1
|
Alok A, Chauhan H, Upadhyay SK, Pandey A, Kumar J, Singh K. Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages. Life (Basel) 2021; 11:1021. [PMID: 34685392 PMCID: PMC8540340 DOI: 10.3390/life11101021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
CRISPR/Cas mediated genome editing is a revolutionary approach for manipulating the plant genome. However, the success of this technology is highly dependent on selection of a specific vector and the other components. A plant-specific CRISPR/Cas vector usually consists of a Cas gene, target-specific gRNA, leader sequence, selectable marker gene, precise promoters, and other accessories. It has always been challenging to select the specific vector for each study due to a lack of comprehensive information on CRISPR vectors in one place. Herein, we have discussed every technical aspect of various important elements that will be highly useful in vector selection and efficient editing of the desired plant genome. Various factors such as the promoter regulating the expression of Cas and gRNA, gRNA size, Cas variants, multicistronic gRNA, and vector backbone, etc. influence transformation and editing frequency. For example, the use of polycistronic tRNA-gRNA, and Csy4-gRNA has been documented to enhance the editing efficiency. Similarly, the selection of an efficient selectable marker is also a very important factor. Information on the availability of numerous variants of Cas endonucleases, such as Cas9, Cas12a, Cas12b, Casɸ, and CasMINI, etc., with diverse recognition specificities further broadens the scope of editing. The development of chimeric proteins such as Cas fused to cytosine or adenosine deaminase domain and modified reverse transcriptase using protein engineering enabled base and prime editing, respectively. In addition, the newly discovered Casɸ and CasMINI would increase the scope of genetic engineering in plants by being smaller Cas variants. All advancements would contribute to the development of various tools required for gene editing, targeted gene insertion, transcriptional activation/suppression, multiplexing, prime editing, base editing, and gene tagging. This review will serve as an encyclopedia for plant-specific CRISPR vectors and will be useful for researchers.
Collapse
Affiliation(s)
- Anshu Alok
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; (A.A.); (H.C.)
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Hanny Chauhan
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; (A.A.); (H.C.)
| | | | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi 110067, India;
| | - Jitendra Kumar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; (A.A.); (H.C.)
| |
Collapse
|
2
|
Xu H, Zhang L, Zhang K, Ran Y. Progresses, Challenges, and Prospects of Genome Editing in Soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2020; 11:571138. [PMID: 33193504 PMCID: PMC7642200 DOI: 10.3389/fpls.2020.571138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 05/17/2023]
Abstract
Soybean is grown worldwide for oil and protein source as food, feed and industrial raw material for biofuel. Steady increase in soybean production in the past century mainly attributes to genetic mediation including hybridization, mutagenesis and transgenesis. However, genetic resource limitation and intricate social issues in use of transgenic technology impede soybean improvement to meet rapid increases in global demand for soybean products. New approaches in genomics and development of site-specific nucleases (SSNs) based genome editing technologies have expanded soybean genetic variations in its germplasm and have potential to make precise modification of genes controlling the important agronomic traits in an elite background. ZFNs, TALENS and CRISPR/Cas9 have been adapted in soybean improvement for targeted deletions, additions, replacements and corrections in the genome. The availability of reference genome assembly and genomic resources increases feasibility in using current genome editing technologies and their new development. This review summarizes the status of genome editing in soybean improvement and future directions in this field.
Collapse
Affiliation(s)
| | | | | | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| |
Collapse
|
3
|
Nateghi Rostami M. CRISPR/Cas9 gene drive technology to control transmission of vector‐borne parasitic infections. Parasite Immunol 2020; 42:e12762. [DOI: 10.1111/pim.12762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Nateghi Rostami
- Laboratory of Biology of Host‐Parasite Interactions Department of Parasitology Pasteur Institute of Iran Tehran Iran
| |
Collapse
|
4
|
Trimidal SG, Benjamin R, Bae JE, Han MV, Kong E, Singer A, Williams TS, Yang B, Schiller MR. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized? Bioessays 2019; 41:e1900126. [PMID: 31693213 PMCID: PMC7202862 DOI: 10.1002/bies.201900126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Indexed: 12/23/2022]
Abstract
Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.
Collapse
Affiliation(s)
- Sara G Trimidal
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ronald Benjamin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ji Eun Bae
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Elizabeth Kong
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Aaron Singer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Tyler S Williams
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Martin R Schiller
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
5
|
Lake CM, Nielsen RJ, Bonner AM, Eche S, White-Brown S, McKim KS, Hawley RS. Narya, a RING finger domain-containing protein, is required for meiotic DNA double-strand break formation and crossover maturation in Drosophila melanogaster. PLoS Genet 2019; 15:e1007886. [PMID: 30615609 PMCID: PMC6336347 DOI: 10.1371/journal.pgen.1007886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/17/2019] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination, which is necessary to ensure that homologous chromosomes segregate properly, begins with the induction of meiotic DNA double-strand breaks (DSBs) and ends with the repair of a subset of those breaks into crossovers. Here we investigate the roles of two paralogous genes, CG12200 and CG31053, which we have named Narya and Nenya, respectively, due to their relationship with a structurally similar protein named Vilya. We find that narya recently evolved from nenya by a gene duplication event, and we show that these two RING finger domain-containing proteins are functionally redundant with respect to a critical role in DSB formation. Narya colocalizes with Vilya foci, which are known to define recombination nodules, or sites of crossover formation. A separation-of-function allele of narya retains the capacity for DSB formation but cannot mature those DSBs into crossovers. We further provide data on the physical interaction of Narya, Nenya and Vilya, as assayed by the yeast two-hybrid system. Together these data support the view that all three RING finger domain-containing proteins function in the formation of meiotic DNA DSBs and in the process of crossing over. Errors in chromosome segregation during meiosis are the leading cause of miscarriages and can result in genetic abnormalities like Down syndrome or Turner syndrome. For chromosomes to segregate faithfully, they must recombine with their homolog during the early steps of meiosis. An essential component of the process of meiotic recombination is creating the lesions (double-strand breaks, DSBs) that are required to form a crossover with the homologous chromosome. Crossovers are required to ensure chromosomes segregate properly at the first meiotic division. In this study we have identified two genes, narya and nenya, that are essential in DSB formation. We found that narya arose from a duplication of nenya, and these two genes are functionally redundant. In addition to its role in DSB formation, narya also plays a role in processing DSBs into crossovers. Strengthening our knowledge about the mechanism by which Narya both creates DSBs and processes them into crossovers will lead to a better understanding of the process of meiotic chromosome segregation not only in flies but many other organisms, as these genes have homologs in yeast, worms, plants, mice and humans.
