1
|
Li J, Liu Y, Li J, Feng Z, Bai L, Feng Y, Zhang P, Song F. Association between the oxidative balance score with metabolic syndrome traits in US adults. Diabetol Metab Syndr 2024; 16:263. [PMID: 39497207 PMCID: PMC11536893 DOI: 10.1186/s13098-024-01500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024] Open
Abstract
OBJECTIVE To explore the association between the Oxidative Balance Score (OBS), which represents the balance of multiple oxidative stress-related dietary and lifestyle exposures, and the risk of metabolic syndrome (MetS). METHODS A population-based cross-sectional study design was adopted and 16,850 participants in NHANES database were included in the statistics analysis stage. The OBS was constructed by combining information from 20 a priori selected pro- and antioxidant factors. Weighted logistic regression and restricted cubic splines (RCS) were used to estimate the association between OBS and MetS. RESULTS Participants in the highest OBS quartile, indicating low oxidative stress (OS) levels, exhibited a significantly lower risk of MetS (odds Ratio [OR] = 0.55, 95% confidence Interval [CI]: 0.47-0.64) compared to the lowest quartile. Specifically, higher OBS was inversely associated with abdominal obesity (OR = 0.61, 95% CI: 0.54-0.69), hypertension (OR = 0.69, 95% CI: 0.58-0.83), elevated triglycerides (OR = 0.68, 95% CI: 0.57-0.82), low high-density lipoprotein cholesterol (HDL-C) levels (OR = 0.60, 95% CI: 0.50-0.70) and fasting blood glucose (FBG) levels (OR = 0.74, 95% CI: 0.62-0.88). The observed inverse association between OBS and hypertension or FBG levels appeared to primarily influenced by BMI. The association between dietary OBS intervals and elevated FBG levels was not statistically significant in men, whereas the risk was lower by 25% in women. CONCLUSIONS A higher OBS, representing a balance of multiple oxidative stress-related dietary and lifestyle exposures, is associated with a lower risk of MetS. Therefore, adhering to an antioxidant diet and lifestyle may help prevent the occurrence of metabolic disorders.
Collapse
Affiliation(s)
- Junxian Li
- Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ya Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Jingjing Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Ziwei Feng
- Nosocomial Infection Management Department, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Lili Bai
- Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yujie Feng
- Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Pengyu Zhang
- Department of Blood Transfusion, Key Laboratory of Cancer Prevention and Therapy in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology in Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
| |
Collapse
|
2
|
Owumi S, Chimezie J, Otunla M, Oluwawibe B, Agbarogi H, Anifowose M, Arunsi U, Owoeye O. Prepubertal Repeated Berberine Supplementation Enhances Cerebrocerebellar Functions by Modulating Neurochemical and Behavioural Changes in Wistar Rats. J Mol Neurosci 2024; 74:72. [PMID: 39042258 DOI: 10.1007/s12031-024-02250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Antioxidant-rich supplementation plays an essential role in the function of mammals' central nervous system. However, no research has documented the effect of berberine (BER) supplementation on the cerebrocerebellar function of prepubertal rats. The present study was designed to investigate the impact of BER supplementation on neurochemical and behavioural changes in prepubertal male rats. Five groups (90 ± 5 g, n = 7 each) of experimental rats were orally treated with corn oil or different doses of BER (25, 50, 100, and 200 mg/kg bw) from the 28th at 68 post-natal days. On the 69 days of life, animals underwent behavioural assessment in the open field, hanging wire, and negative geotaxis tests. The result revealed that BER administration improved locomotive and motor behaviour by increasing distance travelled, line crossings, average speed, time mobile, and absolute turn angle in open field test and decrease in time to re-orient on an incline plane, a decrease in immobility time relative to the untreated control. Furthermore, BER supplementation increased (p < 0.05) antioxidant enzyme activities such as SOD, CAT, GPx, GSH, and TSH and prevented increases (p < 0.05) in oxidative and inflammatory levels as indicated by decreases in RONS, LPO, XO, carbonyl protein, NO, MPO, and TNF-α compared to the untreated control. BER-treated animals a lessened number of dark-stained Nissl cells compared to the untreated control rats. Our findings revealed that BER minimised neuronal degeneration and lesions, improved animal behaviour, and suppressed oxidative and inflammatory mediators, which may probably occur through its agonistic effect on PPAR-α, PPAR-δ, and PPAR-γ - essential proteins known to resolve inflammation and modulate redox signalling towards antioxidant function.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria.
| | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Moses Otunla
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Bayode Oluwawibe
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Harieme Agbarogi
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| | - Mayowa Anifowose
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Uche Arunsi
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Olatunde Owoeye
- Neuroanatomy Research Laboratories, Department of Anatomy, University of Ibadan, Ibadan, 200005, Oyo State, Nigeria
| |
Collapse
|
3
|
Li CL, Liu SF. Exploring Molecular Mechanisms and Biomarkers in COPD: An Overview of Current Advancements and Perspectives. Int J Mol Sci 2024; 25:7347. [PMID: 39000454 PMCID: PMC11242201 DOI: 10.3390/ijms25137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) plays a significant role in global morbidity and mortality rates, typified by progressive airflow restriction and lingering respiratory symptoms. Recent explorations in molecular biology have illuminated the complex mechanisms underpinning COPD pathogenesis, providing critical insights into disease progression, exacerbations, and potential therapeutic interventions. This review delivers a thorough examination of the latest progress in molecular research related to COPD, involving fundamental molecular pathways, biomarkers, therapeutic targets, and cutting-edge technologies. Key areas of focus include the roles of inflammation, oxidative stress, and protease-antiprotease imbalances, alongside genetic and epigenetic factors contributing to COPD susceptibility and heterogeneity. Additionally, advancements in omics technologies-such as genomics, transcriptomics, proteomics, and metabolomics-offer new avenues for comprehensive molecular profiling, aiding in the discovery of novel biomarkers and therapeutic targets. Comprehending the molecular foundation of COPD carries substantial potential for the creation of tailored treatment strategies and the enhancement of patient outcomes. By integrating molecular insights into clinical practice, there is a promising pathway towards personalized medicine approaches that can improve the diagnosis, treatment, and overall management of COPD, ultimately reducing its global burden.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
D’Amato M, Campagnoli M, Iadarola P, Bignami PM, Fumagalli M, Chiarelli LR, Stelitano G, Meloni F, Linciano P, Collina S, Pietrocola G, Vertui V, Aliberti A, Fossali T, Viglio S. Could the Oxidation of α1-Antitrypsin Prevent the Binding of Human Neutrophil Elastase in COVID-19 Patients? Int J Mol Sci 2023; 24:13533. [PMID: 37686340 PMCID: PMC10488172 DOI: 10.3390/ijms241713533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Human neutrophil elastase (HNE) is involved in SARS-CoV-2 virulence and plays a pivotal role in lung infection of patients infected by COVID-19. In healthy individuals, HNE activity is balanced by α1-antitrypsin (AAT). This is a 52 kDa glycoprotein, mainly produced and secreted by hepatocytes, that specifically inhibits HNE by blocking its activity through the formation of a stable complex (HNE-AAT) in which the two proteins are covalently bound. The lack of this complex, together with the detection of HNE activity in BALf/plasma samples of COVID-19 patients, leads us to hypothesize that potential functional deficiencies should necessarily be attributed to possible structural modifications of AAT. These could greatly diminish its ability to inhibit neutrophil elastase, thus reducing lung protection. The aim of this work was to explore the oxidation state of AAT in BALf/plasma samples from these patients so as to understand whether the deficient inhibitory activity of AAT was somehow related to possible conformational changes caused by the presence of abnormally oxidized residues.
Collapse
Affiliation(s)
- Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.C.); (G.P.); (S.V.)
| | - Monica Campagnoli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.C.); (G.P.); (S.V.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Paola Margherita Bignami
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Marco Fumagalli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Giovanni Stelitano
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Federica Meloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (F.M.); (V.V.)
- Transplant Unit, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (P.L.); (S.C.)
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (P.L.); (S.C.)
| | - Giampiero Pietrocola
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.C.); (G.P.); (S.V.)
| | - Valentina Vertui
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (F.M.); (V.V.)
| | - Anna Aliberti
- Division of Anesthesiology and Intensive Care 1, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy;
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.C.); (G.P.); (S.V.)
| |
Collapse
|
5
|
Chen Q, Nwozor KO, van den Berge M, Slebos DJ, Faiz A, Jonker MR, Boezen HM, Heijink IH, de Vries M. From Differential DNA Methylation in COPD to Mitochondria: Regulation of AHRR Expression Affects Airway Epithelial Response to Cigarette Smoke. Cells 2022; 11:3423. [PMID: 36359818 PMCID: PMC9656229 DOI: 10.3390/cells11213423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 08/01/2023] Open
Abstract
Cigarette smoking causes hypomethylation of the gene Aryl Hydrocarbon Receptor Repressor (AHRR), which regulates detoxification and oxidative stress-responses. We investigated whether AHRR DNA methylation is related to chronic obstructive pulmonary disease (COPD) and studied its function in airway epithelial cells (AECs). The association with COPD was assessed in blood from never and current smokers with/without COPD, and in AECs from ex-smoking non-COPD controls and GOLD stage II-IV COPD patients cultured with/without cigarette smoke extract (CSE). The effect of CRISPR/Cas9-induced AHRR knockout on proliferation, CSE-induced mitochondrial membrane potential and apoptosis/necrosis in human bronchial epithelial 16HBE cells was studied. In blood, DNA methylation of AHRR at cg05575921 and cg21161138 was lower in smoking COPD subjects than smoking controls. In vitro, AHRR DNA methylation at these CpG-sites was lower in COPD-derived than control-derived AECs only upon CSE exposure. Upon AHRR knockout, we found a lower proliferation rate at baseline, stronger CSE-induced decrease in mitochondrial membrane potential, and higher CSE-induced late apoptosis/necroptosis. Together, our results show lower DNA methylation of AHRR upon smoking in COPD patients compared to non-COPD controls. Our data suggest that higher airway epithelial AHRR expression may lead to impaired cigarette smoke-induced mitochondrial dysfunction and apoptosis/necroptosis, potentially promoting unprogrammed/immunogenic cell death.
