1
|
Gabe HB, Queiroga FR, Taruhn KA, Trevisan R. Mitigating oxidative stress in oyster larvae: Curcumin promotes enhanced redox balance, antioxidant capacity, development, and resistance to antifouling compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 279:107231. [PMID: 39756171 DOI: 10.1016/j.aquatox.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress. Embryos were exposed to CUR ranging from 0.03 to 30 µM for 24 h. Their development was assessed, along with measurements of glutathione levels, glutathione S-transferase activity, antioxidant capacity, production of reactive oxygen species (ROS), metabolic activity, and resistance to organic hydroperoxide and the antifouling compound dichlorooctylisothiazolinone (DCOIT). Low curcumin concentrations (up to 1 μM) activated the d-larvae antioxidant system, with a significant threefold increase in glutathione levels and a 50 % decrease in ROS production. This enhancement in antioxidant defense improved the ability of larvae to detoxify organic hydroperoxide. It also resulted in larger larval size and increased survival rates, whether under normal conditions or exposure to peroxide or DCOIT. CUR shows great promise in supporting larval development, but high concentrations were toxic (EC50 = 2.90 μM), probably due to excessive antioxidant activation. Our results indicate that the antioxidant system may play a role in controlling bivalve early development. Understanding how antioxidants influence redox balance and gene expression during early life can enhance our knowledge of stress response mechanisms in marine organisms, offering insights into how they cope with pollutants and environmental challenges. Integrating CUR and antioxidant defense pathway approaches into aquaculture practices could boost productivity and sustainability in oyster aquaculture.
Collapse
Affiliation(s)
- Heloísa Bárbara Gabe
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil; Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France
| | | | - Karine Amabile Taruhn
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Rafael Trevisan
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, IUEM, F-29280 Plouzané, France.
| |
Collapse
|
2
|
Dang X, Zhang Y, Dupont S, Gaitán-Espitia JD, He YQ, Wang HH, Ellis RP, Guo X, Parker L, Zhang RC, Chung SC, Yu Z, Thiyagarajan V. Low pH Means More Female Offspring: A Multigenerational Plasticity in the Sex Ratio of Marine Bivalves. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39723833 DOI: 10.1021/acs.est.4c07808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Global changes can profoundly affect the sex determination and reproductive output of marine organisms, disrupting the population structure and ecosystems. High CO2driven low pH in the context of ocean acidification (OA) has been shown to severely affect various calcifiers, but less is known about the extent to which low pH influences sex determination and reproduction of marine organisms, particularly mollusks. This study is the first to report a biased sex ratio over multiple generations toward females, driven by exposure to high CO2-induced low pH environments, using the ecologically and economically important Portuguese oyster (Crassostrea angulata) as a model. This phenomenon, which we term pH-mediated sex determination (PSD), has no consequences for fecundity, gonadal development, or reproductive function in the offspring. Moreover, PSD persisted into a second year of reproduction and was inherited across multiple generations. Transcriptomic analysis indicates PSD is associated with the activation of the Wnt signaling pathway in females and inhibition of spermiogenesis-related functions in males. This work expands our understanding of environmental sex determination and highlights the possible impact of global changes on reproduction and population dynamics of mollusks and other marine organisms.
Collapse
Affiliation(s)
- Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong, China
- Hong Kong Oyster Hatchery & Innovation Research Unit, The University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Yang Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, Fiskebäckskil 45178, Sweden
- IAEA Marine Environment Laboratories, Radioecology Laboratory, 4 Quai Antoine 1er, Monaco 98000 Monaco
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Yuan-Qiu He
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong, China
| | - Hui-Hui Wang
- Qingdao OE biotech Co., Ltd. Qingdao 266100, China
| | - Robert P Ellis
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, U.K
- Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, U.K
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, New Jersey 08349, United States
| | - Laura Parker
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, New South Wales, Sydney 2052, Australia
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | | | - Shiu C Chung
- Lee Kum Kee Co., Ltd. Hong Kong SAR, Hong Kong, China
| | - Ziniu Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong, China
- Hong Kong Oyster Hatchery & Innovation Research Unit, The University of Hong Kong, Hong Kong SAR, Hong Kong, China
| |
Collapse
|
3
|
Evensen KG, Rusin E, Robinson WE, Price CL, Kelly SL, Lamb DC, Goldstone JV, Poynton HC. Vertebrate endocrine disruptors induce sex-reversal in blue mussels. Sci Rep 2024; 14:23890. [PMID: 39396059 PMCID: PMC11470919 DOI: 10.1038/s41598-024-74212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Mollusks are the second most diverse animal phylum, yet little is known about their endocrinology or how they respond to endocrine disrupting compound (EDC) pollution. Characteristic effects of endocrine disruption are reproductive impairment, skewed sex ratios, development of opposite sex characteristics, and population decline. However, whether classical vertebrate EDCs, such as steroid hormone-like chemicals and inhibitors of steroidogenesis, exert effects on mollusks is controversial. In the blue mussel, Mytilus edulis, EDC exposure is correlated with feminized sex ratios in wild and laboratory mussels, but sex reversal has not been confirmed. Here, we describe a non-destructive qPCR assay to identify the sex of M. edulis allowing identification of males and females prior to experimentation. We exposed male mussels to 17α-ethinylestradiol and female mussels to ketoconazole, EDCs that mimic vertebrate steroid hormones or inhibit their biosynthesis. Both chemicals changed the sex of individual mussels, interfered with gonadal development, and disrupted gene expression of the sex differentiation pathway. Impacts from ketoconazole treatment, including changes in steroid levels, confirmed a role for steroidogenesis and steroid-like hormones in mollusk endocrinology. The present study expands the possibilities for laboratory and field monitoring of mollusk species and provides key insights into endocrine disruption and sexual differentiation in bivalves.
Collapse
Affiliation(s)
- K Garrett Evensen
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Emily Rusin
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Claire L Price
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | | | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
4
|
Li X, Cao T, Liu H, Fu L, Wang Q. Identification and expression analysis of Sox family genes in echinoderms. BMC Genomics 2024; 25:655. [PMID: 38956468 PMCID: PMC11218330 DOI: 10.1186/s12864-024-10547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
The Sox gene family, a collection of transcription factors widely distributed throughout the animal kingdom, plays a crucial role in numerous developmental processes. Echinoderms occupy a pivotal position in many research fields, such as neuroscience, sex determination and differentiation, and embryonic development. However, to date, no comprehensive study has been conducted to characterize and analyze Sox genes in echinoderms. In the present study, the evolution and expression of Sox family genes across 11 echinoderms were analyzed using bioinformatics methods. The results revealed a total of 70 Sox genes, with counts ranging from 5 to 8 across different echinoderms. Phylogenetic analysis revealed that the identified Sox genes could be categorized into seven distinct classes: the SoxB1 class, SoxB2 class, SoxC class, SoxD class, SoxE class, SoxF class and SoxH class. Notably, the SoxB1, SoxB2, and SoxF genes were ubiquitously present in all the echinoderms studied, which suggests that these genes may be conserved in echinoderms. The spatiotemporal expression patterns observed for Sox genes in the three echinoderms indicated that various Sox members perform distinct functional roles. Notably, SoxB1 is likely involved in echinoderm ovary development, while SoxH may play a crucial role in testis development in starfish and sea cucumber. In general, the present investigation provides a molecular foundation for exploring the Sox gene in echinoderms, providing a valuable resource for future phylogenetic and genomic studies.
Collapse
Affiliation(s)
- Xiaojing Li
- Yantai Vocational College, Yantai, 264003, China
| | - Tiangui Cao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Hui Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Longhai Fu
- Yantai Vocational College, Yantai, 264003, China
| | - Quanchao Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266061, China.
| |
Collapse
|
5
|
Zhang Q, Huang J, Fu Y, Chen J, Wang W. Genome-wide identification and expression profiles of sex-related gene families in the Pacific abalone Haliotis discus hannai. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101205. [PMID: 38364653 DOI: 10.1016/j.cbd.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
In recent years, members of the Dmrt family, TGF-β superfamily and Sox family have been recognized as crucial genes for sex determination/differentiation across diverse animal species. Nevertheless, knowledge regarding the abundance and potential functions of these genes in abalone remains limited. In this study, a total of 5, 10, and 7 members of the Dmrt family, the TGF-β superfamily and the Sox family, respectively, were identified in the Pacific abalone Haliotis discus hannai. Sequence characteristics, phylogenetic relationships and spatiotemporal expression profiles of these genes were investigated. Notably, HdDmrt-04 (Dmrt1/1L-like) emerged as a potential mollusc-specific gene with a preponderance for expression in the testis. Interestingly, none of the TGF-β superfamily members exhibited specific or elevated expression in the gonads, highlighting the need for further investigation into their role in abalone sex differentiation. The Sox proteins in H. discus hannai were categorized into 7 subfamilies: B1, B2, C, D, E, F, and H. Among them, HdSox-07 (SoxH-like) was observed to play a crucial role in testis development, while HdSox-03 (SoxB1-like) and HdSox-04 (SoxC-like) probably cooperate in abalone ovary development. Taken together, the results of the present study suggested that HdDmrt-04 and HdSox-07 can be used as male-specific markers for gonad differentiation in H. discus hannai and imply conservation of their functions across invertebrates and vertebrates. Our findings provide new insights into the evolution and genetic structure of the Dmrt family, the TGF-β superfamily and the Sox family in abalone and pave the way for a deeper understanding of sex differentiation in gastropods.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Jianfang Huang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Yangtao Fu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Jianming Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| | - Wei Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
6
|
Li F, Chen S, Zhang T, Pan L, Liu C, Bian L. Gonadal Transcriptome Sequencing Analysis Reveals the Candidate Sex-Related Genes and Signaling Pathways in the East Asian Common Octopus, Octopus sinensis. Genes (Basel) 2024; 15:682. [PMID: 38927618 PMCID: PMC11202624 DOI: 10.3390/genes15060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The East Asian common octopus (Octopus sinensis) is an economically important species among cephalopods. This species exhibits a strict dioecious and allogamous reproductive strategy, along with a phenotypic sexual dimorphism, where the third right arm differentiates into hectocotylus in males. However, our understanding of the molecular mechanisms that underlie sex determination and differentiation in this species remains limited. In the present study, we surveyed gene-expression profiles in the immature male and female gonads of O. sinensis based on the RNA-seq, and a total of 47.83 Gb of high-quality data were generated. Compared with the testis, we identified 8302 differentially expressed genes (DEGs) in the ovary, of which 4459 genes were up-regulated and 3843 genes were down-regulated. Based on the GO enrichment, many GO terms related to sex differentiation were identified, such as sex differentiation (GO: 0007548), sexual reproduction (GO: 0019953) and male sex differentiation (GO: 0046661). A KEGG classification analysis identified three conserved signaling pathways that related to sex differentiation, including the Wnt signaling pathway, TGF-β signaling pathway and Notch signaling pathway. Additionally, 21 sex-related DEGs were selected, of which 13 DEGs were male-biased, including Dmrt1, Foxn5, Foxj1, Sox30, etc., and 8 DEGs were female-biased, including Sox14, Nanos3, β-tubulin, Suh, etc. Ten DEGs were used to verify the expression patterns in the testis and ovary using the RT-qPCR method, and the results showed that the expression level shown by RT-qPCR was consistent with that from the RNA-seq, which confirmed the reliability of the transcriptome data. The results presented in this study will not only contribute to our understanding of sex-formation mechanisms in O. sinensis but also provide the foundational information for further investigating the molecular mechanisms that underline its gonadal development and facilitate the sustainable development of octopus artificial breeding.
