1
|
Pei M, Abubakar YS, Ali H, Lin L, Dou X, Lu G, Wang Z, Olsson S, Li Y. Whole genome regulatory effect of MoISW2 and consequences for the evolution of the rice plant pathogenic fungus Magnaporthe oryzae. mBio 2024; 15:e0159024. [PMID: 39292005 PMCID: PMC11481914 DOI: 10.1128/mbio.01590-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 09/19/2024] Open
Abstract
Isw2 proteins, ubiquitous across eukaryotes, exhibit a propensity for DNA binding and exert dynamic influences on local chromosome condensation in an ATP-dependent fashion, thereby modulating the accessibility of neighboring genes to transcriptional machinery. Here, we report the deletion of a putative MoISW2 gene, yielding substantial ramifications on plant pathogenicity. Subsequent gene complementation and chromatin immunoprecipitation sequencing (ChIP-seq) analyses were conducted to delineate binding sites. RNA sequencing (RNA-seq) assays revealed discernible impacts on global gene regulation along chromosomes in both mutant and wild-type strains, with comparative analyses against 55 external RNA-seq data sets corroborating these findings. Notably, MoIsw2-mediated binding and activities delineate genomic loci characterized by pronounced gene expression variability proximal to MoIsw2 binding sites, juxtaposed with comparatively stable expression in surrounding regions. The contingent genes influenced by MoIsw2 activity predominantly encompass niche-determinant genes, including those encoding secreted proteins, secondary metabolites, and stress-responsive elements, alongside avirulence genes. Furthermore, our investigations unveil a spatial correlation between MoIsw2 binding motifs and known transposable elements (TEs), suggesting a potential interplay wherein TE transposition at these loci could modulate the transcriptional landscape of Magnaporthe oryzae in a strain-specific manner. Collectively, these findings position MoIsw2 as a plausible master regulator orchestrating the delicate equilibrium between genes vital for biomass proliferation, akin to housekeeping genes, and niche-specific determinants crucial for ecological adaptability. Stress-induced TE transposition, in conjunction with MoIsw2 activity, emerges as a putative mechanism fostering enhanced mutagenesis and accelerated evolution of niche-determinant genes relative to housekeeping counterparts.IMPORTANCEIsw2 proteins are conserved in plants, fungi, animals, and other eukaryotes. We show that a fungal Isw2 protein in the rice pathogen Magnaporthe oryzae binds to retrotransposon (RT) DNA motifs and affects the epigenetic gene expression landscape of the fungal genome. Mainly ecological niche determinant genes close to the binding motifs are affected. RT elements occur frequently in DNA between genes in most organisms. They move place and multiply in the genome, especially under physiological stress. We further discuss the Isw2 and RT combined activities as a possible sought-after mechanism that can cause biased mutation rates and faster evolution of genes necessary for reacting to abiotic and biotic challenges. The most important biotic challenges for plant pathogens are the ones from the host plants' innate immunity. The overall result of these combined activities will be an adaptation-directed evolution of niche-determinant genes.
Collapse
Affiliation(s)
- Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Hina Ali
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianying Dou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Synthetic Biology Center, College of Future Technologies, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Pita-Grisanti V, Chasser K, Sobol T, Cruz-Monserrate Z. Understanding the Potential and Risk of Bacterial Siderophores in Cancer. Front Oncol 2022; 12:867271. [PMID: 35785195 PMCID: PMC9248441 DOI: 10.3389/fonc.2022.867271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 01/19/2023] Open
Abstract
Siderophores are iron chelating molecules produced by nearly all organisms, most notably by bacteria, to efficiently sequester the limited iron that is available in the environment. Siderophores are an essential component of mammalian iron homeostasis and the ongoing interspecies competition for iron. Bacteria produce a broad repertoire of siderophores with a canonical role in iron chelation and the capacity to perform versatile functions such as interacting with other microbes and the host immune system. Siderophores are a vast area of untapped potential in the field of cancer research because cancer cells demand increased iron concentrations to sustain rapid proliferation. Studies investigating siderophores as therapeutics in cancer generally focused on the role of a few siderophores as iron chelators; however, these studies are limited and some show conflicting results. Moreover, siderophores are biologically conserved, structurally diverse molecules that perform additional functions related to iron chelation. Siderophores also have a role in inflammation due to their iron acquisition and chelation properties. These diverse functions may contribute to both risks and benefits as therapeutic agents in cancer. The potential of siderophore-mediated iron and bacterial modulation to be used in the treatment of cancer warrants further investigation. This review discusses the wide range of bacterial siderophore functions and their utilization in cancer treatment to further expand their functional relevance in cancer detection and treatment.
