1
|
Chen F, Li MG, Hua ZD, Ren HY, Gu H, Luo AF, Zhou CF, Zhu Z, Huang T, Bi YZ. TET Family Members Are Integral to Porcine Oocyte Maturation and Parthenogenetic Pre-Implantation Embryogenesis. Int J Mol Sci 2023; 24:12455. [PMID: 37569830 PMCID: PMC10419807 DOI: 10.3390/ijms241512455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
The ten-eleven translocation (TET) enzyme family, which includes TET1/2/3, participates in active DNA demethylation in the eukaryotic genome; moreover, TET1/2/3 are functionally redundant in mice embryos. However, the combined effect of TET1/2/3 triple-gene knockdown or knockout on the porcine oocytes or embryos is still unclear. In this study, using Bobcat339, a specific small-molecule inhibitor of the TET family, we explored the effects of TET enzymes on oocyte maturation and early embryogenesis in pigs. Our results revealed that Bobcat339 treatment blocked porcine oocyte maturation and triggered early apoptosis. Furthermore, in the Bobcat339-treated oocytes, spindle architecture and chromosome alignment were disrupted, probably due to the huge loss of 5-hydroxymethylcytosine (5hmC)and concurrent increase in 5-methylcytosine (5mC). After Bobcat339 treatment, early parthenogenetic embryos exhibited abnormal 5mC and 5hmC levels, which resulted in compromised cleavage and blastocyst rate. The mRNA levels of EIF1A and DPPA2 (ZGA marker genes) were significantly decreased, which may explain why the embryos were arrested at the 4-cell stage after Bobcat339 treatment. In addition, the mRNA levels of pluripotency-related genes OCT4 and NANOG were declined after Bobcat339 treatment. RNA sequencing analysis revealed differentially expressed genes in Bobcat339-treated embryos at the 4-cell stage, which were significantly enriched in cell proliferation, cell component related to mitochondrion, and cell adhesion molecule binding. Our results indicated that TET proteins are essential for porcine oocyte maturation and early embryogenesis, and they act by mediating 5mC/5hmC levels and gene transcription.
Collapse
Affiliation(s)
- Fan Chen
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Ming-Guo Li
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Zai-Dong Hua
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Hong-Yan Ren
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Hao Gu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - An-Feng Luo
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Chang-Fan Zhou
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Zhe Zhu
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, Shihezi 832061, China
| | - Yan-Zhen Bi
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (F.C.); (M.-G.L.); (Z.-D.H.); (H.-Y.R.); (H.G.); (A.-F.L.); (C.-F.Z.); (Z.Z.)
| |
Collapse
|
2
|
Han X, He H, Shao L, Cui S, Yu H, Zhang X, Wu Q. Deletion of Meg8-DMR Enhances Migration and Invasion of MLTC-1 Depending on the CTCF Binding Sites. Int J Mol Sci 2022; 23:ijms23158828. [PMID: 35955961 PMCID: PMC9369160 DOI: 10.3390/ijms23158828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The Dlk1-Dio3 imprinted domain on mouse chromosome 12 contains three well-characterized paternally methylated differentially methylated regions (DMRs): IG-DMR, Gtl2-DMR, and Dlk1-DMR. These DMRs control the expression of many genes involved in embryonic development, inherited diseases, and human cancer in this domain. The first maternal methylation DMR discovered in this domain was the Meg8-DMR, the targets and biological function of which are still unknown. Here, using an enhancer-blocking assay, we first dissected the functional parts of the Meg8-DMR and showed that its insulator activity is dependent on the CCCTC-binding factor (CTCF) in MLTC-1. Results from RNA-seq showed that the deletion of the Meg8-DMR and its compartment CTCF binding sites, but not GGCG repeats, lead to the downregulation of numerous genes on chromosome 12, in particular the drastically reduced expression of Dlk1 and Rtl1 in the Dlk1-Dio3 domain, while differentially expressed genes are enriched in the MAPK pathway. In vitro assays revealed that the deletion of the Meg8-DMR and CTCF binding sites enhances cell migration and invasion by decreasing Dlk1 and activating the Notch1-Rhoc-MAPK/ERK pathway. These findings enhance research into gene regulation in the Dlk1-Dio3 domain by indicating that the Meg8-DMR functions as a long-range regulatory element which is dependent on CTCF binding sites and affects multiple genes in this domain.
Collapse
Affiliation(s)
- Xiao Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hongjuan He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Lan Shao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Shuang Cui
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Haoran Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: ; Tel./Fax: +86-0451-86416944
| |
Collapse
|
3
|
Barberet J, Binquet C, Guilleman M, Doukani A, Choux C, Bruno C, Bourredjem A, Chapusot C, Bourc'his D, Duffourd Y, Fauque P. Do assisted reproductive technologies and in vitro embryo culture influence the epigenetic control of imprinted genes and transposable elements in children? Hum Reprod 2021; 36:479-492. [PMID: 33319250 DOI: 10.1093/humrep/deaa310] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Do assisted reproductive technologies (ART) and in vitro embryo culture influence the epigenetic control of imprinted genes (IGs) and transposable elements (TEs) in children? SUMMARY ANSWER Significant differences in the DNA methylation of IGs or transposon families were reported between ART and naturally conceived children, but there was no difference between culture media. WHAT IS KNOWN ALREADY There is concern that ART may play a role in increasing the incidence of adverse health outcomes in children, probably through epigenetic mechanisms. It is crucial to assess epigenetic control, especially following non-optimal in vitro culture conditions and to compare epigenetic analyses from ART-conceived and naturally conceived children. STUDY DESIGN, SIZE, DURATION This follow-up study was based on an earlier randomized study comparing in vitro fertilization outcomes following the use of two distinct culture media. We compared the epigenetic profiles of children from the initial randomized study according to the mode of conception [i.e. ART singletons compared with those of a cohort of naturally conceived singleton children (CTL)], the type of embryo culture medium used [global medium (LifeGlobal) and single step medium (Irvine Scientific)] and the mode of in vitro fertilization (i.e. IVF versus ICSI). PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 57 buccal smears were collected from 7- to 8-year-old children. The DNA methylation profiles of four differentially methylated regions (DMRs) of IGs (H19/IGF2: IG-DMR, KCNQ1OT1: TSS-DMR, SNURF: TSS-DMR, and PEG3: TSS-DMR) and two TEs (AluYa5 and LINE-1) were first assessed by pyrosequencing. We further explored IGs and TEs' methylation changes through methylation array (Human MethylationEPIC BeadChip referred as EPIC array, Illumina). MAIN RESULTS AND THE ROLE OF CHANCE Changes in the IGs' DNA methylation levels were found in ART children compared to controls. DNA methylation levels of H19/IGF2 DMR were significantly lower in ART children than in CTL children [52% versus 58%, P = 0.003, false discovery rate (FDR) P = 0.018] while a significantly higher methylation rate was observed for the PEG3 DMR (51% versus 48%, P = 0.007, FDR P = 0.021). However, no differences were found between the culture media. After observing these targeted modifications, analyses were performed at wider scale. Again, no differences were detected according to the culture media, but imprinted-related DMRs overlapping promoter region near the genes major for the development (MEG3, BLCAP, and DLX5) were detected between the ART and CTL children. LIMITATIONS, REASONS FOR CAUTION The sample size could seem relatively small, but the high consistency of our results was ensured by the homogeneity of the cohort from the initial randomized study, the standardized laboratory techniques and the robust statistical analyses accounting for multiple testing. WIDER IMPLICATIONS OF THE FINDINGS Although this study did not report DNA methylation differences depending on the culture medium, it sheds light on epigenetic changes that could be observed in some children conceived by ART as compared to CTL children. The clinical relevance of such differences remains largely unknown, and it is still unclear whether such changes are due to some specific ART procedures and/or to parental infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the Agence Nationale pour la Recherche ('CARE'-ANR JCJC 2017). The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER Not concerned.
