1
|
Titus MB, Chang AW, Popitsch N, Ebmeier CC, Bono JM, Olesnicky EC. The identification of protein and RNA interactors of the splicing factor Caper in the adult Drosophila nervous system. Front Mol Neurosci 2023; 16:1114857. [PMID: 37435576 PMCID: PMC10332324 DOI: 10.3389/fnmol.2023.1114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/19/2023] [Indexed: 07/13/2023] Open
Abstract
Post-transcriptional gene regulation is a fundamental mechanism that helps regulate the development and healthy aging of the nervous system. Mutations that disrupt the function of RNA-binding proteins (RBPs), which regulate post-transcriptional gene regulation, have increasingly been implicated in neurological disorders including amyotrophic lateral sclerosis, Fragile X Syndrome, and spinal muscular atrophy. Interestingly, although the majority of RBPs are expressed widely within diverse tissue types, the nervous system is often particularly sensitive to their dysfunction. It is therefore critical to elucidate how aberrant RNA regulation that results from the dysfunction of ubiquitously expressed RBPs leads to tissue specific pathologies that underlie neurological diseases. The highly conserved RBP and alternative splicing factor Caper is widely expressed throughout development and is required for the development of Drosophila sensory and motor neurons. Furthermore, caper dysfunction results in larval and adult locomotor deficits. Nonetheless, little is known about which proteins interact with Caper, and which RNAs are regulated by Caper. Here we identify proteins that interact with Caper in both neural and muscle tissue, along with neural specific Caper target RNAs. Furthermore, we show that a subset of these Caper-interacting proteins and RNAs genetically interact with caper to regulate Drosophila gravitaxis behavior.
Collapse
Affiliation(s)
- M. Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W. Chang
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Niko Popitsch
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Jeremy M. Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C. Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
2
|
Kozlov EN, Tokmatcheva EV, Khrustaleva AM, Grebenshchikov ES, Deev RV, Gilmutdinov RA, Lebedeva LA, Zhukova M, Savvateeva-Popova EV, Schedl P, Shidlovskii YV. Long-Term Memory Formation in Drosophila Depends on the 3'UTR of CPEB Gene orb2. Cells 2023; 12:cells12020318. [PMID: 36672258 PMCID: PMC9856895 DOI: 10.3390/cells12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Activation of local translation in neurites in response to stimulation is an important step in the formation of long-term memory (LTM). CPEB proteins are a family of translation factors involved in LTM formation. The Drosophila CPEB protein Orb2 plays an important role in the development and function of the nervous system. Mutations of the coding region of the orb2 gene have previously been shown to impair LTM formation. We found that a deletion of the 3'UTR of the orb2 gene similarly results in loss of LTM in Drosophila. As a result of the deletion, the content of the Orb2 protein remained the same in the neuron soma, but significantly decreased in synapses. Using RNA immunoprecipitation followed by high-throughput sequencing, we detected more than 6000 potential Orb2 mRNA targets expressed in the Drosophila brain. Importantly, deletion of the 3'UTR of orb2 mRNA also affected the localization of the Csp, Pyd, and Eya proteins, which are encoded by putative mRNA targets of Orb2. Therefore, the 3'UTR of the orb2 mRNA is important for the proper localization of Orb2 and other proteins in synapses of neurons and the brain as a whole, providing a molecular basis for LTM formation.
Collapse
Affiliation(s)
- Eugene N. Kozlov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena V. Tokmatcheva
- Institute of Physiology, Russian Academy of Sciences, 188680 St. Petersburg, Russia
| | - Anastasia M. Khrustaleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Eugene S. Grebenshchikov
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Roman V. Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Rudolf A. Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lyubov A. Lebedeva
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mariya Zhukova
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Paul Schedl
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton University, Princeton, NJ 08544-1014, USA
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
3
|
Kemph A, Lynch JA. Evolution of germ plasm assembly and function among the insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100883. [PMID: 35123121 PMCID: PMC9133133 DOI: 10.1016/j.cois.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 05/04/2023]
Abstract
Germ plasm is a substance capable of driving naive cells toward the germ cell fate. Germ plasm has had multiple independent origins, and takes on diverse forms and functions throughout animals, including in insects. We describe here recent advances in the understanding of the evolution of germ plasm in insects. A major theme that has emerged is the complex and convoluted interactions of germ plasm with symbiotic bacteria within the germline, including at the very origin of oskar, the gene required for assembling germ plasm in insects. Major advancements have also been made in understanding the basic molecular arrangement of germ plasm in insects. These advances demonstrate that further analysis of insect germ plasm will be fruitful in illuminating diverse aspects of evolutionary and developmental biology.
