1
|
Abdelhady SA, Abuiessa SA, Elhamammy RH, El-Deeb NM, El-Mas MM. Hepatoprotective effect of prenatal celecoxib in weaning preeclamptic rats: Role of HMGB1/MAPKs signaling. Eur J Pharmacol 2024; 978:176769. [PMID: 38925287 DOI: 10.1016/j.ejphar.2024.176769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Preeclampsia (PE) is often associated with multiple organ damage that remains noticeable postnatally. Here, we tested the hypotheses that antenatal therapy with nonsteroidal antiinflammatory drugs (NSAIDs) refashions liver damage induced by PE in weaning rats and that the high mobility group box 1 (HMGB1) signaling modulates this interaction. PE was induced by pharmacologic nitric oxide deprivation during the last week of gestation (Nω-nitro-L-arginine methyl ester, L-NAME, 50 mg/kg/day, oral gavage). Compared with control rats, weaning PE rats revealed substantial rises in serum transaminases together with histopathological signs of hepatic cytoplasmic changes, portal inflammation, and central vein dilation. While gestational NSAIDs reversed the elevated transaminases, they had no effects (celecoxib, naproxen) or even worsened (diclofenac) the structural damage. Molecularly, celecoxib was the most effective NSAID in (i) reversing PE-evoked upregulation of hepatic HMGB1 gene expression and concomitant increments and decrements in mitogen-activated protein kinases MAPKERK and MAPKp38 expression, respectively, and (ii) elevating and suppressing serum interleukin-10 and tumor necrosis factor-α, respectively. Alternatively, rises in serum interleukin-1β and shifts in macrophage polarization towards an inflammatory phenotype caused by PE were comparably diminished by all NSAIDs. The data disclose an advantageous therapeutic potential for gestational celecoxib over diclofenac or naproxen in controlling hepatic dysfunction and HMGB1-interrelated inflammatory and oxidative sequels of PE.
Collapse
Affiliation(s)
- Sherien A Abdelhady
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| | - Salwa A Abuiessa
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Reem H Elhamammy
- Department of Pharmaceutical Biochemistry, Alexandria University, Alexandria, Egypt
| | - Nevine M El-Deeb
- Department of Pathology, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Jabriya, Kuwait.
| |
Collapse
|
2
|
Xue L, Chen R, Liu Y, Niu P, Zhou J, Liu J, Zhang J, Chen H. Association of maternal blood high-mobility group box 1 levels and adverse pregnancy outcomes: A systematic review and meta-analysis. Reprod Biol 2024; 24:100859. [PMID: 38492434 DOI: 10.1016/j.repbio.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 03/18/2024]
Abstract
Conflicting findings have emerged regarding the levels of high mobility group box 1 (HMGB1) in individuals experiencing adverse pregnancy outcomes. Here we conducted a meta-analysis to assess the association between maternal blood HMGB1 levels and adverse pregnancy outcomes. Utilizing databases such as PubMed, Cochrane Central Register of Controlled Trials, Web of Science, Embase and China National Knowledge Infrastructure (CNKI), a systematic literature search was conducted in January 2024. Eligible literature was screened according to inclusion and exclusion criteria. Quality assessment was evaluated using the Newcastle-Ottawa Scale (NOS). The extracted data were analyzed using Review Manager 5.4 and STATA 12.0 software. 21 observational studies with a total of 2471 participants were included in this meta-analysis. Significantly higher peripheral blood levels of HMGB1 were associated with preeclampsia (PE) (SMD=1.34; 95% CI: 0.72-1.95; P < 0.0001) and gestational diabetes mellitus (GDM) (SMD=1.20; 95% CI: 0.31-2.09; P = 0.009). Additionally, HMGB1 levels in peripheral blood were significantly elevated in patients with unexplained recurrent spontaneous abortion (URSA) than those in pregnancy controls (SMD=4.22; 95% CI: 1.64-6.80; P = 0.001) or non-pregnancy controls (SMD=3.87; 95% CI: 1.81-5.92; P = 0.0002). Interestingly, higher blood HMGB1 levels were observed in women with preterm birth (PTB), however, the results did not reach a statistical difference (SMD=0.54; 95% CI: -0.36-1.44; P = 0.24). In conclusion, overexpressed maternal blood HMGB1 levels were associated with adverse pregnancy outcomes, including PE, GDM and URSA. Further studies should be conducted to validate the efficacy of HMGB1 as a biomarker for assessing the risk of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Liping Xue
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruolin Chen
- College of Letter and Science, University of California Davis, CA, USA
| | - Ying Liu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Peiguang Niu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinhua Liu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| | - Huajiao Chen
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China; School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Xue L, Chen R, Zhou J, Lin W, Cai R, Liu Y, Zeng F, Zhang J, Chen H. Association between high-mobility group box 1 levels and preeclampsia: a systematic review and meta-analysis. J Assist Reprod Genet 2024; 41:551-561. [PMID: 38200286 PMCID: PMC10957809 DOI: 10.1007/s10815-024-03021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE Previous studies had demonstrated that high-mobility group box 1 (HMGB1) levels were elevated in preeclampsia (PE). However, the conclusion remains controversial. This study aimed to investigate the association between blood and placenta HMGB1 levels and PE in pregnant women. METHODS After a systematic literature search, eligible literature was screened according to inclusion and exclusion criteria. Data extraction and quality assessment were performed independently by two reviewers. The extracted data were analyzed using Review Manager 5.4 and STATA 12.0 software. Subgroup analysis and meta-regression analysis were conducted to find potential sources of heterogeneity. RESULTS Twelve studies were included, with a total of 1145 participants. Compared with normal pregnancies, pregnant women with PE had significantly higher blood HMGB1 levels (SMD = 1.34, 95% CI: 0.72-1.95, p < 0.0001). Similarly, the expression of placental HMGB1 in PE was higher than that in normal controls by using Western blot (MD = 0.37, 95% CI: 0.27-0.47, p < 0.00001) or immunohistochemistry (OR = 6.36, 95% CI: 1.48-27.25, p = 0.01). In addition, the blood HMGB1 levels were positively correlated with the severity of PE, with higher blood HMGB1 levels in severe PE than those in mild PE (SMD = 3.35, 95% CI: 0.63-6.06, p = 0.02). The subgroup analysis indicated a close association of blood HMGB1 with PE in the Asian group, but not in the European group. CONCLUSION Both blood and placental HMGB1 levels in patients with PE were significantly elevated, and higher blood HMGB1 levels indicated a more serious disease condition, suggesting that higher levels of HMGB1 were associated with the risk of PE.