Collapse
Affiliation(s)
- Valentina Pita-Grisanti
- The Ohio State University Interdisciplinary Nutrition Program, The Ohio State University, Columbus, OH, United States
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kaylin Chasser
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Trevor Sobol
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- The Comprehensive Cancer Center–Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Zobeida Cruz-Monserrate,
| |
Collapse
|
5
|
Gaspar ML, Pawlowska TE. Innate immunity in fungi: Is regulated cell death involved? PLoS Pathog 2022; 18:e1010460. [PMID: 35587923 PMCID: PMC9119436 DOI: 10.1371/journal.ppat.1010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Laura Gaspar
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Sánchez-Alonzo K, Arellano-Arriagada L, Bernasconi H, Parra-Sepúlveda C, Campos VL, Silva-Mieres F, Sáez-Carrillo K, Smith CT, García-Cancino A. An Anaerobic Environment Drives the Harboring of Helicobacter pylori within Candida Yeast Cells. BIOLOGY 2022; 11:biology11050738. [PMID: 35625466 PMCID: PMC9139145 DOI: 10.3390/biology11050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Helicobacter pylori is a pathogen that is associated with a number of gastric pathologies and has adapted to the gastric environment. Outside this organ, stress factors such as oxygen concentration affect the viability of this bacterium. This study aimed to determine if changes in oxygen concentration promoted the entry of H. pylori into the interior of yeast cells of the Candida genus. Co-cultures of H. pylori and Candida strains in Brucella broth plus 5% fetal bovine serum were incubated under microaerobic, anaerobic, or aerobic conditions. Bacteria-like bodies (BLBs) were detected within yeast cells (Y-BLBs) by optical microscopy, identified by molecular techniques, and their viability evaluated by SYTO-9 fluorescence. Co-cultures incubated under the three conditions showed the presence of Y-BLBs, but the highest Y-BLB percentage was present in H. pylori J99 and C. glabrata co-cultures incubated under anaerobiosis. Molecular techniques were used to identify BLBs as H. pylori and SYTO-9 fluorescence confirmed that this bacterium remained viable within yeast cells. In conclusion, although without apparent stress conditions H. pylori harbors within Candida yeast cells, its harboring increases significantly under anaerobic conditions. This endosymbiotic relationship also depends mostly on the H. pylori strain used in the co-culture. Abstract Helicobacter pylori protects itself from stressful environments by forming biofilms, changing its morphology, or invading eukaryotic cells, including yeast cells. There is little knowledge about the environmental factors that influence the endosymbiotic relationship between bacterium and yeasts. Here, we studied if oxygen availability stimulated the growth of H. pylori within Candida and if this was a bacterial- or yeast strain-dependent relationship. Four H. pylori strains and four Candida strains were co-cultured in Brucella broth plus 5% fetal bovine serum, and incubated under microaerobic, anaerobic, or aerobic conditions. Bacteria-like bodies (BLBs) within yeast cells (Y-BLBs) were detected by microscopy. H. pylori was identified by FISH and by PCR amplification of the 16S rRNA gene of H. pylori from total DNA extracted from Y-BLBs from H. pylori and Candida co-cultures. BLBs viability was confirmed by SYTO-9 fluorescence. Higher Y-BLB percentages were obtained under anaerobic conditions and using H. pylori J99 and C. glabrata combinations. Thus, the H. pylori–Candida endosymbiotic relationship is strain dependent. The FISH and PCR results identified BLBs as intracellular H. pylori. Conclusion: Stressful conditions such as an anaerobic environment significantly increased H. pylori growth within yeast cells, where it remained viable, and the bacterium–yeast endosymbiotic relationship was bacterial strain dependent with a preference for C. glabrata.
