong Cheng
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Zizhuo Sha
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Junyang Li
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Bixuan Li
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Zhiming Zhang
- Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China.,Department of Breast Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Yi Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China. .,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.
| | - Yang Wang
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China.
| |
Collapse
|
13
|
Zhu S, Lin D, Ye Z, Chen X, Jiang W, Xu H, Quan S, Zheng B. GOLPH3 modulates expression and alternative splicing of transcription factors associated with endometrial decidualization in human endometrial stromal cells. PeerJ 2023; 11:e15048. [PMID: 36967990 PMCID: PMC10035422 DOI: 10.7717/peerj.15048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Endometrial decidualization is a decidual tissue formed by the proliferation and re-differentiation of endometrial stroma stimulated by decidualization inducing factors. It is very important for the proper maintenance of pregnancy. Previous studies speculated that Golgi phosphoprotein 3 (GOLPH3) may have a regulatory role in the process of endometrial decidualization, while the specific molecular mechanisms of GOLPH3 is unclear. In this part, GOLPH3 was silenced in human endometrial stromal cells (hESCs), and the transcriptome data (RNA-seq) by GOLPH3 knockdown (siGOLPH3) was obtained by high-throughput sequencing technology so as to analyze the potential targets of GOLPH3 at expression and alternative splicing levels in hESCs. Through bioinformatics analysis, we found that siGOLPH3 can significantly affect the overall transcriptional level of hESCs. A total of 6,025 differentially expressed genes (DEGs) and 4,131 differentially alternative splicing events (DASEs) were identified. Through functional cluster analysis of these DEGs and genes where differential alternative splicing events are located, it is found that they are enriched in the PI3K/Akt signaling pathway, RNA splicing and processing, transcription factors and other pathways related to endometrial decidualization and important biological processes, indicating the important biological function of GOLPH3. At the same time, we focused on the analysis of the transcription factors regulated by GOLPH3, including gene expression regulation and the regulation of variable splicing. We found that GOLPH3can regulate the expression of transcription factors such as LD1, FOSL2, GATA2, CSDC2 and CREB3L1. At the same time, it affects the variable splicing mode of FOXM1 and TCF3. The function of these transcription factors is directly related to decidualization of endometrium. Therefore, we infer that GOLPH3 may participate in endometrial de membrane by regulating expression and alternative splicing levels of transcription factors. We further identified the role of GOLPH3 in the transcriptional mechanism. At the same time, it also expands the function mode of GOLPH3 protein molecule, and provides a theoretical basis for downstream targeted drug research and development and clinical application.
Collapse
Affiliation(s)
- Suqin Zhu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Dianliang Lin
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhoujie Ye
- Medical Research Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaojing Chen
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenwen Jiang
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Huiling Xu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Song Quan
- Department of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong, China
| | - Beihong Zheng
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Jiang L, Cao D, Yeung WSB, Lee KF. Single-Cell RNA-Sequencing Reveals Interactions between Endometrial Stromal Cells, Epithelial Cells, and Lymphocytes during Mouse Embryo Implantation. Int J Mol Sci 2022; 24:ijms24010213. [PMID: 36613656 PMCID: PMC9820401 DOI: 10.3390/ijms24010213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The decidualization of endometrial stromal cells (ESCs) is an essential process facilitating embryo implantation. However, the roles of non-decidualized and decidualized ESCs in regulating the microenvironment of a receptive endometrium remain unclear. We investigated single-cell transcriptomic changes in the uterus of a CD-1 mouse model at the post-implantation stage. The implantation and inter-implantation sites of the uteruses of pregnant mice at 4.5 and 5.5 days post-coitum were dissected for single-cell RNA sequencing. We identified eight cell types: epithelial cells, stromal cells, endothelial cells, mesothelial cells, lymphocytes, myocytes, myeloids, and pericytes. The ESC transcriptome suggests that the four ESC subtypes are involved in the extracellular remodeling during implantation. The trajectory plot of ESC subtypes indicates embryo implantation that involves a differentiation pathway from undifferentiated ESCs (ESC 1) to decidualized ESCs (DEC ESCs), with distinct signaling pathways between the ESC subtypes. Furthermore, the ligand-receptor analysis suggests that ESCs communicate with epithelial cells and immune cells through nectin and ICAM signaling. Collectively, both decidualized and non-decidualized ESCs may regulate the endometrial microenvironment for optimal endometrial receptivity and immune tolerance. This study provides insights on the molecular and cellular characteristics of mouse ESCs in modulating the epithelial and lymphocyte functions during early embryo implantation.
Collapse
Affiliation(s)
- Luhan Jiang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen 518053, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Futian District, Shenzhen 518053, China
- Correspondence: ; Fax: +852-2816-1947
| |
Collapse
|
15
|
The Regulators of Human Endometrial Stromal Cell Decidualization. Biomolecules 2022; 12:biom12091275. [PMID: 36139114 PMCID: PMC9496326 DOI: 10.3390/biom12091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Several factors are important for implantation and subsequent placentation in the endometrium, including immunity, angiogenesis, extracellular matrix, glucose metabolism, reactive oxidative stress, and hormones. The involvement or abnormality of these factors can impair canonical decidualization. Unusual decidualization can lead to perinatal complications, such as disruption of trophoblast invasion. Drastic changes in the morphology and function of human endometrial stromal cells (hESCs) are important for decidualization of the human endometrium; hESCs are used to induce optimal morphological and functional decidualization in vitro because they contain estrogen and progesterone receptors. In this review, we will focus on the studies that have been conducted on hESC decidualization, including the results from our laboratory.
Collapse
|
16
|
Cheng J, Liang J, Li Y, Gao X, Ji M, Liu M, Tian Y, Feng G, Deng W, Wang H, Kong S, Lu Z. Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy. PLoS Genet 2022; 18:e1010018. [PMID: 35025868 PMCID: PMC8791483 DOI: 10.1371/journal.pgen.1010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/26/2022] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure. Embryo implantation includes the establishment of uterine receptivity, blastocyst attachment, and endometrial decidualization. Disorders of this process usually induce pregnancy failure, resulting in women infertility. But the signaling mechanisms governing this process remain unclear. Here, using gene knockout mouse model and human endometrial stromal cells (hESCs), we identified a novel key regulator of embryo implantation, Shp2, which plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Shp2 deficiency in mouse uterine stromal cells inhibited the uterine stromal decidualization, disturbing embryo implantation and embryonic development, ultimately reducing female fertility. The absence of Shp2 in hESCs also blocked the decidual differentiation. Our findings not only promote the understanding of peri-implantation biology, but may also provide a critical target for more effectively diagnose and/or treat women with recurrent implantation failure or early pregnancy loss.
Collapse
Affiliation(s)
- Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Jia Liang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingzhe Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Xia Gao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengjun Ji
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengying Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wenbo Deng
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| |
Collapse
|
17
|
Hisamatsu Y, Murata H, Tsubokura H, Hashimoto Y, Kitada M, Tanaka S, Okada H. Matrix Metalloproteinases in Human Decidualized Endometrial Stromal Cells. Curr Issues Mol Biol 2021; 43:2111-2123. [PMID: 34940120 PMCID: PMC8929033 DOI: 10.3390/cimb43030146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cyclic changes, such as growth, decidualization, shedding, and regeneration, in the human endometrium are regulated by the reciprocal action of female hormones, such as estradiol (E2), and progesterone (P4). Matrix metalloproteases (MMPs) and tissue inhibitors of MMPs (TIMPs) control the invasion of extravillous trophoblast cells after implantation. Several MMPs and TIMPs function in the decidua and endometrial stromal cells (ESCs). Here, we aimed to systematically investigate the changes in MMPs and TIMPs associated with ESC decidualization. We evaluated the expression of 23 MMPs, four TIMPs, and four anti-sense non-coding RNAs from MMP loci. Primary ESC cultures treated with E2 + medroxyprogesterone acetate (MPA), a potent P4 receptor agonist, showed significant down-regulation of MMP3, MMP10, MMP11, MMP12, MMP20, and MMP27 in decidualized ESCs, as assessed by quantitative reverse transcription PCR. Further, MMP15 and MMP19 were significantly upregulated in decidualized ESCs. siRNA-mediated silencing of Heart and Neural Crest Derivatives Expressed 2 (HAND2), a master transcriptional regulator in ESC decidualization, significantly increased MMP15 expression in untreated human ESCs. These results collectively indicate the importance of MMP15 and MMP19 in ESC decidualization and highlight the role of HAND2 in repressing MMP15 transcription, thereby regulating decidualization.