Collapse
Affiliation(s)
- J Barberet
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - C Binquet
- CHU Dijon Bourgogne, Centre d'Investigation Clinique, module Epidémiologie Clinique/essais cliniques (CIC-EC), Dijon, France.,INSERM, CIC1432, module épidémiologie clinique, Dijon, France
| | - M Guilleman
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - A Doukani
- Faculté de Médecine Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
| | - C Choux
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Service de Gynécologie-Obstétrique, Dijon, France
| | - C Bruno
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| | - A Bourredjem
- CHU Dijon Bourgogne, Centre d'Investigation Clinique, module Epidémiologie Clinique/essais cliniques (CIC-EC), Dijon, France.,INSERM, CIC1432, module épidémiologie clinique, Dijon, France
| | - C Chapusot
- CHU Dijon Bourgogne, Plateforme de génétique des Cancers de bourgogne, Dijon, France
| | - D Bourc'his
- Institut Curie, PSL University, CNRS, INSERM, Paris, France
| | - Y Duffourd
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
| | - P Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| |
Collapse
|
4
|
Sellers ZP, Bolkun L, Kloczko J, Wojtaszewska ML, Lewandowski K, Moniuszko M, Ratajczak MZ, Schneider G. Increased methylation upstream of the MEG3 promotor is observed in acute myeloid leukemia patients with better overall survival. Clin Epigenetics 2019; 11:50. [PMID: 30876483 PMCID: PMC6419839 DOI: 10.1186/s13148-019-0643-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Background The delta-like non-canonical Notch ligand 1 (DLK1)-maternally expressed 3(MEG3) locus (DLK1-MEG3 locus) plays a critical role in the maintenance and differentiation of hematopoietic stem cells. Accumulating evidence implicates the imprinted genes from this locus, DLK1 and MEG3, in the development and progression of acute myeloid leukemia (AML). However, the contribution of this locus to the treatment response of patients and their survival is unknown. Methods DNA methylation of select CG dinucleotide-containing amplicons (CpG sites) within the DLK1-MEG3 locus and within differentially methylated regions of other imprinted loci was assessed in the mononuclear cells of 45 AML patients by combined bisulfite restriction analysis. Methylation results were compared with patient response to first-round induction therapy and overall survival. Multivariable analysis was employed to identify independent prognostic factors for patient overall survival in AML. Results Increased methylation at CpG sites within the MEG3 promotor region was observed in AML patients having longer overall survival. In addition, patients with shorter overall survival had increased expression of DLK1 and MEG3, and methylation at the MEG3-DMR CpG site inversely correlated with MEG3 expression. Multivariable analysis revealed that methylation at CG9, a non-imprinted CpG site within the MEG3 promotor region which contains a CCCTC-binding factor (CTCF)-binding DNA sequence, is an independent prognostic factor for the overall survival of AML patients. Conclusions The results of our pilot study underscore the importance of the DLK1-MEG3 locus in AML development and progression. We identify CG9 methylation as an independent prognostic factor for AML patient survival, which suggests that distinct miRNA signatures from the DLK1-MEG3 locus could reflect varying degrees of cell stemness and present novel opportunities for personalized therapies in the future. These data provide a foundation for future studies into the role of higher-order chromatin structure at DLK1-MEG3 in AML. Electronic supplementary material The online version of this article (10.1186/s13148-019-0643-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zachariah Payne Sellers
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Kloczko
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | | | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, University of Medical Sciences, Poznań, Poland
| | - Marcin Moniuszko
- Department of Allergology, Medical University of Bialystok, Bialystok, Poland.,Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA. .,Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
5
|
Analysis of the Paternally-Imprinted DLK1-MEG3 and IGF2-H19 Tandem Gene Loci in NT2 Embryonal Carcinoma Cells Identifies DLK1 as a Potential Therapeutic Target. Stem Cell Rev Rep 2019; 14:823-836. [PMID: 29980981 DOI: 10.1007/s12015-018-9838-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The paternally-imprinted genes insulin-like growth factor 2 (IGF2), H19, delta-like homologue 1 (DLK1), and maternally-expressed gene 3 (MEG3) are expressed from the tandem gene loci IGF2-H19 and DLK1-MEG3, which play crucial roles in initiating embryogenesis and development. The erasure of imprinting (EOI) at differentially methylated regions (DMRs) which regulate the expression of these genes maintains the developmental quiescence of primordial germ cells (PGCs) migrating through the embryo proper during embryogenesis and prevents them from forming teratomas. To address the potential involvement of the IGF2-H19 and DLK1-MEG3 loci in the pathogenesis of embryonal carcinoma (EC), we investigated their genomic imprinting at DMRs in the human PGC-derived EC cell line NTera-2 (NT2). We observed EOI at the IGF2-H19 locus and, somewhat to our surprise, a loss of imprinting (LOI) at the DLK1-MEG3 locus. As a result, NT2 cells express imprinted gene ratios from these loci such that there are i) low levels of the proliferation-promoting IGF2 relative to ii) high levels of the proliferation-inhibiting long noncoding RNA (lncRNA) H19 and iii) high levels of proliferation-promoting DLK1 relative to iv) low levels of the proliferation-inhibiting lncRNA MEG3. Consistent with this pattern of expression, the knockdown of DLK1 mRNA by shRNA resulted in decreased in vitro cell proliferation and in vivo tumor growth as well as decreased in vivo organ seeding by NT2 cells. Furthermore, treatment of NT2 cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-azaD) inhibited their proliferation. This inhibition was accompanied by changes in expression of both tandem gene sets: a decrease in the expression of DLK1 and upregulation of the proliferation-inhibiting lncRNA MEG3, and at the same time upregulation of IGF2 and downregulation of the lncRNA H19. These results suggest that the DLK1-MEG3 locus, and not the IGF2-H19 locus, drives the tumorigenicity of NT2 cells. Based on these results, we identified DLK1 as a novel treatment target for EC that could be downregulated by 5-azaD.
Collapse
|
6
|
Sellers ZP, Schneider G, Bujko K, Suszynska M, Pedziwiatr D. Do Cancer Cell Lines Have Fixed or Fluctuating Stem Cell Phenotypes? - Studies with the NTera2 Cell Line. Stem Cell Rev Rep 2018. [PMID: 28624968 DOI: 10.1007/s12015-017-9743-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the important questions when studying established cancer cell lines is whether such cells contain a subpopulation of primitive cancer stem cells that maintains the expansion of the cell line. To address this issue, we performed studies on the established human embryonal carcinoma cell line NTera2 by evaluating the potential stemness of cells sorted according to their expression of the cell surface stem cell markers CD133 and SSEA4. By performing in vitro and in vivo assays, we observed different properties of cells expressing both, one, or neither of these antigens. While sorted SSEA4+ subpopulations exhibited the greatest propensity for migration toward normal serum and the highest seeding efficiency in the lungs of immunodeficient mice, CD133-SSEA4- cells displayed high seeding efficiency to the bone marrow after injection in vivo. It is worth noting that these properties did not depend on the size of the evaluated cells. To address the question of whether cancer stem cell phenotypes in cell lines are fixed or fluctuating, we sorted single cells according to their expression of CD133 and SSEA4 antigens and observed that cells which did not express these cancer stem cell markers gave rise to cells that express these markers after expansion in vitro. Therefore, our results support the idea that within established cancer cell lines, the phenotype of the cell subpopulation expressing cancer stem cell markers is not fixed but fluctuates during cell line expansion, and cells negative for these markers may acquire their expression.