Collapse
Affiliation(s)
- Liping Xue
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, China
| | - Ruolin Chen
- College of Letter and Science, University of California, Davis, CA, USA
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, China
| | - Wei Lin
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, China
| | - Ruihong Cai
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, China
| | - Ying Liu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, China
| | - Fanxiang Zeng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, China
| | - Jinhua Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, China
| | - Huajiao Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
4
|
Ticconi C, Mardente S, Mari E, Barreca F, Montanaro M, Mauriello A, Rizzo G, Zicari A. High mobility group box 1 in women with unexplained recurrent pregnancy loss. J Perinat Med 2023; 51:1139-1146. [PMID: 37246521 DOI: 10.1515/jpm-2023-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/13/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVES To investigate whether high mobility group box 1 (HMGB1) is involved in unexplained recurrent pregnancy loss (uRPL). METHODS Plasma levels of HMGB1 were measured by ELISA in non-pregnant women with (n=44) and without (n=53 controls) uRPL. Their platelets and plasma-derived microvesicles (MVs) were also assayed for HMGB1. Endometrial biopsies were taken in selected uRPL (n=5) and control women (n=5) and the tissue expression of HMGB1 was determined by western blot and immunohistochemistry (IHC). RESULTS plasma levels of HMGB1 were significantly higher in women with uRPL than in control women. HMGB1 content in platelets and MVs obtained from women with uRPL was significantly higher than that obtained from control women. HMGB1 expression in endometrium was higher in tissues obtained from women with uRPL than in tissues obtained from control women. IHC analysis revealed that HMGB1 is expressed in endometrium with different patterns between uRPL and control women. CONCLUSIONS HMGB1 could be involved in uRPL.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University of Rome "Tor Vergata", Rome, Italy
| | - Stefania Mardente
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University of Rome "Tor Vergata", Rome, Italy
| | - Emanuela Mari
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Rizzo
- Department of Biomedicine and Prevention, Section of Gynecology and Obstetrics, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Zicari
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
5
|
Mineo C, Shaul PW, Bermas BL. The pathogenesis of obstetric APS: a 2023 update. Clin Immunol 2023; 255:109745. [PMID: 37625670 PMCID: PMC11366079 DOI: 10.1016/j.clim.2023.109745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the persistent presence of antibodies directed against phospholipids and phospholipid-binding proteins that are associated with thrombosis and pregnancy-related morbidity. The latter includes fetal deaths, premature birth and maternal complications. In the early 1990s, a distinct set of autoantibodies, termed collectively antiphospholipid antibodies (aPL), were identified as the causative agents of this disorder. Subsequently histological analyses of the placenta from APS pregnancies revealed various abnormalities, including inflammation at maternal-fetal interface and poor placentation manifested by reduced trophoblast invasion and limited uterine spiral artery remodeling. Further preclinical investigations identified the molecular targets of aPL and the downstream intracellular pathways of key placental cell types. While these discoveries suggest potential therapeutics for this disorder, definitive clinical trials have not been completed. This concise review focuses on the recent developments in the field of basic and translational research pursuing novel mechanisms underlying obstetric APS.
Collapse
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States.
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bonnie L Bermas
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
7
|
Kurashima CK, Ng PK, Kendal-Wright CE. RAGE against the Machine: Can Increasing Our Understanding of RAGE Help Us to Battle SARS-CoV-2 Infection in Pregnancy? Int J Mol Sci 2022; 23:6359. [PMID: 35742804 PMCID: PMC9224312 DOI: 10.3390/ijms23126359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/05/2022] Open
Abstract
The receptor of advanced glycation end products (RAGE) is a receptor that is thought to be a key driver of inflammation in pregnancy, SARS-CoV-2, and also in the comorbidities that are known to aggravate these afflictions. In addition to this, vulnerable populations are particularly susceptible to the negative health outcomes when these afflictions are experienced in concert. RAGE binds a number of ligands produced by tissue damage and cellular stress, and its activation triggers the proinflammatory transcription factor Nuclear Factor Kappa B (NF-κB), with the subsequent generation of key proinflammatory cytokines. While this is important for fetal membrane weakening, RAGE is also activated at the end of pregnancy in the uterus, placenta, and cervix. The comorbidities of hypertension, cardiovascular disease, diabetes, and obesity are known to lead to poor pregnancy outcomes, and particularly in populations such as Native Hawaiians and Pacific Islanders. They have also been linked to RAGE activation when individuals are infected with SARS-CoV-2. Therefore, we propose that increasing our understanding of this receptor system will help us to understand how these various afflictions converge, how forms of RAGE could be used as a biomarker, and if its manipulation could be used to develop future therapeutic targets to help those at risk.
Collapse
Affiliation(s)
- Courtney K. Kurashima
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.K.K.); (P.K.N.)
| | - Po’okela K. Ng
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.K.K.); (P.K.N.)
| | - Claire E. Kendal-Wright
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (C.K.K.); (P.K.N.)
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI 96813, USA
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Wairachpanich V, Phupong V. Second-trimester serum high mobility group box-1 and uterine artery Doppler to predict preeclampsia. Sci Rep 2022; 12:6886. [PMID: 35477735 PMCID: PMC9046382 DOI: 10.1038/s41598-022-10861-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022] Open
Abstract
The objective of this study was to identify the predictive value for preeclampsia of second-trimester serum high mobility group box-1 (HMGB1) and uterine artery Doppler in singleton pregnancies. Between April 2020 and April 2021, a prospective study was conducted on singleton pregnancies with a gestational age of 16–20+6 weeks at King Chulalongkorn Memorial Hospital, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. Maternal characteristics, uterine artery Doppler, and serum HMGB1 were collected. Serum HMGB1 levels and mean uterine artery pulsatility index (UAPI) were combined to calculate the predictive value for preeclampsia. A total of 393 pregnant women were analyzed, with 25 cases (6.4%) developing preeclampsia and 5 cases (1.3%) developing early-onset preeclampsia. Baseline characteristics of preeclampsia and normal pregnant women were comparable. Preeclamptic pregnant women had significantly higher mean serum HMGB1 levels than normal pregnant women (1112.8 ± 363.1 ng/mL vs 910.8 ± 486.1 ng/mL, p = 0.013). There was no difference in the mean UAPI. Any early-diastolic notching was found more frequently in the preeclampsia group (32.0% vs 12.5%, p = 0.013). The cut-off value for serum HMGB1 levels above 1.04 MoM as abnormal value to predict preeclampsia had sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 88.0%, 53.5%, 11.4% and 98.5%, respectively. When using abnormal serum HMGB1 levels combined with mean UAPI above 95th percentile, the sensitivity, specificity, PPV and NPV to predict preeclampsia were 88.0%, 50.8%, 10.8% and 98.4%, respectively. This study showed that serum HMGB1 at 16–20+6 weeks of gestation were effective in predicting preeclampsia. The addition of UAPI did not improve the prediction performance.