Collapse
Affiliation(s)
- Yoji Hisamatsu
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Hiromi Murata
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Yoshiko Hashimoto
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Osaka 573-1010, Japan;
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Osaka 573-1010, Japan;
- Correspondence: (S.T.); (H.O.)
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka 573-1010, Japan; (Y.H.); (H.M.); (H.T.); (Y.H.)
- Correspondence: (S.T.); (H.O.)
| |
Collapse
|
18
|
Murata H, Tanaka S, Hisamatsu Y, Tsubokura H, Hashimoto Y, Kitada M, Okada H. Transcriptional regulation of LGALS9 by HAND2 and FOXO1 in human endometrial stromal cells in women with regular cycles. Mol Hum Reprod 2021; 27:6377344. [PMID: 34581822 DOI: 10.1093/molehr/gaab063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Uterine natural killer cells are regulated via surface inhibitory receptors for IL15 and galectin-9 (LGALS9) secreted by endometrial stromal cells (ESCs). However, the mechanism that regulates LGALS9 mRNA levels in ESCs is unclear. The aim of this study is to clarify the transcriptional regulation of LGALS9 in ESCs. Here, LGALS9 mRNA expression levels significantly decreased in the endometrial tissue in the early- to mid-secretory phase, and recovered in the mid- to late-secretory phase, compared to that in the proliferative phase. In ESCs, LGALS9 mRNA expression significantly decreased following estradiol + medroxyprogesterone acetate treatment for 1 day and increased after 12 days compared to that in the control. The transcriptional activity of the LGALS9 upstream region was upregulated by heart and neural crest derivatives expressed 2 (HAND2) and downregulated by forkhead box O1 (FOXO1). In ESCs, HAND2 expression significantly increased throughout the 12 days treatment with steroid hormones, whereas FOXO1 expression significantly increased on Day 1, reached a plateau, and significantly increased again after 6 days of treatment. Levels of FOXO1 phosphorylation (pFOXO1) remained unchanged after a 3-day treatment of ESCs with steroid hormones, but significantly increased following a 12-day treatment. pFOXO1 could not bind to the DNA and was thus unable to directly suppress LGALS9 transcription. Therefore, expression level of HAND2 and phosphorylation status of FOXO1 may determine LGALS9 mRNA expression. This study provides a novel molecular mechanism underlying the transcriptional regulation of LGALS9 mRNA in ESCs, which could be valuable in the treatment of diseases associated with decidualization failure.
Collapse
Affiliation(s)
- Hiromi Murata
- Department of Obstetrics and Gynecology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoji Hisamatsu
- Department of Obstetrics and Gynecology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshiko Hashimoto
- Department of Obstetrics and Gynecology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata, Osaka, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
19
|
Li K, Li Q, Bashir ST, Bany BM, Nowak RA. Loss of basigin expression in uterine cells leads to subfertility in female mice†. Biol Reprod 2021; 105:859-875. [PMID: 34106247 PMCID: PMC8511667 DOI: 10.1093/biolre/ioab109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/07/2020] [Accepted: 05/27/2021] [Indexed: 01/19/2023] Open
Abstract
Basigin (BSG) is a transmembrane glycoprotein involved in cell proliferation, angiogenesis, and tissue remodeling. BSG has been shown to be essential for male and female reproduction although little is known about its role in normal uterine function. To study the potential function of BSG in the female reproductive tract, we generated mice with conditional knockout of Bsg in uterine cells using progesterone receptor-Cre and hypothesized that BSG is required for normal pregnancy in mice. Fertility study data showed that the conditional knockout mice had significantly reduced fertility compared to controls. Ovarian function of the conditional knockout mice appeared normal with no difference in the number of superovulated oocytes collected or in serum progesterone levels between the conditional knockout and the control mice. Uterine tissues collected at various times of gestation showed increased abnormalities in implantation, decidualization, placentation, and parturition in the conditional knockout mice. Uterine cross sections on Day 5 of pregnancy showed implantation failure and abnormal uterine epithelial differentiation in a large proportion of the conditional knockout mice. There was a compromised decidual response to artificial decidualization stimuli and decreased mRNA and protein levels for decidualization genes in the uteri of the conditional knockout mice. We also observed altered protein expression of monocarboxylate transporter 1 (MCT1), as well as impaired angiogenesis in the conditional knockout uteri compared to the controls. These results support that BSG is required for successful pregnancy through its functions in implantation and decidualization.
Collapse
Affiliation(s)
- Kailiang Li
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shah Tauseef Bashir
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
20
|
Halari CD, Nandi P, Jeyarajah MJ, Renaud SJ, Lala PK. Decorin production by the human decidua: role in decidual cell maturation. Mol Hum Reprod 2021; 26:784-796. [PMID: 32866233 DOI: 10.1093/molehr/gaaa058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/11/2020] [Indexed: 01/13/2023] Open
Abstract
Decidualization involves the proliferation and differentiation of fibroblast-like endometrial stromal cells into epithelioid-shaped and secretory 'decidual' cells in response to steroid hormones. Human decidual cells produce insulin-like growth factor-binding protein-1 and prolactin (PRL), two well-recognized markers of decidual cell maturation and a proteoglycan decorin (DCN). We reported that DCN restrains the human trophoblast renewal, migration, invasion and endovascular differentiation needed for uterine arterial remodeling during normal pregnancy. DCN overproduction by the decidua is associated with a hypo-invasive placenta and a serious pregnancy disorder, pre-eclampsia (PE). Furthermore, elevated maternal plasma DCN levels during the second trimester is a predictive biomarker of PE. While these paracrine roles of decidua-derived DCN on trophoblast physiology and pathology have been well-defined, it remains unknown whether DCN plays any autocrine role in decidual cell development. The objectives of this study were to examine: the kinetics of DCN production during decidualization of human endometrial stromal cells; gestational age-related changes in DCN production by the first trimester decidua; and a possible autocrine role of DCN on decidual cell maturation. We found that DCN production is enhanced during decidualization of both primary and immortalized human endometrial stromal cells in vitro and during early gestation in decidual samples tested ex vivo, and that it is important for endometrial stromal cell maturation into a decidual phenotype. Decorin-depleted human endometrial stromal cells exposed to decidualizing stimuli failed to mature fully, as evidenced by fibroblastoid morphology, reduced insulin-like growth factor-binding protein-1 and PRL expression, and reduction in cellular ploidy. We identified heart and neural crest derivatives-expressed protein 2, and progesterone receptor as potential downstream mediators of DCN effects.
Collapse
Affiliation(s)
- C D Halari
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - P Nandi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - M J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - S J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - P K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
21
|
Šućurović S, Nikolić T, Brosens JJ, Mulac-Jeričević B. Analysis of heart and neural crest derivatives-expressed protein 2 (HAND2)-progesterone interactions in peri-implantation endometrium†. Biol Reprod 2021; 102:1111-1121. [PMID: 31982918 DOI: 10.1093/biolre/ioaa013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
Implantation is restricted to a narrow window when the local endometrial microenvironment is supportive of the invading embryo. The ovarian steroid hormones estrogen (E) and progesterone (P) are principal regulators of uterine receptivity. Suppression of E-dependent proliferation of luminal epithelium (LE) by P is mandatory for embryo implantation. Here, we report that the balance of E receptor α (ERα) and P receptors (PR) activity controls HAND2 expression, a key transcription factor that determines the fate of the implanting embryo and thereby pregnancy outcome. As a model, we used wild-type mice as well as mice in which either both PR isoforms or the A-isoform was genetically ablated (PRKO and PRAKO, respectively). Detailed spatiotemporal analyses of PR, HAND2, and ERα expression at implantation site demonstrated co-expression of HAND2 and PR but not ERα. Furthermore, in hormonally treated ovariectomized WT, PRAKO and PRKO mice, E suppresses endometrial HAND2 expression. Adding P together with E partially rescues HAND2 expression in WT, but not PRAKO and PRKO animals. Therefore, infertility in PRAKO mice is at least in part associated with the loss of PR-A-regulated HAND2 expression.