Collapse
Affiliation(s)
- Zachariah P Sellers
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Gabriela Schneider
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Kamila Bujko
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Malwina Suszynska
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Daniel Pedziwiatr
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
7
|
Mai Q, Mai X, Huang X, Zhang D, Huang K, Zhou C. Imprinting Status in Two Human Parthenogenetic Embryonic Stem Cell Lines: Analysis of 63 Imprinted Gene Expression Levels in Undifferentiated and Early Differentiated Stages. Stem Cells Dev 2018; 27:430-439. [PMID: 29402175 DOI: 10.1089/scd.2017.0247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human parthenogenetic embryonic stem cells (hPESCs) represent a source of histocompatible tissues for transplantation and carry two copies of the maternal genome, but lack the paternal genome. In this study, we selected 63 known human imprinted genes to investigate the imprinting status of hPESC. The expression level of these genes, including 27 maternally and 36 paternally imprinted were illustrated in hPESC and human embryonic stem cells (hESCs) derived from fertilized embryo lines. The expression activity changes of these genes were analyzed in undifferentiated and early differentiated hPESC lines. In addition, the methylation status of four differentially methylated regions (DMRs) of the imprinted genes was analyzed in undifferentiated and early differentiated hPESC and hESC lines. As a result, we found that all the maternally imprinted genes were expressed at similar levels in the undifferentiated hPESC lines and the hESC lines, except ZNF264 and ATP10A. Twenty-one analyzed paternal imprinted genes were expressed at the same level in two separated hPESC lines as well as compared with the hESC lines, whereas 15 other paternal imprinted genes were significantly downregulated or inactivated in hPESC lines as compared with the hESC line. During prolonged passage, the expression levels of the majority of imprinted genes remained stable in two hPESC lines. The four DMRs, including PEG3/ZIM2 (DMRs), SNURF/SNRPN DMRs, and KVDMR1 DMRs are highly methylated in the genes of two undifferentiated hPESCs and its embryonic bodies (EBs), whereas the genes of the undifferentiated hESCs and its EBs are half methylated. During the early differentiation stage, the imprinted genes showed the same expression trend and the expression levels of H19, IGF2, SLC22A2, SLC22A3/SLC22A18, and CPA4 were significantly upregulated in both hPESC lines. As conclusion, hPESCs show a substantial degree of epigenetic stability with respect to some imprinted genes.
Collapse
Affiliation(s)
- Qingyun Mai
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Xiuyun Mai
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China .,2 Reproductive Medical Center , Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xin Huang
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Dan Zhang
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Kejun Huang
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | - Canquan Zhou
- 1 Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
8
|
Wang D, Liu Z, Yao H, Hao Y, Zhou L, Du J, Zhu Y, Xu Y, Wang G, Song Y, Li Z. Disruption of NNAT, NAP1L5 and MKRN3 DNA methylation and transcription in rabbit parthenogenetic fetuses. Gene 2017; 626:158-162. [PMID: 28526651 DOI: 10.1016/j.gene.2017.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Parthenogenetically activated oocytes cannot develop to term in mammals due to lack of paternal gene expression. Disruption of imprinted gene expression and DNA methylation status in parthenogenetic fetuses has been reported in mice and pigs, but not in rabbits. In this study, the genomic imprinting status of the paternally expressed genes Neuronatin (NNAT), Nucleosome assembly protein 1-like 5 (NAP1L5), and Makorin ring finger protein 3 (MKRN3) was compared between rabbit parthenogenetic (PA) and normally fertilized fetuses (Con) using quantitative real-time PCR (qRT-PCR) and bisulfite sequencing PCR (BSP). The results revealed a significantly reduced expression of NNAT, NAP1L5, and MKRN3 in rabbit PA fetuses compared with Con fetuses (p<0.05). In addition, the BSP results demonstrated hypermethylation in the differentially methylated regions (DMRs) of NNAT, NAP1L5, and MKRN3 in rabbit PA fetuses. Taken together, these results suggest that hypermethylation of DMRs is associated with decreased NNAT, NAP1L5, and MKRN3 expression, which may be responsible for developmental failure of rabbit PA fetuses.
Collapse
Affiliation(s)
- Dongxu Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhiquan Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Haobin Yao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yang Hao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Lina Zhou
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Jian Du
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yixin Zhu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yuxin Xu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Guodong Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yuning Song
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
9
|
QIU X, LI N, XIAO X, LI Y. Aggregation of a parthenogenetic diploid embryo and a male embryo improves the blastocyst development and parthenogenetic embryonic stem cell derivation. Turk J Biol 2017. [DOI: 10.3906/biy-1612-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
10
|
Saito T, Hara S, Tamano M, Asahara H, Takada S. Deletion of conserved sequences in IG-DMR at Dlk1-Gtl2 locus suggests their involvement in expression of paternally expressed genes in mice. J Reprod Dev 2016; 63:101-109. [PMID: 27904015 PMCID: PMC5320436 DOI: 10.1262/jrd.2016-135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression regulation of the Dlk1-Dio3 imprinted domain by the intergenic differentially methylated region (IG-DMR) is essential for normal embryonic development in mammals. In this study, we investigated conserved IG-DMR genomic sequences in eutherians to elucidate their role in genomic imprinting of the Dlk1-Dio3 domain. Using a comparative genomics approach, we identified three highly conserved sequences in IG-DMR. To elucidate the functions of these sequences in vivo, we generated mutant mice lacking each of the identified highly conserved sequences using the CRISPR/Cas9 system. Although mutant mice did not exhibit the gross phenotype, deletions of the conserved sequences altered the expression levels of paternally expressed imprinted genes in the mutant embryos without skewing imprinting status. These results suggest that the conserved sequences in IG-DMR are involved in the expression regulation of some of the imprinted genes in the Dlk1-Dio3 domain.
Collapse
Affiliation(s)
- Takeshi Saito
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | | | | | | | | |
Collapse
|
11
|
Bai GY, Song SH, Wang ZD, Shan ZY, Sun RZ, Liu CJ, Wu YS, Li T, Lei L. Embryos aggregation improves development and imprinting gene expression in mouse parthenogenesis. Dev Growth Differ 2016; 58:270-9. [PMID: 26991405 DOI: 10.1111/dgd.12271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 12/25/2022]
Abstract
Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4-cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4-cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post-implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP-a4 PgESCs which derived from GFP-4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5-day fetus totally derived from GFP-a4 PgESCs with germline contribution by 8-cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4 PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study.