Collapse
Affiliation(s)
- Varangkana Wairachpanich
- Placental Related Diseases Research Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Vorapong Phupong
- Placental Related Diseases Research Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Tsai BW, Lau S, Paek SY, Wise M, Kando I, Stone P, Chen Q, Chamley LW. Antiphospholipid antibodies do not cause retargeting of placental extracellular vesicles in the maternal body. Placenta 2022; 118:66-69. [PMID: 35042085 DOI: 10.1016/j.placenta.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023]
Abstract
Antiphospholipid antibodies (aPL) are autoantibodies that cause pregnancy disorders by a poorly defined mechanism that involves the placenta. The human placenta is covered by a single multinucleated cell, the syncytiotrophoblast, which extrudes vast numbers of extracellular vesicles (EVs) into the maternal blood. Extracellular vesicles are tiny packages of cellular material used by cells for remote signalling. In normal pregnancy, placental EVs assist maternal adaptations to pregnancy. We have previously shown that aPL alter the cargo of placental EVs, increasing the load of danger signals. These changes in EV cargo may explain how aPL contribute to the increased risk of recurrent miscarriage, preeclampsia and stillbirths observed in aPL-affected pregnancies. An additional possibility, that aPL alters the targeting of placental EVs to maternal organs to cause maternal maladaptation to pregnancy was investigated in this study.
Collapse
Affiliation(s)
- Bridget W Tsai
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Sandy Lau
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Song Yee Paek
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Michelle Wise
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Ian Kando
- National Women's Health Auckland City Hospital, Auckland, New Zealand
| | - Peter Stone
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| |
Collapse
|
10
|
Zheng J, Tian M, Liu L, Jia X, Sun M, Lai Y. Magnesium sulfate reduces vascular endothelial cell apoptosis in rats with preeclampsia via the miR-218-5p/HMGB1 pathway. Clin Exp Hypertens 2021; 44:159-166. [PMID: 34923889 DOI: 10.1080/10641963.2021.2013492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aims to investigate the mechanism by which magnesium sulfate regulates the miR-218-5p/HMGB-pathway-mediated apoptosis of vascular endothelial cells (VECs) in rats with preeclampsia (PE). METHODS Twenty pregnant rats were randomly divided into four groups: normal, PE, MgSO4, and high-mobility group protein B1 (HMGB1)-agomir groups. On the 14th day of each rat's pregnancy, endotoxin was used to establish a PE model in the PE, MgSO4, and HMGB1-agomir groups. Then, the MgSO4 and HMGB1-agomir groups were treated with magnesium sulfate. Finally, HMGB1 overexpression was performed only in the HMGB1-agomir group. The rats' urinary protein content and systolic blood pressure at 24 h were detected on the 11th, 13th, 15th, 17th, and 19th day of pregnancy. RESULTS Compared with the PE group, 24-h urinary protein content, blood pressure, VEC apoptosis rate, apoptosis marker levels, and HMGB1 expression decreased while miR-218-5p levels increased in the MgSO4 group. The dual-luciferase assay revealed that HMGB1 can be targeted and regulated by miR-218-5p. Compared with the MgSO4 group, 24-h urinary protein content, blood pressure, VEC apoptosis rate, apoptosis marker levels, and HMGB1 expression increased while miR-218-5p levels decreased in the HMGB1-agomir group. CONCLUSION MgSO4 reduces VEC apoptosis in PE rats via the miR-218-5p/HMGB1 pathway and thus plays a role in treating PE.
Collapse
Affiliation(s)
- Jiacui Zheng
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| | - Meirong Tian
- Department of Obstetrics, Shandong Maternal and Child Health Hospital Affiliated of Shandong, Jinan City, Shandong, China
| | - Lanlan Liu
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| | - Xueqin Jia
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| | - Meiling Sun
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| | - Yongjing Lai
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| |
Collapse
|
11
|
The Role and Clinical Interest of Extracellular Vesicles in Pregnancy and Ovarian Cancer. Biomedicines 2021; 9:biomedicines9091257. [PMID: 34572444 PMCID: PMC8464910 DOI: 10.3390/biomedicines9091257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer and pregnancy are two states in which the host immune system is exposed to novel antigens. Indeed, both the tumor and placenta must invade tissues, remodel vasculature to establish a robust blood supply, and evade detection by the immune system. Interestingly, tumor and placenta tissue use similar mechanisms to induce these necessary changes. One mediator is emerging as a key player in invasion, vascular remodeling, and immune evasion: extracellular vesicles (EVs). Many studies have identified EVs as a key mediator of cell-to-cell communication. Specifically, the cargo carried by EVs, which includes proteins, nucleic acids, and lipids, can interact with cells to induce changes in the target cell ranging from gene expression to migration and metabolism. EVs can promote cell division and tissue invasion, immunosuppression, and angiogenesis which are essential for both cancer and pregnancy. In this review, we examine the role of EVs in ovarian cancer metastasis, chemoresistance, and immune modulation. We then focus on the role of EVs in pregnancy with special attention on the vascular remodeling and regulation of the maternal immune system. Lastly, we discuss the clinical utility of EVs as markers and therapeutics for ovarian cancer and pre-eclampsia.
Collapse
|
12
|
Extracellular Vesicles and Antiphospholipid Syndrome: State-of-the-Art and Future Challenges. Int J Mol Sci 2021; 22:ijms22094689. [PMID: 33925261 PMCID: PMC8125219 DOI: 10.3390/ijms22094689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 01/08/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thromboembolism, obstetric complications, and the presence of antiphospholipid antibodies (aPL). Extracellular vesicles (EVs) play a key role in intercellular communication and connectivity and are known to be involved in endothelial and vascular pathologies. Despite well-characterized in vitro and in vivo models of APS pathology, the field of EVs remains largely unexplored. This review recapitulates recent findings on the role of EVs in APS, focusing on their contribution to endothelial dysfunction. Several studies have found that APS patients with a history of thrombotic events have increased levels of EVs, particularly of endothelial origin. In obstetric APS, research on plasma levels of EVs is limited, but it appears that levels of EVs are increased. In general, there is evidence that EVs activate endothelial cells, exhibit proinflammatory and procoagulant effects, interact directly with cell receptors, and transfer biological material. Future studies on EVs in APS may provide new insights into APS pathology and reveal their potential as biomarkers to identify patients at increased risk.
Collapse
|
13
|
Pregnancy-Related Extracellular Vesicles Revisited. Int J Mol Sci 2021; 22:ijms22083904. [PMID: 33918880 PMCID: PMC8068855 DOI: 10.3390/ijms22083904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content—which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA (mRNA), and DNA—these particles can bring about functional modifications in the receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated, eliciting interest in discovering their clinical significance. To date, various studies have associated variations in the circulating levels of maternal and fetal EVs and their contents, with complications including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes. Furthermore, EVs have also been identified as messengers and important players in viral infections during pregnancy, as well as in various congenital malformations. Their presence can be detected in the maternal blood from the first trimester and their level increases towards term, thus acting as liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their exact roles in the metabolic and vascular adaptations associated with physiological and pathological pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online databases, the purpose of this review is to synthesize current knowledge regarding the utility of quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current understanding of these particles and their applicability in clinical practice.