Collapse
Affiliation(s)
- Fenghui Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Siqing Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Tao Zhang
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China;
| | - Luying Pan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Changlin Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Li Bian
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (F.L.); (S.C.); (L.P.); (C.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
7
|
Sun D, Yu H, Kong L, Liu S, Xu C, Li Q. The role of DNA methylation reprogramming during sex determination and sex reversal in the Pacific oyster Crassostrea gigas. Int J Biol Macromol 2024; 259:128964. [PMID: 38219938 DOI: 10.1016/j.ijbiomac.2023.128964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
DNA methylation is instrumental in vertebrate sex reversal. However, the mechanism of DNA methylation regulation regarding sex reversal in invertebrates is unclear. In this study, we used whole genome bisulfite sequencing (WGBS) to map single-base resolution methylation profiles of the Pacific oyster, including female-to-male (FMa-to-FMb) and male-to-female (MFa-to-MFb) sex reversal, as well as sex non-reversed males and females (MMa-to-MMb and FFa-to-FFb). The results showed that global DNA methylation levels increase during female-to-male sex reversals, with a particular increase in the proportion of high methylation levels (mCGs >0.75) and a decrease in the proportion of intermediate methylation levels (0.25 < mCGs <0.75). This increase in DNA methylation was mainly associated with the elevated expression of DNA methylase genes. Genome-wide methylation patterns of females were accurately remodeled to those of males after sex reversal, while the opposite was true for the male-to-female reversal. Those findings directly indicate that alterations in DNA methylation play a significant role in sex reversal in Pacific oysters. Comparative analysis of the DNA methylomes of pre- and post- sex reversal gonadal tissues (FMb-vs-FMa or MFb-vs-MFa) revealed that differentially methylated genes were mainly involved in the biological processes of sex determination or gonadal development. However critical genes such as Dmrt1, Foxl2 and Sox-like, which are involved in the putative sex determination pathway in Pacific oysters, showed almost an absence of methylation modifications, varying greatly from vertebrates. Additionally, comparative analysis of the DNA methylomes of sexual reversal and sex non-reversal (FMa-vs-FFa or MFa-vs-MMa) revealed that heat shock protein genes, such as Hsp68-like and Hsp70B, were important for the occurrence of sex reversal. These findings shed light on the epigenetic mechanisms underlying the maintenance of gonadal plasticity and the reversal of organ architecture in oysters.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Zeng Y, Zheng H, He C, Zhang C, Zhang H, Zheng H. Genome-wide identification and expression analysis of Dmrt gene family and their role in gonad development of Pacific oyster (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110904. [PMID: 37751789 DOI: 10.1016/j.cbpb.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Doublesex and Mab-3-related transcription factor (Dmrt) is a type of transcription factor with a zinc-finger DM structural domain, which plays a significant role in sex determination and differentiation in animals. Although Dmrt has been reported in many vertebrates and invertebrates, it has rarely been studied in bivalves. In this study, a total of three members of the Dmrt gene family were identified and characterized in Crassostrea gigas, and all these CgDmrt genes contained a conserved DM domain. Analysis of the phylogenetic tree and gene structure revealed that Dmrt genes clustered on one branch may have similar functions in bivalves. Expression profiling of CgDmrt mRNA in different tissues and stages of gonad development indicated that CgDmrt3 exhibited sexually dimorphic expression and played an important role in the development of the male gonad in C. gigas. Furthermore, analysis of CgDmrt mRNA expression between fertile triploids and sterile triploids showed that CgDmrt3 may be involved in sperm production. Collectively, the systematic analysis of the CgDmrt genes will provide potential insights into the function of these genes in gonadal development.
Collapse
Affiliation(s)
- Yetao Zeng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Haiqian Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Cheng He
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Chuanxu Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| |
Collapse
|
9
|
Drozdov A, Lebedev E, Adonin L. Comparative Analysis of Bivalve and Sea Urchin Genetics and Development: Investigating the Dichotomy in Bilateria. Int J Mol Sci 2023; 24:17163. [PMID: 38138992 PMCID: PMC10742642 DOI: 10.3390/ijms242417163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
This comprehensive review presents a comparative analysis of early embryogenesis in Protostomia and Deuterostomia, the first of which exhibit a mosaic pattern of development, where cells are fated deterministically, while Deuterostomia display a regulatory pattern of development, where the fate of cells is indeterminate. Despite these fundamental differences, there are common transcriptional mechanisms that underline their evolutionary linkages, particularly in the field of functional genomics. By elucidating both conserved and unique regulatory strategies, this review provides essential insights into the comparative embryology and developmental dynamics of these groups. The objective of this review is to clarify the shared and distinctive characteristics of transcriptional regulatory mechanisms. This will contribute to the extensive areas of functional genomics, evolutionary biology and developmental biology, and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
- Anatoliy Drozdov
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
10
|
Nicolini F, Ghiselli F, Luchetti A, Milani L. Bivalves as Emerging Model Systems to Study the Mechanisms and Evolution of Sex Determination: A Genomic Point of View. Genome Biol Evol 2023; 15:evad181. [PMID: 37850870 PMCID: PMC10588774 DOI: 10.1093/gbe/evad181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Bivalves are a diverse group of molluscs that have recently attained a central role in plenty of biological research fields, thanks to their peculiar life history traits. Here, we propose that bivalves should be considered as emerging model systems also in sex-determination (SD) studies, since they would allow to investigate: 1) the transition between environmental and genetic SD, with respect to different reproductive backgrounds and sexual systems (from species with strict gonochorism to species with various forms of hermaphroditism); 2) the genomic evolution of sex chromosomes (SCs), considering that no heteromorphic SCs are currently known and that homomorphic SCs have been identified only in a few species of scallops; 3) the putative role of mitochondria at some level of the SD signaling pathway, in a mechanism that may resemble the cytoplasmatic male sterility of plants; 4) the evolutionary history of SD-related gene (SRG) families with respect to other animal groups. In particular, we think that this last topic may lay the foundations for expanding our understanding of bivalve SD, as our current knowledge is quite fragmented and limited to a few species. As a matter of fact, tracing the phylogenetic history and diversity of SRG families (such as the Dmrt, Sox, and Fox genes) would allow not only to perform more targeted functional experiments and genomic analyses, but also to foster the possibility of establishing a solid comparative framework.
Collapse
Affiliation(s)
- Filippo Nicolini
- Department of Biological, Geological and Environmental Science, University of Bologna, Bologna, Italy
- Fano Marine Center, Fano, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Science, University of Bologna, Bologna, Italy
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Science, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Science, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Sun D, Yu H, Li Q. Starvation-induced changes in sex ratio involve alterations in sex-related gene expression and methylation in Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2023; 267:110863. [PMID: 37164224 DOI: 10.1016/j.cbpb.2023.110863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Aquatic animals are subject to varying degrees of starvation stress in their natural habitats due to food limitations. Consequently, starvation is a crucial environmental factor for sex determination in many species; however, limited research has been conducted on the effects of starvation on sex determination in shellfish. Here, four full sibling families of Pacific oysters were established and subjected to starvation stress. The results demonstrated that starvation caused the sex ratio (female to male) to change from 1:0.78 to 1:1.44 and resulted in a delay in gonadal development. Further studies revealed that the expression levels of DNA methylation-related genes Dnmt1 (DNA methyltransferase 1), Dnmt3a/b (DNA methyltransferase 3a/b) and Tet3 (tet methylcytosine dioxygenase 3) decreased under starvation stress. Conversely, the upregulation of Dmrt1 (doublesex and mab-3 related transcription factor 1), a gene typically associated with males, in females suggests that the increased proportion of males may be linked to starvation-induced high expression of this particular gene. In addition, the gene Dgkd (diacylglycerol kinase delta), which is involved in the regulation of second messenger protein kinase C, was differentially methylated between males and females, with the methylation level of this gene gradually increasing with male development, while the methylation level of this gene decreased under starvation stress. Correlation analysis of Dgkd methylation levels with expression levels showed a negative correlation between DNA methylation and gene expression. Finally dual fluorescence reporter experiments confirmed that DNA methylation suppressed Dgkd expression in vitro. In summary, the results suggest that starvation may regulate Dgkd gene expression through DNA methylation and thus affect Dmrt1 expression, thereby causing sex reversal in the Pacific oyster. The outcomes resolved how environmental factors are involved in sex reversal from an epigenetic perspective and provided a theoretical basis for sex control breeding in the Pacific oyster.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
12
|
Sun D, Yu H, Li Q. Early gonadal differentiation is associated with the antagonistic action of Foxl2 and Dmrt1l in the Pacific oyster. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110831. [PMID: 36681266 DOI: 10.1016/j.cbpb.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
As the second largest phylum in the zoological kingdom next to arthropods, the mechanism of gonadal differentiation in mollusca is quite complex. Currently, although much has been carried out on gonadal differentiation in the Pacific oyster, there is still unknown information that needs to be further explored. Here, analysis of the Foxl2 and Dmrt1l expression in samples at different development periods of male and female gonads as well as in annual gonad samples revealed that Log10 (Foxl2/Dmrt1l) values were an effective method for sex identification in oysters. In differentiated gonadal tissue, Log10 (Foxl2/Dmrt1l) values greater than 2 were females and less than 1 for males. Subsequent sequential sampling of the same individuals verified that Log10 (Foxl2/Dmrt1l) values greater than 2 for resting gonads would develop as females and less than 1 would develop as males in the future. Relative expression analysis of Foxl2 and Dmrt1l in the annual samples revealed a negative correlation between Log10 (Foxl2) and Log10 (Dmrt1l). Double fluorescence reporter validation results showed that DMRT1L protein was able to bind the Foxl2 promoter and repress its activity with a weak dosage effect. Antagonism between Dmrt1l and Foxl2 is therefore not restricted to vertebrates, and the competing regulatory networks are of great significance in the maintenance of gonadal sex in oysters after sexual differentiation. This study provides novel ideas and insights into the study of early gonadal differentiation in the adult oyster.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
13
|
Kim HJ, Kim NN, Han J, Park HS, Kang DH, Choi YU. Reproductive condition of the black-lip pearl oyster Pinctada margaritifera during the lunar phase. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:302-309. [PMID: 36650734 DOI: 10.1002/jez.2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
This study analyzed the relationship between the lunar phase and the reproductive cycle of Pinctada margaritifera inhabiting Weno Island, Chuuk Lagoon, Micronesia. We measured indicators of maturity (gonadosomatic index [GSI] and sexual maturation-related genes) and investigated changes in the gonadal maturity stages (GMS) of P. margaritifera over lunar cycle. GSI was higher around the full moon. GMS of P. margaritifera were classified as the early gametogenesis stage, ripe and spawning stage, and spent and degenerating stage. A large percentage of oysters was observed in the ripe and spawning stage at the first quarter moon in female and the full moon in male as well as in the spent and degenerating stages at the third quarter moon in both sexes. In addition, the expression of doublesex- and mab-3-related transcription factor 2 (DMRT2) in the male P. margaritifera black-lip pearl oyster was the highest during the full and third quarter moon phases, whereas no difference in expression was observed with the lunar phase in females. In contrast, the expression of vitellogenin (VTG) was the highest in female P. margaritifera during the first and third quarters. No difference in expression was observed according to the lunar phase in males. The results suggest that the lunar phase directly affects the expression of sexually mature gonads in P. margaritifera black-lip pearl oyster.