Collapse
Affiliation(s)
- Guang-Yu Bai
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Si-Hang Song
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Zhen-Dong Wang
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Zhi-Yan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Rui-Zhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Chun-Jia Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Yan-Shuang Wu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Tong Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
12
|
Chen YH, Yu J. Epigenetic disruptions of histone signatures for the trophectoderm and inner cell mass in mouse parthenogenetic embryos. Stem Cells Dev 2014; 24:550-64. [PMID: 25315067 DOI: 10.1089/scd.2014.0310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epigenetic asymmetry has been shown to be associated with the first lineage allocation event in preimplantation development, that is, the formation of the trophectoderm (TE) and inner cell mass (ICM) lineages in the blastocyst. Since parthenogenesis causes aberrant segregation between the TE and ICM lineages, we examined several development-associated histone modifications in parthenotes, including those involved in (i) transcriptional activation [acetylated histone H3 lysine 9 (H3K9Ac) and lysine 14 (H3K14Ac), trimethylated histone H3 lysine 4 (H3K4Me3), and dimethylated histone H3 arginine 26 (H3R26Me2)] and (ii) transcriptional repression [trimethylated histone H3 lysine 9 (H3K9Me3) and lysine 27 (H3K27Me3), and mono-ubiquitinated histone H2A lysine 119 (H2AK119u1)]. Here, we report that in parthenotes, H3R26Me2 expression decreased from the morula stage, while expression patterns and levels of H3K9Ac, H3K27Me3, and H2AK119u1 were unchanged until the blastocyst stage; whereas H3K14Ac, H3K4Me3, and H3K9Me3 showed normal patterns and levels of expressions. Relative to the decrease of H3K9Ac in the ICM and increase in the TE of parthenotes, we detected reduced expression of TAT-interactive protein 60 acetyltransferase and histone deacetylase 1 deacetylase in the ICM and TE of parthenotes, respectively. Relative to the decrease of H3R26Me2, we also observed decreased expression of coactivator-associated arginine methyltransferase 1 methyltransferase and increased expression of the Wnt effector transcription factor 7L2 and miR-181c microRNA in parthenotes. Furthermore, relative to the decrease in H3K27Me3 and H2AK119u1, we found increased phosphorylation of Akt1 and enhancer of zeste homolog 2 in parthenogenetic TE. Therefore, our findings that histone signatures are impaired in parthenotes provide a mechanistic explanation for aberrant lineage segregation and TE defects.
Collapse
Affiliation(s)
- Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Taipei, Taiwan
| | | |
Collapse
|
13
|
Wei Y, Su J, Liu H, Lv J, Wang F, Yan H, Wen Y, Liu H, Wu Q, Zhang Y. MetaImprint: an information repository of mammalian imprinted genes. Development 2014; 141:2516-23. [DOI: 10.1242/dev.105320] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic imprinting is a complex genetic and epigenetic phenomenon that plays important roles in mammalian development and diseases. Mammalian imprinted genes have been identified widely by experimental strategies or predicted using computational methods. Systematic information for these genes would be necessary for the identification of novel imprinted genes and the analysis of their regulatory mechanisms and functions. Here, a well-designed information repository, MetaImprint (http://bioinfo.hrbmu.edu.cn/MetaImprint), is presented, which focuses on the collection of information concerning mammalian imprinted genes. The current version of MetaImprint incorporates 539 imprinted genes, including 255 experimentally confirmed genes, and their detailed research courses from eight mammalian species. MetaImprint also hosts genome-wide genetic and epigenetic information of imprinted genes, including imprinting control regions, single nucleotide polymorphisms, non-coding RNAs, DNA methylation and histone modifications. Information related to human diseases and functional annotation was also integrated into MetaImprint. To facilitate data extraction, MetaImprint supports multiple search options, such as by gene ID and disease name. Moreover, a configurable Imprinted Gene Browser was developed to visualize the information on imprinted genes in a genomic context. In addition, an Epigenetic Changes Analysis Tool is provided for online analysis of DNA methylation and histone modification differences of imprinted genes among multiple tissues and cell types. MetaImprint provides a comprehensive information repository of imprinted genes, allowing researchers to investigate systematically the genetic and epigenetic regulatory mechanisms of imprinted genes and their functions in development and diseases.
Collapse
Affiliation(s)
- Yanjun Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jianzhong Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongbo Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Lv
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Fang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Haidan Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yanhua Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hui Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
14
|
Uniparental embryos in the study of genomic imprinting. Methods Mol Biol 2012; 925:3-19. [PMID: 22907487 DOI: 10.1007/978-1-62703-011-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Nuclear transplantation has been used to study genomic imprinting. Available nuclear transfer methods include pronuclear transfer (PNT), intracytoplasmic sperm injection, and round spermatid injection. By generating uniparental embryos that have exclusively paternal or maternal genomes, it is possible to study the functions of the parental genomes separately. It is possible to compare functions in haploid and diploid states. In addition, nuclear transfer allows the effects of the ooplasm, including mitochondria, to be distinguished from effects of the maternally inherited chromosomes. PNTs can also be used to study epigenetic modifications of the parental genomes by the ooplasm. This chapter reviews the methods employed to generate uniparental embryonic constructs for these purposes.
Collapse
|
15
|
Kawahara M, Kono T. Roles of genes regulated by two paternally methylated imprinted regions on chromosomes 7 and 12 in mouse ontogeny. J Reprod Dev 2012; 58:175-9. [PMID: 22738900 DOI: 10.1262/jrd.2011-053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the longevity of mice produced without sperm using the genomes of oocytes that are already committed to a germline cell lineage. The first sperm-free mouse "KAGUYA", which we term 'bi-maternal mouse', was born on 3 February, 2003. Bi-maternal embryos were generated using 2 sets of female genomes--one derived from fully grown oocytes from normal adults and the other from non-growing oocytes from newborn pups. These genomes were combined by nuclear transfer. We refined the technique for generating bi-maternal mice and found that genetic manipulations in only 2 regions--the imprinting centres of Igf2-H19 and Dlk1-Gtl2--on chromosomes 7 and 12 of the newborn pups allowed us to generate bi-maternal mice at a high rate. Studying bi-maternal conceptuses and mice provides further insight into the mechanisms by which paternally methylated imprinted genes regulate mammalian ontogenesis.