Collapse
|
14
|
Liu F, Yang X, Xing J, Han K, Sun Y. Glycyrrhizin potentially suppresses the inflammatory response in preeclampsia rat model. Pregnancy Hypertens 2020; 23:34-40. [PMID: 33189014 DOI: 10.1016/j.preghy.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The expression of high-mobility group box 1 (HMGB1) in trophoblasts is elevated, which contributes to the development of preeclampsia. Thus, this study aimed to investigate the effect of glycyrrhizin, a natural HMGB1 inhibitor, on the development of preeclampsia. METHODS Preeclampsia was induced in pregnant Lewis rats through oral administration of L-NAME (50 mg/kg/day) on gestational day (GD) 13-19. Glycyrrhizin (10, 30, or 60 mg/kg/day) was given by oral gavage on GD 10-19. Systolic blood pressure (SBP), diastolic blood pressure (DBP), 24-hour proteinuria, live pup birth ratio, pup weight, pup body length, and placental weight were measured. Also, the expression levels of inflammatory factors (TNF-α, iNOS, IL-1, and IL-6), HMGB1, and TLR4 in the placenta or in the serum were analyzed by enzyme-linked immunosorbent assay, RT-PCR, and Western blot analysis. RESULTS Glycyrrhizin significantly reduced the SBP, DBP, and 24-hour proteinuria on GD 16 and 20 in a dose-dependent manner and ameliorated the pregnancy outcomes in preeclampsia rats. The elevated inflammatory molecule levels were markedly decreased by glycyrrhizin not only in the serum but also in the placenta. Moreover, the upregulated HMGB1 and TLR4 expression levels were diminished by glycyrrhizin administration. CONCLUSION This study shows that glycyrrhizin could alleviate preeclampsia and the preeclampsia-associated inflammatory reaction, and this effect could be attributed to HMGB1 inhibition.
Collapse
Affiliation(s)
- Fang Liu
- Department of Obstetrics, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China
| | - Xiuzhi Yang
- Department of Obstetrics, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China
| | - Junxiang Xing
- Department of Obstetrics, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China
| | - Ke Han
- Department of Obstetrics, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China
| | - Yuan Sun
- Department of Obstetrics, ZIBO Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China.
| |
Collapse
|
15
|
Saito Reis CA, Padron JG, Norman Ing ND, Kendal-Wright CE. High-mobility group box 1 is a driver of inflammation throughout pregnancy. Am J Reprod Immunol 2020; 85:e13328. [PMID: 32851715 DOI: 10.1111/aji.13328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
A proinflammatory response driven by high-mobility group box 1 (HMGB1) is important for the success of both the early stages of pregnancy and parturition initiation. However, the tight regulation of HMGB1 within these two stages is critical, as increased HMGB1 can manifest into pregnancy-related pathologies. Although during the early stages of pregnancy HMGB1 is critical for the development and implantation of the embryo, and uterine decidualization, high levels within the uterine cavity have been linked to pregnancy failure. In addition, chronic inflammation, resultant from increased HMGB1 within the maternal circulation and gestational tissues, also increases the risk for preterm labor, preterm birth, or infant mortality. Due to the link between HMGB1 and several pregnancy pathologies, the possibility of leveraging HMGB1 as a biomarker has been assessed. However, data are limited that demonstrate how known HMGB1 inhibitors could reduce inflammation within pregnancy. Thus, further research is warranted to improve our understanding of the potential of HMGB1 as a therapeutic target to reduce inflammation within pregnancy. This review aims to describe what is understood about the role of HMGB1 that drives inflammation throughout pregnancy and highlight its potential as a biomarker and therapeutic target within this context.
Collapse
Affiliation(s)
- Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA
| | - Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoā, Honolulu, HI, USA
| | - Nainoa D Norman Ing
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, USA.,Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Manoā, Honolulu, HI, USA.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'I at Manoā, Honolulu, HI, USA
| |
Collapse
|
16
|
Tong M, Tsai BW, Chamley LW. Antiphospholipid antibodies and extracellular vesicles in pregnancy. Am J Reprod Immunol 2020; 85:e13312. [PMID: 32715546 DOI: 10.1111/aji.13312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
Antiphospholipid antibodies (aPL) are autoantibodies that target phospholipid-binding proteins, such as β2 glycoprotein I (β2GPI), and can induce thrombosis systemically, as well as increase the risk of obstetric complications such as recurrent miscarriage and preeclampsia. Due to the expression of β2GPI by placental trophoblasts, aPL readily target the maternal-fetal interface during pregnancy and many studies have investigated the deleterious effects of aPL on placental trophoblast function. This review will focus on studies that have examined the effects of aPL on the production and modification of extracellular vesicles (EVs) from trophoblasts, as EVs are a key mode of feto-maternal communication in both normal and pathological pregnancy. A more comprehensive understanding of the effects of aPL on the quantity and cargo of EVs extruded by the human placenta may contribute to our current knowledge of how aPL induce both systemic and obstetric disease.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Bridget W Tsai
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, USA
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, NZ, USA
| |
Collapse
|
17
|
Endoplasmic reticulum stress occurs in association with the extrusion of toxic extracellular vesicles from human placentae treated with antiphospholipid antibodies. Clin Sci (Lond) 2020; 134:459-472. [PMID: 32068238 PMCID: PMC7056451 DOI: 10.1042/cs20191245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 01/20/2023]
Abstract
Antiphospholipid autoantibodies (aPLs), a major maternal risk factor for preeclampsia, are taken into the syncytiotrophoblast where they bind intracellular vesicles and mitochondria. Subsequently, large quantities of extracellular vesicles (EVs) extruded from syncytiotrophoblast into the maternal circulation are altered such that they cause maternal endothelial cell activation. However, the mechanism driving this change is unknown. First trimester placental explants were treated with aPL for 18 h. The EVs were then collected by different centrifugation. The levels of HSP 70, misfolded proteins, caspase 8 activity, and Mixed Lineage Kinase domain-Like (MLKL) were measured in placental explants and EVs. In addition, the levels of TNF-α and CD95 in conditioned medium were also measured. Treating placental explants with aPL caused an increase in levels of HSP 70, misfolded proteins and MLKL in placental explants and EVs. Increased activity of caspase 8 was also seen in placental explants. Higher levels of TNF-α were seen conditioned medium from aPL-treated placental explant cultures. aPLs appear to induce endoplasmic reticulum stress in the syncytiotrophoblast in a manner that involved caspase 8 and TNF-α. To avoid accumulation of the associated misfolded proteins and MLKL, the syncytiotrophoblast exports these potentially dangerous proteins in EVs. It is likely that the dangerous proteins that are loaded into placental EVs in preeclampsia contribute to dysfunction of the maternal cells.
Collapse
|
18
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
19
|
Zhang J, Li H, Fan B, Xu W, Zhang X. Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J Cell Mol Med 2020; 24:4377-4388. [PMID: 32175696 PMCID: PMC7176865 DOI: 10.1111/jcmm.15144] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membranous vesicles released by almost all types of cells. Extracellular vesicles can be classified into distinct subtypes according to their sizes, origins and functions. Extracellular vesicles play important roles in intercellular communication through the transfer of a wide spectrum of bioactive molecules, contributing to the regulation of diverse physiological and pathological processes. Recently, it has been established that EVs mediate foetal‐maternal communication across gestation. Abnormal changes in EVs have been reported to be critically involved in pregnancy‐related diseases. Moreover, EVs have shown great potential to serve as biomarkers for the diagnosis of pregnancy‐related diseases. In this review, we discussed about the roles of EVs in normal pregnancy and how changes in EVs led to complicated pregnancy with an emphasis on their values in predicting and monitoring of pregnancy‐related diseases.