Collapse
Affiliation(s)
- Cathleen M. Lake
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Rachel J. Nielsen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Amanda M. Bonner
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Salam Eche
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sanese White-Brown
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Profile of Dana Carroll. Proc Natl Acad Sci U S A 2018; 115:9331-9333. [DOI: 10.1073/pnas.1813829115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Agarwal A, Yadava P, Kumar K, Singh I, Kaul T, Pattanayak A, Agrawal PK. Insights into maize genome editing via CRISPR/Cas9. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24. [PMID: 29515313 PMCID: PMC5834987 DOI: 10.1007/s12298-017-0502-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Maize is an important crop for billions of people as food, feed, and industrial raw material. It is a prime driver of the global agricultural economy as well as the livelihoods of millions of farmers. Genetic interventions, such as breeding, hybridization and transgenesis have led to increased productivity of this crop in the last 100 years. The technique of genome editing is the latest advancement in genetics. Genome editing can be used for targeted deletions, additions, and corrections in the genome, all aimed at genetic enhancement of crops. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) system is a recent genome editing technique that is considered simple, precise, robust and the most revolutionary. This review summarizes the current state of the art and predicts future directions in the use of the CRISPR/Cas9 tool in maize crop improvement.
Collapse
Affiliation(s)
- Astha Agarwal
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012 India
| | - Pranjal Yadava
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012 India
- Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305 USA
| | - Krishan Kumar
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012 India
| | - Ishwar Singh
- Indian Council of Agricultural Research- Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012 India
| | - Tanushri Kaul
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Arunava Pattanayak
- Indian Council of Agricultural Research- Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand 263601 India
| | - Pawan Kumar Agrawal
- National Agricultural Science Fund, Indian Council of Agricultural Research, Krishi Anusandhan Bhavan I, Pusa, New Delhi, 110012 India
| |
Collapse
|
8
|
Luo W, Galvan DL, Woodard LE, Dorset D, Levy S, Wilson MH. Comparative analysis of chimeric ZFP-, TALE- and Cas9-piggyBac transposases for integration into a single locus in human cells. Nucleic Acids Res 2017; 45:8411-8422. [PMID: 28666380 PMCID: PMC5737283 DOI: 10.1093/nar/gkx572] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/22/2017] [Indexed: 01/02/2023] Open
Abstract
Integrating DNA delivery systems hold promise for many applications including treatment of diseases; however, targeted integration is needed for improved safety. The piggyBac (PB) transposon system is a highly active non-viral gene delivery system capable of integrating defined DNA segments into host chromosomes without requiring homologous recombination. We systematically compared four different engineered zinc finger proteins (ZFP), four transcription activator-like effector proteins (TALE), CRISPR associated protein 9 (SpCas9) and the catalytically inactive dSpCas9 protein fused to the amino-terminus of the transposase enzyme designed to target the hypoxanthine phosphoribosyltransferase (HPRT) gene located on human chromosome X. Chimeric transposases were evaluated for expression, transposition activity, chromatin immunoprecipitation at the target loci, and targeted knockout of the HPRT gene in human cells. One ZFP-PB and one TALE-PB chimera demonstrated notable HPRT gene targeting. In contrast, Cas9/dCas9-PB chimeras did not result in gene targeting. Instead, the HPRT locus appeared to be protected from transposon integration. Supplied separately, PB permitted highly efficient isolation of Cas9-mediated knockout of HPRT, with zero transposon integrations in HPRT by deep sequencing. In summary, these tools may allow isolation of 'targeted-only' cells, be utilized to protect a genomic locus from transposon integration, and enrich for Cas9-mutated cells.
Collapse
Affiliation(s)
- Wentian Luo
- Department of Veterans Affairs, Nashville, TN 37212 USA and Department of Medicine, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel L Galvan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E Woodard
- Department of Veterans Affairs, Nashville, TN 37212 USA and Department of Medicine, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dan Dorset
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Matthew H Wilson
- Department of Veterans Affairs, Nashville, TN 37212 USA and Department of Medicine, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Ren X, Holsteens K, Li H, Sun J, Zhang Y, Liu LP, Liu Q, Ni JQ. Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. SCIENCE CHINA-LIFE SCIENCES 2017; 60:476-489. [PMID: 28527116 DOI: 10.1007/s11427-017-9029-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/05/2017] [Indexed: 12/16/2022]
Abstract
Nowadays, genome editing tools are indispensable for studying gene function in order to increase our knowledge of biochemical processes and disease mechanisms. The extensive availability of mutagenesis and transgenesis tools make Drosophila melanogaster an excellent model organism for geneticists. Early mutagenesis tools relied on chemical or physical methods, ethyl methane sulfonate (EMS) and X-rays respectively, to randomly alter DNA at a nucleotide or chromosomal level. Since the discovery of transposable elements and the availability of the complete fly genome, specific genome editing tools, such as P-elements, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have undergone rapid development. Currently, one of the leading and most effective contemporary tools is the CRISPR-cas9 system made popular because of its low cost, effectiveness, specificity and simplicity of use. This review briefly addresses the most commonly used mutagenesis and transgenesis tools in Drosophila, followed by an in-depth review of the multipurpose CRISPR-Cas9 system and its current applications.
Collapse
Affiliation(s)
- Xingjie Ren
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kristof Holsteens
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Haiyi Li
- French International School of Hong Kong, Hong Kong SAR, 999000, China
| | - Jin Sun
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yifan Zhang
- Department of Biology, University of California, San Diego, 92093, USA
| | - Lu-Ping Liu
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Wolfs JM, Hamilton TA, Lant JT, Laforet M, Zhang J, Salemi LM, Gloor GB, Schild-Poulter C, Edgell DR. Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease. Proc Natl Acad Sci U S A 2016; 113:14988-14993. [PMID: 27956611 PMCID: PMC5206545 DOI: 10.1073/pnas.1616343114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.
Collapse
Affiliation(s)
- Jason M Wolfs
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Thomas A Hamilton
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Jeremy T Lant
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Marcon Laforet
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Jenny Zhang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Louisa M Salemi
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - Gregory B Gloor
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Caroline Schild-Poulter
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada;
| |
Collapse
|
11
|
Sen A, Cox RT. Fly Models of Human Diseases: Drosophila as a Model for Understanding Human Mitochondrial Mutations and Disease. Curr Top Dev Biol 2016; 121:1-27. [PMID: 28057297 DOI: 10.1016/bs.ctdb.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are a prevalent, heterogeneous class of diseases caused by defects in oxidative phosphorylation, whose severity depends upon particular genetic mutations. These diseases can be difficult to diagnose, and current therapeutics have limited efficacy, primarily treating only symptoms. Because mitochondria play a pivotal role in numerous cellular functions, especially ATP production, their diminished activity has dramatic physiological consequences. While this in and of itself makes treating mitochondrial disease complex, these organelles contain their own DNA, mtDNA, whose products are required for ATP production, in addition to the hundreds of nucleus-encoded proteins. Drosophila offers a tractable whole-animal model to understand the mechanisms underlying loss of mitochondrial function, the subsequent cellular and tissue damage that results, and how these organelles are inherited. Human and Drosophila mtDNAs encode the same set of products, and the homologous nucleus-encoded genes required for mitochondrial function are conserved. In addition, Drosophila contain sufficiently complex organ systems to effectively recapitulate many basic symptoms of mitochondrial diseases, yet are relatively easy and fast to genetically manipulate. There are several Drosophila models for specific mitochondrial diseases, which have been recently reviewed (Foriel, Willems, Smeitink, Schenck, & Beyrath, 2015). In this review, we highlight the conservation between human and Drosophila mtDNA, the present and future techniques for creating mtDNA mutations for further study, and how Drosophila has contributed to our current understanding of mitochondrial inheritance.