Collapse
Affiliation(s)
- Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
| | | |
Collapse
|
16
|
Singh P, Lee DH, Szabó PE. More than insulator: multiple roles of CTCF at the H19-Igf2 imprinted domain. Front Genet 2012; 3:214. [PMID: 23087708 PMCID: PMC3471092 DOI: 10.3389/fgene.2012.00214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/27/2012] [Indexed: 12/28/2022] Open
Abstract
CTCF (CCCTC-binding factor)-mediated insulation at the H19-Insulin-like growth factor 2 (Igf2) imprinted domain is a classic example for imprinted gene regulation. DNA methylation difference in the imprinting control region (ICR) is inherited from the gametes and subsequently determines parental allele-specific enhancer blocking and imprinted expression in the soma. Recent genetic studies showed that proper monoallelic enhancer blocking at the H19-Igf2 ICR is critical for development. Strict biallelic insulation at this locus causes perinatal lethality, whereas leaky biallelic insulation results in smaller size but no lethality. Apart from enhancer blocking, CTCF is also the master organizer of chromatin composition in the maternal allele along this imprinted domain, affecting not only histone tail covalent modifications but also those in the histone core. Additionally, CTCF binding in the soma protects the maternal allele from de novo DNA methylation. CTCF binding is not involved in the establishment of the gametic marks at the ICR, but it slightly delays de novo methylation in the maternally inherited ICR allele in prospermatogonia. This review focuses on the developmental and epigenetic consequences of CTCF binding at the H19-Igf2 ICR.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Molecular and Cellular Biology, Beckman Research Institute Duarte, CA, USA
| | | | | |
Collapse
|
17
|
Saferali A, Moussette S, Chan D, Trasler J, Chen T, Rozen R, Naumova AK. DNA methyltransferase 1 (Dnmt1) mutation affects Snrpn imprinting in the mouse male germ line. Genome 2012; 55:673-82. [PMID: 22967183 DOI: 10.1139/g2012-056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation and DNA methyltransferases are essential for spermatogenesis. Mutations in the DNA methyltransferase Dnmt1 gene exert a paternal effect on epigenetic states and phenotypes of offspring, suggesting that DNMT1 is important for the epigenetic remodeling of the genome that takes place during spermatogenesis. However, the specific role of DNMT1 in spermatogenesis and the establishment of genomic imprints in the male germ line remains elusive. To further characterize the effect of DNMT1 deficiency on the resetting of methylation imprints during spermatogenesis, we analyzed the methylation profiles of imprinted regions in the spermatozoa of mice that were heterozygous for a Dnmt1 loss-of-function mutation. The mutation did not affect the H19 or IG differentially methylated regions (DMRs) that are usually highly methylated but led to a partial hypermethylation of the Snrpn DMR, a region that should normally be unmethylated in mature spermatozoa. This defect does not appear in mouse models with mutations in Dnmt3a and Mthfr genes and, therefore, it is specific for the Dnmt1 gene and is suggestive of a role of DNMT1 in imprint resetting or maintenance in the male germ line.
Collapse
Affiliation(s)
- Aabida Saferali
- Department of Human Genetics, McGill University, Montréal, QC H3A 1B1, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Ratajczak MZ, Shin DM, Liu R, Mierzejewska K, Ratajczak J, Kucia M, Zuba-Surma EK. Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation--an update and comparison to other primitive small stem cells isolated from adult tissues. Aging (Albany NY) 2012; 4:235-46. [PMID: 22498452 PMCID: PMC3371759 DOI: 10.18632/aging.100449] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are a population of developmentally early stem cells residing in adult tissues. These rare cells, which are slightly smaller than red blood cells, i) become mobilized during stress situations into peripheral blood, ii) are enriched in the Sca1+Lin−CD45− cell fraction in mice and the CD133+ Lin−CD45− cell fraction in humans, iii) express markers of pluripotent stem cells (e.g., Oct4, Nanog, and SSEA), and iv) display a distinct morphology characterized by a high nuclear/cytoplasmic ratio and undifferentiated chromatin. Recent evidence indicates that murine VSELs are kept quiescent in adult tissues and protected from teratoma formation by epigenetic modification of imprinted genes that regulate insulin/insulin like growth factor signaling (IIS). The successful reversal of these epigenetic changes in VSELs that render them quiescent will be crucial for efficient expansion of these cells. The most recent data in vivo from our and other laboratories demonstrated that both murine and human VSELs exhibit some characteristics of long-term repopulating hematopoietic stem cells (LT-HSCs), are at the top of the hierarchy in the mesenchymal lineage, and may differentiate into organ-specific cells (e.g., cardiomyocytes). Moreover, as recently demonstrated the number of these cells positively correlates in several murine models with longevity. Finally, while murine BM-derived VSELs have been extensively characterized more work is needed to better characterize these small cells at the molecular level in humans.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KT, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Han Z, He H, Zhang F, Huang Z, Liu Z, Jiang H, Wu Q. Spatiotemporal expression pattern of Mirg, an imprinted non-coding gene, during mouse embryogenesis. J Mol Histol 2011; 43:1-8. [PMID: 22033866 DOI: 10.1007/s10735-011-9367-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/16/2011] [Indexed: 12/11/2022]
Abstract
Recent research has revealed that the maternal non-coding RNA genes (Gtl2, Rian and Mirg) from the Dlk1-Dio3 imprinted cluster are closely related to the full development potential of the induced pluripotent stem cells (iPSCs). Transcriptional silencing of these genes failed to generate all-iPSC mice, indicating their significant contribution to embryogenesis. However, except for Gtl2, little information regarding these genes has been acquired in this cluster. In the present study, we analyzed the spatiotemporal expression patterns of Mirg during mouse embryogenesis. Using in situ hybridization and quantitative PCR, we demonstrated that Mirg non-coding RNA exhibited sustained expression throughout mouse embryogenesis from E8.5 to E18.5. Strong expression was detected in the central nervous system (E9.5-E15.5) and various skeletal muscles (E13.5 and E15.5), and the subcellular localization appeared to be in the nuclei. The pituitary and adrenal gland also showed high expression of Mirg, but, unlike the skeletal muscles and the neural circuitry, the signals were not concentrated in the nuclei. In the major internal organs, Mirg maintained low expression during embryogenesis (E12.5-E18.5) whereas in the liver and the developing lung, Mirg was expressed with a gradually decreasing trend and a gradually raising trend, respectively. These findings indicate that temporal regulation of Mirg expression may be required during specific stages and in specific tissues during embryonic development.
Collapse
Affiliation(s)
- Zhengbin Han
- Department of Life Science and Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No.92 West Da-zhi Street, Harbin, Heilongjiang, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Ragina NP, Schlosser K, Knott JG, Senagore PK, Swiatek PJ, Chang EA, Fakhouri WD, Schutte BC, Kiupel M, Cibelli JB. Downregulation of H19 improves the differentiation potential of mouse parthenogenetic embryonic stem cells. Stem Cells Dev 2011; 21:1134-44. [PMID: 21793658 DOI: 10.1089/scd.2011.0152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Parthenogenetic embryonic stem cells (P-ESCs) offer an alternative source of pluripotent cells, which hold great promise for autologous transplantation and regenerative medicine. P-ESCs have been successfully derived from blastocysts of several mammalian species. However, compared with biparental embryonic stem cells (B-ESCs), P-ESCs are limited in their ability to fully differentiate into all 3 germ layers. For example, it has been observed that there is a differentiation bias toward ectoderm derivatives at the expense of endoderm and mesoderm derivatives-muscle in particular-in chimeric embryos, teratomas, and embryoid bodies. In the present study we found that H19 expression was highly upregulated in P-ESCs with more than 6-fold overexpression compared with B-ESCs. Thus, we hypothesized that manipulation of the H19 gene in P-ESCs would alleviate their limitations and allow them to function like B-ESCs. To test this hypothesis we employed a small hairpin RNA approach to reduce the amount of H19 transcripts in mouse P-ESCs. We found that downregulation of H19 led to an increase of mesoderm-derived muscle and endoderm in P-ESCs teratomas similar to that observed in B-ESCs teratomas. This phenomenon coincided with upregulation of mesoderm-specific genes such as Myf5, Myf6, and MyoD. Moreover, H19 downregulated P-ESCs differentiated into a higher percentage of beating cardiomyocytes compared with control P-ESCs. Collectively, these results suggest that P-ESCs are amenable to molecular modifications that bring them functionally closer to true ESCs.