Collapse
|
4
|
Spendier K, Olesnicky EC, Forand D, Wolf M, Killian DJ. CPB-3 and CGH-1 localize to motile particles within dendrites in C. elegans PVD sensory neurons. BMC Res Notes 2021; 14:311. [PMID: 34391474 PMCID: PMC8364092 DOI: 10.1186/s13104-021-05730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE RNA-binding proteins (RBPs) are important regulators of gene expression that influence mRNA splicing, stability, localization, transport, and translational control. In particular, RBPs play an important role in neurons, which have a complex morphology. Previously, we showed that there are many RBPs that play a conserved role in dendrite development in Drosophila dendritic arborization neurons and Caenorhabditis elegans (C. elegans) PVD neurons including the cytoplasmic polyadenylation element binding proteins (CPEBs), Orb in Drosophila and CPB-3 in C. elegans, and the DEAD box RNA helicases, Me31B in Drosophila and CGH-1 in C. elegans. During these studies, we observed that fluorescently-labeled CPB-3 and CGH-1 localize to cytoplasmic particles that are motile, and our research aims to further characterize these RBP-containing particles in live neurons. RESULTS Here we extend on previous work to show that CPB-3 and CGH-1 localize to motile particles within dendrites that move at a speed consistent with microtubule-based transport. This is consistent with a model in which CPB-3 and CGH-1 influence dendrite development through the transport and localization of their mRNA targets. Moreover, CPB-3 and CGH-1 rarely localize to the same particles suggesting that these RBPs function in discrete ribonucleoprotein particles (RNPs) that may regulate distinct mRNAs.
Collapse
Affiliation(s)
- Kathrin Spendier
- Physics Department and Center for the Biofrontiers Institute, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| | - Daniel Forand
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Margaret Wolf
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903, USA
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903, USA.
| |
Collapse
|
5
|
Alizzi RA, Xu D, Tenenbaum CM, Wang W, Gavis ER. The ELAV/Hu protein Found in neurons regulates cytoskeletal and ECM adhesion inputs for space-filling dendrite growth. PLoS Genet 2020; 16:e1009235. [PMID: 33370772 PMCID: PMC7793258 DOI: 10.1371/journal.pgen.1009235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/08/2021] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic arbor morphology influences how neurons receive and integrate extracellular signals. We show that the ELAV/Hu family RNA-binding protein Found in neurons (Fne) is required for space-filling dendrite growth to generate highly branched arbors of Drosophila larval class IV dendritic arborization neurons. Dendrites of fne mutant neurons are shorter and more dynamic than in wild-type, leading to decreased arbor coverage. These defects result from both a decrease in stable microtubules and loss of dendrite-substrate interactions within the arbor. Identification of transcripts encoding cytoskeletal regulators and cell-cell and cell-ECM interacting proteins as Fne targets using TRIBE further supports these results. Analysis of one target, encoding the cell adhesion protein Basigin, indicates that the cytoskeletal defects contributing to branch instability in fne mutant neurons are due in part to decreased Basigin expression. The ability of Fne to coordinately regulate the cytoskeleton and dendrite-substrate interactions in neurons may shed light on the behavior of cancer cells ectopically expressing ELAV/Hu proteins. Different types of neurons have different sizes and shapes that are tailored to their particular functions. In the fruit fly larva, a set of sensory neurons called class IV da neurons have highly branched trees of dendrites that cover the epidermis to sense potentially harmful stimuli. Neurons whose dendrites completely fill the territory they sample are also found in zebrafish, worms, mice and humans. We show that an RNA-binding protein called Fne plays an important role in coordinating different contributions to dendrite branching in class IV da neurons by impacting the organization of the cytoskeleton within the neuron and the ability of the dendrite to contact the substratum outside of it. The identification of mRNAs that code for cytoskeleton regulators and adhesive proteins as targets of Fne using a genome-wide approach further supports these results. While the ability of Fne to exert control over such proteins is crucial to generating the space-filling growth of neurons, it can be deleterious if not properly employed, such as when the homologs of Fne are expressed in cancer cells.