Collapse
Affiliation(s)
- Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Haibo Li
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Nantong, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Shirasuna K, Karasawa T, Takahashi M. Role of the NLRP3 Inflammasome in Preeclampsia. Front Endocrinol (Lausanne) 2020; 11:80. [PMID: 32161574 PMCID: PMC7053284 DOI: 10.3389/fendo.2020.00080] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Reproduction involves tightly regulated series of events and the immune system is involved in an array of reproductive processes. Disruption of well-controlled immune functions leads to infertility, placental inflammation, and numerous pregnancy complications, including preeclampsia (PE). Inflammasomes are involved in the process of pathogen clearance and sterile inflammation. They are large multi-protein complexes that are located in the cytosol and play key roles in the production of the pivotal inflammatory cytokines, interleukin (IL)-1β and IL-18, and pyroptosis. The nucleotide-binding oligomerization domain, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome is a key mediator of sterile inflammation induced by various types of damage-associated molecular patterns (DAMPs). Recent evidence indicates that the NLRP3 inflammasome is involved in pregnancy dysfunction, including PE. Many DAMPs (uric acid, palmitic acid, high-mobility group box 1, advanced glycation end products, extracellular vesicles, cell-free DNA, and free fatty acids) are increased and associated with pregnancy complications, especially PE. This review focuses on the role of the NLRP3 inflammasome in the pathophysiology of PE.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
- *Correspondence: Koumei Shirasuna
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
21
|
Budhwar S, Verma P, Verma R, Gupta S, Rai S, Rajender S, Singh K. Altered cord serum 25-hydroxyvitamin D signaling and placental inflammation is associated with pre-term birth. Am J Reprod Immunol 2019; 83:e13201. [PMID: 31642155 DOI: 10.1111/aji.13201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
PROBLEM Vitamin D is well-known for having anti-inflammatory and immunomodulatory properties. Impaired maternal vitamin D status has been known to increase the risk of adverse pregnancy outcomes like pre-term birth. The present study aims to evaluate the impact of fetal cord serum 25-hydroxyvitamin D-mediated signaling in mediating inflammatory responses in placenta during pre-term birth. METHOD OF STUDY For the above purpose, cord serum 25 hydroxyvitamin D 25(OH)D were measured in term (n = 20) and pre-term (n = 20) born babies using ELISA. Vitamin D downstream signaling has also been checked in placenta (VDR, CYP27B1, cathelicidin LL37) along with expression of inflammatory markers (S100A8, HMGB1, TLR2, p-NF-kappaB) using Western blotting and immunohistochemistry. Pearson correlation model was used to do correlation study. RESULTS Compared with term born babies (59.31 ± 3.476), decline in cord serum 25(OH)D levels is observed in pre-term born babies (22.26 ± 1.083, P = <0.0001) that showed strong positive correlation with gestational age (r = .9368***) and birthweight (r = .9559***). On the other hand, vitamin D signaling markers were found to be downregulated and inflammatory markers were upregulated in placental tissue of pre-term born babies. CONCLUSION Thus, our study demonstrated that insufficient cord 25(OH)D levels may disturb the homeostasis of inflammation in placenta. Altered cord serum 25(OH)D mediated anti-inflammatory signaling may be acting as trigger signals in modulating inflammatory responses in placenta and eliciting premature activation of spontaneous labor in pre-term birth.
Collapse
Affiliation(s)
- Snehil Budhwar
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Priyanka Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rachna Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shreshtha Gupta
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sangeeta Rai
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Singh Rajender
- Division of Endocrinology, CSIR Central Drug Research Institute, Lucknow, India
| | - Kiran Singh
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
Manganelli V, Truglia S, Capozzi A, Alessandri C, Riitano G, Spinelli FR, Ceccarelli F, Mancuso S, Garofalo T, Longo A, Valesini G, Sorice M, Conti F, Misasi R. Alarmin HMGB1 and Soluble RAGE as New Tools to Evaluate the Risk Stratification in Patients With the Antiphospholipid Syndrome. Front Immunol 2019; 10:460. [PMID: 30923525 PMCID: PMC6426766 DOI: 10.3389/fimmu.2019.00460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antiphospholipid antibody syndrome (APS) is a systemic autoimmune disease characterized by arterial and/or venous thrombosis, pregnancy morbidity in the presence of circulating “anti-phospholipid antibodies” (aPL). One of the main target antigens of aPL is β2-glycoprotein I (β2-GPI). APS may occur as a primary syndrome or associated with Systemic Lupus Erythematosus (SLE). High Mobility Group Box 1 (HMGB1) is a nuclear non-histone protein which is secreted from different type of cells during activation and/or cell death and may act as a proinflammatory mediator through ligation to its receptors, including RAGE. There is accumulating evidence that HMGB1 contributes to the pathogenesis of inflammatory and autoimmune diseases, especially SLE. In a previous study we demonstrated increased serum levels of HMGB1 in both primary and secondary APS patients. In this work we analyzed: (i) in vitro whether anti-β2-GPI antibodies from APS patients may induce both a HMGB1 cellular relocation by activation of its putative receptor RAGE in platelets and monocytes and, (ii) ex vivo, serum levels of HMGB1/soluble RAGE (sRAGE) in APS patients and their possible correlation with clinical manifestations. Platelets and monocytes from healthy donors were incubated with affinity purified anti-β2-GPI antibodies. HMGB1 and RAGE expression were analyzed by Western Blot. Sera from 60 consecutive APS patients (primary or secondary), diagnosed according to the Sydney Classification Criteria, were enrolled. As a control, 30 matched healthy subjects were studied. Serum levels of HMGB1 and sRAGE were analyzed by Western Blot. In vitro results showed that anti-β2-GPI antibodies were able to induce RAGE activation and HMGB1 cellular relocation in both monocytes and platelets. HMGB1 and sRAGE serum levels were significantly increased in APS patients in comparison with healthy subjects (p<0.0001). Interestingly, APS patients with spontaneous recurrent abortion showed significantly higher levels of sRAGE; moreover, in APS patients a direct correlation between serum levels of HMGB1 and disease duration was detected. Our observations suggest that anti-β2-GPI antibodies may trigger RAGE activation and HMGB1 cellular relocation during APS. Monitoring these molecules serum levels may represent an useful tool to evaluate the pathogenesis and risk stratification of clinical manifestations in APS.