Collapse
Affiliation(s)
- Han-Jun Kim
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
| | - Na Na Kim
- National Institute of Fisheries Science, Changwon, Republic of Korea
| | - Jeonghoon Han
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
| | - Heung-Sik Park
- Research Project Development, Korea Institute of Ocean & Technology (KIOST), Busan, Republic of Korea
| | - Do-Hyung Kang
- Jeju Marine Research Center, Korea Institute of Ocean & Technology (KIOST), Jeju, Korea
| | - Young-Ung Choi
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
| |
Collapse
|
14
|
R. N. Ferreira JG, A. Americo J, L. A. S. do Amaral D, Sendim F, R. da Cunha Y, Blaxter M, Uliano-Silva M, de F. Rebelo M. A chromosome-level assembly supports genome-wide investigation of the DMRT gene family in the golden mussel (Limnoperna fortunei). Gigascience 2022; 12:giad072. [PMID: 37776366 PMCID: PMC10541798 DOI: 10.1093/gigascience/giad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND The golden mussel (Limnoperna fortunei) is a highly invasive species that causes environmental and socioeconomic losses in invaded areas. Reference genomes have proven to be a valuable resource for studying the biology of invasive species. While the current golden mussel genome has been useful for identifying new genes, its high fragmentation hinders some applications. FINDINGS In this study, we provide the first chromosome-level reference genome for the golden mussel. The genome was built using PacBio HiFi, 10X, and Hi-C sequencing data. The final assembly contains 99.4% of its total length assembled to the 15 chromosomes of the species and a scaffold N50 of 97.05 Mb. A total of 34,862 protein-coding genes were predicted, of which 84.7% were functionally annotated. A significant (6.48%) proportion of the genome was found to be in a hemizygous state. Using the new genome, we have performed a genome-wide characterization of the Doublesex and Mab-3 related transcription factor gene family, which has been proposed as a target for population control strategies in other species. CONCLUSIONS From the applied research perspective, a higher-quality genome will support genome editing with the aim of developing biotechnology-based solutions to control invasion. From the basic research perspective, the new genome is a high-quality reference for molecular evolutionary studies of Mytilida and other Lophotrochozoa, and it may be used as a reference for future resequencing studies to assess genomic variation among different golden mussel populations, unveiling potential routes of dispersion and helping to establish better control policies.
Collapse
Affiliation(s)
- João Gabriel R. N. Ferreira
- Bio Bureau Biotecnologia, Rio de Janeiro 21941-850, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | | | | | - Fábio Sendim
- Bio Bureau Biotecnologia, Rio de Janeiro 21941-850, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - Yasmin R. da Cunha
- Bio Bureau Biotecnologia, Rio de Janeiro 21941-850, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | | | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton CB10 1RQ, UK
| | | | - Mauro de F. Rebelo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| |
Collapse
|
15
|
Xu R, Martelossi J, Smits M, Iannello M, Peruzza L, Babbucci M, Milan M, Dunham JP, Breton S, Milani L, Nuzhdin SV, Bargelloni L, Passamonti M, Ghiselli F. Multi-tissue RNA-Seq Analysis and Long-read-based Genome Assembly Reveal Complex Sex-specific Gene Regulation and Molecular Evolution in the Manila Clam. Genome Biol Evol 2022; 14:6889380. [PMID: 36508337 PMCID: PMC9803972 DOI: 10.1093/gbe/evac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.
Collapse
Affiliation(s)
- Ran Xu
- Corresponding authors: E-mail: (R.X.); E-mail: (F.G.)
| | | | | | | | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Joseph P Dunham
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA,SeqOnce Biosciences Inc., Pasadena, CA, USA
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | | |
Collapse
|
16
|
Li Y, Liu L, Zhang L, Wei H, Wu S, Liu T, Shu Y, Yang Y, Yang Z, Wang S, Bao Z, Zhang L. Dynamic transcriptome analysis reveals the gene network of gonadal development from the early history life stages in dwarf surfclam Mulinia lateralis. Biol Sex Differ 2022; 13:69. [PMID: 36461090 PMCID: PMC9716669 DOI: 10.1186/s13293-022-00479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Gonadal development is driven by a complex genetic cascade in vertebrates. However, related information remains limited in molluscs owing to the long generation time and the difficulty in maintaining whole life cycle in the lab. The dwarf surfclam Mulinia lateralis is considered an ideal bivalve model due to the short generation time and ease to breed in the lab. RESULTS To gain a comprehensive understanding of gonadal development in M. lateralis, we conducted a combined morphological and molecular analysis on the gonads of 30 to 60 dpf. Morphological analysis showed that gonad formation and sex differentiation occur at 35 and 40-45 dpf, respectively; then the gonads go through gametogenic cycle. Gene co-expression network analysis on 40 transcriptomes of 35-60 dpf gonads identifies seven gonadal development-related modules, including two gonad-forming modules (M6, M7), three sex-specific modules (M14, M12, M11), and two sexually shared modules (M15, M13). The modules participate in different biological processes, such as cell communication, glycan biosynthesis, cell cycle, and ribosome biogenesis. Several hub transcription factors including SOX2, FOXZ, HSFY, FOXL2 and HES1 are identified. The expression of top hub genes from sex-specific modules suggests molecular sex differentiation (35 dpf) occurs earlier than morphological sex differentiation (40-45 dpf). CONCLUSION This study provides a deep insight into the molecular basis of gonad formation, sex differentiation and gametogenesis in M. lateralis, which will contribute to a comprehensive understanding of the reproductive regulation network in molluscs.
Collapse
Affiliation(s)
- Yajuan Li
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Liangjie Liu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Lijing Zhang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Huilan Wei
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Shaoxuan Wu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Tian Liu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Ya Shu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Yaxin Yang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Zujing Yang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Shi Wang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.4422.00000 0001 2152 3263Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenmin Bao
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.4422.00000 0001 2152 3263Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lingling Zhang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
17
|
Han W, Liu L, Wang J, Wei H, Li Y, Zhang L, Guo Z, Li Y, Liu T, Zeng Q, Xing Q, Shu Y, Wang T, Yang Y, Zhang M, Li R, Yu J, Pu Z, Lv J, Lian S, Hu J, Hu X, Bao Z, Bao L, Zhang L, Wang S. Ancient homomorphy of molluscan sex chromosomes sustained by reversible sex-biased genes and sex determiner translocation. Nat Ecol Evol 2022; 6:1891-1906. [PMID: 36280781 DOI: 10.1038/s41559-022-01898-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
Contrary to classic theory prediction, sex-chromosome homomorphy is prevalent in the animal kingdom but it is unclear how ancient homomorphic sex chromosomes avoid chromosome-scale degeneration. Molluscs constitute the second largest, Precambrian-originated animal phylum and have ancient, uncharacterized homomorphic sex chromosomes. Here, we profile eight genomes of the bivalve mollusc family of Pectinidae in a phylogenetic context and show 350 million years sex-chromosome homomorphy, which is the oldest known sex-chromosome homomorphy in the animal kingdom, far exceeding the ages of well-known heteromorphic sex chromosomes such as 130-200 million years in mammals, birds and flies. The long-term undifferentiation of molluscan sex chromosomes is potentially sustained by the unexpected intertwined regulation of reversible sex-biased genes, together with the lack of sexual dimorphism and occasional sex chromosome turnover. The pleiotropic constraint of regulation of reversible sex-biased genes is widely present in ancient homomorphic sex chromosomes and might be resolved in heteromorphic sex chromosomes through gene duplication followed by subfunctionalization. The evolutionary dynamics of sex chromosomes suggest a mechanism for 'inheritance' turnover of sex-determining genes that is mediated by translocation of a sex-determining enhancer. On the basis of these findings, we propose an evolutionary model for the long-term preservation of homomorphic sex chromosomes.
Collapse
Affiliation(s)
- Wentao Han
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liangjie Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huilan Wei
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijing Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenyi Guo
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yajuan Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Qiang Xing
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ya Shu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tong Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yaxin Yang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiachen Yu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jia Lv
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoli Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Lingling Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shi Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
18
|
Hayashi Y, Oguchi K, Nakamura M, Koshikawa S, Miura T. Construction of a massive genetic resource by transcriptome sequencing and genetic characterization of Megasyllis nipponica (Annelida: Syllidae). Genes Genet Syst 2022; 97:153-166. [PMID: 36070927 DOI: 10.1266/ggs.21-00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Understanding the processes and consequences of the morphological diversity of organisms is one of the major goals of evolutionary biology. Studies on the evolution of developmental mechanisms of morphologies, or evo-devo, have been extensively conducted in many taxa and have revealed many interesting phenomena at the molecular level. However, many other taxa exhibiting intriguing morphological diversity remain unexplored in the field of evo-devo. Although the annelid family Syllidae shows spectacular diversity in morphological development associated with reproduction, its evo-devo study, especially on molecular development, has progressed slowly. In this study, we focused on Megasyllis nipponica as a new model species for evo-devo in syllids and performed transcriptome sequencing to develop a massive genetic resource, which will be useful for future molecular studies. From the transcriptome data, we identified candidate genes that are likely involved in morphogenesis, including genes involved in hormone regulation, sex determination and appendage development. Furthermore, a computational analysis of the transcriptome sequence data indicated the occurrence of DNA methylation in coding regions of the M. nipponica genome. In addition, flow cytometry analysis showed that the genome size of M. nipponica was approximately 524 megabases. These results facilitate the study of morphogenesis in molecular terms and contribute to our understanding of the morphological diversity in syllids.