Collapse
Affiliation(s)
- Sandra Šućurović
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia and
| | - Tamara Nikolić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia and
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Biserka Mulac-Jeričević
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia and
| |
Collapse
|
22
|
Yin Y, Haller ME, Chadchan SB, Kommagani R, Ma L. Signaling through retinoic acid receptors is essential for mammalian uterine receptivity and decidualization. JCI Insight 2021; 6:e150254. [PMID: 34292881 PMCID: PMC8492326 DOI: 10.1172/jci.insight.150254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Retinoic acid (RA) signaling has long been speculated to regulate embryo implantation, because many enzymes and proteins responsible for maintaining RA homeostasis and transducing RA signals are tightly regulated in the endometrium during this critical period. However, due to a lack of genetic data, it was unclear whether RA signaling is truly required for implantation and which specific RA signaling cascades are at play. Herein we utilize a genetic murine model that expresses a dominant-negative form of RA receptor (RAR) specifically in female reproductive organs to show that functional RA signaling is fundamental to female fertility, particularly implantation and decidualization. Reduction in RA signaling activity severely affects the ability of the uterus to achieve receptive status and decidualize, partially through dampening follistatin expression and downstream activin B/bone morphogenetic protein 2 signaling. To confirm translational relevance of these findings to humans, human endometrial stromal cells (hESCs) were treated with a pan-RAR antagonist to show that in vitro decidualization is impaired. RNA interference perturbation of individual RAR transcripts in hESCs revealed that RARα in particular was essential for proper decidualization. These data provide direct functional evidence that uterine RAR-mediated RA signaling was crucial for mammalian embryo implantation, and its disruption led to failure of uterine receptivity and decidualization, resulting in severely compromised fertility.
Collapse
Affiliation(s)
- Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Meade E Haller
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| | - Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States of America
| |
Collapse
|
23
|
Alazzam MB, AlGhamdi AS, Alshamrani SS. Impaired decidualization of human endometrial stromal cells from women with adenomyosis†. Biol Reprod 2021; 104:1034-1044. [PMID: 33533396 PMCID: PMC8641996 DOI: 10.1093/biolre/ioab017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/27/2020] [Accepted: 01/28/2021] [Indexed: 01/09/2023] Open
Abstract
Differentiation of endometrial stromal cells (ESCs) into secretory decidualized cells (dESCs) is essential for embryo implantation. Adenomyosis is a common benign gynecological disease that causes infertility. However, whether adenomyosis affects decidualization of human ESCs is elusive. Primary eutopic ESCs were obtained from patients with adenomyosis (n = 9) and women with nonendometrial diseases (n = 12). We determined the capacity of decidualization of human ESCs by qRT-PCR, Edu proliferation assay, cytokine array, and ELISA assay. We found that the expression of decidualization markers (IGFBP1 and PRL) in ESCs of adenomyosis was reduced, concomitant with increased cell proliferation. Differential secretion of cytokines in dESCs, including CXCL1/2/3, IL-6, IL-8, MCP-1, VEGF-A, MIP-3α, OPN, SDF-1α, HGF, and MMP-9, was observed between adenomyosis and nonadenomyosis. Moreover, the expression of decidualization regulators (HOXA10 at both mRNA and protein levels, FOXO1, KLF5, CEBPB, and HAND2 at mRNA levels) in the eutopic endometrium of adenomyosis was lower than that of nonadenomyosis. We propose that ESCs from adenomyosis have defected ability to full decidualization, which may lead to a nonreceptive endometrium.
Collapse
Affiliation(s)
| | - Ahmed S. AlGhamdi
- Department of Computer Engineering, Collage of Computers and Information Technology, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Sultan S. Alshamrani
- Department of Information Technology, College of Computer and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
24
|
Diniz-da-Costa M, Kong CS, Fishwick KJ, Rawlings T, Brighton PJ, Hawkes A, Odendaal J, Quenby S, Ott S, Lucas ES, Vrljicak P, Brosens JJ. Characterization of highly proliferative decidual precursor cells during the window of implantation in human endometrium. STEM CELLS (DAYTON, OHIO) 2021; 39:1067-1080. [PMID: 33764639 DOI: 10.1002/stem.3367] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/19/2021] [Indexed: 11/09/2022]
Abstract
Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.
Collapse
Affiliation(s)
- Maria Diniz-da-Costa
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Chow-Seng Kong
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Thomas Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Paul J Brighton
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Amelia Hawkes
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Joshua Odendaal
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| |
Collapse
|
25
|
Marinić M, Mika K, Chigurupati S, Lynch VJ. Evolutionary transcriptomics implicates HAND2 in the origins of implantation and regulation of gestation length. eLife 2021; 10:61257. [PMID: 33522483 PMCID: PMC7943190 DOI: 10.7554/elife.61257] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
The developmental origins and evolutionary histories of cell types, tissues, and organs contribute to the ways in which their dysfunction produces disease. In mammals, the nature, development and evolution of maternal-fetal interactions likely influence diseases of pregnancy. Here we show genes that evolved expression at the maternal-fetal interface in Eutherian mammals play essential roles in the evolution of pregnancy and are associated with immunological disorders and preterm birth. Among these genes is HAND2, a transcription factor that suppresses estrogen signaling, a Eutherian innovation allowing blastocyst implantation. We found dynamic HAND2 expression in the decidua throughout the menstrual cycle and pregnancy, gradually decreasing to a low at term. HAND2 regulates a distinct set of genes in endometrial stromal fibroblasts including IL15, a cytokine also exhibiting dynamic expression throughout the menstrual cycle and gestation, promoting migration of natural killer cells and extravillous cytotrophoblasts. We demonstrate that HAND2 promoter loops to an enhancer containing SNPs implicated in birth weight and gestation length regulation. Collectively, these data connect HAND2 expression at the maternal-fetal interface with evolution of implantation and gestational regulation, and preterm birth.
Collapse
Affiliation(s)
- Mirna Marinić
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Katelyn Mika
- Department of Human Genetics, University of Chicago, Chicago, United States
| | | | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, United States
| |
Collapse
|
26
|
Immune Tolerance of the Human Decidua. J Clin Med 2021; 10:jcm10020351. [PMID: 33477602 PMCID: PMC7831321 DOI: 10.3390/jcm10020351] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
The endometrium is necessary for implantation, complete development of the placenta, and a successful pregnancy. The endometrium undergoes repeated cycles of proliferation, decidualization (differentiation), and shedding during each menstrual cycle. The endometrium—including stromal, epithelial, vascular endothelial, and immune cells—is both functionally and morphologically altered in response to progesterone, causing changes in the number and types of immune cells. Immune cells make up half of the total number of endometrial cells during implantation and menstruation. Surprisingly, immune tolerant cells in the endometrium (uterine natural killer cells, T cells, and macrophages) have two conflicting functions: to protect the body by eliminating pathogenic microorganisms and other pathogens and to foster immunological change to tolerate the embryo during pregnancy. One of the key molecules involved in this control is the cytokine interleukin-15 (IL-15), which is secreted by endometrial stromal cells. Recently, it has been reported that IL-15 is directly regulated by the transcription factor heart- and neural crest derivatives-expressed protein 2 in endometrial stromal cells. In this review, we outline the significance of the endometrium and immune cell population during menstruation and early pregnancy and describe the factors involved in immune tolerance and their involvement in the establishment and maintenance of pregnancy.