Collapse
Affiliation(s)
- A Sen
- Uniformed Services University, Bethesda, MD, United States
| | - R T Cox
- Uniformed Services University, Bethesda, MD, United States.
| |
Collapse
|
12
|
Tesson L, Remy S, Ménoret S, Usal C, Thinard R, Savignard C, De Cian A, Giovannangeli C, Concordet JP, Anegon I. Genome Editing in Rats Using TALE Nucleases. Methods Mol Biol 2016; 1338:245-59. [PMID: 26443226 DOI: 10.1007/978-1-4939-2932-0_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rat is an important animal model to understand gene function and model human diseases. Since recent years, the development of gene-specific nucleases has become important for generating new rat models of human diseases, to analyze the role of genes and to generate human antibodies. Transcription activator-like (TALE) nucleases efficiently create gene-specific knockout rats and lead to the possibility of gene targeting by homology-directed recombination (HDR) and generating knock-in rats. We describe a detailed protocol for generating knockout and knock-in rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.
Collapse
Affiliation(s)
- Laurent Tesson
- Transgenic Rats Nantes IBiSA - Centre National de Recherche Scientifique, 44093, Nantes, France. .,ITUN, CHU Nantes, 30 Bvd J. Monnet, 44093, Nantes, France. .,INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France.
| | - Séverine Remy
- Transgenic Rats Nantes IBiSA - Centre National de Recherche Scientifique, 44093, Nantes, France.,ITUN, CHU Nantes, 30 Bvd J. Monnet, 44093, Nantes, France.,INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - Séverine Ménoret
- Transgenic Rats Nantes IBiSA - Centre National de Recherche Scientifique, 44093, Nantes, France.,ITUN, CHU Nantes, 30 Bvd J. Monnet, 44093, Nantes, France.,INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - Claire Usal
- Transgenic Rats Nantes IBiSA - Centre National de Recherche Scientifique, 44093, Nantes, France.,ITUN, CHU Nantes, 30 Bvd J. Monnet, 44093, Nantes, France.,INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - Reynald Thinard
- Transgenic Rats Nantes IBiSA - Centre National de Recherche Scientifique, 44093, Nantes, France.,ITUN, CHU Nantes, 30 Bvd J. Monnet, 44093, Nantes, France.,INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - Chloé Savignard
- Transgenic Rats Nantes IBiSA - Centre National de Recherche Scientifique, 44093, Nantes, France.,ITUN, CHU Nantes, 30 Bvd J. Monnet, 44093, Nantes, France.,INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Carine Giovannangeli
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Ignacio Anegon
- Transgenic Rats Nantes IBiSA - Centre National de Recherche Scientifique, 44093, Nantes, France.,ITUN, CHU Nantes, 30 Bvd J. Monnet, 44093, Nantes, France.,INSERM UMR 1064, Center for Research in Transplantation and Immunology, Nantes, France
| |
Collapse
|
13
|
Zhu LY, Qiu XY, Zhu LY, Wu XM, Zhang Y, Zhu QH, Fan DY, Zhu CS, Zhang DY. Spatial organization of heterologous metabolic system in vivo based on TALE. Sci Rep 2016; 6:26065. [PMID: 27184291 PMCID: PMC4869064 DOI: 10.1038/srep26065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/26/2016] [Indexed: 11/09/2022] Open
Abstract
For years, prokaryotic hosts have been widely applied in bio-engineering. However, the confined in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. We developed a new method to accelerate a heterologous metabolic system by integrating a transcription activator-like effector (TALE)-based scaffold system into an Escherichia coli chassis. The binding abilities of the TALEs to the artificial DNA scaffold were measured through ChIP-PCR. The effect of the system was determined through a split GFP study and validated through the heterologous production of indole-3-acetic acid (IAA) by incorporating TALE-fused IAA biosynthetic enzymes in E. coli. To the best of our knowledge, we are the first to use the TALE system as a scaffold for the spatial organization of bacterial metabolism. This technique might be used to establish multi-enzymatic reaction programs in a prokaryotic chassis for various applications.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Xin-Yuan Qiu
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Ling-Yun Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Xiao-Min Wu
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Yuan Zhang
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Qian-Hui Zhu
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Dong-Yu Fan
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Chu-Shu Zhu
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| | - Dong-Yi Zhang
- College of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China
| |
Collapse
|
14
|
Groen SC, Whiteman NK. Using Drosophila to study the evolution of herbivory and diet specialization. CURRENT OPINION IN INSECT SCIENCE 2016; 14:66-72. [PMID: 27436649 DOI: 10.1016/j.cois.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 06/06/2023]
Abstract
Herbivory evolved many times independently across the insect phylogeny, and its evolution is linked with increased rates of diversification. Plants present many barriers to potential herbivores, among them are the so-called secondary chemicals and other molecular defenses such as protease inhibitors that deter herbivores. To understand the mechanisms behind the emergence of herbivory and subsequent species radiations of insects driven largely by diet specialization, it is important to identify the molecular basis associated with these evolutionary transitions. However, most herbivore species lack the genomic information and genetic tools required to identify functionally important genes. The notable exception is the genus Drosophila in which herbivory evolved at least three times independently, and for which abundant genomic data are available. Furthermore, contained within the family Drosophilidae is Drosophila melanogaster, the first genetic model animal. Here, we provide a synthesis of the salient tools that the D. melanogaster system provides to identify functionally important genes required for herbivory and subsequent diet specialization across insects.
Collapse
Affiliation(s)
- Simon C Groen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States
| | - Noah K Whiteman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
15
|
Watanabe K, Breier U, Hensel G, Kumlehn J, Schubert I, Reiss B. Stable gene replacement in barley by targeted double-strand break induction. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1433-45. [PMID: 26712824 PMCID: PMC4762383 DOI: 10.1093/jxb/erv537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley.