Collapse
Affiliation(s)
- Qing Chen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
| | - Kingsley Okechukwu Nwozor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- Centre for Heart Lung Innovation, Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology Disease, 9713 GZ Groningen, The Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology Disease, 9713 GZ Groningen, The Netherlands
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology Disease, 9713 GZ Groningen, The Netherlands
- Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Marnix R. Jonker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
| | - H. Marike Boezen
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, 9713 GZ Groningen, The Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology Disease, 9713 GZ Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
6
|
Janciauskiene S, Tumpara S, Schebb NH, Buettner FFR, Mainka M, Sivaraman K, Immenschuh S, Grau V, Welte T, Olejnicka B. Indirect effect of alpha-1-antitrypsin on endotoxin-induced IL-1β secretion from human PBMCs. Front Pharmacol 2022; 13:995869. [PMID: 36249781 PMCID: PMC9564231 DOI: 10.3389/fphar.2022.995869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Human alpha-1-antitrypsin (AAT) encoded by the SERPINA1 gene, is an acute phase glycoprotein that regulates inflammatory responses via both protease inhibitory and non-inhibitory activities. We previously reported that AAT controls ATP-induced IL-1β release from human mononuclear cells by stimulating the release of small bioactive molecules. In the current study, we aimed to elucidate the identity of these putative effectors released from human PBMCs in response to AAT, which may inhibit the LPS-induced release of IL-1β. We pre-incubated human PBMCs alone or with different preparations of AAT (4 mg/ml) for 30 min at 37°C, 5% CO2, and collected cell supernatants filtered through centrifugal filters (cutoff 3 kDa) to eliminate AAT and other high molecular weight substances. Supernatants passed through the filters were used to culture PBMCs isolated from the autologous or a heterologous donors with or without adding LPS (1 μg/ml) for 6 h. Unexpectedly, supernatants from PBMCs pre-incubated with AAT (Zemaira®), but not with other AAT preparations tested or with oxidized AAT (Zemaira®), lowered the LPS-induced release of IL-1β by about 25%–60% without affecting IL1B mRNA. The reversed-phase liquid chromatography coupled with mass spectrometry did not confirm the hypothesis that small pro-resolving lipid mediators released from PBMCs after exposure to AAT (Zemaira®) are responsible for lowering the LPS-induced IL-1β release. Distinctively from other AAT preparations, AAT (Zemaira®) and supernatants from PBMCs pre-treated with this protein contained high levels of total thiols. In line, mass spectrometry analysis revealed that AAT (Zemaira®) protein contains freer Cys232 than AAT (Prolastin®). Our data show that a free Cys232 in AAT is required for controlling LPS-induced IL-1β release from human PBMCs. Further studies characterizing AAT preparations used to treat patients with inherited AAT deficiency remains of clinical importance.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Experimental Medicine, Lund University, Lund, Sweden
- *Correspondence: Sabina Janciauskiene,
| | - Srinu Tumpara
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Falk F. R. Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Kokilavani Sivaraman
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, German Center for Lung Research, Giessen, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Beata Olejnicka
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Experimental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Zhang L, Liu B, Zhou L, Cai Y, Guo W, Huang W, Yan X, Chen H. Analysis of occupational stress and its correlation with oxidative-antioxidant levels among employees of a power grid enterprise in Guangdong. BMC Psychiatry 2022; 22:593. [PMID: 36068526 PMCID: PMC9446777 DOI: 10.1186/s12888-022-04226-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Occupational stress and its health effects on occupational populations have attracted extensive attention from researchers in public health. The stressors faced by employees of power grid enterprises are increasing progressively, which is easy to cause occupational stress. The balance of the body's oxidative-antioxidant levels plays an essential role in maintaining the body's health status. This study aims to explore occupational stress and its correlation with oxidative-antioxidant levels in employees of a power grid enterprise. METHODS A cluster random sampling method was used to investigate the basic information of 528 employees in a power grid enterprise and investigate the two occupational stress models of employees by using the Job Content Questionnaire based on the job demand-control-support (JDC) model, and the Effort-Reward Imbalance Questionnaire based on the effort-reward imbalance (ERI) model, respectively. Peripheral blood samples were collected from the employees to measure the levels of malondialdehyde (MDA), total antioxidant capacity (TAC), and superoxide dismutase (SOD). The correlation between different models of occupational stress level and the body's oxidation-antioxidation level was further explored. RESULTS The detection rate of high JDC model occupational stress was 50.6% and the detection rate of high ERI model occupational stress was 50.9%. The JDC model occupational stress was significantly associated with high-temperature and high-altitude operation, visual display terminal operation, monthly income, and exercise (all P < 0.05). The ERI model occupational stress was significantly associated with visual display terminal operation (all P < 0.05). The results of the generalized additive model showed that SOD levels had a non-linear relationship with the D/C ratio as well as the E/R ratio. With the D/C ratio close to 1, SOD levels raised rapidly. When the E/R ratio exceeded 1, the SOD level raised rapidly (all P<0.05) . TAC levels were negatively associated with the E/R ratio (P < 0.05). CONCLUSION The detection rates of occupational stress in both models among employees in a power grid enterprise are higher. ERI model occupational stress was associated with body TAC and SOD levels, and JDC model occupational stress was associated with body SOD levels.