Collapse
|
27
|
Kida N, Nishigaki A, Kakita‐Kobayashi M, Tsubokura H, Hashimoto Y, Yoshida A, Hisamatsu Y, Tsuzuki‐Nakao T, Murata H, Okada H. Exposure to cigarette smoke affects endometrial maturation including angiogenesis and decidualization. Reprod Med Biol 2021; 20:108-118. [PMID: 33488290 PMCID: PMC7812488 DOI: 10.1002/rmb2.12360] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/13/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To elucidate the effects of cigarette smoking on human endometrial maturation for reproductive function, the authors examined the in vitro effects of cigarette smoke extract (CSE) on angiogenesis and decidualization in primary human endometrial stromal cells (ESCs). METHODS Endometrial stromal cells were cultured with CSE and/or estradiol-17β (E2) and medroxyprogesterone acetate (MPA). The mRNA, protein levels, and protein secretion of the angiogenic factors and decidual specific factors were assessed using real-time polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbent assay, respectively. Decidualization was also monitored by the changes in cellular morphology. RESULTS Endometrial stromal cell proliferation substantially decreased after dose-dependent treatments with CSE at concentrations above 1%, whereas cell death was induced at treatment concentrations above 1% CSE. Treatments above 0.025% CSE led to increased vascular endothelial growth factor mRNA through hypoxia-inducible factor-1α accumulation. CSE concentrations at 0.01% and 0.025% increased the prolactin expression levels after treatment with E2 and MPA, whereas 0.1% and 0.25% CSE concentrations suppressed prolactin. Similar tendencies were observed in cellular morphology and other decidual specific factors. CONCLUSION These results suggest that exposure to cigarette smoke affects endometrial appropriate maturation including the processes of angiogenesis and decidualization in the reproductive system.
Collapse
Affiliation(s)
- Naoko Kida
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Akemi Nishigaki
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | | | - Hiroaki Tsubokura
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Yoshiko Hashimoto
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Aya Yoshida
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Yoji Hisamatsu
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | | | - Hiromi Murata
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Hidetaka Okada
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| |
Collapse
|
28
|
Liang J, Cao D, Zhang X, Liu L, Tan Q, Shi S, Chen K, Liang J, Wang Z. miR-192-5p suppresses uterine receptivity formation through impeding epithelial transformation during embryo implantation. Theriogenology 2020; 157:360-371. [PMID: 32861000 DOI: 10.1016/j.theriogenology.2020.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
The establishment of uterine receptivity is a prerequisite for embryo implantation and begins with the transformation of the luminal epithelium. MicroRNAs (miRNAs) have been widely reported to be involved in the regulation of embryo implantation, but their roles in establishing uterine receptivity remain unclear. In this study, through small RNA sequencing analysis, we showed that a low level of miR-192-5p is essential for initiating implantation in mice, and transient upregulation of miR-192-5p led to implantation failure. In situ hybridization results revealed that miR-192-5p was primarily expressed in the endometrial epithelium, and dysregulation of miR-192-5p interfered with the performance of the luminal epithelium, resulting in inadequate receptivity. By manipulating miR-192-5p expression in mouse uterus and an endometrial epithelial cell line, we showed that miR-192-5p maintains cell polarity through stabilizing adherens junction protein E-cadherin, thereby preventing epithelial-mesenchymal transition. Furthermore, miR-192-5p preserved the pattern of microvilli as well as Muc1 expression on the apical membrane of epithelial cells, thereby avoiding embryo adhesion. Moreover, miR-192-5p was found to be regulated by ovarian steroids. Collectively, this study demonstrated that the physiological role of miR-192-5p in mouse uterus is to maintain the nonreceptive state of epithelial cells and prevent their transformation to the receptive state. Thus, a sustained high level of miR-192-5p is detrimental to embryo implantation. These findings help elucidate the mechanisms involved in miRNA-based regulation of uterine physiology in early pregnancy, and may even contribute to the diagnosis and treatment of infertility.
Collapse
Affiliation(s)
- Jingjie Liang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Dingren Cao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiaowei Zhang
- Zhejiang Animal Husbandry Techniques Extension Station, Hangzhou, 310020, PR China
| | - Lijun Liu
- Zhejiang Animal Husbandry Techniques Extension Station, Hangzhou, 310020, PR China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Shuang Shi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Kaiyu Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Junyong Liang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| |
Collapse
|
29
|
Yang B, Wang X, Ma Y, Yan L, Ren Y, Yu D, Qiao B, Shen X, Liu H, Zhang D, Kuang H. Tri-ortho-cresyl phosphate (TOCP)-induced reproductive toxicity involved in placental apoptosis, autophagy and oxidative stress in pregnant mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:97-107. [PMID: 31566301 DOI: 10.1002/tox.22846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, and reported causing reproductive toxicity in mammals. However, little is known about the toxic effect on the placenta. In this study, dams were orally administered different doses of TOCP to explore the effect of TOCP on placental development. Results showed that TOCP exposure significantly reduced numbers of implanted embryo, caused atrophy and collapse of ectoplacental cone, and decreased total areas of placenta and numbers of PCNA-positive cells. Expression levels of placental development genes were prominently downregulated in the TOCP-treated groups. Moreover, TOCP administration induced placental apoptosis and autophagy by upregulating P53, Bax, Beclin-1, ratio of LC3 II/LC3 I and Atg5 and downregulating Bcl-2 protein. In addition, TOCP exposure markedly inhibited activities of catalase and superoxide dismutase and increased the production of H2 O2 and malondialdehyde. Collectively, these findings suggest that apoptosis, autophagy and oxidative stress may be involved in the TOCP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xinlu Wang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yilin Ma
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, Jiangxi, PR China
| | - Lei Yan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yuan Ren
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Dainan Yu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Bo Qiao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Dalei Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, PR China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
30
|
Massimiani M, Lacconi V, La Civita F, Ticconi C, Rago R, Campagnolo L. Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk. Int J Mol Sci 2019; 21:E23. [PMID: 31861484 PMCID: PMC6981505 DOI: 10.3390/ijms21010023] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Implantation of the embryo into the uterine endometrium is one of the most finely-regulated processes that leads to the establishment of a successful pregnancy. A plethora of factors are released in a time-specific fashion to synchronize the differentiation program of both the embryo and the endometrium. Indeed, blastocyst implantation in the uterus occurs in a limited time frame called the "window of implantation" (WOI), during which the maternal endometrium undergoes dramatic changes, collectively called "decidualization". Decidualization is guided not just by maternal factors (e.g., estrogen, progesterone, thyroid hormone), but also by molecules secreted by the embryo, such as chorionic gonadotropin (CG) and interleukin-1β (IL-1 β), just to cite few. Once reached the uterine cavity, the embryo orients correctly toward the uterine epithelium, interacts with specialized structures, called pinopodes, and begins the process of adhesion and invasion. All these events are guided by factors secreted by both the endometrium and the embryo, such as leukemia inhibitory factor (LIF), integrins and their ligands, adhesion molecules, Notch family members, and metalloproteinases and their inhibitors. The aim of this review is to give an overview of the factors and mechanisms regulating implantation, with a focus on those involved in the complex crosstalk between the blastocyst and the endometrium.