Collapse
Affiliation(s)
- Rebecca A. Alizzi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Derek Xu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Conrad M. Tenenbaum
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Wei Wang
- Lewis-Sigler Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
6
|
Loss of Pseudouridine Synthases in the RluA Family Causes Hypersensitive Nociception in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:4425-4438. [PMID: 33028630 PMCID: PMC7718762 DOI: 10.1534/g3.120.401767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nociceptive neurons of Drosophila melanogaster larvae are characterized by highly branched dendritic processes whose proper morphogenesis relies on a large number of RNA-binding proteins. Post-transcriptional regulation of RNA in these dendrites has been found to play an important role in their function. Here, we investigate the neuronal functions of two putative RNA modification genes, RluA-1 and RluA-2, which are predicted to encode pseudouridine synthases. RluA-1 is specifically expressed in larval sensory neurons while RluA-2 expression is ubiquitous. Nociceptor-specific RNAi knockdown of RluA-1 caused hypersensitive nociception phenotypes, which were recapitulated with genetic null alleles. These were rescued with genomic duplication and nociceptor-specific expression of UAS- RluA-1 -cDNA As with RluA-1, RluA-2 loss of function mutants also displayed hyperalgesia. Interestingly, nociceptor neuron dendrites showed a hyperbranched morphology in the RluA-1 mutants. The latter may be a cause or a consequence of heightened sensitivity in mutant nociception behaviors.
Collapse
|
7
|
Aboukilila MY, Sami JD, Wang J, England W, Spitale RC, Cleary MD. Identification of novel regulators of dendrite arborization using cell type-specific RNA metabolic labeling. PLoS One 2020; 15:e0240386. [PMID: 33264304 PMCID: PMC7710095 DOI: 10.1371/journal.pone.0240386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 11/18/2022] Open
Abstract
Obtaining neuron transcriptomes is challenging; their complex morphology and interconnected microenvironments make it difficult to isolate neurons without potentially altering gene expression. Multidendritic sensory neurons (md neurons) of Drosophila larvae are commonly used to study peripheral nervous system biology, particularly dendrite arborization. We sought to test if EC-tagging, a biosynthetic RNA tagging and purification method that avoids the caveats of physical isolation, would enable discovery of novel regulators of md neuron dendrite arborization. Our aims were twofold: discover novel md neuron transcripts and test the sensitivity of EC-tagging. RNAs were biosynthetically tagged by expressing CD:UPRT (a nucleobase-converting fusion enzyme) in md neurons and feeding 5-ethynylcytosine (EC) to larvae. Only CD:UPRT-expressing cells are competent to convert EC into 5-ethynyluridine-monophosphate which is subsequently incorporated into nascent RNA transcripts. Tagged RNAs were purified and used for RNA-sequencing. Reference RNA was prepared in a similar manner using 5-ethynyluridine (EUd) to tag RNA in all cells and negative control RNA-seq was performed on "mock tagged" samples to identify non-specifically purified transcripts. Differential expression analysis identified md neuron enriched and depleted transcripts. Three candidate genes encoding RNA-binding proteins (RBPs) were tested for a role in md neuron dendrite arborization. Loss-of-function for the m6A-binding factor Ythdc1 did not cause any dendrite arborization defects while RNAi of the other two candidates, the poly(A) polymerase Hiiragi and the translation regulator Hephaestus, caused significant defects in dendrite arborization. This work provides an expanded view of transcription in md neurons and a technical framework for combining EC-tagging with RNA-seq to profile transcription in cells that may not be amenable to physical isolation.