Collapse
Affiliation(s)
- Koichi Watanabe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Stadt Seeland, Germany
| | - Ulrike Breier
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Cologne, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Stadt Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Stadt Seeland, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Stadt Seeland, Germany Faculty of Science and Central European Institute of Technology, Masaryk University, 61137 Brno, Czech Republic
| | - Bernd Reiss
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829 Cologne, Germany
| |
Collapse
|
16
|
Renaud JB, Boix C, Charpentier M, De Cian A, Cochennec J, Duvernois-Berthet E, Perrouault L, Tesson L, Edouard J, Thinard R, Cherifi Y, Menoret S, Fontanière S, de Crozé N, Fraichard A, Sohm F, Anegon I, Concordet JP, Giovannangeli C. Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPR-Cas9 Nucleases. Cell Rep 2016; 14:2263-2272. [PMID: 26923600 DOI: 10.1016/j.celrep.2016.02.018] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/16/2015] [Accepted: 01/28/2016] [Indexed: 01/08/2023] Open
Abstract
Genome editing has now been reported in many systems using TALEN and CRISPR-Cas9 nucleases. Precise mutations can be introduced during homology-directed repair with donor DNA carrying the wanted sequence edit, but efficiency is usually lower than for gene knockout and optimal strategies have not been extensively investigated. Here, we show that using phosphorothioate-modified oligonucleotides strongly enhances genome editing efficiency of single-stranded oligonucleotide donors in cultured cells. In addition, it provides better design flexibility, allowing insertions more than 100 bp long. Despite previous reports of phosphorothioate-modified oligonucleotide toxicity, clones of edited cells are readily isolated and targeted sequence insertions are achieved in rats and mice with very high frequency, allowing for homozygous loxP site insertion at the mouse ROSA locus in particular. Finally, when detected, imprecise knockin events exhibit indels that are asymmetrically positioned, consistent with genome editing taking place by two steps of single-strand annealing.
Collapse
Affiliation(s)
- Jean-Baptiste Renaud
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Charlotte Boix
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Marine Charpentier
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Julien Cochennec
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | | | - Loïc Perrouault
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France
| | - Laurent Tesson
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | - Joanne Edouard
- Amagen, CNRS UMS 3504, INRA UMS 1374, Institut de Neurobiologie A. Fessard, Gif-sur-Yvette 91198, France
| | - Reynald Thinard
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | | | - Séverine Menoret
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | | | - Noémie de Crozé
- Amagen, CNRS UMS 3504, INRA UMS 1374, Institut de Neurobiologie A. Fessard, Gif-sur-Yvette 91198, France
| | | | - Frédéric Sohm
- Amagen, CNRS UMS 3504, INRA UMS 1374, Institut de Neurobiologie A. Fessard, Gif-sur-Yvette 91198, France
| | - Ignacio Anegon
- INSERM U1064, CHU de Nantes, Nantes 44093, France; Platform Rat Transgenesis Immunophenomic, CNRS UMS3556, Nantes 44093, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France.
| | - Carine Giovannangeli
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris 75005, France.
| |
Collapse
|
17
|
Abstract
The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed.
Collapse
Affiliation(s)
- David G Ousterout
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC, 27708-0281, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
18
|
Chandrasegaran S, Carroll D. Origins of Programmable Nucleases for Genome Engineering. J Mol Biol 2015; 428:963-89. [PMID: 26506267 DOI: 10.1016/j.jmb.2015.10.014] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
Genome engineering with programmable nucleases depends on cellular responses to a targeted double-strand break (DSB). The first truly targetable reagents were the zinc finger nucleases (ZFNs) showing that arbitrary DNA sequences could be addressed for cleavage by protein engineering, ushering in the breakthrough in genome manipulation. ZFNs resulted from basic research on zinc finger proteins and the FokI restriction enzyme (which revealed a bipartite structure with a separable DNA-binding domain and a non-specific cleavage domain). Studies on the mechanism of cleavage by 3-finger ZFNs established that the preferred substrates were paired binding sites, which doubled the size of the target sequence recognition from 9 to 18bp, long enough to specify a unique genomic locus in plant and mammalian cells. Soon afterwards, a ZFN-induced DSB was shown to stimulate homologous recombination in cells. Transcription activator-like effector nucleases (TALENs) that are based on bacterial TALEs fused to the FokI cleavage domain expanded this capability. The fact that ZFNs and TALENs have been used for genome modification of more than 40 different organisms and cell types attests to the success of protein engineering. The most recent technology platform for delivering a targeted DSB to cellular genomes is that of the RNA-guided nucleases, which are based on the naturally occurring Type II prokaryotic CRISPR-Cas9 system. Unlike ZFNs and TALENs that use protein motifs for DNA sequence recognition, CRISPR-Cas9 depends on RNA-DNA recognition. The advantages of the CRISPR-Cas9 system-the ease of RNA design for new targets and the dependence on a single, constant Cas9 protein-have led to its wide adoption by research laboratories around the world. These technology platforms have equipped scientists with an unprecedented ability to modify cells and organisms almost at will, with wide-ranging implications across biology and medicine. However, these nucleases have also been shown to cut at off-target sites with mutagenic consequences. Therefore, issues such as efficacy, specificity and delivery are likely to drive selection of reagents for particular purposes. Human therapeutic applications of these technologies will ultimately depend on risk versus benefit analysis and informed consent.
Collapse
Affiliation(s)
- Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
19
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|
20
|
Strong CL, Guerra HP, Mathew KR, Roy N, Simpson LR, Schiller MR. Damaging the Integrated HIV Proviral DNA with TALENs. PLoS One 2015; 10:e0125652. [PMID: 25946221 PMCID: PMC4422436 DOI: 10.1371/journal.pone.0125652] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs) to target a highly conserved sequence in the transactivation response element (TAR) of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.
Collapse
Affiliation(s)
- Christy L. Strong
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Horacio P. Guerra
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Kiran R. Mathew
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Nervik Roy
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Lacy R. Simpson
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kistler KE, Vosshall LB, Matthews BJ. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep 2015; 11:51-60. [PMID: 25818303 DOI: 10.1016/j.celrep.2015.03.009] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/21/2015] [Accepted: 02/27/2015] [Indexed: 01/15/2023] Open
Abstract
The mosquito Aedes aegypti is a potent vector of the chikungunya, yellow fever, and dengue viruses, responsible for hundreds of millions of infections and over 50,000 human deaths per year. Mutagenesis in Ae. aegypti has been established with TALENs, ZFNs, and homing endonucleases, which require the engineering of DNA-binding protein domains to provide genomic target sequence specificity. Here, we describe the use of the CRISPR-Cas9 system to generate site-specific mutations in Ae. aegypti. This system relies on RNA-DNA base-pairing to generate targeting specificity, resulting in efficient and flexible genome-editing reagents. We investigate the efficiency of injection mix compositions, demonstrate the ability of CRISPR-Cas9 to generate different types of mutations via disparate repair mechanisms, and report stable germline mutations in several genomic loci. This work offers a detailed exploration into the use of CRISPR-Cas9 in Ae. aegypti that should be applicable to non-model organisms previously out of reach of genetic modification.