Collapse
Affiliation(s)
- Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| | - Fabio La Civita
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy;
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy;
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| |
Collapse
|
31
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
32
|
Okada H, Tsuzuki T, Murata H. Decidualization of the human endometrium. Reprod Med Biol 2018; 17:220-227. [PMID: 30013421 PMCID: PMC6046526 DOI: 10.1002/rmb2.12088] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Decidualization of the human endometrium, which involves a dramatic morphological and functional differentiation of human endometrial stromal cells (ESCs), is essential for the establishment of a successful pregnancy. Decidualization results from a complex interplay of transcription factors, morphogens, cytokines, cell cycle regulators, and signaling pathways. METHODS Based on a literature review, the regulation of, and the molecular mechanisms involved in, the decidualization of the endometrium are described. MAIN FINDINGS Progesterone, together with proteins that are regulated by progesterone and/or cyclic adenosine monophosphate, including homeobox A10, forkhead box O1, signal transducers and activators of transcription, and heart and neural crest derivatives expressed transcript 2, forms a critical network for ESC decidualization and is a prerequisite to successful implantation. Decidualized ESCs contribute to the microenvironment at the feto-maternal interface and its direct or indirect influence on extracellular matrix remodeling, regulation of the local immune response, anti-oxidative stress, and angiogenesis (vascular maturation). Impairment of this process is associated with a variety of pregnancy disorders, including infertility, recurrent miscarriages, and uteroplacental disorders. CONCLUSION A deeper understanding of the process of decidualization is expected to provide new insights into the fields of reproductive biology and reproductive medicine.
Collapse
Affiliation(s)
- Hidetaka Okada
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Tomoko Tsuzuki
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Hiromi Murata
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| |
Collapse
|
33
|
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Gowkielewicz M, Jozwik M, Majewski MK. Preliminary RNA-Seq Analysis of Long Non-Coding RNAs Expressed in Human Term Placenta. Int J Mol Sci 2018; 19:ijms19071894. [PMID: 29954144 PMCID: PMC6073670 DOI: 10.3390/ijms19071894] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
Development of particular structures and proper functioning of the placenta are under the influence of sophisticated pathways, controlled by the expression of substantial genes that are additionally regulated by long non-coding RNAs (lncRNAs). To date, the expression profile of lncRNA in human term placenta has not been fully established. This study was conducted to characterize the lncRNA expression profile in human term placenta and to verify whether there are differences in the transcriptomic profile between the sex of the fetus and pregnancy multiplicity. RNA-Seq data were used to profile, quantify, and classify lncRNAs in human term placenta. The applied methodology enabled detection of the expression of 4463 isoforms from 2899 annotated lncRNA loci, plus 990 putative lncRNA transcripts from 607 intergenic regions. Those placentally expressed lncRNAs displayed features such as shorter transcript length, longer exon length, fewer exons, and lower expression levels compared to messenger RNAs (mRNAs). Among all placental transcripts, 175,268 were classified as mRNAs and 15,819 as lncRNAs, and 56,727 variants were discovered within unannotated regions. Five differentially expressed lncRNAs (HAND2-AS1, XIST, RP1-97J1.2, AC010084.1, TTTY15) were identified by a sex-bias comparison. Splicing events were detected within 37 genes and 4 lncRNA loci. Functional analysis of cis-related potential targets for lncRNAs identified 2021 enriched genes. It is presumed that the obtained data will expand the current knowledge of lncRNAs in placenta and human non-coding catalogs, making them more contemporary and specific.
Collapse
Affiliation(s)
- Marta Majewska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Marek Gowkielewicz
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland.
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland.
| |
Collapse
|
34
|
Yu HF, Tao R, Yang ZQ, Wang K, Yue ZP, Guo B. Ptn functions downstream of C/EBPβ to mediate the effects of cAMP on uterine stromal cell differentiation through targeting Hand2 in response to progesterone. J Cell Physiol 2017; 233:1612-1626. [PMID: 28657144 DOI: 10.1002/jcp.26067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022]
Abstract
Ptn is a pleiotropic growth factor involving in the regulation of cellular proliferation and differentiation, but its biological function in uterine decidualization remains unknown. Here, we showed that Ptn was highly expressed in the decidual cells, and could induce the proliferation of uterine stromal cells and expression of Prl8a2 and Prl3c1 which were two well-established differentiation markers for decidualization, suggesting an important role of Ptn in decidualization. In the uterine stromal cells, progesterone stimulated the expression of Ptn accompanied with an accumulation of intracellular cAMP level. Silencing of Ptn impeded the induction of progesterone and cAMP on the differentiation of uterine stromal cells. Administration of PKA inhibitor H89 resulted in a blockage of progesterone on Ptn expression. Further analysis evidenced that regulation of progesterone and cAMP on Ptn was mediated by C/EBPβ. During in vitro decidualization, knockdown of Ptn could weaken the up-regulation of Prl8a2 and Prl3c1 elicited by C/EBPβ overexpression, while constitutive activation of Ptn reversed the repressive effects of C/EBPβ siRNA on the expression of Prl8a2 and Prl3c1. Meanwhile, Ptn might mediate the regulation of C/EBPβ on Hand2 which was a downstream target of Ptn in the differentiation of uterine stromal cells. Attenuation of Ptn or C/EBPβ by specific siRNA blocked the stimulation of Hand2 by progesterone and cAMP. Collectively, Ptn may play a vital role in the progesterone-induced decidualization pathway.
Collapse
Affiliation(s)
- Hai-Fan Yu
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Ran Tao
- College of Medicine, Dalian University, Dalian, P.R. China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Kai Wang
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, P.R. China
| |
Collapse
|
35
|
Lira-Albarrán S, Durand M, Larrea-Schiavon MF, González L, Barrera D, Vega C, Gamboa-Domínguez A, Rangel C, Larrea F. Ulipristal acetate administration at mid-cycle changes gene expression profiling of endometrial biopsies taken during the receptive period of the human menstrual cycle. Mol Cell Endocrinol 2017; 447:1-11. [PMID: 28219738 DOI: 10.1016/j.mce.2017.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
The aim of this study was to analyze the effects of mid-cycle administration of Ulipristal acetate (UPA) on gene expression in endometrial biopsies taken during the receptive phase of the cycle. Fourteen healthy menstruating women were studied during 14 control non-treated and 12 treated cycles with a single dose of 30 mg UPA when follicle diameter reached 20 mm. Ovulation in both treated and control cycles was confirmed by serial determinations of serum LH, progesterone and vaginal ultrasound. An endometrial biopsy at day LH+7, in each cycle, was taken for RNA microarray and qPCR analysis or prepared for histological and immunohistochemistry studies. Functional analysis of differentially expressed genes showed the presence of changes compatible with a non-receptive endometrial phenotype, further confirmed by qPCR and immunohistochemistry. This study suggests the effects of UPA on endometrial receptivity, offering a plausible explanation for the higher contraceptive efficacy of this method compared to that of levonorgestrel.
Collapse
Affiliation(s)
- Saúl Lira-Albarrán
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Marta Durand
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Marco F Larrea-Schiavon
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Ciudad de México 14610, México
| | - Leticia González
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Claudia Vega
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Armando Gamboa-Domínguez
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México
| | - Claudia Rangel
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Ciudad de México 14610, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México.
| |
Collapse
|
36
|
Yu HF, Yue ZP, Wang K, Yang ZQ, Zhang HL, Geng S, Guo B. Gja1 acts downstream of Acvr1 to regulate uterine decidualization via Hand2 in mice. J Endocrinol 2017; 233:145-157. [PMID: 28219934 DOI: 10.1530/joe-16-0583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 02/20/2017] [Indexed: 11/08/2022]
Abstract
Although Gja1 has been proved to play an important role in uterine decidualization, its regulatory mechanism remains largely unknown. Here, we showed that Gja1 was highly expressed in the decidual cells and promoted the proliferation of uterine stromal cells and expression of Prl8a2 and Prl3c1, which were two well-known differentiation markers for decidualization. Further analysis revealed that Gja1 might act downstream of Acvr1 and cAMP to regulate the differentiation of uterine stromal cells. Administration of cAMP analog 8-Br-cAMP to Acvr1 siRNA-transfected stromal cells resulted in an obvious increase of Gja1 expression, whereas PKA inhibitor H89 impeded the induction of Gja1 elicited by Acvr1 overexpression, indicating that cAMP-PKA signal mediates the regulation of Acvr1 on Gja1 expression. In uterine stromal cells, knockdown of Gja1 blocked the cAMP induction of Hand2 Moreover, siRNA-mediated downregulation of Hand2 impaired the stimulatory effects of Gja1 overexpression on the expression of Prl8a2 and Prl3c1, whereas constitutive expression of Hand2 reversed the inhibitory effects of Gja1 siRNA on stromal differentiation. Meanwhile, Gja1 might play a vital role in the crosstalk between Acvr1 and Hand2 Collectively, Gja1 may act downstream of cAMP-PKA signal to mediate the effects of Acvr1 on the differentiation of uterine stromal cells through targeting Hand2.