Collapse
Affiliation(s)
- Lingyu Zhang
- grid.484195.5Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangzhou, 510300 Guangdong China ,grid.410737.60000 0000 8653 1072School of Public Health, Guangzhou Medical University, Guangzhou, 511436 Guangdong China
| | - Bin Liu
- grid.484195.5Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangzhou, 510300 Guangdong China ,grid.477848.0Shenzhen Luohu People’s Hospital, Shenzhen, 518000 Guangdong China
| | - Linqian Zhou
- grid.484195.5Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangzhou, 510300 Guangdong China ,grid.410737.60000 0000 8653 1072School of Public Health, Guangzhou Medical University, Guangzhou, 511436 Guangdong China
| | - Yashi Cai
- grid.484195.5Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangzhou, 510300 Guangdong China ,grid.284723.80000 0000 8877 7471School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Weizhen Guo
- grid.484195.5Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangzhou, 510300 Guangdong China
| | - Weixu Huang
- grid.484195.5Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangzhou, 510300 Guangdong China
| | - Xuehua Yan
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China.
| | - Huifeng Chen
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangzhou, 510300, Guangdong, China.
| |
Collapse
|
8
|
Fărcaș AC, Socaci SA, Nemeș SA, Pop OL, Coldea TE, Fogarasi M, Biriș-Dorhoi ES. An Update Regarding the Bioactive Compound of Cereal By-Products: Health Benefits and Potential Applications. Nutrients 2022; 14:nu14173470. [PMID: 36079730 PMCID: PMC9460243 DOI: 10.3390/nu14173470] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cereal processing generates around 12.9% of all food waste globally. Wheat bran, wheat germ, rice bran, rice germ, corn germ, corn bran, barley bran, and brewery spent grain are just a few examples of wastes that may be exploited to recover bioactive compounds. As a result, a long-term strategy for developing novel food products and ingredients is encouraged. High-value compounds like proteins, essential amino acids, essential fatty acids, ferulic acid, and other phenols, tocopherols, or β-glucans are found in cereal by-products. This review aims to provide a critical and comprehensive overview of current knowledge regarding the bioactive compounds recovered from cereal by-products, emphasizing their functional values and potential human health benefits.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (S.A.S.); Tel.: +40-264-596388 (A.C.F.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (S.A.S.); Tel.: +40-264-596388 (A.C.F.)
| | - Silvia Amalia Nemeș
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Melinda Fogarasi
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Elena Suzana Biriș-Dorhoi
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Song QX, Sun Y, Deng K, Mei JY, Chermansky CJ, Damaser MS. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nat Rev Urol 2022; 19:581-596. [PMID: 35974244 DOI: 10.1038/s41585-022-00621-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease, posing a considerable threat to global public health. Treating systemic comorbidities has been one of the greatest clinical challenges in the management of diabetes. Diabetic bladder dysfunction, characterized by detrusor overactivity during the early stage of the disease and detrusor underactivity during the late stage, is a common urological complication of diabetes. Oxidative stress is thought to trigger hyperglycaemia-dependent tissue damage in multiple organs; thus, a growing body of literature has suggested a possible link between functional changes in urothelium, muscle and the corresponding innervations. Improved understanding of the mechanisms of oxidative stress could lead to the development of novel therapeutics to restore the redox equilibrium and scavenge excessive free radicals to normalize bladder function in patients with diabetes.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangli Deng
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yi Mei
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | | | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Glickman Urology and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Sun R, Xu Z, Zhu C, Chen T, Muñoz LE, Dai L, Zhao Y. Alpha-1 antitrypsin in autoimmune diseases: Roles and therapeutic prospects. Int Immunopharmacol 2022; 110:109001. [PMID: 35803133 DOI: 10.1016/j.intimp.2022.109001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Alpha-1 antitrypsin (A1AT) is a protease inhibitor in the serum. Its primary function is to inhibit the activity of a series of proteases, including proteinase 3, neutrophil elastase, metalloproteases, and cysteine-aspartate proteases. In addition, A1AT also has anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-viral, and anti-bacterial activities and plays essential roles in the regulation of tissue repair and lymphocyte differentiation and activation. The overactivation of the immune system characterizes the pathogenesis of autoimmune diseases. A1AT treatment shows beneficial effects on patients and animal models with autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. This review summarizes the functions and therapeutic prospects of A1AT in autoimmune diseases.