Collapse
Affiliation(s)
| | - Kohei Oguchi
- Misaki Marine Biological Station, School of Science, The University of Tokyo.,National Institute of Advanced Industrial Science and Technology (AIST)
| | - Mayuko Nakamura
- Misaki Marine Biological Station, School of Science, The University of Tokyo
| | - Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University.,Graduate School of Environmental Science, Hokkaido University
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo
| |
Collapse
|
19
|
DNA methylation differences between male and female gonads of the oyster reveal the role of epigenetics in sex determination. Gene 2022; 820:146260. [PMID: 35121028 DOI: 10.1016/j.gene.2022.146260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
DNA methylation involved in sex determination mechanism by regulating gene expression related to sex determination networks are common in vertebrates. However, the mechanism linking epigenetics in invertebrates and sex determination has remained elusive. Here, methylome of the male and female gonads in the oyster Crassostrea gigas were conducted to explore the role of epigenetics in invertebrate sex determination. Comparative analysis of gonadal DNA methylation of females and males revealed that male gonads displayed a higher level of DNA methylation and a greater number of hypermethylated genes. Luxury genes presented hypomethylation, while housekeeping genes got hypermethylation. Genes in the conserved signaling pathways, rather than the key master genes in the sex determination pathway, were the major targets of substantial DNA methylation modification. The negative correlation of expression and promoter methylation in the diacylglycerol kinase delta gene (Dgkd) - a ubiquitously expressed gene - indicated DNA methylation may fine turn the expression of Dgkd and be involved in the process of sex determination. Dgkd can be used as an epigenetic marker to distinguish male C. gigas based on the different methylation regions in the promoter region. The results suggest that DNA methylation mechanisms played potential functional impacts in the sex determination in oysters, which is helpful to deepen the understanding of sex determination in invertebrate.
Collapse
|
20
|
Zeng Q, Hu B, Blanco AH, Zhang W, Zhao D, Martínez P, Hong Y. Full-Length Transcriptome Sequences Provide Insight Into Hermaphroditism of Freshwater Pearl Mussel Hyriopsis schlegelii. Front Genet 2022; 13:868742. [PMID: 35401664 PMCID: PMC8987123 DOI: 10.3389/fgene.2022.868742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
The freshwater mussel Hyriopsis schlegelii is a cultured bivalve in China, and the quality of the pearls produced is affected by the type of gonads. However, because of the lack of a published genome and the complexity of sex determination, research on sex reversal and development of this species is limited. In this study, Illumina RNA-seq and PacBio Isoform Sequencing (Iso-Seq) were combined to analyze the gonads of H. schlegelii. A total of 201,481 high-quality transcripts were generated. The study identified 7,922 differentially expressed genes in three comparison group (females versus males, hermaphrodites versus females, and hermaphrodites versus males). Twenty-four genes were identified as potential sex-related genes, including sox9 and wnt4 involved in sex determination, and vtg, cyp17a1 and 17β-hsd2 involved in gonadal development. We also speculated a possible pathways for the formation of hermaphroditism in H. schlegelii. The data provide a clear view of the transcriptome for H. schlegelii gonads and will be valuable in elucidating the mechanisms of gonad development.
Collapse
Affiliation(s)
- Qi Zeng
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Beijuan Hu
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang, China
| | - Andres Hortas Blanco
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Wanchang Zhang
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Daxian Zhao
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
| | - Paulino Martínez
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Yijiang Hong
- School of Life Sciences, Nanchang University, Nanchang, China
- Key Lab of Aquatic Resources and Utilization of Jiangxi, Nanchang, China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang, China
- *Correspondence: Yijiang Hong,
| |
Collapse
|
21
|
Identification and Characterization of MicroRNAs Involving in Initial Sex Differentiation of Chlamys farreri Gonads. BIOLOGY 2022; 11:biology11030456. [PMID: 35336829 PMCID: PMC8945268 DOI: 10.3390/biology11030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Sex formation of gonads encompasses two ancient and highly conserved biological processes, sex determination and sex differentiation. The processes are strictly regulated by a complex of gene networks. There is increasing evidence that miRNAs play key roles in many biological processes. however, information is limited in their contribution to sex differentiation in animals. In the present study, we identified the novel miRNAs involved in sex-related genes regulation and explored the miRNA–mRNA networks underlying the posttranscriptional regulation during the initial sex differentiation in Zhikong scallop, Chlamys farreri. Our findings provide an important basis for studying the sex differentiation mechanisms, as well as developing sex control techniques in bivalves. Abstract Research on expressional regulation of genes at the initial sex differentiation of gonads will help to elucidate the mechanisms of sex determination and differentiation in animals. However, information on initial sex differentiation of gonads is limited in bivalves. MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that can regulate the target gene expression at the posttranscription level by degrading the mRNA or repressing the mRNA translation. In the present study, we investigated the small RNAs transcriptome using the testes and ovaries of Zhikong scallop Chlamys farreri juveniles with a shell height of 5.0 mm, a critical stage of initial sex differentiation of gonads. A total of 75 known mature miRNAs and 103 novel miRNAs were identified. By comparing the expression of miRNAs between the ovary and testis, 11 miRNAs were determined to be differentially expressed. GO annotations and KEGG analyses indicated that many putative target genes that matched to these differentially expressed miRNAs participated in the regulation of sex differentiation. Furthermore, two selected miRNAs, cfa-novel_miR65 and cfa-miR-87a-3p_1, were confirmed to downregulate expressions of Foxl2 (a female-critical gene) and Klf4 (a male-critical gene), respectively, using a dual-luciferase reporter analysis. Our findings provided new insights into the initial sex differentiation of gonads regulated by miRNAs in bivalves.
Collapse
|
22
|
Evensen KG, Robinson WE, Krick K, Murray HM, Poynton HC. Comparative phylotranscriptomics reveals putative sex differentiating genes across eight diverse bivalve species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100952. [PMID: 34952324 DOI: 10.1016/j.cbd.2021.100952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Mollusks, especially bivalves, exhibit a great diversity of sex determining mechanisms, including both genetic and environmental sex determination. Some bivalve species can be gonochoristic (separate sexes), while others are hermaphroditic (sequential or simultaneous). Several models have been proposed for specific bivalve species, utilizing information gained from gene expression data, as well as limited RAD-seq data (e.g., from Crassostrea gigas). However, these mechanisms are not as well studied as those in model organisms (e.g., Mus musculus, Drosophila melanogaster, Caenorhabditis elegans) and many genes involved in sex differentiation are not well characterized. We used phylotranscriptomics to better understand which possible sex differentiating genes are in bivalves and how these genes relate to similar genes in diverse phyla. We collected RNAseq data from eight phylogenetically diverse bivalve species: Argopecten irradians, Ensis directus, Geukensia demissa, Macoma tenta, Mercenaria mercenaria, Mya arenaria, Mytilus edulis, and Solemya velum. Using these data, we assembled representative transcriptomes for each species. We then searched for candidate sex differentiating genes using BLAST and confirmed the identity of nine genes using phylogenetics analyses from nine phyla. To increase the confidence of identification, we included ten bivalve genomes in our analyses. From the analysis of doublesex and mab-3 related transcription factor (DMRT) genes, we confirmed the identify of a Mollusk-specific sex determining DMRT gene: DMRT1L. Based on gene expression data from M. edulis and previous research, DMRT1L and FoxL2 are key genes for male and female development, respectively.
Collapse
Affiliation(s)
- K Garrett Evensen
- School for the Environment, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, United States of America
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, United States of America
| | - Keegan Krick
- School for the Environment, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, United States of America
| | - Harry M Murray
- Department of Fisheries and Oceans Canada, 80 East White Hills Road, St John's, NL A1C 5X1, Canada
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, 100 William T Morrissey Blvd, Boston, MA 02125, United States of America.
| |
Collapse
|
23
|
Furukawa F, Doshimo Y, Sodeyama G, Adachi K, Mori K, Mori Y, Inadama R, Koyama M, Funayama S, Oda T, Furukawa S, Moriyama S, Kimura S, Kaneko T, Okumura SI. Hemocyte migration and expression of four Sox genes during wound healing in Pacific abalone, Haliotis discus hannai. FISH & SHELLFISH IMMUNOLOGY 2021; 117:24-35. [PMID: 34274420 DOI: 10.1016/j.fsi.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
In molluscs, migration of hemocytes and epithelial cells is believed to play central roles in wound healing. Here, we assessed cellular and molecular mechanisms of wound healing in Pacific abalone, a marine gastropod. Light and electron microscopy in the wounds showed early accumulation of putative hemocytes, collagen deposition by fibroblasts, and further coverage of this tissue by migration of adjacent epithelial cells. Cell labelling technique allowed us to track hemocytes, which migrated to wound surface within 24 h. The migrated cells first expressed PCNA and SoxF weakly, and then the epithelial cells expressed abundant PCNA and SoxB1, SoxB2, and SoxC. These findings imply that abalone SoxF is involved in hemocyte migration or their differentiation into fibroblasts, and suggest that the migrated epithelia acquire stem cell-like property and undergo active proliferation. This study is the first to show direct evidence of hemocyte migration to wounds and expression of Sox genes in molluscan wound healing.
Collapse
Affiliation(s)
- Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | - Yumi Doshimo
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Gin Sodeyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Kenta Adachi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan; Takehara Station, Setouchi Field Science Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Takehara, Hiroshima 725-0024, Japan
| | - Kazuma Mori
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Yuichi Mori
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Ryota Inadama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Mugen Koyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Shohei Funayama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Takuji Oda
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | | | - Shunsuke Moriyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Satoshi Kimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Toyoji Kaneko
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Sei-Ichi Okumura
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
24
|
Broquard C, Saowaros SA, Lepoittevin M, Degremont L, Lamy JB, Morga B, Elizur A, Martinez AS. Gonadal transcriptomes associated with sex phenotypes provide potential male and female candidate genes of sex determination or early differentiation in Crassostrea gigas, a sequential hermaphrodite mollusc. BMC Genomics 2021; 22:609. [PMID: 34372770 PMCID: PMC8353863 DOI: 10.1186/s12864-021-07838-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background In the animal kingdom, mollusca is an important phylum of the Lophotrochozoa. However, few studies have investigated the molecular cascade of sex determination/early gonadal differentiation within this phylum. The oyster Crassostrea gigas is a sequential irregular hermaphrodite mollusc of economic, physiological and phylogenetic importance. Although some studies identified genes of its sex-determining/−differentiating pathway, this particular topic remains to be further deepened, in particular with regard to the expression patterns. Indeed, these patterns need to cover the entire period of sex lability and have to be associated to future sex phenotypes, usually impossible to establish in this sequential hermaphrodite. This is why we performed a gonadal RNA-Seq analysis of diploid male and female oysters that have not changed sex for 4 years, sampled during the entire time-window of sex determination/early sex differentiation (stages 0 and 3 of the gametogenetic cycle). This individual long-term monitoring gave us the opportunity to explain the molecular expression patterns in the light of the most statistically likely future sex of each oyster. Results The differential gene expression analysis of gonadal transcriptomes revealed that 9723 genes were differentially expressed between gametogenetic stages, and 141 between sexes (98 and 43 genes highly expressed in females and males, respectively). Eighty-four genes were both stage- and sex-specific, 57 of them being highly expressed at the time of sex determination/early sex differentiation. These 4 novel genes including Trophoblast glycoprotein-like, Protein PML-like, Protein singed-like and PREDICTED: paramyosin, while being supported by RT-qPCR, displayed sexually dimorphic gene expression patterns. Conclusions This gonadal transcriptome analysis, the first one associated with sex phenotypes in C. gigas, revealed 57 genes highly expressed in stage 0 or 3 of gametogenesis and which could be linked to the future sex of the individuals. While further study will be needed to suggest a role for these factors, some could certainly be original potential actors involved in sex determination/early sex differentiation, like paramyosin and could be used to predict the future sex of oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07838-1.