Collapse
Affiliation(s)
- Valeria Manganelli
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Simona Truglia
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonella Capozzi
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Cristiano Alessandri
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Gloria Riitano
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Francesca Romana Spinelli
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Fulvia Ceccarelli
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Silvia Mancuso
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Tina Garofalo
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Agostina Longo
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Guido Valesini
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Maurizio Sorice
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| | - Fabrizio Conti
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Roberta Misasi
- Dipartimento di Medicina Sperimentale, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
23
|
Osborne LM, Brar A, Klein SL. The role of Th17 cells in the pathophysiology of pregnancy and perinatal mood and anxiety disorders. Brain Behav Immun 2019; 76:7-16. [PMID: 30465878 PMCID: PMC6359933 DOI: 10.1016/j.bbi.2018.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/19/2018] [Accepted: 11/18/2018] [Indexed: 12/27/2022] Open
Abstract
T cells play a key role in adaptive immune responses, and shifts among T cell classes occur in normal pregnancy. There is evidence for the role of TH17 cells and dysregulation of the TH17/Treg cell balance in morbidities and autoimmune diseases during pregnancy. Because TH17 responses may play a role in depression and anxiety outside of pregnancy, we hypothesize that TH17 responses and the balance of TH17/Treg activity may also contribute to the development of depression and anxiety during pregnancy. To explore this hypothesis, this review has three main aims: 1) to evaluate systematically the role of TH17 cells and cytokines during pregnancy; 2) to compare changes in the ratio of TH17/Treg cells during pregnancy morbidities with the changes that occur in depression and anxiety outside of pregnancy; and 3) to provide a basis for further research on TH17 cells in perinatal mood and anxiety disorders, with an eye toward the development of novel therapeutics. We also review the limited literature concerning perinatal mood and anxiety disorders, and hypothesize about the potential role of TH17 cells in these illnesses. Understanding the pathophysiology of perinatal mood and anxiety disorders will aid development of novel therapeutics that address immunological mechanisms, in addition to the serotonin system, which are targetable molecules in treating depression and anxiety during pregnancy.
Collapse
Affiliation(s)
- Lauren M. Osborne
- Women’s Mood Disorders Center, Departments of Psychiatry & Behavioral Sciences, and of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Amitoj Brar
- Women’s Mood Disorders Center, Departments of Psychiatry & Behavioral Sciences, and of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
24
|
Placental inflammation by HMGB1 activation of TLR4 at the syncytium. Placenta 2018; 72-73:53-61. [PMID: 30501882 DOI: 10.1016/j.placenta.2018.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Normal pregnancy is characterized by an elevated inflammatory state involving the placenta. The placental inflammation is further increased in preeclampsia, resulting in release of harmful danger signals to the maternal circulation. Activation of toll-like receptors (TLR)2 and TLR4 by endogenous danger signals plays a role in inflammatory diseases. Placental TLR2 and TLR4 expression has been reported, and high mobility group box 1 (HMGB1) is a likely endogenous activator of these receptors. We aimed to examine HMGB1 activation of TLR2 and TLR4 as mechanisms of placental inflammation in normal and preeclamptic pregnancies, by combined analysis of expression and function of the ligand HMGB1, the receptors TLR2 and TLR4, and the cytokine responder interleukin (IL)-8. METHODS Protein expression was analyzed in placental tissue from normal and preeclamptic pregnancies, and cytokine responses to two distinct HMGB1 isoforms were examined in placental explants and trophoblasts. Inflammatory and anti-angiogenic markers were measured in maternal serum. RESULTS We demonstrated strong co-localized expression of HMGB1, TLR4 and IL-8 in the syncytium layer of the placenta. Syncytium TLR4 expression and maternal serum levels of IL-8 were significantly increased in preeclamptic compared to normal pregnancies. Functionality was confirmed by TLR4-dependent release of IL-8 from placental explants and trophoblasts in response to the inflammatory isoform of HMGB1. DISCUSSION This demonstrates a role for the HMGB1-TLR4 pathway at the syncytium layer and suggests involvement in placental inflammation and preeclampsia.
Collapse
|
25
|
Zhu C, Chen T, Liu B. Inhibitory effects of miR-25 targeting HMGB1 on macrophage secretion of inflammatory cytokines in sepsis. Oncol Lett 2018; 16:5027-5033. [PMID: 30250569 PMCID: PMC6144916 DOI: 10.3892/ol.2018.9308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/23/2018] [Indexed: 01/07/2023] Open
Abstract
High mobility group box 1 (HMGB1) can promote the migration of macrophages and the release of inflammatory cytokines, functions associated with the occurrence of sepsis. The role of microRNA (miR)-25 in the targeted regulation of HMGB1 expression and the release of macrophage inflammatory cytokines remains uncharacterized. The present study investigated the association between miR-25, HMGB1 and sepsis by analyzing the expression of miR-25 and HMGB1 in patients with sepsis. The present study also investigated whether miR-25 serves a role in targeting the regulation of HMGB1 expression and macrophage inflammatory factor release. Patients with sepsis were selected from the Intensive Care Unit, and serum levels of HMGB1. The expression of miR-25 and HMGB1 in serum and peripheral blood mononuclear cells (PBMCs) was compared. Macrophages were cultured in vitro and divided into 5 groups following treatment with lipopolysaccharide (LPS). The expression levels of miR-25, HMGB1, phosphorylated (p-)p65, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and HMGB-1 were compared, and the migration ability of cells was investigated by Transwell assays. Compared with the healthy controls, patients with sepsis exhibited elevated expression of HMGB1 and decreased expression of miR-25 in serum and PBMCs. Following treatment with LPS, the expression of HMGB1 and p-p65 was elevated, and the expression of miR-25 was decreased in macrophages compared with untreated cells. Following transfection with miR-25 mimics and/or short interfering RNA-HMGB1, the expression of HMGB1 in macrophages decreased significantly, the expression of p-p65, HMGB-1, TNF-α and IL-6 in the culture solution were also decreased, and the migration ability of macrophages was attenuated. The present study suggests that miR-25 attenuated the induction of HMGB1 by LPS, decreased the activity of nuclear factor-κB and the transcriptional activation of TNF-α and IL-6, and suppressed the migration of macrophages. Inhibiting expression of miR-25 may serve a role in upregulating HMGB1 expression, promoting the secretion of inflammatory cytokines and resulting in sepsis.