Collapse
Affiliation(s)
- Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqiang Xu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lunzhi Dai
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China; Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Bertuccio MP, Currò M, Caccamo D, Ientile R. Dietary Intake and Genetic Background Influence Vitamin Needs during Pregnancy. Healthcare (Basel) 2022; 10:healthcare10050768. [PMID: 35627905 PMCID: PMC9141544 DOI: 10.3390/healthcare10050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
Numerous approaches demonstrate how nutritional intake can be sufficient to ensure the necessary supply of vitamins. However, it is evident that not all vitamins are contained in all foods, so it is necessary either to combine different food groups or to use a vitamin supplement to be well-fed. During pregnancy, deficiencies are often exacerbated due to increased energy and nutritional demands, causing adverse outcomes in mother and child. Micronutrient supplementation could lead to optimal pregnancy outcomes being essential for proper metabolic activities that are involved in tissue growth and functioning in the developing fetus. In order to establish adequate vitamin supplementation, various conditions should be considered, such as metabolism, nutrition and genetic elements. This review accurately evaluated vitamin requirements and possible toxic effects during pregnancy. Much attention was given to investigate the mechanisms of cell response and risk assessment of practical applications to improve quality of life. Importantly, genetic studies suggest that common allelic variants and polymorphisms may play an important role in vitamin metabolism during pregnancy. Changes in gene expression of different proteins involved in micronutrients’ metabolism may influence the physiological needs of the pregnant woman.
Collapse
|
12
|
A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int J Mol Sci 2022; 23:ijms23052441. [PMID: 35269582 PMCID: PMC8910375 DOI: 10.3390/ijms23052441] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.
Collapse
|
13
|
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants (Basel) 2022; 11:antiox11020408. [PMID: 35204290 PMCID: PMC8869281 DOI: 10.3390/antiox11020408] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Free radicals are formed as a part of normal metabolic activities but are neutralized by the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This redox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress, which is implicated in several progressive neurodegenerative diseases. Following neuronal injury, secondary injury progression is also caused by excessive production of free radicals. Highly reactive free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise to alleviate oxidative stress to regain the redox balance. In this regard, natural and synthetic antioxidants have been evaluated. Despite promising results in preclinical studies, clinical translation of antioxidants as a therapy to treat neurodegenerative diseases remains elusive. The issues could be their low bioavailability, instability, limited transport to the target tissue, and/or poor antioxidant capacity, requiring repeated and high dosing, which cannot be administered to humans because of dose-limiting toxicity. Our laboratory is investigating nanoparticle-mediated delivery of antioxidant enzymes to address some of the above issues. Apart from being endogenous, the main advantage of antioxidant enzymes is their catalytic mechanism of action; hence, they are significantly more effective at lower doses in detoxifying the deleterious effects of free radicals than nonenzymatic antioxidants. This review provides a comprehensive analysis of the potential of antioxidant therapy, challenges in their clinical translation, and the role nanoparticles/drug delivery systems could play in addressing these challenges.
Collapse
Affiliation(s)
- Anushruti Ashok
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Syed Suhail Andrabi
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Saffar Mansoor
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Youzhi Kuang
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
| | - Brian K. Kwon
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Vinod Labhasetwar
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.A.); (S.S.A.); (S.M.); (Y.K.)