Collapse
Affiliation(s)
- Kathryn E Kistler
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA
| | - Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
22
|
Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti. Proc Natl Acad Sci U S A 2015; 112:4038-43. [PMID: 25775608 DOI: 10.1073/pnas.1502370112] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Conventional control strategies for mosquito-borne pathogens such as malaria and dengue are now being complemented by the development of transgenic mosquito strains reprogrammed to generate beneficial phenotypes such as conditional sterility or pathogen resistance. The widespread success of site-specific nucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in model organisms also suggests that reprogrammable gene drive systems based on these nucleases may be capable of spreading such beneficial phenotypes in wild mosquito populations. Using the mosquito Aedes aegypti, we determined that mutations in the FokI domain used in TALENs to generate obligate heterodimeric complexes substantially and significantly reduce gene editing rates. We found that CRISPR/Cas9-based editing in the mosquito Ae. aegypti is also highly variable, with the majority of guide RNAs unable to generate detectable editing. By first evaluating candidate guide RNAs using a transient embryo assay, we were able to rapidly identify highly effective guide RNAs; focusing germ line-based experiments only on this cohort resulted in consistently high editing rates of 24-90%. Microinjection of double-stranded RNAs targeting ku70 or lig4, both essential components of the end-joining response, increased recombination-based repair in early embryos as determined by plasmid-based reporters. RNAi-based suppression of Ku70 concurrent with embryonic microinjection of site-specific nucleases yielded consistent gene insertion frequencies of 2-3%, similar to traditional transposon- or ΦC31-based integration methods but without the requirement for an initial docking step. These studies should greatly accelerate investigations into mosquito biology, streamline development of transgenic strains for field releases, and simplify the evaluation of novel Cas9-based gene drive systems.
Collapse
|
23
|
Richard GF. Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy? Trends Genet 2015; 31:177-86. [PMID: 25743488 DOI: 10.1016/j.tig.2015.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
Abstract
Trinucleotide repeat expansions are involved in more than two dozen neurological and developmental disorders. Conventional therapeutic approaches aimed at regulating the expression level of affected genes, which rely on drugs, oligonucleotides, and/or transgenes, have met with only limited success so far. An alternative approach is to shorten repeats to non-pathological lengths using highly specific nucleases. Here, I review early experiments using meganucleases, zinc-finger nucleases (ZFN), and transcription-activator like effector nucleases (TALENs) to contract trinucleotide repeats, and discuss the possibility of using CRISPR-Cas nucleases to the same end. Although this is a nascent field, I explore the possibility of designing nucleases and effectively delivering them in the context of gene therapy.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Department Genomes and Genetics, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3525, 25 Rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
24
|
Lee HB, Sebo ZL, Peng Y, Guo Y. An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster. CELLULAR LOGISTICS 2015. [PMID: 26196022 PMCID: PMC4501208 DOI: 10.1080/21592799.2015.1023423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription activator-like effector nucleases (TALENs) emerged as powerful tools for locus-specific genome engineering. Due to the ease of TALEN assembly, the key to streamlining TALEN-induced mutagenesis lies in identifying efficient TALEN pairs and optimizing TALEN mRNA injection concentrations to minimize the effort to screen for mutant offspring. Here we present a simple methodology to quantitatively assess bi-allelic TALEN cutting, as well as approaches that permit accurate measures of somatic and germline mutation rates in Drosophila melanogaster. We report that percent lethality from pilot injection of candidate TALEN mRNAs into Lig4 null embryos can be used to effectively gauge bi-allelic TALEN cutting efficiency and occurs in a dose-dependent manner. This timely Lig4-dependent embryonic survival assay also applies to CRISPR/Cas9-mediated targeting. Moreover, the somatic mutation rate of individual G0 flies can be rapidly quantitated using SURVEYOR nuclease and capillary electrophoresis, and germline transmission rate determined by scoring progeny of G0 outcrosses. Together, these optimized methods provide an effective step-wise guide for routine TALEN-mediated gene editing in the fly.
Collapse
Key Words
- TALEN
- TALENs, Transcription activator-like effector nucleases; TALEs, TAL effectors; ZFNs, Zinc Finger Nucleases; CRISPR, Clustered Regularly Interspersed Short Palindromic Repeats; Cas9, CRISPR-associated; RVDs, repeat-variable diresidues; DSBs, double-stranded breaks; NHEJ, non-homologous end joining; HR, homologous recombination; RFLP, restriction fragment length polymorphism; HRMA, high resolution melt analysis.
- engineered endonuclease
- genome engineering
- mutagenesis
- screening
Collapse
Affiliation(s)
- Han B Lee
- Graduate Program in Neurobiology of Disease; Mayo Graduate School; Mayo Clinic ; Rochester, MN, USA
| | | | - Ying Peng
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA
| | - Yi Guo
- Department of Biochemistry and Molecular Biology; Mayo Clinic ; Rochester, MN, USA ; Division of Gastroenterology and Hepatology; Mayo Clinic ; Rochester, MN, USA
| |
Collapse
|
25
|
Abstract
The tools for genome engineering have become very powerful and accessible over the last several years. CRISPR/Cas nucleases, TALENs and ZFNs can all be designed to produce highly specific double-strand breaks in chromosomal DNA. These breaks are processed by cellular DNA repair machinery leading to localized mutations and to intentional sequence replacements. Because these repair processes are common to essentially all organisms, the targetable nucleases have been applied successfully to a wide range of animals, plants, and cultured cells. In each case, the mode of delivery of the nuclease, the efficiency of cleavage and the repair outcome depend on the biology of the particular system being addressed. These reagents are being used to introduce favorable characteristics into organisms of economic significance, and the prospects for enhancing human gene therapy appear very bright.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, School of Medicine, University of Utah, Emma Eccles Jones Medical Research Building, Rm 4520, 15N. Medical Drive East, Salt Lake City, UT, 84112-5650, USA,
| |
Collapse
|
26
|
Gilles AF, Averof M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 2014; 5:43. [PMID: 25699168 PMCID: PMC4332929 DOI: 10.1186/2041-9139-5-43] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/03/2014] [Indexed: 12/26/2022] Open
Abstract
Developmental biology, as all experimental science, is empowered by technological advances. The availability of genetic tools in some species - designated as model organisms - has driven their use as major platforms for understanding development, physiology and behavior. Extending these tools to a wider range of species determines whether (and how) we can experimentally approach developmental diversity and evolution. During the last two decades, comparative developmental biology (evo-devo) was marked by the introduction of gene knockdown and deep sequencing technologies that are applicable to a wide range of species. These approaches allowed us to test the developmental role of specific genes in diverse species, to study biological processes that are not accessible in established models and, in some cases, to conduct genome-wide screens that overcome the limitations of the candidate gene approach. The recent discovery of CRISPR/Cas as a means of precise alterations into the genome promises to revolutionize developmental genetics. In this review we describe the development of gene editing tools, from zinc-finger nucleases to TALENs and CRISPR, and examine their application in gene targeting, their limitations and the opportunities they present for evo-devo. We outline their use in gene knock-out and knock-in approaches, and in manipulating gene functions by directing molecular effectors to specific sites in the genome. The ease-of-use and efficiency of CRISPR in diverse species provide an opportunity to close the technology gap that exists between established model organisms and emerging genetically-tractable species.