Collapse
Affiliation(s)
- Neli P Ragina
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Naturil-Alfonso C, Saenz-de-Juano MD, Peñaranda DS, Vicente JS, Marco-Jiménez F. Parthenogenic blastocysts cultured under in vivo conditions exhibit proliferation and differentiation expression genes similar to those of normal embryos. Anim Reprod Sci 2011; 127:222-8. [PMID: 21890291 DOI: 10.1016/j.anireprosci.2011.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 12/16/2022]
Abstract
Parthenote embryos offer multiple possibilities in biotechnological investigation, such as stem cell research. However, there is still a dearth of knowledge of this kind of embryo. In this study, development and ploidy were analysed in parthenotes under in vitro and in vivo culture conditions. Subsequently, using real-time PCR, the expressions of factor OCT-4, Vascular Endothelial Growth Factor, Epidermal Growth Factor Receptor 3 and Transforming Growth Factor β2 genes were analysed to compare the embryo types at the blastocyst stage. Development and implantation of parthenote embryos were described after transfer at day 10 of pregnancy. Parthenotes showed similar blastocyst development for both culture conditions and most of the parthenotes produced were diploid. However, parthenotes developed under in vivo conditions showed similar mRNA expression of OCT-4, VEGF and TGF-β2 to 5 and 6 day old blastocysts. In contrast, parthenotes developed under in vitro conditions had altered the expression pattern of these genes, except for erbB3 mRNA. Finally, transferred parthenotes had the ability to implant but showed severe growth retardation and lesser size. This is the first demonstration of the influence of culture conditions on parthenote mRNA expression. Our study highlights the importance of culture conditions in subsequent uses of parthenotes, such as the production of stem cell lines.
Collapse
Affiliation(s)
- C Naturil-Alfonso
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Valencia 46022, Spain
| | | | | | | | | |
Collapse
|
22
|
Nowak K, Stein G, Powell E, He LM, Naik S, Morris J, Marlow S, Davis TL. Establishment of paternal allele-specific DNA methylation at the imprinted mouse Gtl2 locus. Epigenetics 2011; 6:1012-20. [PMID: 21725202 DOI: 10.4161/epi.6.8.16075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.
Collapse
Affiliation(s)
- Kamila Nowak
- Department of Biology, Bryn Mawr College; Bryn Mawr, PA USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ontological hypothesis of the cancer etiology: discord between cells' survival determinism and their disposition to biological altruism. Med Hypotheses 2011; 77:389-400. [PMID: 21684694 DOI: 10.1016/j.mehy.2011.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/28/2011] [Accepted: 05/25/2011] [Indexed: 11/23/2022]
Abstract
During the last decades, scientific community has implicitly viewed cancer as a number of different diseases with the same underlying phenotype. Such a view was justified for the fact that some of the genetic and phenotypic similarities, observed in different types of tumors, were perpetuated via some distinct mechanisms. Nevertheless, this manuscript aims to interpret all of these differences in a context of the same underlying cause. To do so, the epigenetic and genetic alterations observed in cancers are initially interpreted in the context of their advantage for the evolution of the early eukaryotic organisms. Subsequently, the proposed premises are further discussed with respect to their propagation in the subsequent generations of the new eukaryotic species, as well as their role in the development of the higher organisms. In the subsequent section, the role of the proposed mechanism is discussed in the context of cancer, which is proposed to originate due to the analogous underlying mechanisms. Finally, the proposed mechanism is briefly discussed in parallel with some other contemporary theories of carcinogenesis, aiming to further support its validity. Thereby, the model presents an alternative interpretation of multiple cancer-related biomedical phenomena from the aspect of a proposed evolutionary mechanism.
Collapse
|
24
|
Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MRW, Bérubé NG. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Epigenomics 2010; 2:743-63. [PMID: 20159591 DOI: 10.2217/epi.10.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human developmental disorders caused by chromatin dysfunction often display overlapping clinical manifestations, such as cognitive deficits, but the underlying molecular links are poorly defined. Here, we show that ATRX, MeCP2, and cohesin, chromatin regulators implicated in ATR-X, RTT, and CdLS syndromes, respectively, interact in the brain and colocalize at the H19 imprinting control region (ICR) with preferential binding on the maternal allele. Importantly, we show that ATRX loss of function alters enrichment of cohesin, CTCF, and histone modifications at the H19 ICR, without affecting DNA methylation on the paternal allele. ATRX also affects cohesin, CTCF, and MeCP2 occupancy within the Gtl2/Dlk1 imprinted domain. Finally, we show that loss of ATRX interferes with the postnatal silencing of the maternal H19 gene along with a larger network of imprinted genes. We propose that ATRX, cohesin, and MeCP2 cooperate to silence a subset of imprinted genes in the postnatal mouse brain.
Collapse
Affiliation(s)
- Kristin D Kernohan
- Department of Paediatrics, 800 Commissioners Road East, London, ON N6C 2V5, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 2010; 139:287-301. [PMID: 19759174 DOI: 10.1530/rep-09-0281] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Haploid male germ cells package their DNA into a volume that is typically 10% or less that of a somatic cell nucleus. To achieve this remarkable level of compaction, spermatozoa replace most of their histones with smaller, highly basic arginine and (in eutherians) cysteine rich protamines. One reason for such a high level of compaction is that it may help optimise nuclear shape and hence support the gametes' swimming ability for the long journey across the female reproductive tract to the oocyte. Super-compaction of the genome may confer additional protection from the effects of genotoxic factors. However, many species including the human retain a fraction of their chromatin in the more relaxed nucleosomal configuration that appears to run counter to the ergonomic, toroidal and repackaging of sperm DNA. Recent research suggests that the composition of this 'residual' nucleosomal compartment, a generally overlooked feature of the male gamete, is far more significant and important than previously thought. In this respect, the transport and incorporation of modified paternal histones by the spermatozoon to the zygote has been demonstrated and indicates another potential paternal effect in the epigenetic reprogramming of the zygote following fertilisation that is independent of imprinting status. In this review, the most recent research into mammalian spermatozoal chromatin composition is discussed alongside evidence for conserved, non-randomly located nucleosomal domains in spermatozoal nuclei, all supporting the hypothesis that the spermatozoon delivers a novel epigenetic signature to the egg that may be crucial for normal development. We also provide some thoughts on why this signature may be required in early embryogenesis.
Collapse
Affiliation(s)
- David Miller
- Division of Reproduction and Early Development, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
26
|
Gao M, Liu Q, Zhang F, Han Z, Gu T, Tian W, Chen Y, Wu Q. Conserved expression of the PRELI domain containing 2 gene (Prelid2) during mid-later-gestation mouse embryogenesis. J Mol Histol 2009; 40:227-33. [PMID: 19847657 DOI: 10.1007/s10735-009-9234-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 10/06/2009] [Indexed: 11/29/2022]
Abstract
Prelid2, which belongs to the PRELI domain containing family, is identified as a conserved evolution gene. The expression and regulation during embryonic development of the prelid2 gene is unknown. In this study, we investigated the prelid2 gene expression and regulation using mouse embryos model, by in situ hybridization analysis, RT-PCR and bisulfite sequencing. In situ hybridization analysis showed that prelid2 gene expression were found in midbrain, spinal cord, optic eminence, otic vesicle and tail at E9.5 and E10.5 embryos, in forebrain, hindbrain, heart, lung, liver and kidney at E13.5 and E15.5 embryos. Real-time quantitative RT-PCR results verified the expression pattern in the four major mouse organs, brain, heart, lung, and liver during organs differentiation and formation. Bisulfite sequencing illustrated the consistent result of expression and its unmethylation status in the genomic promoter region at E12.5, E18.5, and new born. Thus, the prelid2 gene is a widely-spread, persistently expressed and unmethylated gene in mouse embryonic development. Our results suggest that the PRELI domain containing 2 gene is involved in mouse embryonic development.