- Correspondence:
| |
Collapse
|
14
|
Nucera F, Mumby S, Paudel KR, Dharwal V, DI Stefano A, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of oxidative stress in the pathogenesis of COPD. Minerva Med 2022; 113:370-404. [PMID: 35142479 DOI: 10.23736/s0026-4806.22.07972-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic inhalation of cigarette smoke is a prominent cause of chronic obstructive pulmonary disease (COPD) and provides an important source of exogenous oxidants. In addition, several inflammatory and structural cells are a source of endogenous oxidants in the lower airways of COPD patients, even in former smokers. This suggests that oxidants play a key role in the pathogenesis of COPD. This oxidative stress is counterbalanced by the protective effects of the various endogenous antioxidant defenses of the lower airways. A large amount of data from animal models and patients with COPD have shown that both the stable phase of the disease, and during exacerbations, have increased oxidative stress in the lower airways compared with age-matched smokers with normal lung function. Thus, counteracting the increased oxidative stress may produce clinical benefits in COPD patients. Smoking cessation is currently the most effective treatment of COPD patients and reduces oxidative stress in the lower airways. In addition, many drugs used to treat COPD have some antioxidant effects, however, it is still unclear if their clinical efficacy is related to pharmacological modulation of the oxidant/antioxidant balance. Several new antioxidant compounds are in development for the treatment of COPD.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy -
| | - Sharon Mumby
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vivek Dharwal
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Antonino DI Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Novara, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ian M Adcock
- Airways Diseases Section, Faculty of Medicine, Imperial College London, National Heart and Lung Institute, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| |
Collapse
|
15
|
Hu X, Geetha RV, Surapaneni KM, Veeraraghavan VP, Chinnathambi A, Alahmadi TA, Manikandan V, Manokaran K. Lung cancer induced by Benzo(A)Pyrene: ChemoProtective effect of sinapic acid in swiss albino mice. Saudi J Biol Sci 2021; 28:7125-7133. [PMID: 34867015 PMCID: PMC8626324 DOI: 10.1016/j.sjbs.2021.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 01/02/2023] Open
Abstract
Cancer of lung is the utmost typical cause of death and the number of cases is increasing rapidly, which has emerged as a major leading health problem. A large amount of reports suggested that Benzo(a)pyrene [B(a)P] in cigarette smoke plays the major function in an initiation of cancer of lung. Cancer prevention or chemoprevention has become a compelling approach recently for treatment of lung cancer. So, discovering a fresh candidate with reduced toxicity for targeting lung cancer is vital and urgent. Sinapic acid which is a widely extracted in various vegetables and fruit exhibits rich anti-oxidant content, anti-inflammatory and anti-tumor activity. But, the chemopreventive action of sinapic acid against lung cancer initiated by B[a]P remain unclear. Following, an in-vivo B[a]P-stimulated lung cancer in swiss albino mice and an in-vitro human lung cancer cell (A549) model were established to examine the chemopreventive activities of sinapic acid. The levels of immunoglobulins (IgG and IgM), oxidative and inflammatory markers, and tumor markers level was studied using kits and standard methods. The results showed administration of sinapic acid ameliorates the exposure of B[a]P mediated lung cancer in swiss albino mice by a decline in IgG and IgM level, leukocyte count, neutrophil function tests, soluble immune complex, lipid peroxidation, pro-inflammatory cytokines, tumor markers (AHH, LDH, GGT, 5'NT and CEA) and enhanced phagocytic index, activity index and antioxidant defense enzymes. In addition, in-vitro studies showed potential cytotoxicity against human lung cancer and exhibited a potential cytotoxic (MTT assay) and apoptotic activity by elevation of ROS production and caspase activity (caspase-3 and caspase-9). Collectively, the results, clearly specifies sinapic acid can be utilized as an effective chemo preventative agent against lung carcinogenesis.
Collapse
Affiliation(s)
- Xinglong Hu
- Department of General Surgery, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Royapuram Veeraragavan Geetha
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Krishna Mohan Surapaneni
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Velu Manikandan
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, South Korea
| | - Kalaivani Manokaran
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
16
|
Abdel-Aziz MA, Ahmed HMS, El-Nekeety AA, Abdel-Wahhab MA. Osteoarthritis complications and the recent therapeutic approaches. Inflammopharmacology 2021; 29:1653-1667. [PMID: 34755232 DOI: 10.1007/s10787-021-00888-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
The accelerated prevalence of osteoarthritis (OA) disease worldwide and the lack of convenient management led to the frequent search for unprecedented and specific treatment approaches. OA patients usually suffer from many annoying complications that negatively influence their quality of life, especially in the elderly. Articular erosions may lead eventually to the loss of joint function as a whole which occurs over time according to the risk factors presented in each case and the grade of the disease. Conventional therapies are advancing, showing most appropriate results but still greatly associated with many adverse effects and have restricted curative actions as well. Hence, novel management tools are usually required. In this review, we summarized the recent approaches in OA treatment and the role of natural products, dietary supplements and nanogold application in OA treatment to provide new research tracks for more therapeutic opportunities to those who are in care in this field.