Collapse
Affiliation(s)
- Kimberly Sánchez-Alonzo
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Luciano Arellano-Arriagada
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | | | - Cristian Parra-Sepúlveda
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Víctor L. Campos
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile;
| | - Fabiola Silva-Mieres
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Katia Sáez-Carrillo
- Department of Statistics, Faculty of Physical and Mathematical Sciences, Universidad de Concepcion, Concepcion 4070386, Chile;
| | - Carlos T. Smith
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (K.S.-A.); (L.A.-A.); (C.P.-S.); (F.S.-M.); (C.T.S.)
- Correspondence: ; Tel.: +56-41-2204144; Fax: +56-41-2245975
| |
Collapse
|
7
|
Zhang MX, Li J, Zhang XN, Li HH, Xu XF. Comparative transcriptome profiling of Termitomyces sp. between monocultures in vitro and link-stipe of fungus-combs in situ. Lett Appl Microbiol 2021; 74:429-443. [PMID: 34890484 DOI: 10.1111/lam.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
The edible mushroom Termitomyces is an agaric-type basidiomycete fungus that has a symbiotic relationship with fungus-growing termites. An understanding of the detailed development mechanisms underlying the adaptive responses of Termitomyces sp. to their growing environment is lacking. Here, we compared the transcriptome sequences of different Termitomyces sp. samples and link-stipe grown on fungus combs in situ and monocultured in vitro. The assembled reads generated 8052 unigenes. The expression profiles were highly different for 2556 differentially expressed genes (DEGs) of the treated samples, where the expression of 1312 and 1244 DEGs was upregulated in the Mycelium and link-stipe groups respectively. Functional classification of the DEGs based on both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed an expected shift in fungal gene expression, where stress response genes whose expression was upregulated in link-stipe may adaptively be involved in cell wall hydrolysis and fusion, pathogenesis, oxidation-reduction, transporter efflux, transposon efflux and self/non-self-recognition. Urease has implications in the expression of genes involved in the nitrogen metabolism pathway, and its expression could be controlled by low-level nitrogen fixation of fungus combs. In addition, the expression patterns of eleven select genes on the basis of qRT-PCR were consistent with their changes in transcript abundance, as revealed by RNA sequencing. Taken together, these findings may be useful for enriching the knowledge concerning the Termitomyces adaptive response to in situ fungus combs compared with the response of monocultures in vitro.
Collapse
Affiliation(s)
- M-X Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - J Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-N Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - H-H Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - X-F Xu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Chavarria-Pizarro T, Resl P, Janjic A, Werth S. Gene expression responses to thermal shifts in the endangered lichen Lobaria pulmonaria. Mol Ecol 2021; 31:839-858. [PMID: 34784096 DOI: 10.1111/mec.16281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
Anthropogenic climate change has led to unprecedented shifts in temperature across many ecosystems. In a context of rapid environmental changes, acclimation is an important process as it may influence the capacity of organisms to survive under novel thermal conditions. Mechanisms of acclimation could involve upregulation of stress response genes involved in protein folding, DNA damage repair and the regulation of signal transduction genes, along with a simultaneous downregulation of genes involved in growth or the cell cycle, in order to maintain cellular functions and equilibria. We transplanted Lobaria pulmonaria lichens originating from different forests to determine the relative effects of long-term acclimation and genetic factors on the variability in expression of mycobiont and photobiont genes. We found a strong response of the mycobiont and photobiont to high temperatures, regardless of sample origin. The green-algal photobiont had an overall lower response than the mycobiont. Gene expression of both symbionts was also influenced by acclimation to transplantation sites and by genetic factors. L. pulmonaria seems to have evolved powerful molecular pathways to deal with environmental fluctuations and stress and can acclimate to new habitats by transcriptomic convergence. Although L. pulmonaria has the molecular machinery to counteract short-term thermal stress, survival of lichens such as L. pulmonaria depends mostly on their long-term positive carbon balance, which can be compromised by higher temperatures and reduced precipitation, and both these outcomes have been predicted for Central Europe in connection with global climate change.