Collapse
Affiliation(s)
- Coralie Broquard
- Normandie University, UNICAEN, CNRS, BOREA, 14000, Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CS 14032, 14032, Cedex 05, Caen, France.,Ifremer, RBE-SG2M-LGPMM, La Tremblade, France
| | - Suwansa-Ard Saowaros
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mélanie Lepoittevin
- Normandie University, UNICAEN, CNRS, BOREA, 14000, Caen, France.,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CS 14032, 14032, Cedex 05, Caen, France
| | | | | | | | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Anne-Sophie Martinez
- Normandie University, UNICAEN, CNRS, BOREA, 14000, Caen, France. .,Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie, MNHN, SU, UA, CNRS, IRD, Esplanade de la Paix, CS 14032, 14032, Cedex 05, Caen, France.
| |
Collapse
|
25
|
Wei H, Li W, Liu T, Li Y, Liu L, Shu Y, Zhang L, Wang S, Xing Q, Zhang L, Bao Z. Sexual Development of the Hermaphroditic Scallop Argopecten irradians Revealed by Morphological, Endocrine and Molecular Analysis. Front Cell Dev Biol 2021; 9:646754. [PMID: 33796533 PMCID: PMC8007870 DOI: 10.3389/fcell.2021.646754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Simultaneous or functional hermaphrodites possessing both ovary and testis at the same time are good materials for studying sexual development. However, previous research on sex determination and differentiation was mainly conducted in gonochoristic species and studies on simultaneous hermaphrodites are still limited. In this study, we conducted a combined morphological, endocrine and molecular study on the gonadal development of a hermaphroditic scallop Argopecten irradians aged 2–10 month old. Morphological analysis showed that sex differentiation occurred at 6 months of age. By examining the dynamic changes of progesterone, testosterone and estradiol, we found testosterone and estradiol were significantly different between the ovaries and testes almost throughout the whole process, suggesting the two hormones may be involved in scallop sex differentiation. In addition, we identified two critical sex-related genes FoxL2 and Dmrt1L, and investigated their spatiotemporal expression patterns. Results showed that FoxL2 and Dmrt1L were female- and male-biased, respectively, and mainly localized in the germ cells and follicular cells, indicating their feasibility as molecular markers for early identification of sex. Further analysis on the changes of FoxL2 and Dmrt1L expression in juveniles showed that significant sexual dimorphic expression of FoxL2 occurred at 2 months of age, earlier than that of Dmrt1L. Moreover, FoxL2 expression was significantly correlated with estradiol/testosterone ratio (E2/T). All these results indicated that molecular sex differentiation occurs earlier than morphological sex differentiation, and FoxL2 may be a key driver that functions through regulating sex steroid hormones in the scallop. This study will deepen our understanding of the molecular mechanism underlying sex differentiation and development in spiralians.
Collapse
Affiliation(s)
- Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Tian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Liangjie Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Ya Shu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Lijing Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
26
|
Li J, Zhou Y, Zhou Z, Lin C, Wei J, Qin Y, Xiang Z, Ma H, Zhang Y, Zhang Y, Yu Z. Comparative transcriptome analysis of three gonadal development stages reveals potential genes involved in gametogenesis of the fluted giant clam (Tridacna squamosa). BMC Genomics 2020; 21:872. [PMID: 33287701 PMCID: PMC7720611 DOI: 10.1186/s12864-020-07276-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gonad development and differentiation is an essential function for all sexually reproducing species, and many aspects of these developmental processes are highly conserved among the metazoa. However, the mechanisms underlying gonad development and gametogenesis remain unclear in Tridacna squamosa, a large-size bivalve of great ecological value. They are protandrous simultaneous hermaphrodites, with the male gonad maturing first, eventually followed by the female gonads. In this study, nine gonad libraries representing resting, male and hermaphrodite stages in T. squamosa were performed to identify the molecular mechanisms. RESULTS Sixteen thousand four hundred ninety-one unigenes were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 5091 and 7328 unigenes were assigned to Gene Ontology categories and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database, respectively. A total of 4763 differentially expressed genes (DEGs) were identified by comparing male to resting gonads, consisting of 3499 which were comparatively upregulated in males and 1264 which were downregulated in males. Six hundred-ninteen DEGs between male and hermaphroditic gonads were identified, with 518 DEGs more strongly expressed in hermaphrodites and 101 more strongly expressed in males. GO (Gene Ontology) and KEGG pathway analyses revealed that various biological functions and processes, including functions related to the endocrine system, oocyte meiosis, carbon metabolism, and the cell cycle, were involved in regulating gonadal development and gametogenesis in T. squamosa. Testis-specific serine/threonine kinases 1 (TSSK1), TSSK4, TSSK5, Doublesex- and mab-3-related transcription factor 1 (DMRT1), SOX, Sperm surface protein 17 (SP17) and other genes were involved in male gonadal development in Tridacna squamosal. Both spermatogenesis- (TSSK4, spermatogenesis-associated protein 17, spermatogenesis-associated protein 8, sperm motility kinase X, SP17) and oogenesis-related genes (zona pellucida protein, Forkhead Box L2, Vitellogenin, Vitellogenin receptor, 5-hydroxytryptamine, 5-hydroxytryptamine receptor) were simultaneously highly expressed in the hermaphroditic gonad to maintain the hermaphroditism of T. squamosa. CONCLUSION All these results from our study will facilitate better understanding of the molecular mechanisms underlying giant clam gonad development and gametogenesis, which can provided a base on obtaining excellent gametes during the seed production process for giant clams.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yinyin Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihua Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanxu Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jinkuan Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yanpin Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou, 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301, China.
- Hainan Key Laboratory of Tropical Marine Biotechnology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya, 572024, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Lubośny M, Przyłucka A, Śmietanka B, Burzyński A. Semimytilus algosus: first known hermaphroditic mussel with doubly uniparental inheritance of mitochondrial DNA. Sci Rep 2020; 10:11256. [PMID: 32647112 PMCID: PMC7347871 DOI: 10.1038/s41598-020-67976-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA is a rare phenomenon occurring in some freshwater and marine bivalves and is usually characterized by the mitochondrial heteroplasmy of male individuals. Previous research on freshwater Unionida mussels showed that hermaphroditic species do not have DUI even if their closest gonochoristic counterparts do. No records showing DUI in a hermaphrodite have ever been reported. Here we show for the first time that the hermaphroditic mussel Semimytilus algosus (Mytilida), very likely has DUI, based on the complete sequences of both mitochondrial DNAs and the distribution of mtDNA types between male and female gonads. The two mitogenomes show considerable divergence (34.7%). The presumably paternal M type mitogenome dominated the male gonads of most studied mussels, while remaining at very low or undetectable levels in the female gonads of the same individuals. If indeed DUI can function in the context of simultaneous hermaphroditism, a change of paradigm regarding its involvement in sex determination is needed. It is apparently associated with gonadal differentiation rather than with sex determination in bivalves.
Collapse
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland.
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
28
|
Xia X, Guan C, Chen J, Qiu M, Qi J, Wei M, Wang X, Zhang K, Lu S, Zhang L, Hua C, Xue S, Yao L. Molecular characterization of AwSox2 from bivalve Anodonta woodiana: Elucidating its player in the immune response. Innate Immun 2020; 26:381-397. [PMID: 31889462 PMCID: PMC7903536 DOI: 10.1177/1753425919897823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Sox2 is an embryonal stem cell Ag essential for early embryonic development, tissue homeostasis and immune regulation. In the current study, one complete Sox2 cDNA sequence was cloned from freshwater bivalve Anodonta woodiana and named AwSox2. Histological changes of testis derived from Bisphenol A (BPA) treatment were analyzed by hematoxylin and eosin staining. Expressions of AwSox2 derived from BPA, LPS and polyinosinic:polycytidylic (Poly I:C) challenge were measured by quantitative real-time PCR. The full-length cDNA of AwSox2 contained an open reading frame of 927 nucleotides bearing the typical structural features of Sox2 family. Obvious degeneration, irregular arrangement of spermatids, and clotted dead and intertwined spermatids were observed in BPA-treated groups. Administration of BPA could result in a dose-dependent up-regulation of AwSox2 expression in the male gonadal tissue of A. woodiana. In addition, expression of AwSox2 was significantly induced by LPS and Poly I:C treatment in the hepatopancreas, gill and hemocytes, compared with that of control group. These results indicated that up-regulations of AwSOx2 are closely related to apoptosis of spermatogonial stem cells derived from BPA treatment as well as enhancement of immune defense against LPS and Poly I:C challenge in A. woodiana.
Collapse
Affiliation(s)
- Xichao Xia
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| | - Cuiui Guan
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| | - Jiawei Chen
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Maolin Qiu
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Jinxu Qi
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Mengwei Wei
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Xiaowei Wang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Ke Zhang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Suxiang Lu
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Linguo Zhang
- Medical College of Pingdingshan University, Pingdingshan, Henan
Province, China
| | - Chunxiu Hua
- Basic Medicine College of Nanyang Medical University, Nanyang,
Henan Province, China
| | - Shipeng Xue
- Basic Medicine College of Nanyang Medical University, Nanyang,
Henan Province, China
| | - Lunguang Yao
- Life college of Nanyang Nomal University, Nanyang, Henan
Province, China
| |
Collapse
|
29
|
Restriction site-associated DNA sequencing (RAD-seq) analysis in Pacific oyster Crassostrea gigas based on observation of individual sex changes. Sci Rep 2020; 10:9873. [PMID: 32555506 PMCID: PMC7303127 DOI: 10.1038/s41598-020-67007-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
The diverse modes of sexual reproduction in Bivalvia make it an excellent clade to understand the evolution of sex and sex determination. The cosmopolitan Pacific oyster Crassostrea gigas is an ideal model for bivalve sex determination studies because of its complicated sexuality, including dioecy, sex change and rare hermaphroditism. A major barrier to C. gigas sex determination study has been the lack of information on the type of sex determination. To identify its sex-determining system, sex observation by following the same individual in two consecutive years was conducted on 760 oysters from distinct populations. Stable sexuality and sex reversal in both directions were observed, which provides a case against the protandry of C. gigas. Restriction site-associated DNA sequencing (RAD-seq) based on 26 samples with unchanged and converted sexualities was carried out for identifying sex-linked marker. One SNP Cgsl-40 was proved to be sex-related, but sex-biased heterozygosity varied between populations for RAD-seq and validation, showing no evidence for sex chromosomes or single-locus models for C. gigas primary sex determination. Information obtained in our study provides novel insight into sex determination mechanism in C. gigas.