Collapse
Affiliation(s)
- Manal A Abdel-Aziz
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M S Ahmed
- Toxicology and Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
17
|
Giani M, Montoyo-Pujol YG, Peiró G, Martínez-Espinosa RM. Halophilic Carotenoids and Breast Cancer: From Salt Marshes to Biomedicine. Mar Drugs 2021; 19:md19110594. [PMID: 34822465 PMCID: PMC8625793 DOI: 10.3390/md19110594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of death among women worldwide. Over the years, oxidative stress has been linked to the onset and progression of cancer. In addition to the classical histological classification, breast carcinomas are classified into phenotypes according to hormone receptors (estrogen receptor-RE-/progesterone receptor-PR) and growth factor receptor (human epidermal growth factor receptor-HER2) expression. Luminal tumors (ER/PR-positive/HER2-negative) are present in older patients with a better outcome. However, patients with HER2-positive or triple-negative breast cancer (TNBC) (ER/PR/HER2-negative) subtypes still represent highly aggressive behavior, metastasis, poor prognosis, and drug resistance. Therefore, new alternative therapies have become an urgent clinical need. In recent years, anticancer agents based on natural products have been receiving huge interest. In particular, carotenoids are natural compounds present in fruits and vegetables, but algae, bacteria, and archaea also produce them. The antioxidant properties of carotenoids have been studied during the last years due to their potential in preventing and treating multiple diseases, including cancer. Although the effect of carotenoids on breast cancer during in vitro and in vivo studies is promising, clinical trials are still inconclusive. The haloarchaeal carotenoid bacterioruberin holds great promise to the future of biomedicine due to its particular structure, and antioxidant activity. However, much work remains to be performed to draw firm conclusions. This review summarizes the current knowledge on pre-clinical and clinical analysis on the use of carotenoids as chemopreventive and chemotherapeutic agents in breast cancer, highlighting the most recent results regarding the use of bacterioruberin from haloarchaea.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence:
| | - Yoel Genaro Montoyo-Pujol
- Breast Cancer Research Group, Research Unit, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Gloria Peiró
- Department of Pathology, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
18
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
19
|
Lactobacillus plantarum Exhibits Antioxidant and Cytoprotective Activities in Porcine Intestinal Epithelial Cells Exposed to Hydrogen Peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8936907. [PMID: 34373770 PMCID: PMC8349292 DOI: 10.1155/2021/8936907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Probiotics are widely used for protection against stress-induced intestinal dysfunction. Oxidative stress plays a critical role in gastrointestinal disorders. It is established that probiotics alleviate oxidative stress; however, the mechanism of action has not been elucidated. We developed an in vitro intestinal porcine epithelial cells (IPEC-J2) model of oxidative stress to explore the antioxidant effect and potential mode of action of Lactobacillus plantarum ZLP001. The IPEC-J2 cells were preincubated with and without L. plantarum ZLP001 for 3 h and then exposed to hydrogen peroxide (H2O2) for 4 h. Pretreatment with L. plantarum ZLP001 protected IPEC-J2 cells against H2O2-induced oxidative damage as indicated by cell viability assays and significantly alleviated apoptosis elicited by H2O2. L. plantarum ZLP001 pretreatment decreased reactive oxygen species production and the cellular malondialdehyde concentration and increased the mitochondrial membrane potential compared with H2O2 treatment alone, suggesting that L. plantarum ZLP001 promotes the maintenance of redox homeostasis in the cells. Furthermore, L. plantarum ZLP001 regulated the expression and generation of some antioxidant enzymes, thereby activating the antioxidant defense system. Treatment with L. plantarum ZLP001 led to nuclear erythroid 2-related factor 2 (Nrf2) enrichment in the nucleus compared with H2O2 treatment alone. Knockdown of Nrf2 significantly weakened the alleviating effect of L. plantarum ZLP001 on antioxidant stress in IPEC-J2 cells, suggesting that Nrf2 is involved in the antioxidative effect of L. plantarum ZLP001. Collectively, these results indicate that L. plantarum ZLP001 is a promising probiotic bacterium that can potentially alleviate oxidative stress.
Collapse
|
20
|
A Comparative Study of Antioxidative Activity of Saliva in Children and Young Teenagers with and without Gingivitis. ACTA ACUST UNITED AC 2021; 57:medicina57060569. [PMID: 34204920 PMCID: PMC8228018 DOI: 10.3390/medicina57060569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
Objectives: The aim of this study was to compare the values of total antioxidant capacity (TAC), catalase (CAT) and glutathione peroxidase (GPX) in the saliva of children and young teenagers with and without gingivitis. Materials and Methods: A total of 120 children and young teenagers of the mean age of 12.2 participated in the research. Gingival condition was assessed using the Löe and Silness Gingival Index. The subjects were divided into groups of those without gingivitis and those with gingivitis. Samples of unstimulated saliva were collected, and TAC, CAT and GPX were determined spectrophotometrically. Results: By comparing the values of TAC, CAT and GPX in subjects with and without gingivitis, significantly lower values of TAC (p < 0.001) and CAT (p < 0.001) were observed in the group of subjects with gingivitis. The correlation analysis of these values showed a positive correlation in groups of subjects not suffering from gingival inflammation and those with gingival inflammation. Conclusions: The study showed significantly lower values of TAC and CAT in the saliva of subjects with gingivitis. This indicates their possible role as a potential biomarker in the early diagnosis and expression of periodontal disease in children and young teenagers.