Collapse
Affiliation(s)
- Mohamed Y. Aboukilila
- Department of Molecular and Cell Biology, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, United States of America
| | - Josephine D. Sami
- Department of Molecular and Cell Biology, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, United States of America
| | - Jingtian Wang
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, CA, United States of America
| | - Whitney England
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, CA, United States of America
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences and Department of Chemistry, University of California, Irvine, CA, United States of America
| | - Michael D. Cleary
- Department of Molecular and Cell Biology, Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wang YH, Ding ZY, Cheng YJ, Chien CT, Huang ML. An Efficient Screen for Cell-Intrinsic Factors Identifies the Chaperonin CCT and Multiple Conserved Mechanisms as Mediating Dendrite Morphogenesis. Front Cell Neurosci 2020; 14:577315. [PMID: 33100975 PMCID: PMC7546278 DOI: 10.3389/fncel.2020.577315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Dendritic morphology is inextricably linked to neuronal function. Systematic large-scale screens combined with genetic mapping have uncovered several mechanisms underlying dendrite morphogenesis. However, a comprehensive overview of participating molecular mechanisms is still lacking. Here, we conducted an efficient clonal screen using a collection of mapped P-element insertions that were previously shown to cause lethality and eye defects in Drosophila melanogaster. Of 280 mutants, 52 exhibited dendritic defects. Further database analyses, complementation tests, and RNA interference validations verified 40 P-element insertion genes as being responsible for the dendritic defects. Twenty-eight mutants presented severe arbor reduction, and the remainder displayed other abnormalities. The intrinsic regulators encoded by the identified genes participate in multiple conserved mechanisms and pathways, including the protein folding machinery and the chaperonin-containing TCP-1 (CCT) complex that facilitates tubulin folding. Mutant neurons in which expression of CCT4 or CCT5 was depleted exhibited severely retarded dendrite growth. We show that CCT localizes in dendrites and is required for dendritic microtubule organization and tubulin stability, suggesting that CCT-mediated tubulin folding occurs locally within dendrites. Our study also reveals novel mechanisms underlying dendrite morphogenesis. For example, we show that Drosophila Nogo signaling is required for dendrite development and that Mummy and Wech also regulate dendrite morphogenesis, potentially via Dpp- and integrin-independent pathways. Our methodology represents an efficient strategy for identifying intrinsic dendrite regulators, and provides insights into the plethora of molecular mechanisms underlying dendrite morphogenesis.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Zhao-Ying Ding
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Min-Lang Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
9
|
Riddle NC. Variation in the response to exercise stimulation in Drosophila: marathon runner versus sprinter genotypes. J Exp Biol 2020; 223:jeb229997. [PMID: 32737212 DOI: 10.1242/jeb.229997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Animals' behaviors vary in response to their environment, both biotic and abiotic. These behavioral responses have significant impacts on animal survival and fitness, and thus, many behavioral responses are at least partially under genetic control. In Drosophila, for example, genes impacting aggression, courtship behavior, circadian rhythms and sleep have been identified. Animal activity also is influenced strongly by genetics. My lab previously has used the Drosophila melanogaster Genetics Reference Panel (DGRP) to investigate activity levels and identified over 100 genes linked to activity. Here, I re-examined these data to determine whether Drosophila strains differ in their response to rotational exercise stimulation, not simply in the amount of activity, but in activity patterns and timing of activity. Specifically, I asked whether there are fly strains exhibiting either a 'marathoner' pattern of activity, i.e. remaining active throughout the 2 h exercise period, or a 'sprinter' pattern, i.e. carrying out most of the activity early in the exercise period. The DGRP strains examined differ significantly in how much activity is carried out at the beginning of the exercise period, and this pattern is influenced by both sex and genotype. Interestingly, there was no clear link between the activity response pattern and lifespan of the animals. Using genome-wide association studies (GWAS), I identified 10 high confidence candidate genes that control the degree to which Drosophila exercise behaviors fit a marathoner or sprinter activity pattern. This finding suggests that, similar to other aspects of locomotor behavior, the timing of activity patterns in response to exercise stimulation is under genetic control.