Collapse
Affiliation(s)
- Hai-Fan Yu
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Zhan-Peng Yue
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Kai Wang
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Zhan-Qing Yang
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Hong-Liang Zhang
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Shuang Geng
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| | - Bin Guo
- College of Veterinary MedicineJilin University, Changchun, People's Republic of China
| |
Collapse
|
37
|
Whitaker L, Murray A, Matthews R, Shaw G, Williams A, Saunders P, Critchley H. Selective progesterone receptor modulator (SPRM) ulipristal acetate (UPA) and its effects on the human endometrium. Hum Reprod 2017; 32:531-543. [PMID: 28130434 PMCID: PMC5400066 DOI: 10.1093/humrep/dew359] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/30/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION What is the impact of administration of the selective progesterone receptor modulator (SPRM), ulipristal acetate (UPA) on the endometrium of women with fibroids? SUMMARY ANSWER UPA administration altered expression of sex-steroid receptors and progesterone-regulated genes and was associated with low levels of glandular and stromal cell proliferation. WHAT IS KNOWN ALREADY Administration of all SPRM class members results in PAEC (progesterone receptor modulator associated endometrial changes). Data on the impact of the SPRM UPA administration on endometrial sex-steroid receptor expression, progesterone (P)-regulated genes and cell proliferation are currently lacking. STUDY DESIGN SIZE, DURATION Observational study with histological and molecular analyses to delineate impact of treatment with UPA on endometrium. Endometrial samples (n = 9) were collected at hysterectomy from women aged 39 to 49 with uterine fibroids treated with UPA (oral 5 mg daily) for 9-12 weeks. Control proliferative (n = 9) and secretory (n = 9) endometrium from women aged 38-52 with fibroids were derived from institutional tissue archives. PARTICIPANTS/MATERIALS, SETTING, METHODS Study setting was a University Research Institute. Endometrial biopsies were collected with institutional ethical approval and written informed consent. Concentrations of mRNAs encoded by steroid receptors, P-regulated genes and factors in decidualised endometrium were quantified with qRT-PCR. Immunohistochemistry was employed for localization of progesterone (PR, PRB), androgen (AR), estrogen (ERα) receptors and expression of FOXO1, HAND2, HOXA10, PTEN homologue. Endometrial glandular and stromal cell proliferation was objectively quantified using Ki67. MAIN RESULTS AND THE ROLE OF CHANCE UPA induced morphological changes in endometrial tissue consistent with PAEC. A striking change in expression patterns of PR and AR was detected compared with either proliferative or secretory phase samples. There were significant changes in pattern of expression of mRNAs encoded by IGFBP-1, FOXO1, IL-15, HAND2, IHH and HOXA10 compared with secretory phase samples consistent with low agonist activity in endometrium. Expression of mRNA encoded by FOXM1, a transcription factor implicated in cell cycle progression, was low in UPA-treated samples. Cell proliferation (Ki67 positive nuclei) was lower in samples from women treated with UPA compared with those in the proliferative phase. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION A small number of well-characterized patients were studied in-depth. The impacts on morphology, molecular and cellular changes with SPRM, UPA administration on symptom control remains to be determined. WIDER IMPLICATIONS OF THE FINDINGS P plays a pivotal role in endometrial function. P-action is mediated through interaction with the PR. These data provide support for onward development of the SPRM class of compounds as effective long-term medical therapy for heavy menstrual bleeding. STUDY FUNDING/COMPETING INTEREST(S) H.O.D.C. received has clinical research support for laboratory consumables and staff from Bayer Pharma Ag and provides consultancy advice (no personal remuneration) for Bayer Pharma Ag, PregLem SA, Gedeon Richter, Vifor Pharma UK Ltd, AbbVie Inc.; A.R.W.W. has received consultancy payments from Bayer, Gedeon Richter, Preglem SA, HRA Pharma; L.H.R.W., A.A.M., R.M., G.S. and P.T.K.S. have no conflicts of interest. Study funded in part from each of: Medical Research Council (G1002033; G1100356/1; MR/N022556/1); National Health Institute for Health Research (12/206/520) and TENOVUS Scotland.
Collapse
Affiliation(s)
- L.H.R. Whitaker
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A.A. Murray
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - R. Matthews
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - G. Shaw
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A.R.W. Williams
- Division of Pathology, The University of Edinburgh, The Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - P.T.K. Saunders
- MRC Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - H.O.D. Critchley
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
38
|
Yotova I, Hsu E, Do C, Gaba A, Sczabolcs M, Dekan S, Kenner L, Wenzl R, Tycko B. Epigenetic Alterations Affecting Transcription Factors and Signaling Pathways in Stromal Cells of Endometriosis. PLoS One 2017; 12:e0170859. [PMID: 28125717 PMCID: PMC5268815 DOI: 10.1371/journal.pone.0170859] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/11/2017] [Indexed: 12/15/2022] Open
Abstract
Endometriosis is characterized by growth of endometrial-like tissue outside the uterine cavity. Since its pathogenesis may involve epigenetic changes, we used Illumina 450K Methylation Beadchips to profile CpG methylation in endometriosis stromal cells compared to stromal cells from normal endometrium. We validated and extended the Beadchip data using bisulfite sequencing (bis-seq), and analyzed differential methylation (DM) at the CpG-level and by an element-level classification for groups of CpGs in chromatin domains. Genes found to have DM included examples encoding transporters (SLC22A23), signaling components (BDNF, DAPK1, ROR1, and WNT5A) and transcription factors (GATA family, HAND2, HOXA cluster, NR5A1, OSR2, TBX3). Intriguingly, among the TF genes with DM we also found JAZF1, a proto-oncogene affected by chromosomal translocations in endometrial stromal tumors. Using RNA-Seq we identified a subset of the DM genes showing differential expression (DE), with the likelihood of DE increasing with the extent of the DM and its location in enhancer elements. Supporting functional relevance, treatment of stromal cells with the hypomethylating drug 5aza-dC led to activation of DAPK1 and SLC22A23 and repression of HAND2, JAZF1, OSR2, and ROR1 mRNA expression. We found that global 5hmC is decreased in endometriotic versus normal epithelial but not stroma cells, and for JAZF1 and BDNF examined by oxidative bis-seq, found that when 5hmC is detected, patterns of 5hmC paralleled those of 5mC. Together with prior studies, these results define a consistent epigenetic signature in endometriosis stromal cells and nominate specific transcriptional and signaling pathways as therapeutic targets.