Collapse
|
21
|
Effects of Traditional Chinese Medication-Based Bioactive Compounds on Cellular and Molecular Mechanisms of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617498. [PMID: 34093958 PMCID: PMC8139859 DOI: 10.1155/2021/3617498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
The oxidative stress reaction is the imbalance between oxidation and antioxidation in the body, resulting in excessive production of oxygen free radicals in the body that cannot be removed, leading to excessive oxidation of the body, and causing damage to cells and tissues. A large number of studies have shown that oxidative stress is involved in the pathological process of many diseases, so inhibiting oxidative stress, that is, antioxidation, is of great significance for the treatment of diseases. Studies have shown that many traditional Chinese medications contain antioxidant active bioactive compounds, but the mechanisms of those compounds are different and complicated. Therefore, by summarizing the literature on antioxidant activity of traditional Chinese medication-based bioactive compounds in recent years, our review systematically elaborates the main antioxidant bioactive compounds contained in traditional Chinese medication and their mechanisms, so as to provide references for the subsequent research.
Collapse
|
22
|
Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases. J Clin Med 2021; 10:jcm10061268. [PMID: 33803835 PMCID: PMC8003245 DOI: 10.3390/jcm10061268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have shown that some rare respiratory diseases, such as alpha-1 antitrypsin deficiency (AATD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) present oxidative stress (OS) and endoplasmic reticulum (ER) stress. Their involvement in these pathologies and the use of antioxidants as therapeutic agents to minimize the effects of OS are discussed in this review.
Collapse
|
23
|
Charles D, Gethings LA, Potts JF, Burney PGJ, Garcia-Larsen V. Mass spectrometry-based metabolomics for the discovery of candidate markers of flavonoid and polyphenolic intake in adults. Sci Rep 2021; 11:5801. [PMID: 33707702 PMCID: PMC7952705 DOI: 10.1038/s41598-021-85190-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Robust biological markers of dietary exposure are essential in improving the understanding of the link between diet and health outcomes. Polyphenolic compounds, including flavonoids, have been proposed to mitigate the risk of chronic diseases where oxidative stress and inflammation play a central role. Biomarkers can provide objective measurement of the levels of polyphenolic compounds. In this study, we provide methodology to identify potential candidate markers of polyphenol intake in human serum. Seventeen participants from the UK arm of the Global Allergy and Asthma Network of Excellence (GA2LEN) had their dietary intake estimated using a validated food frequency questionnaire, and serum samples were assessed using mass spectrometry to identify potential candidate markers. 144 features were assigned identities, of these we identified four biologically relevant compounds (rhamnazin 3-rutinoside, 2-galloyl-1,4-galactarolactone methyl ester, 2″,32″-di-O-p-coumaroylafzelin and cyclocommunin), which were significantly increased in the serum of participants with high predicted level of fruit and vegetable intake. 2-galloyl-1,4-galactarolactone methyl ester was strongly correlated with total flavonoids (r = 0.62; P = 0.005), flavan-3-ols (r = 0.67; P = 0.002) as well as with other four subclasses. Rhamnazin 3-rutinoside showed strong correlation with pro-anthocyanidins (r = 0.68; P = 0.001), flavones (r = 0.62; P = 0.005). Our results suggest that serum profiling for these compounds might be an effective way of establishing the relative intake of flavonoids and could contribute to improve the accuracy of epidemiological methods to ascertain flavonoid intake.
Collapse
Affiliation(s)
- David Charles
- Barts and the London Medical School, Garrod Building, Turner St, Whitechapel, London, UK
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Wilmslow, SK9 4AX, UK
| | - James F Potts
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter G J Burney
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Nutrition, The Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
Lechowicz U, Rudzinski S, Jezela-Stanek A, Janciauskiene S, Chorostowska-Wynimko J. Post-Translational Modifications of Circulating Alpha-1-Antitrypsin Protein. Int J Mol Sci 2020; 21:E9187. [PMID: 33276468 PMCID: PMC7731214 DOI: 10.3390/ijms21239187] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Alpha-1-antitrypsin (AAT), an acute-phase protein encoded by the SERPINA1 gene, is a member of the serine protease inhibitor (SERPIN) superfamily. Its primary function is to protect tissues from enzymes released during inflammation, such as neutrophil elastase and proteinase 3. In addition to its antiprotease activity, AAT interacts with numerous other substances and has various functions, mainly arising from the conformational flexibility of normal variants of AAT. Therefore, AAT has diverse biological functions and plays a role in various pathophysiological processes. This review discusses major molecular forms of AAT, including complex, cleaved, glycosylated, oxidized, and S-nitrosylated forms, in terms of their origin and function.
Collapse
Affiliation(s)
- Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Stefan Rudzinski
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| | - Sabina Janciauskiene
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
- Member of the German Center for Lung Research DZL, Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover BREATH, 30625 Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; (U.L.); (S.R.); (A.J.-S.); (S.J.)
| |
Collapse
|