Collapse
Affiliation(s)
- Mengya Gao
- Department of Life Science and Engineering, Harbin Institute of Technology, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen Z, Liu Z, Huang J, Amano T, Li C, Cao S, Wu C, Liu B, Zhou L, Carter MG, Keefe DL, Yang X, Liu L. Birth of Parthenote Mice Directly from Parthenogenetic Embryonic Stem Cells. Stem Cells 2009; 27:2136-45. [DOI: 10.1002/stem.158] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Abstract
A reliable nuclear transfer method was first reported in 1983; it provided definite evidence that parthenogenetic embryos are lethal at early postimplantation in mammals. Subsequently, nuclear transfer has been extensively used as an important and versatile tool for investigating embryo and somatic-cell cloning and nucleo-cytoplasmic interactions. Further development of this technique has enabled the generation of bimaternal embryos containing two haploid sets of maternal genomes from female germ cells of different origins. By using a 2-d nuclear transfer system for oocyte reconstruction, viable mice can be produced solely from maternal genomes, without the participation of the paternal genome. This oocyte reconstruction system, as described in this protocol, could provide valuable guidelines for exploring the potential endowments of gametes and for conferring novel properties to them.
Collapse
|
29
|
|
30
|
Dinger TC, Eckardt S, Choi SW, Camarero G, Kurosaka S, Hornich V, McLaughlin KJ, Müller AM. Androgenetic embryonic stem cells form neural progenitor cells in vivo and in vitro. Stem Cells 2008; 26:1474-83. [PMID: 18369101 DOI: 10.1634/stemcells.2007-0877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Uniparental zygotes with two paternal (androgenetic [AG]) or two maternal (gynogenetic [GG]; parthenogenetic [PG]) genomes are not able to develop into viable offspring but can form blastocysts from which embryonic stem cells (ESCs) can be derived. Although some aspects of the in vitro and in vivo differentiation potential of PG and GG ESCs of several species have been studied, the developmental capacity of AG ESCs is much less clear. Here, we investigate the potential of murine AG ESCs to undergo neural differentiation. We observed that AG ESCs differentiate in vitro into pan-neural progenitor cells (pnPCs) that further give rise to cells that express neuronal- and astroglial-specific markers. Neural progeny of in vitro-differentiated AG ESCs exhibited fidelity of expression of six imprinted genes analyzed, with the exception of Ube3a. Bisulfite sequencing for two imprinting control regions suggested that pnPCs predominantly maintained their methylation pattern. Following blastocyst injection of AG and biparental (normal fertilized [N]) ESCs, we found widespread and evenly distributed contribution of ESC-derived cells in both AG and N chimeric early fetal brains. AG and N ESC-derived cells isolated from chimeric fetal brains by fluorescence-activated cell sorting exhibited similar neurosphere-initiating cell frequencies and neural multilineage differentiation potential. Our results indicate that AG ESC-derived neural progenitor/stem cells do not differ from N neural progenitor/stem cells in their self-renewal and neural multilineage differentiation potential. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Timo C Dinger
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Versbacher Strasse 5, 97078 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Schulz R, Woodfine K, Menheniott TR, Bourc'his D, Bestor T, Oakey RJ. WAMIDEX: a web atlas of murine genomic imprinting and differential expression. Epigenetics 2008; 3:89-96. [PMID: 18398312 DOI: 10.4161/epi.3.2.5900] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mouse is an established model organism for the study of genomic imprinting. Mice with genetic material originating from only one parent (e.g., mice with uniparental chromosomal duplications) or gene mutations leading to epigenetic deficiencies have proven to be particularly useful tools. In the process of our studies we have accumulated a large set of expression microarray measurements in samples derived from these types of mice. Here, we present the collation of these and third-party microarray data that are relevant to genomic imprinting into a Web Atlas of Murine genomic Imprinting and Differential EXpression (WAMIDEX: https://atlas.genetics.kcl.ac.uk). WAMIDEX integrates the most comprehensive literature-derived catalog of murine imprinted genes to date with a genome browser that makes the microarray data immediately accessible in annotation-rich genomic context. In addition, WAMIDEX exemplifies the use of the self-organizing map method for the discovery of novel imprinted genes from microarray data. The parent-of-origin-specific expression of imprinted genes is frequently limited to specific tissues or developmental stages, a fact that the atlas reflects in its design and data content.
Collapse
Affiliation(s)
- Reiner Schulz
- Department of Medical & Molecular Genetics, School of Medicine at Guy's, King's College & St Thomas' Hospitals, King's College London, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
32
|
Wu Q, Kawahara M, Kono T. Synergistic role of Igf2 and Dlk1 in fetal liver development and hematopoiesis in bi-maternal mice. J Reprod Dev 2008; 54:177-82. [PMID: 18344616 DOI: 10.1262/jrd.19146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse bi-maternal embryos (BMEs) that contain two haploid sets of genomes from non-growing (ng) and fully-grown (fg) oocytes develop to embryonic day (E) 13.5. However, the ng/fg BMEs never develop beyond E13.5 because of repression of the paternally expressed imprinted genes, Igf2 and Dlk1. The present study was conducted to address the issue of whether fetal hematopoietic disorder is involved in the restricted development of BMEs. FACS analysis revealed that the livers of ng(wt)/fg BMEs contained increased numbers of immature c-kit(+)/ter119(-) hematopoietic cells, were while the numbers of mature c-kit(-)/ter119(+) hematopoietic cells were decreased. This finding was supported by histological observations. Quantitative gene expression analysis revealed that Igf2 and Dlk1 expression was repressed in the liver. To understand the role of paternally-methylated imprinted genes on chromosomes 7 and 12, particularly Igf2 and Dlk1, in fetal liver hematopoiesis, we constructed ng(Deltach7)/fg, ng(Deltach12)/fg and ng(DeltaDouble)/fg BMEs using ng oocytes harboring deletion of differentially methylated regions at distal chromosomes 7 and/or 12. The ng(Deltach7)/fg, ng(Deltach12)/fg and ng(DeltaDouble)/fg BMEs, respectively, express Igf2, Dlk1 and both, and these embryos developed to term with specific phenotypes; the ng(Deltach7)/fg and ng(Deltach12)/fg BMEs develop to term with severe growth retardation, and the ng(DeltaDouble)/fg BMEs can survive to become normal female adults. By inducing Igf2 and Dlk1 expression, the proportions of mature and immature hematopoietic cells in the livers of the ng(Deltach7)/fg, ng(Deltach12)/fg and ng(DeltaDouble)/fg BMEs were considerably restored, and particularly in the ng(DeltaDouble)/fg BMEs, hematopoiesis occurred normally with appropriate expressions of the related genes. These data suggest that inappropriate expression of Igf2 and Dlk1 is involved in impaired fetal hematopoiesis.