Collapse
Affiliation(s)
- Chunyan Zhu
- Intensive Care Unit, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ting Chen
- Intensive Care Unit, The Second People's Hospital of Hefei, Hefei, Anhui 230032, P.R. China
| | - Bao Liu
- Intensive Care Unit, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
26
|
Xu Q, Du F, Zhang Y, Teng Y, Tao M, Chen AF, Jiang R. Preeclampsia serum induces human glomerular vascular endothelial cell hyperpermeability via the HMGB1-Caveolin-1 pathway. J Reprod Immunol 2018; 129:1-8. [PMID: 30007203 DOI: 10.1016/j.jri.2018.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/13/2018] [Accepted: 07/03/2018] [Indexed: 01/01/2023]
Abstract
To explore new ideas about the pathogeny of preeclampsia (PE) proteinuria, this study focused on whether severe PE serum (PES) could induce high-molecular-weight protein (HMWP) hyperpermeability in glomerular endothelial cells (GEC) via the HMGB1-Caveolin-1 (CAV-1) pathway. Normal pregnancy serum (NPS) and severe PES were used to treat primary human GEC monolayer for 24 h. The CAV-1 inhibitor methyl-beta-cyclodextrin (MBCD), the HMGB1 inhibitor glycyrrhizicacid (GA), recombinant HMGB1 (rHMGB1) were also used to treat GEC monolayer that were stimulated by NPS or severe PES. The dynamic permeability of GEC to HMWP was detected by Evans blue-labeled BSA and CAV-1 expression in GEC was analyzed by immunofluorescence staining and Western blotting. We detected HMGB1 expression in placenta and serum in normal pregnancy and severe PE. The results showed that severe PES significantly promoted GEC hyperpermeability and CAV-1 expression. By inhibiting CAV-1 expression, MBCD reversed severe PES-induced GEC monolayer permeability. HMGB1 expression in PE placenta and serum was significantly increased. Compared with that in normal placenta, HMGB1expression was increased in the cytoplasm of syncytiotrophoblast cells in PE placenta. GA decreased the severe PES-induced hyperpermeability and CAV-1 expression in GEC. rHMGB1 induced high expression levels of CAV-1 and HMWP hyperpermeability in GEC. In conclusion, HMGB1 is increased in severe PE patients and induces the expression of CAV-1 in GEC. High expression of CAV-1 in GEC can promote HMWP hyperpermeability, which may contribute to the development of PE proteinuria.
Collapse
Affiliation(s)
- Qinyang Xu
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Du
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ye Zhang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yincheng Teng
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Tao
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex F Chen
- Department of Surgery, McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rongzhen Jiang
- Obstetric Intensive Care Center, The Institute of Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Tong M, Johansson C, Xiao F, Stone PR, James JL, Chen Q, Cree LM, Chamley LW. Antiphospholipid antibodies increase the levels of mitochondrial DNA in placental extracellular vesicles: Alarmin-g for preeclampsia. Sci Rep 2017; 7:16556. [PMID: 29185455 PMCID: PMC5707355 DOI: 10.1038/s41598-017-16448-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/13/2017] [Indexed: 01/13/2023] Open
Abstract
The pathogenesis of preeclampsia remains unclear but placental factors are known to play a crucial role causing maternal endothelial cell dysfunction. One potential factor is placental micro- and nano- vesicles. Antiphospholipid antibodies (aPL) increase the risk of preeclampsia ten-fold, in part by damaging the mitochondria in the syncytiotrophoblast. Since mitochondrial DNA (mtDNA) is a danger- associated molecular pattern (DAMP/alarmin) that may activate endothelial cells, the aims of the current study were to investigate whether aPL affect the number of placental vesicles extruded, their mtDNA content and their ability to activate endothelial cells. Exposure of first trimester human placental explants to aPL affected neither the number nor size of extruded micro- and nano- vesicles (n = 5), however their levels of mtDNA were increased (n = 6). These vesicles significantly activated endothelial cells (n = 5), which was prevented by blocking toll-like receptor 9 (TLR-9), a receptor for extracellular DNA. Thus, aPL may increase the risk of preeclampsia in part by increasing the amount of mtDNA associated with placental vesicles. That mitochondrial DNA is recognised as a DAMP by TLR-9 to cause endothelial cell activation, raises the possibility that placental vesicles or TLR-9 might be a target for pharmaceutical intervention to reduce the consequences of aPL in pregnancy.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand.
| | - Caroline Johansson
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand.,Faculty of Medicine and Health Sciences, Linköping University, Linköping, SE-581 83, Sweden
| | - Fengyi Xiao
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand.,The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
| | - Peter R Stone
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand
| | - Lynsey M Cree
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, 1023, New Zealand
| |
Collapse
|
28
|
Abrahams VM, Chamley LW, Salmon JE. Emerging Treatment Models in Rheumatology: Antiphospholipid Syndrome and Pregnancy: Pathogenesis to Translation. Arthritis Rheumatol 2017; 69:1710-1721. [PMID: 28445926 DOI: 10.1002/art.40136] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Jane E Salmon
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
29
|
Jin X, Xu Z, Cao J, Shao P, Zhou M, Qin Z, Liu Y, Yu F, Zhou X, Ji W, Cai W, Ma Y, Wang C, Shan N, Yang N, Chen X, Li Y. Proteomics analysis of human placenta reveals glutathione metabolism dysfunction as the underlying pathogenesis for preeclampsia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1207-1214. [PMID: 28705740 DOI: 10.1016/j.bbapap.2017.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
Abstract
Hypertensive disorder in pregnancy (HDP) refers to a series of diseases that cause the hypertension during pregnancy, including HDP, preeclampsia (PE) and eclampsia. This study screens differentially expressed proteins of placenta tissues in PE cases using 2D LC-MS/MS quantitative proteomics strategy. A total of 2281 proteins are quantified, of these, 145 altering expression proteins are successfully screened between PE and control cases (p<0.05). Bioinformatics analysis suggests that these proteins are mainly involved in many biological processes, such as oxidation reduction, mitochondrion organization, and acute inflammatory response. Especially, the glutamine metabolic process related molecules, GPX1, GPX3, SMS, GGCT, GSTK1, NFκB, GSTT2, SOD1 and GCLM, are involved in the switching process from oxidized glutathione (GSSG) conversion to the reduced glutathione (GSH) by glutathione, mercapturic acid and arginine metabolism process. Results of this study revealed that glutathione metabolism disorder of placenta tissues may contribute to the occurrence of PE disease.
Collapse
Affiliation(s)
- Xiaohan Jin
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China; Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Zhongwei Xu
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China; Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Jin Cao
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Ping Shao
- Women and Children Health Care Center, Tianjin 300070, China
| | - Maobin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Zhe Qin
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Yan Liu
- Tianjin First Center Hospital, Tianjin 300192, China
| | - Fang Yu
- Obstetrics and Gynecology Department, Pingjin Hospital, Tianjin 300162, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Wenjie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Wei Cai
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Yongqiang Ma
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Chengyan Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Nana Shan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Ning Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China
| | - Xu Chen
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, China.
| | - Yuming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling & Target Organ Injury, Pingjin Hospital Heart Center, Tianjin 300162, China.