Collapse
|
30
|
Peng J, Li Q, Xu L, Wei P, He P, Zhang X, Zhang L, Guan J, Zhang X, Lin Y, Gui J, Chen X. Chromosome-level analysis of the Crassostrea hongkongensis genome reveals extensive duplication of immune-related genes in bivalves. Mol Ecol Resour 2020; 20:980-994. [PMID: 32198971 DOI: 10.1111/1755-0998.13157] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Crassostrea hongkongensis is a popular and important native oyster species that is cultured mainly along the coast of the South China Sea. However, the absence of a reference genome has restricted genetic studies and the development of molecular breeding schemes for this species. Here, we combined PacBio and 10 × Genomics technologies to create a C. hongkongensis genome assembly, which has a size of 610 Mb, and is close to that estimated by flow cytometry (~650 Mb). Contig and scaffold N50 are 2.57 and 4.99 Mb, respectively, and BUSCO analysis indicates that 95.8% of metazoan conserved genes are completely represented. Using a high-density linkage map of its closest related species, C. gigas, a total of 521 Mb (85.4%) was anchored to 10 haploid chromosomes. Comparative genomic analyses with other molluscs reveal that several immune- or stress response-related genes extensively expanded in bivalves by tandem duplication, including C1q, Toll-like receptors and Hsp70, which are associated with their adaptation to filter-feeding and sessile lifestyles in shallow sea and/or deep-sea ecosystems. Through transcriptome sequencing, potential genes and pathways related to sex determination and gonad development were identified. The genome and transcriptome of C. hongkongensis provide valuable resources for future molecular studies, genetic improvement and genome-assisted breeding of oysters.
Collapse
Affiliation(s)
- Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Qiongzhen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xingzhi Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Li Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Junliang Guan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xiaojuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology and Innovation Academy for Seed Design, CAS, Wuhan, China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology and Innovation Academy for Seed Design, CAS, Wuhan, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| |
Collapse
|
31
|
Guo Z, Zhang L, Li Y, Wu S, Wang S, Zhang L, Bao Z. Expression profiling of the Kdm genes in scallop Patinopecten yessoensis suggests involvement of histone demethylation in regulation of early development and gametogenesis. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110434. [PMID: 32201355 DOI: 10.1016/j.cbpb.2020.110434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Histone demethylation modification is an important means of gene expression regulation and is widely involved in biological processes such as animal reproduction and development. Histone lysine demethylases (Kdm) plays an important role in the demethylation of histones. To understand the role of histone demethylation in scallops, we identified the Kdm gene family of the Yesso scallop Patinopecten yessoensis, and analyzed its expression during the gonad and early development. The results showed that the P. yessoensis has a complete Kdm family including seventeen members that belong to sixteen subfamilies (Hif1an, Hspbap1, Jarid2, Jmjd4, Jmjd6, Jmjd7, Jmjd8, Kdm1, Kdm2, Kdm3, Kdm4, Kdm5, Kdm6, Kdm7, Kdm8 and Kdm9). The Kdm genes showed five different expression patterns in the early development of scallop, with some of them (e.g. Jmjd7, Jmjd8 and Kdm8) being highly expressed in only one or two stage and the others (e.g. Kdm1A, Kdm9, Jmjd4 and Jmjd6) in several consecutive stages. During gonadal development, the Kdm genes also display various expression patterns. Some genes (e.g. Kdm2, Kdm4 and Jmjd7) display preferential expression in the testis, and the others have no obvious sex bias but show stage preference (resting, proliferative, growing or maturation stage). These results suggest that various histone demethylation modifications (e.g. H3K4, H3K9 and H3K27) may participate in the regulation of gametogenesis and early development of Yesso scallop. It will facilitate a better understanding of the epigenetic contributions to mollusk development.
Collapse
Affiliation(s)
- Zhenyi Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Lijing Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Wu S, Zhang Y, Li Y, Wei H, Guo Z, Wang S, Zhang L, Bao Z. Identification and expression profiles of Fox transcription factors in the Yesso scallop (Patinopecten yessoensis). Gene 2020; 733:144387. [PMID: 31972308 DOI: 10.1016/j.gene.2020.144387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
The forkhead box (Fox) gene family is a family of transcription factors that play important roles in a variety of biological processes in vertebrates, including early development and cell proliferation and differentiation. However, at present, studies on the mollusk Fox family are relatively lacking. In the present study, the Fox gene family of the Yesso scallop (Patinopecten yessoensis) was systematically identified. In addition, the expression profiles of the Fox gene family in early development and adult tissues were analyzed. The results showed that there were 26 Fox genes in P. yessoensis. Of the 26 genes, 24 belonged to 20 subfamilies. The Fox genes belonging to the I, Q1, R and S subfamilies were absent in P. yessoensis. The other 2 genes formed 2 independent clades with the Fox genes of other mollusks and protostomes. They might be new members of the Fox family and were named FoxY and FoxZ. P. yessoensis contained a FoxC-FoxL1 gene cluster similar in structure to that of Branchiostoma floridae, suggesting that the cluster might already exist in the ancestors of bilaterally symmetrical animals. The gene expression analysis of Fox showed that most of the genes were continuously expressed in multiple stages of early development, suggesting that Fox genes might be widely involved in the regulation of embryo and larval development of P. yessoensis. Nine Fox genes were specifically expressed in certain tissues, such as the nerve ganglia, foot, ovary, testis, and gills. For the 9 genes that were differentially expressed between the testis and ovary, their expression levels were analyzed during the 4 developmental stages of gonads. The results showed that FoxL2, FoxE and FoxY were highly expressed in the ovary during all developmental stages, while FoxZ was highly expressed in the testis during all developmental stages. The results suggested that these genes might play an important role in sex maintenance or gametogenesis. The present study could provide a reference for evolutionary and functional studies of the Fox family in metazoans.
Collapse
Affiliation(s)
- Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhenyi Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
33
|
Sahoo L, Sahoo S, Mohanty M, Sankar M, Dixit S, Das P, Rasal KD, Rather MA, Sundaray JK. Molecular characterization, computational analysis and expression profiling of Dmrt1 gene in Indian major carp, Labeo rohita (Hamilton 1822). Anim Biotechnol 2019; 32:413-426. [PMID: 31880491 DOI: 10.1080/10495398.2019.1707683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sexual dimorphism of fish morphology, physiology and behavior is diverse and complex in nature. Doublesex and mab-3 related transcription factor (Dmrt) is a large protein family whose function is sexual development and differentiation in vertebrates. Here, we report a full-length cDNA sequence of Labeo rohita (rohu) Dmrt1 of 907 bp length having 798 bp of open reading frame encoding 265 amino acids. The molecular weight of rohu DMRT1 protein was found to be 28.74 KDa and isoelectric point was 7.53. DMRT1 protein contains 23 positively and 24 negatively charged amino acids with a GRAVY score of -0.618. A characteristic DM domain was found in DMRT1 protein, which is a novel DNA-binding domain. Phylogenetic analysis showed maximum similarity with Cyprinus carpio when compared with DMRT1 of other vertebrates. Molecular docking study identified active sites to be targeted for drug designing. Rohu DMRT1 was observed to interact with other proteins such as FOXL2, CYP19a1a, AMH and SOX9a. Differential expression study revealed higher expression in testis tissue implying its role in male sex differentiation and testicular development. The information generated in the present work could facilitate further research to resolve the issues related to gonadal maturation and reproduction of commercially important aquaculture species.
Collapse
Affiliation(s)
- L Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - S Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Sankar
- ICAR-Central Marine Research Institute, Mandapam Regional Centre, Tamil Nadu, India
| | - S Dixit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - P Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K D Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M A Rather
- Division of Fish genetics and Biotechnology, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - J K Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
34
|
Zhu C, Zhang L, Ding H, Pan Z. Transcriptome-wide identification and characterization of the Sox gene family and microsatellites for Corbicula fluminea. PeerJ 2019; 7:e7770. [PMID: 31660260 PMCID: PMC6814067 DOI: 10.7717/peerj.7770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022] Open
Abstract
The Asian clam, Corbicula fluminea, is a commonly consumed small freshwater bivalve in East Asia. However, available genetic information of this clam is still limited. In this study, the transcriptome of female C. fluminea was sequenced using the Illumina HiSeq 2500 platform. A total of 89,563 unigenes were assembled with an average length of 859 bp, and 36.7% of them were successfully annotated. Six members of Sox gene family namely SoxB1, SoxB2, SoxC, SoxD, SoxE and SoxF were identified. Based on these genes, the divergence time of C. fluminea was estimated to be around 476 million years ago. Furthermore, a total of 3,117 microsatellites were detected with a distribution density of 1:12,960 bp. Fifty of these microsatellites were randomly selected for validation, and 45 of them were successfully amplified with 31 polymorphic ones. The data obtained in this study will provide useful information for future genetic and genomic studies in C. fluminea.
Collapse
Affiliation(s)
- Chuankun Zhu
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Lei Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.,Key Laboratory of Fishery Sustainable Development and Water Environment Protection of Huai'an City, Huai'an Sub Center of the Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an, China
| | - Huaiyu Ding
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Zhengjun Pan
- Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, Jiangsu, China.,Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| |
Collapse
|
35
|
Song K, Wen S, Zhang G. Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:614-622. [PMID: 31203476 DOI: 10.1007/s10126-019-09906-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Estimation of adaptive evolution rates at the molecular level is important in evolutionary genomics. However, knowledge of adaptive evolutionary patterns in Mollusca is very scarce, especially for oysters. Such information would help clarify how oysters adapt to pathogen-rich and dynamically changing intertidal environments. In this study, we characterized the patterns of adaptive evolution in the Crassostrea gigas genome, using population diversity analysis and congeneric comparison. Our analysis revealed that gene expression patterns were positively associated with adaptive evolution rates, which suggested that positive selection played an important role in gene evolution. The genes with more exons and alternative splicing events had higher adaptive evolution rates. The rates of adaptive evolution in immune-related and stress-response genes were higher than those in other genes, suggesting that these groups of genes experienced strong positive selection. This study represents the first analysis of adaptive evolution rates in oysters and the first comprehensive study of a Mollusca species. These results provide a system-level investigation of association between adaptive evolution rates with some intrinsic genetic factors. They also suggest that adaptation to pathogens and environmental stressors are important forces driving the adaptive evolution of genes.