Collapse
Affiliation(s)
- Anna F Gilles
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; BMIC graduate programme and Université Claude Bernard - Lyon 1, Lyon, France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; Centre National de la Recherche Scientifique (CNRS), Lyon, France
| |
Collapse
|
27
|
Abstract
Recent advances in the targeted modification of complex eukaryotic genomes have unlocked a new era of genome engineering. From the pioneering work using zinc-finger nucleases (ZFNs), to the advent of the versatile and specific TALEN systems, and most recently the highly accessible CRISPR/Cas9 systems, we now possess an unprecedented ability to analyze developmental processes using sophisticated designer genetic tools. In this Review, we summarize the common approaches and applications of these still-evolving tools as they are being used in the most popular model developmental systems. Excitingly, these robust and simple genomic engineering tools also promise to revolutionize developmental studies using less well established experimental organisms.
Collapse
Affiliation(s)
- Ying Peng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA Mayo Addiction Research Center, Mayo Clinic, Rochester, MN 55905, USA Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Jarryd M Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA Mayo Addiction Research Center, Mayo Clinic, Rochester, MN 55905, USA Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Magdalena R Panetta
- InSciEd Out and Mayo High School, Rochester Art Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Yi Guo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA Mayo Addiction Research Center, Mayo Clinic, Rochester, MN 55905, USA Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA InSciEd Out and Mayo High School, Rochester Art Center, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
28
|
A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:2409-18. [PMID: 25324299 PMCID: PMC4267936 DOI: 10.1534/g3.114.013979] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) technologies promises a quantum leap in genome engineering of model organisms. However, CRISPR-mediated gene targeting reports in Drosophila melanogaster are still restricted to a few genes, use variable experimental conditions, and vary in efficiency, questioning the universal applicability of the method. Here, we developed an efficient two-step strategy to flexibly engineer the fly genome by combining CRISPR with recombinase-mediated cassette exchange (RMCE). In the first step, two sgRNAs, whose activity had been tested in cell culture, were co-injected together with a donor plasmid into transgenic Act5C-Cas9, Ligase4 mutant embryos and the homologous integration events were identified by eye fluorescence. In the second step, the eye marker was replaced with DNA sequences of choice using RMCE enabling flexible gene modification. We applied this strategy to engineer four different locations in the genome, including a gene on the fourth chromosome, at comparably high efficiencies. Our data suggest that any fly laboratory can engineer their favorite gene for a broad range of applications within approximately 3 months.
Collapse
|
29
|
Lin SC, Chang YY, Chan CC. Strategies for gene disruption in Drosophila. Cell Biosci 2014; 4:63. [PMID: 25364499 PMCID: PMC4216337 DOI: 10.1186/2045-3701-4-63] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/29/2014] [Indexed: 12/26/2022] Open
Abstract
Drosophila melanogaster has been a classic model organism for the studies of genetics. More than 15,000 Drosophila genes have been annotated since the entire genome was sequenced; however, many of them still lack functional characterization. Various gene-manipulating approaches in Drosophila have been developed for the function analysis of genes. Here, we summarize some representative strategies utilized for Drosophila gene targeting, from the unbiased ethyl methanesulfonate (EMS) mutagenesis and transposable element insertion, to insertional/replacement homologous recombination and site-specific nucleases such as the zinc-finger nuclease (ZFN), the transcription activator-like effector nuclease (TALEN) and the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system. Specifically, we evaluate the pros and cons of each technique in a historical perspective. This review discuss important factors that should be taken into consideration for the selection of a strategy that best fits the specific needs of a gene knockout project.
Collapse
Affiliation(s)
- Shih-Ching Lin
- Graduate Institute of Physiology, National Taiwan University, No.1, Sec. 1, Jen-Ai Rd., Zhongzheng Dist, Taipei, 100 Taiwan
| | - Yu-Yun Chang
- Graduate Institute of Molecular Medicine, National Taiwan University, No.1, Sec. 1, Jen-Ai Rd., Zhongzheng Dist, Taipei, 100 Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, No.1, Sec. 1, Jen-Ai Rd., Zhongzheng Dist, Taipei, 100 Taiwan ; Graduate Institute of Brain and Mind Sciences, National Taiwan University, No.1, Sec. 1, Jen-Ai Rd., Zhongzheng Dist, Taipei, 100 Taiwan
| |
Collapse
|
30
|
Carroll D, Beumer KJ. Genome engineering with TALENs and ZFNs: repair pathways and donor design. Methods 2014; 69:137-41. [PMID: 24704173 PMCID: PMC4175112 DOI: 10.1016/j.ymeth.2014.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/05/2014] [Accepted: 03/24/2014] [Indexed: 01/19/2023] Open
Abstract
Genome engineering with targetable nucleases depends on cellular pathways of DNA repair after target cleavage. Knowledge of how those pathways work, their requirements and their active factors, can guide experimental design and improve outcomes. While many aspects of both homologous recombination (HR) and nonhomologous end joining (NHEJ) are shared by a broad range of cells and organisms, some features are specific to individual situations. This article reviews the influence of repair mechanisms on the results of gene targeting experiments, with an emphasis on lessons learned from experiments with Drosophila.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA.
| | - Kelly J Beumer
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| |
Collapse
|
31
|
Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E2967-76. [PMID: 25002478 DOI: 10.1073/pnas.1405500111] [Citation(s) in RCA: 708] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system has emerged recently as a powerful method to manipulate the genomes of various organisms. Here, we report a toolbox for high-efficiency genome engineering of Drosophila melanogaster consisting of transgenic Cas9 lines and versatile guide RNA (gRNA) expression plasmids. Systematic evaluation reveals Cas9 lines with ubiquitous or germ-line-restricted patterns of activity. We also demonstrate differential activity of the same gRNA expressed from different U6 snRNA promoters, with the previously untested U6:3 promoter giving the most potent effect. An appropriate combination of Cas9 and gRNA allows targeting of essential and nonessential genes with transmission rates ranging from 25-100%. We also demonstrate that our optimized CRISPR/Cas tools can be used for offset nicking-based mutagenesis. Furthermore, in combination with oligonucleotide or long double-stranded donor templates, our reagents allow precise genome editing by homology-directed repair with rates that make selection markers unnecessary. Last, we demonstrate a novel application of CRISPR/Cas-mediated technology in revealing loss-of-function phenotypes in somatic cells following efficient biallelic targeting by Cas9 expressed in a ubiquitous or tissue-restricted manner. Our CRISPR/Cas tools will facilitate the rapid evaluation of mutant phenotypes of specific genes and the precise modification of the genome with single-nucleotide precision. Our results also pave the way for high-throughput genetic screening with CRISPR/Cas.
Collapse
|
32
|
RNA-guided nucleases: a new era for engineering the genomes of model and nonmodel organisms. Genetics 2014; 195:303-8. [PMID: 24089463 DOI: 10.1534/genetics.113.155093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Lozano-Juste J, Cutler SR. Plant genome engineering in full bloom. TRENDS IN PLANT SCIENCE 2014; 19:284-7. [PMID: 24674878 DOI: 10.1016/j.tplants.2014.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 05/19/2023]
Abstract
The recent development of tools for precise editing of user-specified sequences is rapidly changing the landscape for plant genetics and biotechnology. It is now possible to target mutations and regulatory proteins to specific sites in a genome using zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), or the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Here we provide an update of recent developments in CRISPR/Cas9 technology and highlight online resources that will help biologists adopt new genome-editing tools.