Collapse
Affiliation(s)
- Qiong Wu
- Department of BioScience, Tokyo University of Agriculture, Tokyo, Japan
| | | | | |
Collapse
|
33
|
Moore K, Kramer JM, Rodriguez-Sallaberry CJ, Yelich JV, Drost M. Insulin-like growth factor (IGF) family genes are aberrantly expressed in bovine conceptuses produced in vitro or by nuclear transfer. Theriogenology 2007; 68:717-27. [PMID: 17628655 DOI: 10.1016/j.theriogenology.2007.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 06/06/2007] [Indexed: 11/19/2022]
Abstract
Embryos produced through somatic cell nuclear transfer (NT) or in vitro production (IVP) are often associated with increased abortion and abnormalities thought to arise from disruptions in normal gene expression. The insulin-like growth factor (IGF) family has a major influence on embryonic, fetal and placental development; differences in IGF expression in NT- and IVP-derived embryos may account for embryonic losses during placental attachment. In the present study, expression of IGF-I, IGF-II, IGF-I receptor (IGF-IR), and IGF-IIR mRNAs was quantitated in Day 7 and 25 bovine embryos produced in vivo, by NT, IVP, or parthenogenesis, to further understand divergent changes occurring during development. Expression of the IGF-I gene was not detected in Day 7 blastocysts for any treatment. However, there were no differences (P>0.10) among Day 7 treatments in the amounts of IGF-IR, IGF-II, and IGF-IIR mRNA. For Day 25 conceptuses, there was higher expression of IGF-I mRNA for NT and IVP embryonic tissues than for in vivo embryonic tissues (P<0.05). Furthermore, embryonic tissues from NT-derived embryos had higher expression of IGF-II mRNA than IVP embryonic tissues (P<0.05). Placental expression of IGF-IIR mRNA was greater for NT-derived than in vivo-derived embryos (P<0.05). There were no differences in IGF-IR mRNA across all treatments and tissues (P>0.10). In conclusion, these differences in growth factor gene expression during early placental attachment and rapid embryonic growth may directly or indirectly contribute to increased losses and abnormalities in IVP- and NT-derived embryos.
Collapse
Affiliation(s)
- K Moore
- Department of Animal Sciences, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL 32611-0910, USA.
| | | | | | | | | |
Collapse
|
34
|
Kawahara M, Wu Q, Takahashi N, Morita S, Yamada K, Ito M, Ferguson-Smith AC, Kono T. High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol 2007; 25:1045-50. [PMID: 17704765 DOI: 10.1038/nbt1331] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 07/24/2007] [Indexed: 11/09/2022]
Abstract
Mammalian development to adulthood typically requires both maternal and paternal genomes, because genomic imprinting places stringent limitations on mammalian development, strictly precluding parthenogenesis. Here we report the generation of bi-maternal embryos that develop at a high success rate equivalent to the rate obtained with in vitro fertilization of normal embryos. These bi-maternal mice developed into viable and fertile female adults. The bi-maternal embryos, distinct from parthenogenetic or gynogenetic conceptuses, were produced by the construction of oocytes from fully grown oocytes and nongrowing oocytes that contain double deletions in the H19 differentially methylated region (DMR) and the Dlk1-Dio3 intergenic germline-derived DMR. The results provide conclusive evidence that imprinted genes regulated by these two paternally methylated imprinting-control regions are the only paternal barrier that prevents the normal development of bi-maternal mouse fetuses to term.
Collapse
Affiliation(s)
- Manabu Kawahara
- Department of BioScience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim K, Ng K, Rugg-Gunn PJ, Shieh JH, Kirak O, Jaenisch R, Wakayama T, Moore MA, Pedersen RA, Daley GQ. Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 2007; 1:346-52. [PMID: 18371368 DOI: 10.1016/j.stem.2007.07.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/01/2007] [Accepted: 07/03/2007] [Indexed: 11/17/2022]
Abstract
Parthenogenesis and somatic cell nuclear transfer (SCNT) are two methods for deriving embryonic stem (ES) cells that are genetically matched to the oocyte donor or somatic cell donor, respectively. Using genome-wide single nucleotide polymorphism (SNP) analysis, we demonstrate distinct signatures of genetic recombination that distinguish parthenogenetic ES cells from those generated by SCNT. We applied SNP analysis to the human ES cell line SCNT-hES-1, previously claimed to have been derived by SCNT, and present evidence that it represents a human parthenogenetic ES cell line. Genome-wide SNP analysis represents a means to validate the genetic provenance of an ES cell line.
Collapse
Affiliation(s)
- Kitai Kim
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kono T, Kawahara M, Wu Q, Hiura H, Obata Y. Paternal dual barrier by Ifg2-H19 and Dlk1-Gtl2 to parthenogenesis in mice. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2007:23-33. [PMID: 16903414 DOI: 10.1007/3-540-31437-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
The functional difference between the maternal and paternal genome, which is characterized by epigenetic modifications during gametogenesis, that is genomic imprinting, prevents mammalian embryos from parthenogenesis. Genomic imprinting leads to nonequivalent expression of imprinted genes from the maternal and paternal alleles. However, our research showed that alteration of maternal imprinting by oocyte reconstruction using nongrowing oocytes together with deletion of the H19 gene, provides appropriate expression of maternally imprinted genes. Here we discuss that further alteration of paternally imprinted gene expressions at chromosomes 7 and 12 allows the ng/fg parthenogenetic embryos to develop to term, suggesting that the paternal contribution is obligatory for the descendant.
Collapse
Affiliation(s)
- T Kono
- Department of BioScience, Tokyo, University of Agriculture, Japan.
| | | | | | | | | |
Collapse
|
37
|
Kawahara M, Wu Q, Yaguchi Y, Ferguson-Smith AC, Kono T. Complementary roles of genes regulated by two paternally methylated imprinted regions on chromosomes 7 and 12 in mouse placentation. Hum Mol Genet 2006; 15:2869-79. [PMID: 16923795 DOI: 10.1093/hmg/ddl228] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Imprinted genes have prominent effects on placentation; however, there is limited knowledge about the manner in which the genes controlled by two paternally methylated regions on chromosomes 7 and 12 contribute to placentation. In order to clarify the functions of these genes in mouse placentation, we examined transcription levels of the paternally methylated genes, tissue differentiation and development and the circulatory system in placentae derived from three types of bi-maternal conceptuses that contained genomes of non-growing (ng) and fully grown (fg) oocytes. The genetic backgrounds of the ng oocytes were as follows: one was derived from the wild-type (ngWT) and another from mutant mice carrying a 13 kb deletion in the H19 transcription unit including the germline-derived differentially methylated region (H19-DMR) on chromosome 7 (ngDeltach7). Another set of oocytes was derived from mutant mice carrying a 4.15 kb deletion in the intergenic germline-derived DMR (IG-DMR) on chromosome 12 (ngDeltach12). Although placental mass was lower in the ngWT/fg placentae compared with that in the WT placentae, it was recovered in the ngDeltach7/fg placentae, but not in the ngDeltach12/fg placentae. The ngDeltach7/fg placental growth improvement was associated with severe dysplasia such as an expanded spongiotrophoblast layer and a malformed labyrinthine zone. In contrast, the ngDeltach12/fg placentae retained the layer structures with expanded giant cells, but their total masses were smaller with a normal circulatory system in order. Our findings demonstrate that the genes controlled by the two paternally methylated regions, H19-DMR and IG-DMR, complementarily organize placentation.
Collapse
Affiliation(s)
- Manabu Kawahara
- Department of BioScience and Electron Microscope Centre, Tokyo University of Agriculture, Japan
| | | | | | | | | |
Collapse
|