Collapse
Affiliation(s)
- Iveta Yotova
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
- Department of Gynecology and Gynecological Oncology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Emily Hsu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| | - Catherine Do
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| | - Aulona Gaba
- Department of Gynecology and Gynecological Oncology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Matthias Sczabolcs
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| | - Sabine Dekan
- Department of Experimental Pathology, Clinical Institute of Pathology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Experimental Pathology, Clinical Institute of Pathology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
- Pathology Laboratory Animal Pathology University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Rene Wenzl
- Department of Gynecology and Gynecological Oncology, University Clinic of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Tycko
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
39
|
Li Q, Davila J, Bagchi MK, Bagchi IC. Chronic exposure to bisphenol a impairs progesterone receptor-mediated signaling in the uterus during early pregnancy. ACTA ACUST UNITED AC 2016; 3. [PMID: 28239613 PMCID: PMC5321573 DOI: 10.14800/rci.1369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Environmental and occupational exposure to endocrine disrupting chemicals (EDCs) is a major threat to female reproductive health. Bisphenol A (BPA), an environmental toxicant that is commonly found in polycarbonate plastics and epoxy resins, has received much attention due to its estrogenic activity and high risk of chronic exposure in human. Whereas BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In a recent publication in Endocrinology, we demonstrated that prolonged exposure to an environmental relevant dose of BPA disrupts progesterone receptor-regulated uterine functions, thus affecting uterine receptivity for embryo implantation and decidua morphogenesis, two critical events for establishment and maintenance of early pregnancy. In particular we reported a marked impairment of progesterone receptor (PGR) expression and its downstream effector HAND2 in the uterine stromal cells in response to chronic BPA exposure. In an earlier study we have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor (FGF) expression and the MAP kinase signaling pathway, thus inhibiting epithelial proliferation. Interestingly we observed that downregulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with an enhanced activation of FGFR and MAPK signaling, aberrant proliferation, and lack of uterine receptivity in the epithelium. In addition, the proliferation and differentiation of endometrial stromal cells to decidual cells, an event critical for the maintenance of early pregnancy, was severely compromised in response to BPA. This research highlight will provide an overview of our findings and discuss the potential mechanisms by which chronic BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy.
Collapse
Affiliation(s)
- Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Juanmahel Davila
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Milan K Bagchi
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| |
Collapse
|
40
|
Bhurke AS, Bagchi IC, Bagchi MK. Progesterone-Regulated Endometrial Factors Controlling Implantation. Am J Reprod Immunol 2016; 75:237-45. [PMID: 26804062 DOI: 10.1111/aji.12473] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/05/2015] [Indexed: 12/11/2022] Open
Abstract
The steroid hormone progesterone (P), acting via the progesterone receptor (PR) isoforms, PR-A and PR-B, exerts a profound influence on uterine functions during early gestation. In recent years, chromatin immunoprecipitation-sequencing in combination with microarray-based gene expression profiling analyses have revealed that the PR isoforms control a substantially large cistrome and transcriptome during endometrial differentiation in the human and the mouse. Genetically engineered mouse models have established that several PR-regulated genes, such as Ihh, Bmp2, Hoxa10, and Hand2, are essential for implantation and decidualization. PR-A and PR-B also collaborate with other transcription factors, such as FOS, JUN, C/EBPβ and STAT3, to regulate the expression of many target genes that functions in concert to properly control uterine epithelial proliferation, stromal differentiation, angiogenesis, and local immune response to render the uterus 'receptive' and allow embryo implantation. This review article highlights recent work describing the key PR-regulated pathways that govern critical uterine functions during establishment of pregnancy.
Collapse
Affiliation(s)
- Arpita S Bhurke
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
41
|
Li DD, Guo CH, Yue L, Duan CC, Yang ZQ, Cao H, Guo B, Yue ZP. Expression, regulation and function of Hmgn3 during decidualization in mice. Mol Cell Endocrinol 2015; 413:13-25. [PMID: 26112184 DOI: 10.1016/j.mce.2015.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023]
Abstract
Although Hmgn3 is involved in the regulation of development and cellular differentiation, its physiological roles on decidualization are still unknown. Here we showed that Hmgn3 was highly expressed in the decidua and decidualizing stromal cells. Overexpression of Hmgn3 variants, Hmgn3a or Hmgn3b, enhanced the expression of decidualization markers Prl8a2 and Prl3c1, whereas inhibition of Hmgn3 reduced their expression. Hmgn3 could mediate the effects of Hoxa10 and cAMP on the expression of Prl8a2 and Prl3c1. Further study found that Hmgn3 directed the process of decidualization through influencing the expression of Hand2. Progesterone could induce the expression of Hmgn3 in the ovariectomized mouse uterus, uterine epithelial cells and stromal cells. Knockdown of Hoxa10 with siRNA alleviated the induction of progesterone and cAMP on Hmgn3 expression. Simultaneously, siRNA-mediated down-regulation of Hmgn3 in the uterine stromal cells could attenuate the effects of progesterone, cAMP and Hoxa10 on the expression of Hand2. Collectively, Hmgn3 may play an important role during mouse decidualization.
Collapse
Affiliation(s)
- Dang-Dang Li
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Chuan-Hui Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Liang Yue
- College of Clinical Medicine, Jilin University, Changchun, PR China
| | - Cui-Cui Duan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, PR China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Hang Cao
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, PR China
| |
Collapse
|
42
|
Mestre-Citrinovitz AC, Kleff V, Vallejo G, Winterhager E, Saragüeta P. A Suppressive Antagonism Evidences Progesterone and Estrogen Receptor Pathway Interaction with Concomitant Regulation of Hand2, Bmp2 and ERK during Early Decidualization. PLoS One 2015; 10:e0124756. [PMID: 25897495 PMCID: PMC4405574 DOI: 10.1371/journal.pone.0124756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 03/06/2015] [Indexed: 01/01/2023] Open
Abstract
Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets.
Collapse
Affiliation(s)
| | - Veronika Kleff
- Institut für Anatomie, Universaetsklinikum Duisburg-Essen, Essen, Germany
| | - Griselda Vallejo
- Instituto de Biología y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina
| | - Elke Winterhager
- Institut für Molekulare Biologie, Universaetsklinikum Duisburg-Essen, Essen, Germany
| | - Patricia Saragüeta
- Instituto de Biología y Medicina Experimental, IByME-Conicet, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
43
|
Hantak AM, Bagchi IC, Bagchi MK. Role of uterine stromal-epithelial crosstalk in embryo implantation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:139-46. [PMID: 25023679 DOI: 10.1387/ijdb.130348mb] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embryo implantation is a crucial step for successful pregnancy. Prior to implantation, the luminal epithelium undergoes steroid hormone-induced structural and functional changes that render it competent for embryo attachment. Subsequent invasion of the embryo into the maternal tissue triggers differentiation of the underlying stromal cells to form the decidua, a transient tissue which supports the developing embryo. Many molecular cues of both stromal and epithelial origin have been identified that are critical mediators of this process. An important aspect of uterine biology is the elaborate crosstalk that occurs between these tissue compartments during early pregnancy through expression of paracrine factors regulated by the steroid hormones estrogen and progesterone. Aberrant expression of these factors often leads to implantation failure and infertility. Genetically-engineered mouse models have been instrumental in elucidating what these paracrine factors are, what drives their expression, and what their effects are on neighboring cells. This review provides an overview of several well-characterized signaling pathways that span both epithelial and stromal compartments and their function during implantation in the mouse.
Collapse
Affiliation(s)
- Alison M Hantak
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
44
|
The Role of Steroid Hormone Receptors in the Establishment of Pregnancy in Rodents. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2015; 216:27-49. [DOI: 10.1007/978-3-319-15856-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Pawar S, Hantak AM, Bagchi IC, Bagchi MK. Minireview: Steroid-regulated paracrine mechanisms controlling implantation. Mol Endocrinol 2014; 28:1408-22. [PMID: 25051170 DOI: 10.1210/me.2014-1074] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implantation is an essential process during establishment of pregnancy in mammals. It is initiated with the attachment of the blastocyst to a receptive uterine epithelium followed by its invasion into the stromal tissue. These events are profoundly regulated by the steroid hormones 17β-estradiol and progesterone. During the past several years, mouse models harboring conditional gene knockout mutations have become powerful tools for determining the functional roles of cellular factors involved in various aspects of implantation biology. Studies using these genetic models as well as primary cultures of human endometrial cells have established that the estrogen receptor α, the progesterone receptor, and their downstream target genes critically regulate uterine growth and differentiation, which in turn control embryo-endometrial interactions during early pregnancy. These studies have uncovered a diverse array of molecular cues, which are produced under the influence of estrogen receptor α and progesterone receptor and exchanged between the epithelial and stromal compartments of the uterus during the progressive phases of implantation. These paracrine signals are critical for acquisition of uterine receptivity and functional interactions with the embryo. This review highlights recent work describing paracrine mechanisms that govern steroid-regulated uterine epithelial-stromal dialogue during implantation and their roles in fertility and disease.