| |
Collapse
|
30
|
Xiao X, Xiao F, Zhao M, Tong M, Wise MR, Stone PR, Chamley LW, Chen Q. Treating normal early gestation placentae with preeclamptic sera produces extracellular micro and nano vesicles that activate endothelial cells. J Reprod Immunol 2017; 120:34-41. [PMID: 28441551 DOI: 10.1016/j.jri.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/09/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Preeclampsia is characterised by systemic endothelial cell dysfunction thought to be triggered by toxic/dangerous factors from the placenta, including placental extracellular vesicles (EVs). Why placental EVs become toxic is unknown. We previously reported that preeclamptic sera produced toxic/dangerous placental macrovesicles but whether small EVs are also toxic/dangerous in preeclampsia is unknown. STUDY DESIGN First trimester placental explants were treated with 10% preeclamptic or control sera (n=10) for 24h. Micro- and nano-vesicles were harvested by sequential centrifugation. Micro- or nano-vesicles were also exposed to monolayers of endothelial cells in the presence or absence of nifedipine (50μg/ml) or labetalol (0.5μg/ml) which are well-known anti-hypertensives in clinical practices. MAIN OUTCOMES MEASURES The number and size of micro- and nano-vesicles were counted. Endothelial cell-surface intercellular adhesion molecule 1 (ICAM-1) and high mobility group box 1 (HMGB1) levels in micro- or nano-vesicles were measured by immunoassays. RESULTS Neither the amount nor size of both micro- and nano-vesicles was different after treating placental explants with preeclamptic or control sera. The levels of HMGB1 were significantly increased in both micro- and nano-vesicles from preeclamptic sera treated placental explants (p<0.03). Exposing endothelial cells to micro- or nano-vesicles from preeclamptic sera-treated placental explants induced endothelial activation, but it was reversed by co-incubation with nifedipine (p=0.004) or labetalol (p=0.002). CONCLUSION Our data demonstrate that preeclamptic sera produce toxic/dangerous micro- and nano-placental EVs which activated endothelial cells. This effect was reversed by antihypertensives. The increased levels of HMGB1 in EVs may contribute to endothelial cell activation.
Collapse
Affiliation(s)
- Xirong Xiao
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Fengyi Xiao
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Mingzhi Zhao
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Mancy Tong
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Michelle R Wise
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Peter R Stone
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Qi Chen
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand.
| |
Collapse
|
31
|
Fuchi N, Miura K, Doi H, Li TS, Masuzaki H. Feasibility of placenta-derived mesenchymal stem cells as a tool for studying pregnancy-related disorders. Sci Rep 2017; 7:46220. [PMID: 28401946 PMCID: PMC5388876 DOI: 10.1038/srep46220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
The cellular and molecular mechanisms responsible for pregnancy-related disorders remain unclear. We investigated the feasibility of using placenta-derived mesenchymal stem cells (MSCs) as a tool to study such pregnancy-related disorders. We isolated and expanded adequate numbers of cells with characteristic features of MSCs from the chorionic plate (CP-MSCs), chorionic villi (CV-MSCs), and decidua basalis (DB-MSCs) of human term placental tissues. All placenta-derived MSCs expressed pregnancy-associated C14MC microRNA (miRNA) (miR-323-3p). Interestingly, the placenta-specific C19MC miRNAs (miR-518b and miR517a) were clearly expressed in CP-MSCs and CV-MSCs of foetal origin, but were barely expressed in DB-MSCs of maternal origin. Furthermore, expression levels of placenta-specific C19MC miRNAs in CV-MSCs remained stable during the ex vivo expansion process and across different pregnancy phases (first trimester versus third trimester). High-efficiency siRNA transfection was confirmed in twice-passaged CV-MSCs with little toxicity, and microarray analysis was used to screen for miR-518b target genes. Placenta-derived MSCs, especially CV-MSCs, are a potential tool for investigating the role of placental miRNAs in pregnancy-related disorders.
Collapse
Affiliation(s)
- Naoki Fuchi
- Department of Obstetrics and Gynaecology, Nagasaki University Graduate School of Medicine, Nagasaki, Japan.,Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynaecology, Nagasaki University Graduate School of Medicine, Nagasaki, Japan
| | - Hanako Doi
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Hideaki Masuzaki
- Department of Obstetrics and Gynaecology, Nagasaki University Graduate School of Medicine, Nagasaki, Japan
| |
Collapse
|
32
|
Yin Y, Feng Y, Zhao H, Zhao Z, Yua H, Xu J, Che H. SIRT1 inhibits releases of HMGB1 and HSP70 from human umbilical vein endothelial cells caused by IL-6 and the serum from a preeclampsia patient and protects the cells from death. Biomed Pharmacother 2017; 88:449-458. [DOI: 10.1016/j.biopha.2017.01.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/04/2017] [Accepted: 01/14/2017] [Indexed: 12/29/2022] Open
|
33
|
Tong M, Chen Q, James JL, Stone PR, Chamley LW. Micro- and Nano-vesicles from First Trimester Human Placentae Carry Flt-1 and Levels Are Increased in Severe Preeclampsia. Front Endocrinol (Lausanne) 2017; 8:174. [PMID: 28790977 PMCID: PMC5522845 DOI: 10.3389/fendo.2017.00174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/OBJECTIVES Preeclampsia is a life-threatening hypertensive disease affecting 3-5% of pregnancies. While the pathogenesis of preeclampsia remains unclear, it is known that placenta-derived factors trigger the disease by activating maternal endothelial cells prior to the onset of clinical symptoms. Extracellular vesicles (EVs) of different sizes extruded by the placenta may be one factor. The truncated/secreted form of Flt-1 (sFlt-1) has also been implicated in the pathogenesis of preeclampsia. We investigated whether placental EV production is altered in preeclampsia such that they induce endothelial cell activation, and whether (s)Flt-1 is involved. METHODS Macro-, micro-, and nano-vesicles were collected from normal and preeclamptic (PE) placental explants, and separated by differential centrifugation. The number and size of micro- and nano-vesicles was measured by nanoparticle tracking analysis and their ability to activate endothelial cells was quantified by endothelial cell intercellular adhesion molecule 1 expression and monocyte adhesion. The levels of Flt-1 were measured by western blots and ELISA. RESULTS PE placentae extruded significantly more micro- and nano-vesicles than control placentae and the extruded micro-vesicles were larger than those from control placentae. Micro- and nano-vesicles from both first trimester and term human placentae carried Flt-1 and levels were significantly increased in EVs from severe, but not mild, PE compared to normotensive placentae. All fractions of EVs from PE placentae activated endothelial cells, and for micro- and nano-vesicles, activation was reduced in the presence of exogenous vascular endothelial growth factor (VEGF), a Flt-1 neutralizing antibody, or by pre-treatment with VEGF. While EV-bound VEGF constituted over 20% of the total detected VEGF secreted by PE and normotensive placentae, EV-bound Flt-1 did not significantly contribute to the total level of sFlt-1/Flt-1 released by human third trimester placentae. DISCUSSION Micro- and nano-vesicles extruded by human placentae carry Flt-1 across gestation and in severe preeclampsia, the levels of vesicle-bound Flt-1 are upregulated. All fractions of PE placental EVs activated endothelial cells and for micro- and nano-vesicles, this was in part due to the ability of EV-bound Flt-1 to sequester VEGF. That placental EVs can activate endothelial cells supports the contention that EVs are one placental toxin contributing to the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Mancy Tong
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
- *Correspondence: Mancy Tong,
| | - Qi Chen
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Joanna L. James
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Lawrence W. Chamley
- Department of Obstetrics and Gynaecology, School of Medicine, The University of Auckland, Auckland, New Zealand
| |
Collapse
|