Collapse
Affiliation(s)
- Nicole C Riddle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
10
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
11
|
Olesnicky EC, Killian DJ. The cytoplasmic polyadenylation element binding protein (CPEB), Orb, is important for dendrite development and neuron fate specification in Drosophila melanogaster. Gene 2020; 738:144473. [PMID: 32057929 DOI: 10.1016/j.gene.2020.144473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022]
Abstract
Cytoplasmic polyadenylation element binding proteins (CPEBs) are widely conserved proteins that regulate the length of poly(A) tails in the cytoplasm, regulate translation, and regulate mRNA transport. While CPEBs are best known for regulating maternal messages in oocytes, CPEBs also have roles in many other cell types including neurons. Here we extend our knowledge of the roles of CPEBs in neurons by showing that the Drosophila CPEB-encoding gene, orb, is required for proper dendrite development in larval sensory dendritic arborization neurons. Furthermore, we provide evidence that orb is important for neuron cell fate specification.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, United States.
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| |
Collapse
|
12
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
13
|
Hughes SC, Simmonds AJ. Drosophila mRNA Localization During Later Development: Past, Present, and Future. Front Genet 2019; 10:135. [PMID: 30899273 PMCID: PMC6416162 DOI: 10.3389/fgene.2019.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple mechanisms tightly regulate mRNAs during their transcription, translation, and degradation. Of these, the physical localization of mRNAs to specific cytoplasmic regions is relatively easy to detect; however, linking localization to functional regulatory roles has been more difficult to establish. Historically, Drosophila melanogaster is a highly effective model to identify localized mRNAs and has helped identify roles for this process by regulating various cell activities. The majority of the well-characterized functional roles for localizing mRNAs to sub-regions of the cytoplasm have come from the Drosophila oocyte and early syncytial embryo. At present, relatively few functional roles have been established for mRNA localization within the relatively smaller, differentiated somatic cell lineages characteristic of later development, beginning with the cellular blastoderm, and the multiple cell lineages that make up the gastrulating embryo, larva, and adult. This review is divided into three parts—the first outlines past evidence for cytoplasmic mRNA localization affecting aspects of cellular activity post-blastoderm development in Drosophila. The majority of these known examples come from highly polarized cell lineages such as differentiating neurons. The second part considers the present state of affairs where we now know that many, if not most mRNAs are localized to discrete cytoplasmic regions in one or more somatic cell lineages of cellularized embryos, larvae or adults. Assuming that the phenomenon of cytoplasmic mRNA localization represents an underlying functional activity, and correlation with the encoded proteins suggests that mRNA localization is involved in far more than neuronal differentiation. Thus, it seems highly likely that past-identified examples represent only a small fraction of localization-based mRNA regulation in somatic cells. The last part highlights recent technological advances that now provide an opportunity for probing the role of mRNA localization in Drosophila, moving beyond cataloging the diversity of localized mRNAs to a similar understanding of how localization affects mRNA activity.
Collapse
Affiliation(s)
- Sarah C Hughes
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Olesnicky EC, Antonacci S, Popitsch N, Lybecker MC, Titus MB, Valadez R, Derkach PG, Marean A, Miller K, Mathai SK, Killian DJ. Shep interacts with posttranscriptional regulators to control dendrite morphogenesis in sensory neurons. Dev Biol 2018; 444:116-128. [PMID: 30352216 DOI: 10.1016/j.ydbio.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
RNA binding proteins (RBPs) mediate posttranscriptional gene regulatory events throughout development. During neurogenesis, many RBPs are required for proper dendrite morphogenesis within Drosophila sensory neurons. Despite their fundamental role in neuronal morphogenesis, little is known about the molecular mechanisms in which most RBPs participate during neurogenesis. In Drosophila, alan shepard (shep) encodes a highly conserved RBP that regulates dendrite morphogenesis in sensory neurons. Moreover, the C. elegans ortholog sup-26 has also been implicated in sensory neuron dendrite morphogenesis. Nonetheless, the molecular mechanism by which Shep/SUP-26 regulate dendrite development is not understood. Here we show that Shep interacts with the RBPs Trailer Hitch (Tral), Ypsilon schachtel (Yps), Belle (Bel), and Poly(A)-Binding Protein (PABP), to direct dendrite morphogenesis in Drosophila sensory neurons. Moreover, we identify a conserved set of Shep/SUP-26 target RNAs that include regulators of cell signaling, posttranscriptional gene regulators, and known regulators of dendrite development.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States.
| | - Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Niko Popitsch
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, A-1090 Vienna, Austria
| | - Meghan C Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - M Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Racquel Valadez
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Paul G Derkach
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, United States
| | - Amber Marean
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Katherine Miller
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Samuel K Mathai
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO 80903, United States
| |
Collapse
|
15
|
Olesnicky EC, Wright EG. Drosophila as a Model for Assessing the Function of RNA-Binding Proteins during Neurogenesis and Neurological Disease. J Dev Biol 2018; 6:E21. [PMID: 30126171 PMCID: PMC6162566 DOI: 10.3390/jdb6030021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA.
| |
Collapse
|
16
|
Luo J, Liu Y, Nässel DR. Transcriptional Reorganization of Drosophila Motor Neurons and Their Muscular Junctions toward a Neuroendocrine Phenotype by the bHLH Protein Dimmed. Front Mol Neurosci 2017; 10:260. [PMID: 28855860 PMCID: PMC5557793 DOI: 10.3389/fnmol.2017.00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023] Open
Abstract
Neuroendocrine cells store and secrete bulk amounts of neuropeptides, and display morphological and molecular characteristics distinct from neurons signaling with classical neurotransmitters. In Drosophila the transcription factor Dimmed (Dimm), is a prime organizer of neuroendocrine capacity in a majority of the peptidergic neurons. These neurons display large cell bodies and extensive axon terminations that commonly do not form regular synapses. We ask which molecular compartments of a neuron are affected by Dimm to generate these morphological features. Thus, we ectopically expressed Dimm in glutamatergic, Dimm-negative, motor neurons and analyzed their characteristics in the central nervous system and the neuromuscular junction. Ectopic Dimm results in motor neurons with enlarged cell bodies, diminished dendrites, larger axon terminations and boutons, as well as reduced expression of synaptic proteins both pre and post-synaptically. Furthermore, the neurons display diminished vesicular glutamate transporter, and signaling components known to sustain interactions between the developing axon termination and muscle, such as wingless and frizzled are down regulated. Ectopic co-expression of Dimm and the insulin receptor augments most of the above effects on the motor neurons. In summary, ectopic Dimm expression alters the glutamatergic motor neuron phenotype toward a neuroendocrine one, both pre- and post-synaptically. Thus, Dimm is a key organizer of both secretory capacity and morphological features characteristic of neuroendocrine cells, and this transcription factor affects also post-synaptic proteins.
Collapse
Affiliation(s)
- Jiangnan Luo
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Yiting Liu
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
17
|
Tripathi BK, Das R, Mukherjee A, Mutsuddi M. Interaction of Spoonbill with Prospero in Drosophila: Implications in neuroblast development. Genesis 2017; 55. [PMID: 28722203 DOI: 10.1002/dvg.23049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022]
Abstract
Identification of Spoon as a suppressor of SCA8 associated neurodegeneration provides us a hint about its role in neuronal development and maintenance. However, a detailed molecular characterization of spoon has not yet been reported. Here, we describe spatial expression pattern of Spoon during Drosophila development. Quantitative real time-PCR and fluorescent RNA-RNA in situ hybridization indicate that Spoon is expressed at relatively high levels in larval brain and photoreceptors of eye-antennal discs. Immunostaining reveals that Spoon is subcellularly localized in the cytoplasm and is also membrane bound. Strong expression is also seen in adult ovary and testes. Spoon on immunostaining exhibits unique pattern of expression in larval brain. We observed that Spoon in the neuroblasts colocalizes with Prospero, a transcription factor regulating genes involved in neuroblast self-renewal or cell-cycle control. Co-immunoprecipitation suggests that Spoon and Prospero reside in the same protein complex. Using Drosophila model of SCA8 RNA neuropathy we have also shown that loss of Prospero hinders the suppression of SCA8 associated neurodegeneration by Spoonbill, suggesting Prospero and Spoon might genetically interact and function together. Our study presents Spoon as a novel interacting partner of Prospero and this might be critical in determining the polarized localization of cell fate determinants.