Collapse
Affiliation(s)
- Kai Song
- School of Mathematics and Statistics, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Shiyong Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, China
- Dezhou State-owned Assets Supervision and Administration Commission, Dezhou,, 253000, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.
| |
Collapse
|
36
|
Capt C, Renaut S, Stewart DT, Johnson NA, Breton S. Putative Mitochondrial Sex Determination in the Bivalvia: Insights From a Hybrid Transcriptome Assembly in Freshwater Mussels. Front Genet 2019; 10:840. [PMID: 31572447 PMCID: PMC6754070 DOI: 10.3389/fgene.2019.00840] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/13/2019] [Indexed: 11/13/2022] Open
Abstract
Bivalves exhibit an astonishing diversity of sexual systems, with genetic and environmental determinants of sex, and possibly the only example of mitochondrial genes influencing sex determination pathways in animals. In contrast to all other animal species in which strict maternal inheritance (SMI) of mitochondria is the rule, bivalves possess a system known as doubly uniparental inheritance (DUI) of mitochondria in which maternal and paternal mitochondria (and their corresponding female-transmitted or F mtDNA and male-transmitted or M mtDNA genomes) are transmitted within a species. Species with DUI also possess sex-associated mtDNA-encoded proteins (in addition to the typical set of 13), which have been hypothesized to play a role in sex determination. In this study, we analyzed the sex-biased transcriptome in gonads of two closely-related freshwater mussel species with different reproductive and mitochondrial transmission modes: the gonochoric, DUI species, Utterbackia peninsularis, and the hermaphroditic, SMI species, Utterbackia imbecillis. Through comparative analysis with other DUI and non-DUI bivalve transcriptomes already available, we identify common male and female-specific genes, as well as SMI and DUI-related genes, that are probably involved in sex determination and mitochondrial inheritance in this animal group. Our results contribute to the understanding of what could be the first animal sex determination system involving the mitochondrial genome.
Collapse
Affiliation(s)
- Charlotte Capt
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Renaut
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.,Centre de la Science de la Biodiversité du Québec, Université de Montréal, Montréal, QC, Canada
| | | | - Nathan A Johnson
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, United States
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
37
|
Phenotypic Stability of Sex and Expression of Sex Identification Markers in the Adult Yesso Scallop Mizuhopecten yessoensis throughout the Reproductive Cycle. Animals (Basel) 2019; 9:ani9050277. [PMID: 31137722 PMCID: PMC6562885 DOI: 10.3390/ani9050277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/03/2023] Open
Abstract
Simple Summary Bivalve sex is thought to fluctuate depending on environmental conditions. So far, there has been no investigation on the phenotypic stability of sex in the commercially important Yesso scallop Mizuhopecten yessoensis. The present study revealed that the sex of the Yesso scallop is stable after initial sex differentiation and that this species maintains a sex-stable maturation system throughout its life. In addition, gonad differentiation for each sex was precisely characterized by using molecular markers throughout the maturational cycle. Abstract The objective of the present study was to analyze the phenotypic stability of sex after sex differentiation in the Yesso scallop, which is a gonochoristic species that has been described as protandrous. So far, no study has investigated in detail the sexual fate of the scallop after completion of sex differentiation, although bivalve species often show annual sex change. In the present study, we performed a tracking experiment to analyze the phenotypic stability of sex in scallops between one and two years of age. We also conducted molecular marker analyses to describe sex differentiation and gonad development. The results of the tracking experiment revealed that all scallops maintained their initial sex phenotype, as identified in the last reproductive period. Using molecular analyses, we characterized my-dmrt2 and my-foxl2 as sex identification markers for the testis and ovary, respectively. We conclude by proposing that the Yesso scallop is a sex-stable bivalve after its initial sex differentiation and that it maintains a sex-stable maturation system throughout its life. The sex-specific molecular markers identified in this study are useful tools to assess the reproductive status of the Yesso scallop.
Collapse
|
38
|
Cherif-Feildel M, Heude Berthelin C, Adeline B, Rivière G, Favrel P, Kellner K. Molecular evolution and functional characterisation of insulin related peptides in molluscs: Contributions of Crassostrea gigas genomic and transcriptomic-wide screening. Gen Comp Endocrinol 2019; 271:15-29. [PMID: 30389328 DOI: 10.1016/j.ygcen.2018.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Insulin Related Peptides (IRPs) belong to the insulin superfamily and possess a typical structure with two chains, B and A, linked by disulphide bonds. As the sequence conservation is usually low between members, IRPs are classified according to the number and position of their disulphide bonds. In molluscan species, the first IRPs identified, named Molluscan Insulin-related Peptides (MIPs), exhibit four disulphide bonds. The genomic and transcriptomic data screening in the Pacific oyster Crassostrea gigas (Mollusc, Bivalvia) allowed us to identify six IRP sequences belonging to three structural groups. Cg-MIP1 to 4 have the typical structure of MIPs with four disulphide bonds. Cg-ILP has three disulphide bonds like vertebrate Insulin-Like Peptides (ILPs). The last one, Cg-MILP7 has a significant homology with Drosophila ILP7 (DILP7) associated with two additional cysteines allowing the formation of a fourth disulphide bond. The phylogenetic analysis points out that ILPs may be the most ancestral form. Moreover, it appears that ILP7 orthologs are probably anterior to lophotrochozoa and ecdysozoa segregation. In order to investigate the diversity of physiological functions of the oyster IRPs, we combine in silico expression data, qPCR measurements and in situ hybridization. The Cg-ilp transcript, mainly detected in the digestive gland and in the gonadal area, is potentially involved in the control of digestion and gametogenesis. The expression of Cg-mip4 is mainly associated with the larval development. The Cg-mip transcript shared by the Cg-MIP1, 2 and 3, is mainly expressed in visceral ganglia but its expression was also observed in the gonads of mature males. This pattern suggested the key roles of IRPs in the control of sexual reproduction in molluscan species.
Collapse
Affiliation(s)
- Maëva Cherif-Feildel
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Clothilde Heude Berthelin
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Beatrice Adeline
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Guillaume Rivière
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Pascal Favrel
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France
| | - Kristell Kellner
- Normandy University, Caen, France; University of Caen Normandie, Unity Biology of Organisms and Aquatic Ecosystems (BOREA), MNHN, Sorbonne University, UCN, CNRS, IRD, Esplanade de la Paix, 14032 Caen, France.
| |
Collapse
|
39
|
Abstract
Sex determination and sexual development are highly diverse and controlled by mechanisms that are extremely labile. While dioecy (separate male and female functions) is the norm for most animals, hermaphroditism (both male and female functions within a single body) is phylogenetically widespread. Much of our current understanding of sexual development comes from a small number of model systems, limiting our ability to make broader conclusions about the evolution of sexual diversity. We present the calyptraeid gastropods as a model for the study of the evolution of sex determination in a sequentially hermaphroditic system. Calyptraeid gastropods, a group of sedentary, filter-feeding marine snails, are sequential hermaphrodites that change sex from male to female during their life span (protandry). This transition includes resorption of the penis and the elaboration of female genitalia, in addition to shifting from production of spermatocytes to oocytes. This transition is typically under environmental control and frequently mediated by social interactions. Males in contact with females delay sex change to transition at larger sizes, while isolated males transition more rapidly and at smaller sizes. This phenomenon has been known for over a century; however, the mechanisms that control the switch from male to female are poorly understood. We review here our current understanding of sexual development and sex determination in the calyptraeid gastropods and other molluscs, highlighting our current understanding of factors implicated in the timing of sex change and the potential mechanisms. We also consider the embryonic origins and earliest expression of the germ line and the effects of environmental contaminants on sexual development.
Collapse
|
40
|
Li R, Zhang L, Li W, Zhang Y, Li Y, Zhang M, Zhao L, Hu X, Wang S, Bao Z. FOXL2 and DMRT1L Are Yin and Yang Genes for Determining Timing of Sex Differentiation in the Bivalve Mollusk Patinopecten yessoensis. Front Physiol 2018; 9:1166. [PMID: 30246781 PMCID: PMC6113668 DOI: 10.3389/fphys.2018.01166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/03/2018] [Indexed: 01/24/2023] Open
Abstract
Sex determination and differentiation have long been a research hotspot in metazoans. However, little is known about when and how sex differentiation occurs in most mollusks. In this study, we conducted a combined morphological and molecular study on sex differentiation in the Yesso scallop Patinopecten yessoensis. Histological examination on gonads from 5- to 13-month-old juveniles revealed that the morphological sex differentiation occurred at 10 months of age. To determine the onset of molecular sex differentiation, molecular markers were screened for early identification of sex. The gonadal expression profiles of eight candidate genes for sex determination or differentiation showed that only two genes displayed sexually dimorphic expression, with FOXL2 being abundant in ovaries and DMRT1L in testes. In situ hybridization revealed that both of them were detected in germ cells and follicle cells. We therefore developed LOG10(DMRT1L/FOXL2) for scallop sex identification and confirmed its feasibility in differentiated individuals. By tracing its changes in 5- to 13-month-old juveniles, molecular sex differentiation time was determined: some scallops differentiate early in September when they are 7 months old, and some do late in December when they are 10 months old. Two kinds of coexpression patterns were found between FOXL2 and DMRT1L: expected antagonism after differentiation and unexpected coordination before differentiation. Our results revealed that scallop sex differentiation co-occurs with the formation of follicles, and molecular sex differentiation is established prior to morphological sex differentiation. Our study will assist in a better understanding of the molecular mechanism underlying bivalve sex differentiation.
Collapse
Affiliation(s)
- Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
41
|
Shi Y, Liu W, He M. Proteome and Transcriptome Analysis of Ovary, Intersex Gonads, and Testis Reveals Potential Key Sex Reversal/Differentiation Genes and Mechanism in Scallop Chlamys nobilis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:220-245. [PMID: 29546597 DOI: 10.1007/s10126-018-9800-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Bivalve mollusks exhibit hermaphroditism and sex reversal/differentiation. Studies generally focus on transcriptional profiling and specific genes related to sex determination and differentiation. Few studies on sex reversal/differentiation have been reported. A combination analysis of gonad proteomics and transcriptomics was conducted on Chlamys nobilis to provide a systematic understanding of sex reversal/differentiation in bivalves. We obtained 4258 unique peptides and 93,731 unigenes with good correlation between messenger RNA and protein levels. Candidate genes in sex reversal/differentiation were found: 15 genes differentially expressed between sexes were identified and 12 had obvious sexual functions. Three novel genes (foxl2, β-catenin, and sry) were expressed highly in intersex individuals and were likely involved in the control of gonadal sex in C. nobilis. High expression of foxl2 or β-catenin may inhibit sry and activate 5-HT receptor and vitellogenin to maintain female development. High expression of sry may inhibit foxl2 and β-catenin and activate dmrt2, fem-1, sfp2, sa6, Amy-1, APCP4, and PLK to maintain male function. High expression of sry, foxl2, and β-catenin in C. nobilis may be involved in promoting and maintaining sex reversal/differentiation. The downstream regulator may not be dimorphic expressed genes, but genes expressed in intersex individuals, males and females. Different expression patterns of sex-related genes and gonadal histological characteristics suggested that C. nobilis may change its sex from male to female. These findings suggest highly conserved sex reversal/differentiation with diverged regulatory pathways during C. nobilis evolution. This study provides valuable genetic resources for understanding sex reversal/differentiation (intersex) mechanisms and pathways underlying bivalve reproductive regulation.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Wenguang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
42
|
Capt C, Renaut S, Ghiselli F, Milani L, Johnson NA, Sietman BE, Stewart DT, Breton S. Deciphering the Link between Doubly Uniparental Inheritance of mtDNA and Sex Determination in Bivalves: Clues from Comparative Transcriptomics. Genome Biol Evol 2018; 10:577-590. [PMID: 29360964 PMCID: PMC5800059 DOI: 10.1093/gbe/evy019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species.