Collapse
Affiliation(s)
- Sandeep Pawar
- Departments of Molecular and Integrative Physiology (S.P., A.M.H., M.K.B.) and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | | |
Collapse
|
46
|
Yoshinaga K. Progesterone and Its Downstream Molecules as Blastocyst Implantation Essential Factors. Am J Reprod Immunol 2014; 72:117-28. [DOI: 10.1111/aji.12253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/15/2014] [Indexed: 12/31/2022] Open
Affiliation(s)
- Koji Yoshinaga
- Fertility and Infertility Branch; Division of Extramural Research; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; DHHS; Bethesda MD USA
| |
Collapse
|
47
|
Okada H, Tsuzuki T, Shindoh H, Nishigaki A, Yasuda K, Kanzaki H. Regulation of decidualization and angiogenesis in the human endometrium: Mini review. J Obstet Gynaecol Res 2014; 40:1180-7. [DOI: 10.1111/jog.12392] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/19/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Hidetaka Okada
- Department of Obstetrics and Gynecology; Kansai Medical University; Hirakata Osaka Japan
| | - Tomoko Tsuzuki
- Department of Obstetrics and Gynecology; Kansai Medical University; Hirakata Osaka Japan
| | - Hisayuu Shindoh
- Department of Obstetrics and Gynecology; Kansai Medical University; Hirakata Osaka Japan
| | - Akemi Nishigaki
- Department of Obstetrics and Gynecology; Kansai Medical University; Hirakata Osaka Japan
| | - Katsuhiko Yasuda
- Department of Obstetrics and Gynecology; Kansai Medical University; Hirakata Osaka Japan
| | - Hideharu Kanzaki
- Department of Obstetrics and Gynecology; Kansai Medical University; Hirakata Osaka Japan
| |
Collapse
|
48
|
Shindoh H, Okada H, Tsuzuki T, Nishigaki A, Kanzaki H. Requirement of heart and neural crest derivatives-expressed transcript 2 during decidualization of human endometrial stromal cells in vitro. Fertil Steril 2014; 101:1781-90.e1-5. [PMID: 24745730 DOI: 10.1016/j.fertnstert.2014.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the role of heart and neural crest derivatives-expressed transcript 2 (HAND2) during decidualization of human endometrial stromal cells (ESCs). DESIGN In vitro experiment. SETTING Research laboratory. PATIENT(S) Twenty-six patients undergoing hysterectomy for benign reasons. INTERVENTION(S) ESCs were cultured for 12 days with HAND2 small interfering RNA (siRNA) or nonsilencing RNA during decidualization by medroxyprogesterone acetate (MPA) and E2. MAIN OUTCOME MEASURE(S) Decidualization was monitored by changes in cellular morphology and the expression of several decidual-specific genes. RESULT(S) HAND2 siRNA effectively suppressed HAND2 levels in ESCs after 12 days of E2 + MPA treatment. ESCs cultured with HAND2 siRNA retained a long fibroblast-like shape, whereas the cells cultured with control siRNA transformed into enlarged polygonal cells. Silencing of HAND2 expression significantly reduced connexin-43 involved in the morphologic changes. HAND2 silencing significantly reduced the mRNA levels of fibulin-1, prolactin, tissue inhibitor of metalloproteinase 3, interleukin-15, and forkhead box O1A (FOXO1A), but had no effect on the mRNA levels of dickkopf-1, serum glucocorticoid kinase 1, and insulin-like growth factor-binding protein 5. HAND2 siRNA effectively suppressed the levels of nuclear FOXO1A protein as a regulator of decidualization. CONCLUSION(S) These results suggest that HAND2 plays a key role in the regulation of progestin-induced decidualization of human ESCs.
Collapse
Affiliation(s)
- Hisayuu Shindoh
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan.
| | - Tomoko Tsuzuki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Akemi Nishigaki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| | - Hideharu Kanzaki
- Department of Obstetrics and Gynecology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
49
|
Kommagani R, Szwarc MM, Kovanci E, Creighton CJ, O'Malley BW, Demayo FJ, Lydon JP. A murine uterine transcriptome, responsive to steroid receptor coactivator-2, reveals transcription factor 23 as essential for decidualization of human endometrial stromal cells. Biol Reprod 2014; 90:75. [PMID: 24571987 DOI: 10.1095/biolreprod.114.117531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent data from human and mouse studies strongly support an indispensable role for steroid receptor coactivator-2 (SRC-2)-a member of the p160/SRC family of coregulators-in progesterone-dependent endometrial stromal cell decidualization, an essential cellular transformation process that regulates invasion of the developing embryo into the maternal compartment. To identify the key progesterone-induced transcriptional changes that are dependent on SRC-2 and required for endometrial decidualization, we performed comparative genome-wide transcriptional profiling of endometrial tissue RNA from ovariectomized SRC-2(flox/flox) (SRC-2(f/f) [control]) and PR(cre/+)/SRC-2(flox/flox) (SRC-2(d/d) [SRC-2-depleted]) mice, acutely treated with vehicle or progesterone. Although data mining revealed that only a small subset of the total progesterone-dependent transcriptional changes is dependent on SRC-2 (∼13%), key genes previously reported to mediate progesterone-driven endometrial stromal cell decidualization are present within this subset. Along with providing a more detailed molecular portrait of the decidual transcriptional program governed by SRC-2, the degree of functional diversity of these progesterone mediators underscores the pleiotropic regulatory role of SRC-2 in this tissue. To showcase the utility of this powerful informational resource to uncover novel signaling paradigms, we stratified the total SRC-2-dependent subset of progesterone-induced transcriptional changes in terms of novel gene expression and identified transcription factor 23 (Tcf23), a basic-helix-loop-helix transcription factor, as a new progesterone-induced target gene that requires SRC-2 for full induction. Importantly, using primary human endometrial stromal cells in culture, we demonstrate that TCF23 function is essential for progesterone-dependent decidualization, providing crucial translational support for this transcription factor as a new decidual mediator of progesterone action.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
50
|
Kommagani R, Szwarc MM, Kovanci E, Gibbons WE, Putluri N, Maity S, Creighton CJ, Sreekumar A, DeMayo FJ, Lydon JP, O'Malley BW. Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization. PLoS Genet 2013; 9:e1003900. [PMID: 24204309 PMCID: PMC3812085 DOI: 10.1371/journal.pgen.1003900] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/03/2013] [Indexed: 12/23/2022] Open
Abstract
Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC) decidualization are well recognized, the individual gene(s) and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2) is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3), a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy. Failure of an embryo to correctly implant into the endometrium is a common cause of pregnancy failure or early embryo miscarriage. Although advances in our understanding of oocyte and embryo development have significantly increased pregnancy success rates, these rates remain unacceptably low due in part to an endometrium that is unreceptive to embryo implantation. Using experimental mouse genetics and a primary human cell culture model, we show here that the development of a receptive endometrium requires steroid receptor coactivator-2, a factor which modulates the response of an endometrial cell to the pregnancy hormone, progesterone. Specifically, we show that SRC-2 increases progesterone-dependent glycolysis in the endometrial cell to provide energy and biomolecules for the next round of cell division. For an endometrium to be receptive to embryo implantation, specific endometrial cells (termed stromal cells) need to divide and numerically increase just prior to development of the receptive state. Therefore, SRC-2 is critical for the metabolic reprogramming of the endometrium to a receptive state, which provides the pretext for considering this factor and its metabolic targets in the design of future clinical approaches to diagnose and therapeutically treat those women at a high risk for early pregnancy loss.
Collapse
Affiliation(s)
- Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ertug Kovanci
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Suman Maity
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chad J. Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (JPL); (BWO)
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (JPL); (BWO)
| |
Collapse
|