Collapse
Affiliation(s)
- Bipin K Tripathi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rituparna Das
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
18
|
Olesnicky EC, Bono JM, Bell L, Schachtner LT, Lybecker MC. The RNA-binding protein caper is required for sensory neuron development in Drosophila melanogaster. Dev Dyn 2017; 246:610-624. [PMID: 28543982 DOI: 10.1002/dvdy.24523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Alternative splicing mediated by RNA-binding proteins (RBPs) is emerging as a fundamental mechanism for the regulation of gene expression. Alternative splicing has been shown to be a widespread phenomenon that facilitates the diversification of gene products in a tissue-specific manner. Although defects in alternative splicing are rooted in many neurological disorders, only a small fraction of splicing factors have been investigated in detail. RESULTS We find that the splicing factor Caper is required for the development of multiple different mechanosensory neuron subtypes at multiple life stages in Drosophila melanogaster. Disruption of Caper function causes defects in dendrite morphogenesis of larval dendrite arborization neurons and neuronal positioning of embryonic proprioceptors, as well as the development and maintenance of adult mechanosensory bristles. Additionally, we find that Caper dysfunction results in aberrant locomotor behavior in adult flies. Transcriptome-wide analyses further support a role for Caper in alternative isoform regulation of genes that function in neurogenesis. CONCLUSIONS Our results provide the first evidence for a fundamental and broad requirement for the highly conserved splicing factor Caper in the development and maintenance of the nervous system and provide a framework for future studies on the detailed mechanism of Caper-mediated RNA regulation. Developmental Dynamics 246:610-624, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Jeremy M Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Laura Bell
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Logan T Schachtner
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| | - Meghan C Lybecker
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado
| |
Collapse
|
19
|
Misra M, Edmund H, Ennis D, Schlueter MA, Marot JE, Tambasco J, Barlow I, Sigurbjornsdottir S, Mathew R, Vallés AM, Wojciech W, Roth S, Davis I, Leptin M, Gavis ER. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis. G3 (BETHESDA, MD.) 2016; 6:2397-405. [PMID: 27260999 PMCID: PMC4978894 DOI: 10.1534/g3.116.030353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022]
Abstract
Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.