Collapse
Affiliation(s)
- Charlotte Capt
- Department of Biological Sciences, Université de Montréal, Quebec, Canada
| | - Sébastien Renaut
- Department of Biological Sciences, Université de Montréal, Quebec, Canada
- Centre de la Science de la Biodiversité du Québec, Université de Montréal, Quebec, Canada
| | - Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Nathan A Johnson
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, Florida, USA
| | - Bernard E Sietman
- Minnesota Department of Natural Resources, Center for Aquatic Mollusk Programs, Lake City, Minnesota, USA
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Quebec, Canada
| |
Collapse
|
43
|
Otani A, Nakajima T, Okumura T, Fujii S, Tomooka Y. Sex Reversal and Analyses of Possible Involvement of Sex Steroids in Scallop Gonadal Development in Newly Established Organ-Culture Systems. Zoolog Sci 2017; 34:86-92. [PMID: 28397607 DOI: 10.2108/zs160070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many molluscs perform sex reversal, and sex hormones may be involved in the process. In adult scallops, Patinopecten yessoensis, gonadotropin releasing hormone and 17β-estradiol (E2) are involved in male sexual maturation, however, little is known about the effects of E2 and testosterone (T) on the gonadal differentiation in young scallops. In the present study, scallop gonadal development was analyzed to determine the sex reversal stage in Funka bay, and effects of E2 and T were examined. In Funka bay, almost all scallops were male at month 12. Scallops equipped with ambiguous gonads were 61.1% at month 16 and disappeared at month 18. Therefore, sex reversal in Funka bay occurs at around month 16. For establishment of organ culture systems for bivalves, Manila clam gonads were cultured in 15% L-15 medium diluted with HBSS containing 10% KSR on agarose gel at 10°C, and the gonads survived for 14 days. Scallop gonads were also able to be cultured in 30% L15 medium diluted with ASW containing 10% KSR on agarose gel for seven days. At mature stage, Foxl2 and Tesk were predominantly expressed in ovary and testis, respectively. When scallop gonads at sex reversal stage were organ-cultured, sex steroid treatment decreased Tesk expression in the majority of scallop gonads at sex reversal stage. However, no obvious change in Foxl2 and Tesk expression was detected in mature gonads in response to either E2 or T in culture, suggesting sex steroid treatment might affect gonadal development at sex reversal stage.
Collapse
Affiliation(s)
- Ayano Otani
- 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadaaki Nakajima
- 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tomomi Okumura
- 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Shiro Fujii
- 2 Department of Liberal Arts Education, Faculty of Industrial Science and Technology, Tokyo University of Science, 102-1 Tomino, Oshamambe-cho, Yamakoshi-gun, Hokkaido 049-3514, Japan
| | - Yasuhiro Tomooka
- 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
44
|
Yu J, Zhang L, Li Y, Li R, Zhang M, Li W, Xie X, Wang S, Hu X, Bao Z. Genome-wide identification and expression profiling of the SOX gene family in a bivalve mollusc Patinopecten yessoensis. Gene 2017; 627:530-537. [PMID: 28694209 DOI: 10.1016/j.gene.2017.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/13/2017] [Accepted: 07/06/2017] [Indexed: 11/19/2022]
Abstract
SOX family is composed of transcription factors that play vital roles in various developmental processes. Comprehensive understanding on evolution of the SOX family requires full characterization of SOX genes in different phyla. Mollusca is the second largest metazoan phylum, but till now, systematic investigation on the SOX family is still lacking in this phylum. In this study, we conducted genome-wide identification of the SOX family in Yesso scallop Patinopecten yessoensis and profiled their tissue distribution and temporal expression patterns in the ovaries and testes during gametogenesis. Seven SOX genes were identified, including SOXB1, B2, C, D, E, F and H, representing the first record in protostomes with SOX members identical to that proposed to exist in the last common ancestor of chordates. Genomic structure analysis identified relatively conserved exon-intron structures, accompanied by intron insertion. Quantitative real-time PCR analysis revealed possible involvement of scallop SOX in various functions, including neuro-sensory cell differentiation, hematopoiesis, myogenesis and gametogenesis. This study represents the first systematic characterization of SOX gene family in Mollusca. It will assist in a better understanding of the evolution and function of SOX family in metazoans.
Collapse
Affiliation(s)
- Jiachen Yu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Yangping Li
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Ruojiao Li
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Meiwei Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Wanru Li
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Xinran Xie
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Ministry of Education, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
45
|
A novel role of Krüppel-like factor 4 in Zhikong scallop Chlamys farreri during spermatogenesis. PLoS One 2017; 12:e0180351. [PMID: 28665994 PMCID: PMC5493395 DOI: 10.1371/journal.pone.0180351] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a kind of zinc finger transcription factor, which is involved in terminal differentiation of epithelial cells and reprogramming of somatic cells to induced pluripotent stem (iPS) cells in mammals. In the present study, we identified a full-length cDNA of Klf4 in Zhikong scallop Chamys farreri (Cf-Klf4) and found that Cf-Klf4 presented a sexual dimorphic expression characteristic in C. farreri gonads. Cf-Klf4 expression was significantly higher in testes than in ovaries from growing stage to mature stage detected by quantitative real-time PCR, and was located in male gametes, except for spermatozoa during spermatogenesis through in situ hybridization and immunohistochemistry, while no positive signal was visible in female gametes during oogenesis. Furthermore, the knockdown of Cf-Klf4 in testes by means of in vivo RNA interference led to an obviously developmental retardance, lower gonadosomatic index, less male gametes and more apoptotic spermatocytes. Interestingly, we found that two out of eight scallops showed a hermaphroditic phenotype characteristic of male-to-female sex reversal when the Klf4 mRNA and protein levels were knocked down in males. These results verified that Klf4 plays an important role in testis functional maintenance and is necessary in spermatogenesis of C. farreri.
Collapse
|
46
|
Song S, Yu H, Li Q. Genome survey and characterization of reproduction-related genes in the Pacific oyster. INVERTEBR REPROD DEV 2017. [DOI: 10.1080/07924259.2017.1287780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shanshan Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
47
|
Alternative Splicing Profile and Sex-Preferential Gene Expression in the Female and Male Pacific Abalone Haliotis discus hannai. Genes (Basel) 2017; 8:genes8030099. [PMID: 28282934 PMCID: PMC5368703 DOI: 10.3390/genes8030099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023] Open
Abstract
In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.
Collapse
|
48
|
López-Landavery EA, Portillo-López A, Gallardo-Escárate C, Del Río-Portilla MA. Sex-related genes expression in juveniles of red abalone,Haliotis rufescens(Swanson, 1822). INVERTEBR REPROD DEV 2017. [DOI: 10.1080/07924259.2017.1282383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Edgar A. López-Landavery
- Laboratorio de Genética, Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Tijuana-Ensenada N° 3918, Ensenada, México
| | | | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - Miguel A. Del Río-Portilla
- Laboratorio de Genética, Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Tijuana-Ensenada N° 3918, Ensenada, México
| |
Collapse
|
49
|
Pannetier M, Chassot AA, Chaboissier MC, Pailhoux E. Involvement of FOXL2 and RSPO1 in Ovarian Determination, Development, and Maintenance in Mammals. Sex Dev 2016; 10:167-184. [PMID: 27649556 DOI: 10.1159/000448667] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
In mammals, sex determination is a process through which the gonad is committed to differentiate into a testis or an ovary. This process relies on a delicate balance between genetic pathways that promote one fate and inhibit the other. Once the gonad is committed to the female pathway, ovarian differentiation begins and, depending on the species, is completed during gestation or shortly after birth. During this step, granulosa cell precursors, steroidogenic cells, and primordial germ cells start to express female-specific markers in a sex-dimorphic manner. The germ cells then arrest at prophase I of meiosis and, together with somatic cells, assemble into functional structures. This organization gives the ovary its definitive morphology and functionality during folliculogenesis. Until now, 2 main genetic cascades have been shown to be involved in female sex differentiation. The first is driven by FOXL2, a transcription factor that also plays a crucial role in folliculogenesis and ovarian fate maintenance in adults. The other operates through the WNT/CTNNB1 canonical pathway and is regulated primarily by R-spondin1. Here, we discuss the roles of FOXL2 and RSPO1/WNT/ CTNNB1 during ovarian development and homeostasis in different models, such as humans, goats, and rodents.
Collapse
Affiliation(s)
- Maëlle Pannetier
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | | | |
Collapse
|
50
|
Li Y, Zhang L, Sun Y, Ma X, Wang J, Li R, Zhang M, Wang S, Hu X, Bao Z. Transcriptome Sequencing and Comparative Analysis of Ovary and Testis Identifies Potential Key Sex-Related Genes and Pathways in Scallop Patinopecten yessoensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:453-65. [PMID: 27234819 DOI: 10.1007/s10126-016-9706-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/09/2016] [Indexed: 04/12/2023]
Abstract
Bivalve mollusks have fascinatingly diverse modes of reproduction. However, research investigating sex determination and reproductive regulation in this group of animals is still in its infancy. In this study, transcriptomes of three ovaries and three testes of Yesso scallop were sequenced and analyzed. Transcriptome comparison revealed that 4394 genes were significantly different between ovaries and testes, of which 1973 were ovary-biased (upregulated in the ovaries) and 2421 were testis-biased. Crucial sex-determining genes that were previously reported in vertebrates and putatively present in bivalves, namely FOXL2, DMRT, SOXH, and SOXE, were investigated. The genes all possessed conserved functional domains and were detected in the gonads. Except for PySOXE, the other three genes were significantly differentially expressed between the ovaries and testes. PyFOXL2 was ovary-biased, and PyDMRT and PySOXH were testis-biased, suggesting that these three genes are likely to be key candidates for scallop sex determination/differentiation. Furthermore, GO and KEGG enrichment analyses were conducted for both ovary- and testis-biased genes. Interestingly, both neurotransmitter transporters and GABAergic synapse genes were overrepresented in the ovary-biased genes, suggesting that neurotransmitters, such as GABA and glycine, are likely to participate in scallop ovary development. Our study will assist in better understanding of the molecular mechanisms underlying bivalve sex determination and reproductive regulation.
Collapse
Affiliation(s)
- Yangping Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yan Sun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoli Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shi Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoli Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|