Collapse
Affiliation(s)
| | - Philipp Resl
- Systematic Botany and Mycology, Faculty of Biology, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Silke Werth
- Systematic Botany and Mycology, Faculty of Biology, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| |
Collapse
|
9
|
Adigun OA, Nadeem M, Pham TH, Jewell LE, Cheema M, Thomas R. Recent advances in bio-chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology. PLANT, CELL & ENVIRONMENT 2021; 44:1-16. [PMID: 33034375 DOI: 10.1111/pce.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Plant pathogens pose a significant threat to the food industry and food security accounting for 10-40% crop losses annually on a global scale. Economic losses from plant diseases are estimated at $300B for major food crops and are associated with reduced food availability and accessibility and also high food costs. Although strategies exist to reduce the impact of diseases in plants, many of these introduce harmful chemicals to our food chain. Therefore, it is important to understand and utilize plants' immune systems to control plant pathogens to enable more sustainable agriculture. Lipids are core components of cell membranes and as such are part of the first line of defense against pathogen attack. Recent developments in omics technologies have advanced our understanding of how plant membrane lipid biosynthesis, remodelling and/or signalling modulate plant responses to infection. Currently, there is limited information available in the scientific literature concerning lipid signalling targets and their biochemical and physiological consequences in response to plant pathogens. This review focusses on the functions of membrane lipid derivatives and their involvement in plant responses to pathogens as biotic stressors. We describe major plant defense systems including systemic-acquired resistance, basal resistance, hypersensitivity and the gene-for-gene concept in this context.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Thu Huong Pham
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Linda Elizabeth Jewell
- St. John's Research and Development Centre, Agriculture and Agri-Food Canada, 204 Brookfield Rd, St. John's, Newfoundland and Labrador, A1E 6J5, Canada
| | - Mumtaz Cheema
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| | - Raymond Thomas
- School of Science and the Environment/Boreal Ecosystem Research Facility, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H5G4, Canada
| |
Collapse
|
10
|
Lastovetsky OA, Krasnovsky LD, Qin X, Gaspar ML, Gryganskyi AP, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Daum C, Shapiro N, Ivanova N, Kyrpides N, Woyke T, Pawlowska TE. Molecular Dialogues between Early Divergent Fungi and Bacteria in an Antagonism versus a Mutualism. mBio 2020; 11:e02088-20. [PMID: 32900811 PMCID: PMC7482071 DOI: 10.1128/mbio.02088-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 01/06/2023] Open
Abstract
Fungal-bacterial symbioses range from antagonisms to mutualisms and remain one of the least understood interdomain interactions despite their ubiquity as well as ecological and medical importance. To build a predictive conceptual framework for understanding interactions between fungi and bacteria in different types of symbioses, we surveyed fungal and bacterial transcriptional responses in the mutualism between Rhizopus microsporus (Rm) (ATCC 52813, host) and its Mycetohabitans (formerly Burkholderia) endobacteria versus the antagonism between a nonhost Rm (ATCC 11559) and Mycetohabitans isolated from the host, at two time points, before and after partner physical contact. We found that bacteria and fungi sensed each other before contact and altered gene expression patterns accordingly. Mycetohabitans did not discriminate between the host and nonhost and engaged a common set of genes encoding known as well as novel symbiosis factors. In contrast, responses of the host versus nonhost to endobacteria were dramatically different, converging on the altered expression of genes involved in cell wall biosynthesis and reactive oxygen species (ROS) metabolism. On the basis of the observed patterns, we formulated a set of hypotheses describing fungal-bacterial interactions and tested some of them. By conducting ROS measurements, we confirmed that nonhost fungi increased production of ROS in response to endobacteria, whereas host