Collapse
Affiliation(s)
- Jorge Lozano-Juste
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA; Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Sean R Cutler
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA; Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA; Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
34
|
Liu J, Chen Y, Jiao R. TALEN-mediated Drosophila genome editing: protocols and applications. Methods 2014; 69:22-31. [PMID: 24751823 DOI: 10.1016/j.ymeth.2014.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022] Open
Abstract
TALEs (transcription activator-like effectors) are a family of natural transcriptional activators originally isolated from the plant pathogen of Xanthomonas spp. The DNA binding motif of TALEs can be re-designed in such way that they bind specific DNA sequences other than their original targets. Fusion of customized TALEs with an endonuclease, Fok I, generates artificial enzymes that are targeted to specific DNA sites for cutting, allowing gene specific modification of both animal and plant genomes. Previously, we reported the use of TALEN (transcription activator-like effector nuclease) for the highly specific and efficient modification of the two Drosophila loci yellow and CG9797. Here, we describe a detailed protocol for TALEN-mediated genomic modification in Drosophila, with the aim of providing a practical bench guide for the Drosophila research community.
Collapse
Affiliation(s)
- Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, China; Sino-French Hoffmann Institute, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou 510182, China
| | - Yixu Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, China
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, China; Sino-French Hoffmann Institute, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou 510182, China.
| |
Collapse
|
35
|
Richard GF, Viterbo D, Khanna V, Mosbach V, Castelain L, Dujon B. Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS One 2014; 9:e95611. [PMID: 24748175 PMCID: PMC3991675 DOI: 10.1371/journal.pone.0095611] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/28/2014] [Indexed: 12/22/2022] Open
Abstract
Trinucleotide repeat expansions are responsible for more than two dozens severe neurological disorders in humans. A double-strand break between two short CAG/CTG trinucleotide repeats was formerly shown to induce a high frequency of repeat contractions in yeast. Here, using a dedicated TALEN, we show that induction of a double-strand break into a CAG/CTG trinucleotide repeat in heterozygous yeast diploid cells results in gene conversion of the repeat tract with near 100% efficacy, deleting the repeat tract. Induction of the same TALEN in homozygous yeast diploids leads to contractions of both repeats to a final length of 3–13 triplets, with 100% efficacy in cells that survived the double-strand breaks. Whole-genome sequencing of surviving yeast cells shows that the TALEN does not increase mutation rate. No other CAG/CTG repeat of the yeast genome showed any length alteration or mutation. No large genomic rearrangement such as aneuploidy, segmental duplication or translocation was detected. It is the first demonstration that induction of a TALEN in an eukaryotic cell leads to shortening of trinucleotide repeat tracts to lengths below pathological thresholds in humans, with 100% efficacy and very high specificity.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
- * E-mail:
| | - David Viterbo
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Varun Khanna
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Valentine Mosbach
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Lauriane Castelain
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, Paris, France
- Sorbonne Universités, UPMC Univ Paris 6, IFD, Paris, France
- CNRS, UMR3525, Paris, France
| |
Collapse
|
36
|
Fichtner F, Urrea Castellanos R, Ülker B. Precision genetic modifications: a new era in molecular biology and crop improvement. PLANTA 2014; 239:921-39. [PMID: 24510124 DOI: 10.1007/s00425-014-2029-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/06/2014] [Indexed: 05/26/2023]
Abstract
Recently, the use of programmable DNA-binding proteins such as ZFP/ZFNs, TALE/TALENs and CRISPR/Cas has produced unprecedented advances in gene targeting and genome editing in prokaryotes and eukaryotes. These advances allow researchers to specifically alter genes, reprogram epigenetic marks, generate site-specific deletions and potentially cure diseases. Unlike previous methods, these precision genetic modification techniques (PGMs) are specific, efficient, easy to use and economical. Here we discuss the capabilities and pitfalls of PGMs and highlight the recent, exciting applications of PGMs in molecular biology and crop genetic engineering. Further improvement of the efficiency and precision of PGM techniques will enable researchers to precisely alter gene expression and biological/chemical pathways, probe gene function, modify epigenetic marks and improve crops by increasing yield, quality and tolerance to limiting biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Franziska Fichtner
- Plant Molecular Engineering Group, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | | | | |
Collapse
|
37
|
Zhang X, Ferreira IRS, Schnorrer F. A simple TALEN-based protocol for efficient genome-editing in Drosophila. Methods 2014; 69:32-7. [PMID: 24680697 DOI: 10.1016/j.ymeth.2014.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/22/2023] Open
Abstract
Drosophila is a well-established genetic model organism: thousands of point mutations, deficiencies or transposon insertions are available from stock centres. However, to date, it is still difficult to modify a specific gene locus in a defined manner. A potential solution is the application of transcription activator-like effector nucleases (TALENs), which have been used successfully to mutate genes in various model organisms. TALENs are constructed by fusion of TALE proteins to the endonuclease FokI, resulting in artificial, sequence-specific endonucleases. They induce double strand breaks, which are either repaired by error-prone non-homologous end joining (NHEJ) or homology directed repair (HDR). We developed a simple TALEN-based protocol to mutate any gene of interest in Drosophila within approximately 2 months. We inject mRNA coding for two TALEN pairs targeting the same gene into embryos, employ T7 endonuclease I screening of pooled F1 flies to identify mutations and generate a stable mutant stock in the F3 generation. We illustrate the efficacy of our strategy by mutating CG11617, a previously uncharacterized putative transcription factor with an unknown function in Drosophila. This demonstrates that TALENs are a reliable and efficient strategy to mutate any gene of interest in Drosophila.
Collapse
Affiliation(s)
- Xu Zhang
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Irene R S Ferreira
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
38
|
Abstract
Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, "meta" information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally.
Collapse
|
39
|
Abstract
Transcription activator-like (TAL) effectors specifically bind to double stranded (ds) DNA through a central domain of tandem repeats. Each TAL effector (TALE) repeat comprises 33-35 amino acids and recognizes one specific DNA base through a highly variable residue at a fixed position in the repeat. Structural studies have revealed the molecular basis of DNA recognition by TALE repeats. Examination of the overall structure reveals that the basic building block of TALE protein, namely a helical hairpin, is one-helix shifted from the previously defined TALE motif. Here we wish to suggest a structure-based re-demarcation of the TALE repeat which starts with the residues that bind to the DNA backbone phosphate and concludes with the base-recognition hyper-variable residue. This new numbering system is consistent with the α-solenoid superfamily to which TALE belongs, and reflects the structural integrity of TAL effectors. In addition, it confers integral number of TALE repeats that matches the number of bound DNA bases. We then present fifteen crystal structures of engineered dHax3 variants in complex with target DNA molecules, which elucidate the structural basis for the recognition of bases adenine (A) and guanine (G) by reported or uncharacterized TALE codes. Finally, we analyzed the sequence-structure correlation of the amino acid residues within a TALE repeat. The structural analyses reported here may advance the mechanistic understanding of TALE proteins and facilitate the design of TALEN with improved affinity and specificity.