Collapse
Affiliation(s)
- Mala Misra
- Department of Molecular Biology, Princeton University, NJ 08544
| | - Hendia Edmund
- Department of Molecular Biology, Princeton University, NJ 08544
| | - Darragh Ennis
- Department of Biochemistry, The University of Oxford, OX1 3QU, United Kingdom
| | | | - Jessica E Marot
- Department of Molecular Biology, Princeton University, NJ 08544
| | - Janet Tambasco
- Department of Molecular Biology, Princeton University, NJ 08544
| | - Ida Barlow
- Department of Molecular Biology, Princeton University, NJ 08544
| | | | - Renjith Mathew
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ana Maria Vallés
- Department of Biochemistry, The University of Oxford, OX1 3QU, United Kingdom
| | - Waldemar Wojciech
- Biocenter, Institute of Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Siegfried Roth
- Biocenter, Institute of Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, OX1 3QU, United Kingdom
| | - Maria Leptin
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany Institute of Genetics, University of Cologne, 50674 Germany
| | | |
Collapse
|
20
|
Schachtner LT, Sola IE, Forand D, Antonacci S, Postovit AJ, Mortimer NT, Killian DJ, Olesnicky EC. Drosophila Shep and C. elegans SUP-26 are RNA-binding proteins that play diverse roles in nervous system development. Dev Genes Evol 2015; 225:319-30. [PMID: 26271810 DOI: 10.1007/s00427-015-0514-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
The Caenorhabditis elegans gene sup-26 encodes a well-conserved RNA-recognition motif-containing RNA-binding protein (RBP) that functions in dendrite morphogenesis of the PVD sensory neuron. The Drosophila ortholog of sup-26, alan shepard (shep), is expressed throughout the nervous system and has been shown to regulate neuronal remodeling during metamorphosis. Here, we extend these studies to show that sup-26 and shep are required for the development of diverse cell types within the nematode and fly nervous systems during embryonic and larval stages. We ascribe roles for sup-26 in regulating dendrite number and the expression of genes involved in mechanosensation within the nematode peripheral nervous system. We also find that in Drosophila, shep regulates dendrite length and branch order of nociceptive neurons, regulates the organization of neuronal clusters of the peripheral nervous system and the organization of axons within the ventral nerve cord. Taken together, our results suggest that shep/sup-26 orthologs play diverse roles in neural development across animal species. Moreover, we discuss potential roles for shep/sup-26 orthologs in the human nervous system.
Collapse
Affiliation(s)
- Logan T Schachtner
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Ismail E Sola
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Daniel Forand
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Simona Antonacci
- Department of Molecular Biology, Colorado College, 14 East Cache La Poudre Street, Colorado Springs, CO, 80903, USA
| | - Adam J Postovit
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA.,School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, 14 East Cache La Poudre Street, Colorado Springs, CO, 80903, USA.
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO, 80918, USA.
| |
Collapse
|
21
|
Antonacci S, Forand D, Wolf M, Tyus C, Barney J, Kellogg L, Simon MA, Kerr G, Wells KL, Younes S, Mortimer NT, Olesnicky EC, Killian DJ. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons. G3 (BETHESDA, MD.) 2015; 5:639-53. [PMID: 25673135 PMCID: PMC4390579 DOI: 10.1534/g3.115.017327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.
Collapse
Affiliation(s)
- Simona Antonacci
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Daniel Forand
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Margaret Wolf
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Courtney Tyus
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Julia Barney
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Leah Kellogg
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Margo A Simon
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Genevieve Kerr
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Kristen L Wells
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| | - Serena Younes
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado 80903
| |
Collapse
|
22
|
Lee J, Peng Y, Lin WY, Parrish JZ. Coordinate control of terminal dendrite patterning and dynamics by the membrane protein Raw. Development 2014; 142:162-73. [PMID: 25480915 DOI: 10.1242/dev.113423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The directional flow of information in neurons depends on compartmentalization: dendrites receive inputs whereas axons transmit them. Axons and dendrites likewise contain structurally and functionally distinct subcompartments. Axon/dendrite compartmentalization can be attributed to neuronal polarization, but the developmental origin of subcompartments in axons and dendrites is less well understood. To identify the developmental bases for compartment-specific patterning in dendrites, we screened for mutations that affect discrete dendritic domains in Drosophila sensory neurons. From this screen, we identified mutations that affected distinct aspects of terminal dendrite development with little or no effect on major dendrite patterning. Mutation of one gene, raw, affected multiple aspects of terminal dendrite patterning, suggesting that Raw might coordinate multiple signaling pathways to shape terminal dendrite growth. Consistent with this notion, Raw localizes to branch-points and promotes dendrite stabilization together with the Tricornered (Trc) kinase via effects on cell adhesion. Raw independently influences terminal dendrite elongation through a mechanism that involves modulation of the cytoskeleton, and this pathway is likely to involve the RNA-binding protein Argonaute 1 (AGO1), as raw and AGO1 genetically interact to promote terminal dendrite growth but not adhesion. Thus, Raw defines a potential point of convergence in distinct pathways shaping terminal dendrite patterning.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Yun Peng
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Wen-Yang Lin
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|