fungi quenched their ROS output, suggesting that ROS metabolism contributes to the nonhost resistance to bacterial infection and the host ability to form a mutualism. Overall, our study offers a testable framework of predictions describing interactions of early divergent Mucoromycotina fungi with bacteria.IMPORTANCE Animals and plants interact with microbes by engaging specific surveillance systems, regulatory networks, and response modules that allow for accommodation of mutualists and defense against antagonists. Antimicrobial defense responses are mediated in both animals and plants by innate immunity systems that owe their functional similarities to convergent evolution. Like animals and plants, fungi interact with bacteria. However, the principles governing these relations are only now being discovered. In a study system of host and nonhost fungi interacting with a bacterium isolated from the host, we found that bacteria used a common gene repertoire to engage both partners. In contrast, fungal responses to bacteria differed dramatically between the host and nonhost. These findings suggest that as in animals and plants, the genetic makeup of the fungus determines whether bacterial partners are perceived as mutualists or antagonists and what specific regulatory networks and response modules are initiated during each encounter.
Collapse
Affiliation(s)
- Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, New York, USA
| | - Lev D Krasnovsky
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Xiaotian Qin
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | - Maria L Gaspar
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | | | - Marcel Huntemann
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Alicia Clum
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Manoj Pillay
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | | | - Neha Varghese
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Natalia Mikhailova
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Dimitrios Stamatis
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - T B K Reddy
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Nicole Shapiro
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Natalia Ivanova
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Nikos Kyrpides
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Tanja Woyke
- U.S. Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Oni FE, Geudens N, Adiobo A, Omoboye OO, Enow EA, Onyeka JT, Salami AE, De Mot R, Martins JC, Höfte M. Biosynthesis and Antimicrobial Activity of Pseudodesmin and Viscosinamide Cyclic Lipopeptides Produced by Pseudomonads Associated with the Cocoyam Rhizosphere. Microorganisms 2020; 8:microorganisms8071079. [PMID: 32698413 PMCID: PMC7409209 DOI: 10.3390/microorganisms8071079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas cyclic lipopeptides (CLPs) are encoded non-ribosomally by biosynthetic gene clusters (BGCs) and possess diverse biological activities. In this study, we conducted chemical structure and BGC analyses with antimicrobial activity assays for two CLPs produced by Pseudomonas strains isolated from the cocoyam rhizosphere in Cameroon and Nigeria. LC-MS and NMR analyses showed that the Pseudomonas sp. COR52 and A2W4.9 produce pseudodesmin and viscosinamide, respectively. These CLPs belong to the Viscosin group characterized by a nonapeptidic moiety with a 7-membered macrocycle. Similar to other Viscosin-group CLPs, the initiatory non-ribosomal peptide synthetase (NRPS) gene of the viscosinamide BGC is situated remotely from the other two NRPS genes. In contrast, the pseudodesmin genes are all clustered in a single genomic locus. Nano- to micromolar levels of pseudodesmin and viscosinamide led to the hyphal distortion and/or disintegration of Rhizoctonia solani AG2-2 and Pythium myriotylum CMR1, whereas similar levels of White Line-Inducing Principle (WLIP), another member of the Viscosin group, resulted in complete lysis of both soil-borne phytopathogens. In addition to the identification of the biosynthetic genes of these two CLPs and the demonstration of their interaction with soil-borne pathogens, this study provides further insights regarding evolutionary divergence within the Viscosin group.
Collapse
Affiliation(s)
- Feyisara E. Oni
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.E.O.); (O.O.O.); (E.A.E.)
- Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, 2520 Potchefstroom, South Africa
| | - Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium; (N.G.); (J.C.M.)
| | - Amayana Adiobo
- Jay PJ Biotechnology Laboratory, Institute of Agricultural Research for Development (IRAD), Ekona, P. M. B 25 Buea, Cameroon;
| | - Olumide O. Omoboye
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.E.O.); (O.O.O.); (E.A.E.)
- Department of Microbiology, Obafemi Awolowo University, 220005 Ile-Ife, Osun State, Nigeria
| | - Elsie A. Enow
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.E.O.); (O.O.O.); (E.A.E.)
| | - Joseph T. Onyeka
- Plant Pathology Unit, National Root Crops Research Institute (NRCRI), 440001 Umudike, Abia State, Nigeria;
| | - Ayodeji E. Salami
- Faculty of Agriculture, Department of Crop, Horticulture and Landscape Design, Ekiti State University (EKSU), 360211 Ado-Ekiti, Nigeria;
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, 3001 Heverlee, Belgium;
| | - José C. Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium; (N.G.); (J.C.M.)
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; (F.E.O.); (O.O.O.); (E.A.E.)
- Correspondence: ; Tel.: +32-9-264-6017
| |
Collapse
|
12
|
Wang Q, Guo M, Xu R, Zhang J, Bian Y, Xiao Y. Transcriptional Changes on Blight Fruiting Body of Flammulina velutipes Caused by Two New Bacterial Pathogens. Front Microbiol 2020; 10:2845. [PMID: 31921028 PMCID: PMC6917577 DOI: 10.3389/fmicb.2019.02845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/22/2019] [Indexed: 11/13/2022] Open
Abstract
A blight disease of Flammulina velutipes was identified with symptoms of growth cessation of young fruiting bodies, short stipe, and brown spots on the pileus. The pathogenic bacteria were identified as Arthrobacter arilaitensis and Pseudomonas yamanorum by Koch's postulate, gram staining, morphological and 16S ribosomal RNA gene sequence analyses. Either of the pathogenic bacteria or both of them can cause the same symptoms. Transcriptome changes in blighted F. velutipes were investigated between diseased and normal samples. Compared to the control group, 1,099 differentially expressed genes (DEGs) were overlapping in the bacteria-infected groups. The DEGs were significantly enriched in pathways such as xenobiotic metabolism by cytochrome P450 and tyrosine metabolism. Based on weighted correlation network analysis (WGCNA), the module most correlated to the pathogen-treated F. velutipes samples and candidate hub genes in the co-regulatory network were identified. Furthermore, a potential diseased mechanism involved in cell wall non-extension, phenolic substrate oxidation, and stress defense response was proposed based on the up-regulation of differentially expressed genes encoding chitin deacetylase, tyrosinase, cytochrome P450, MFS transporter, and clavaminate synthase-like protein. This study provides insights into the underlying reactions of young fruiting body of F. velutipes suffering from blight disease and facilitates the understanding of the pathogenic procedure of bacteriosis in edible mushrooms.
Collapse
Affiliation(s)
- Qing Wang
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Mengpei Guo
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Ruiping Xu
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Jingcheng Zhang
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Yinbing Bian
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| | - Yang Xiao
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Zia SF, Berkowitz O, Bedon F, Whelan J, Franks AE, Plummer KM. Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC PLANT BIOLOGY 2019; 19:567. [PMID: 31856719 PMCID: PMC6921455 DOI: 10.1186/s12870-019-2158-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/25/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Melatonin (N-acetyl-5-methoxytryptamine) in plants, regulates shoot and root growth and alleviates environmental stresses. Melatonin and the phyto-hormone auxin are tryptophan-derived compounds. However, it largely remains controversial as to whether melatonin and auxin act through similar or overlapping signalling and regulatory pathways. RESULTS Here, we have used a promoter-activation study to demonstrate that, unlike auxin (1-naphthalene acetic acid, NAA), melatonin neither induces Direct repeat 5 DR5 expression in Arabidopsis thaliana roots under normal growth conditions nor suppresses the induction of Alternative oxidase 1a AOX1a in leaves upon Antimycin A treatment, both of which are the hallmarks of auxin action. Additionally, comparative global transcriptome analysis conducted on Arabidopsis treated with melatonin or NAA revealed differences in the number and types of differentially expressed genes. Auxin (4.5 μM) altered the expression of a diverse and large number of genes whereas melatonin at 5 μM had no significant effect but melatonin at 100 μM had a modest effect on transcriptome compared to solvent-treated control. Interestingly, the prominent category of genes differentially expressed upon exposure to melatonin trended towards biotic stress defence pathways while downregulation of key genes related to photosynthesis was observed. CONCLUSION Together these findings indicate that though they are both indolic compounds, melatonin and auxin act through different pathways to alter gene expression in Arabidopsis thaliana. Furthermore, it appears that effects of melatonin enable Arabidopsis thaliana to prioritize biotic stress defence signalling rather than growth. These findings clear the current confusion in the literature regarding the relationship of melatonin and auxin and also have greater implications of utilizing melatonin for improved plant protection.