Collapse
|
40
|
Abstract
Current technology enables the production of highly specific genome modifications with excellent efficiency and specificity. Key to this capability are targetable DNA cleavage reagents and cellular DNA repair pathways. The break made by these reagents can produce localized sequence changes through inaccurate nonhomologous end joining (NHEJ), often leading to gene inactivation. Alternatively, user-provided DNA can be used as a template for repair by homologous recombination (HR), leading to the introduction of desired sequence changes. This review describes three classes of targetable cleavage reagents: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas RNA-guided nucleases (RGNs). As a group, these reagents have been successfully used to modify genomic sequences in a wide variety of cells and organisms, including humans. This review discusses the properties, advantages, and limitations of each system, as well as the specific considerations required for their use in different biological systems.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| |
Collapse
|
41
|
Chen K, Shan Q, Gao C. An efficient TALEN mutagenesis system in rice. Methods 2014; 69:2-8. [PMID: 24556552 DOI: 10.1016/j.ymeth.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/04/2014] [Accepted: 02/06/2014] [Indexed: 01/06/2023] Open
Abstract
Targeted gene mutagenesis is a powerful tool for elucidating gene function and facilitating genetic improvement in rice. TALENs (transcription activator-like effector nucleases), consisting of a custom TALE DNA binding domain fused to a nonspecific FokI cleavage domain, are one of the most efficient genome engineering methods developed to date. The technology of TALENs allows DNA double-strand breaks (DSBs) to be introduced into predetermined chromosomal loci. DSBs trigger DNA repair mechanisms and can result in loss of gene function by error-prone non-homologous end joining (NHEJ), or they can be exploited to modify gene function or activity by precise homologous recombination (HR). In this paper, we describe a detailed protocol for constructing TALEN expression vectors, assessing nuclease activities in vivo using rice protoplast-based assays, generating and introducing TALEN DNAs into embryogenic calluses of rice and identifying TALEN-generated mutations at targeted genomic sites. Using these methods, T0 rice plants resulting from TALEN mutagenesis can be produced within 4-5 months.
Collapse
Affiliation(s)
- Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiwei Shan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
42
|
Beumer KJ, Carroll D. Targeted genome engineering techniques in Drosophila. Methods 2014; 68:29-37. [PMID: 24412316 DOI: 10.1016/j.ymeth.2013.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/16/2013] [Indexed: 12/12/2022] Open
Abstract
For a century, Drosophila has been a favored organism for genetic research. However, the array of materials and methods available to the Drosophila worker has expanded dramatically in the last decade. The most common gene targeting tools, zinc finger nucleases, TALENs, and RNA-guided CRISPR/Cas9, have all been adapted for use in Drosophila, both for simple mutagenesis and for gene editing via homologous recombination. For each tool, there exist a number of web sites, design applications, and delivery methods. The successful application of any of these tools also requires an understanding of methods for detecting successful genome modifications. This article provides an overview of the available gene targeting tools and their application in Drosophila. In lieu of simply providing a protocol for gene targeting, we direct the researcher to resources that will allow access to the latest research in this rapidly evolving field.
Collapse
Affiliation(s)
- Kelly J Beumer
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, United States.
| | - Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, United States
| |
Collapse
|
43
|
Abstract
Our ability to modify the Drosophila genome has recently been revolutionized by the development of the CRISPR system. The simplicity and high efficiency of this system allows its widespread use for many different applications, greatly increasing the range of genome modification experiments that can be performed. Here, we first discuss some general design principles for genome engineering experiments in Drosophila and then present detailed protocols for the production of CRISPR reagents and screening strategies to detect successful genome modification events in both tissue culture cells and animals.
Collapse
Affiliation(s)
- Benjamin E Housden
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
| | - Shuailiang Lin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki KI, Miyamoto T, Sakamoto N, Matsuura S, Yamamoto T. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 2013; 3:3379. [PMID: 24287550 PMCID: PMC3843162 DOI: 10.1038/srep03379] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/11/2013] [Indexed: 01/17/2023] Open
Abstract
Transcription activator-like effector (TALE) nuclease (TALEN) is a site-specific nuclease, which can be freely designed and easily constructed. Numerous methods of constructing TALENs harboring different TALE scaffolds and repeat variants have recently been reported. However, the functionalities of structurally different TALENs have not yet been compared. Here, we report on the functional differences among several types of TALENs targeting the same loci. Using HEK293T cell-based single-strand annealing and Cel-I nuclease assays, we found that TALENs with periodically-patterned repeat variants harboring non-repeat-variable di-residue (non-RVD) variations (Platinum TALENs) showed higher activities than TALENs without non-RVD variations. Furthermore, the efficiencies of gene disruption mediated by Platinum TALENs in frogs and rats were significantly higher than in previous reports. This study therefore demonstrated an efficient system for the construction of these highly active Platinum TALENs (Platinum Gate system), which could establish a new standard in TALEN engineering.
Collapse
Affiliation(s)
- Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sebo ZL, Lee HB, Peng Y, Guo Y. A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. Fly (Austin) 2013; 8:52-7. [PMID: 24141137 PMCID: PMC3974895 DOI: 10.4161/fly.26828] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The type II CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/CRISPR-associated) has recently emerged as an efficient and simple tool for site-specific engineering of eukaryotic genomes. To improve its applications in Drosophila genome engineering, we simplified the standard two-component CRISPR/Cas9 system by generating a stable transgenic fly line expressing the Cas9 endonuclease in the germline (Vasa-Cas9 line). By injecting vectors expressing engineered target-specific guide RNAs into Vasa-Cas9 fly embryos, mutations were generated from site-specific DNA cleavages and efficiently transmitted into progenies. Because Cas9 endonuclease is the universal component of the type II CRISPR/Cas9 system, site-specific genomic engineering based on this improved platform can be achieved with lower complexity and toxicity, greater consistency, and excellent versatility.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Biochemistry and Molecular Biology; Mayo Clinic; Rochester, MN USA; Division of Molecular Biology and Biochemistry; University of Missouri-Kansas City; Kansas City, MO USA
| | - Han B Lee
- Graduate Program in Neurobiology of Disease; Mayo Graduate School; Mayo Clinic; Rochester, MN USA
| | - Ying Peng
- Department of Biochemistry and Molecular Biology; Mayo Clinic; Rochester, MN USA
| | - Yi Guo
- Department of Biochemistry and Molecular Biology; Mayo Clinic; Rochester, MN USA; Division of Gastroenterology and Hepatology; Mayo Clinic; Rochester, MN USA
| |
Collapse
|