Collapse
Affiliation(s)
- Sajal F Zia
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Frank Bedon
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3086, Australia
- Centre for Future Landscapes, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Kim M Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
14
|
Dual Transcriptional Profile of Aspergillus flavus during Co-Culture with Listeria monocytogenes and Aflatoxin B1 Production: A Pathogen-Pathogen Interaction. Pathogens 2019; 8:pathogens8040198. [PMID: 31635192 PMCID: PMC6963788 DOI: 10.3390/pathogens8040198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to investigate the effect of growth temperature and co-culture of Aspergillus flavus with Listeria monocytogenes on the production of Aflatoxin B1 (AFB1) and the transcriptional profile of associated regulatory and biosynthetic genes. The transcription of virulence- and homeostasis-associated genes of L. monocytogenes was also assessed. For this purpose, mono- and co-cultures of L. monocytogenes strain LQC 15257 and A. flavus strain 18.4 were inoculated into Malt Extract broth and allowed to grow for seven days at 25 °C and 30 °C. AFB1 quantification was performed by HPLC analysis and gene expression assessment by RT-qPCR. AFB1 production was lower at 30 °C compared to 25 °C during monoculture and also lower during co-cultures at both temperatures. This was accompanied by downregulation of aflM, aflR, aflP, and aflS during monoculture and aflM and aflS during co-culture at 30 °C. On the other hand, transcription of prfA, plcA, plcB, inlA, inlB, inlJ, murE, accA, acpP, as well as fapR, was not affected. sigB gene was downregulated after co-culture with the fungus at 25 °C and hly was downregulated after monoculture at 30 °C compared to 25 °C. In this work, the molecular interactions between A. flavus and L. monocytogenes were studied for the first time, offering a novel insight into their co-occurrence. Monitoring of their toxigenic and virulence potential at the molecular level revealed a complex dynamic in natural ecosystems.
Collapse
|
15
|
Uehling JK, Entler MR, Meredith HR, Millet LJ, Timm CM, Aufrecht JA, Bonito GM, Engle NL, Labbé JL, Doktycz MJ, Retterer ST, Spatafora JW, Stajich JE, Tschaplinski TJ, Vilgalys RJ. Microfluidics and Metabolomics Reveal Symbiotic Bacterial-Fungal Interactions Between Mortierella elongata and Burkholderia Include Metabolite Exchange. Front Microbiol 2019; 10:2163. [PMID: 31632357 PMCID: PMC6779839 DOI: 10.3389/fmicb.2019.02163] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
We identified two poplar (Populus sp.)-associated microbes, the fungus, Mortierella elongata strain AG77, and the bacterium, Burkholderia strain BT03, that mutually promote each other’s growth. Using culture assays in concert with a novel microfluidic device to generate time-lapse videos, we found growth specific media differing in pH and pre-conditioned by microbial growth led to increased fungal and bacterial growth rates. Coupling microfluidics and comparative metabolomics data results indicated that observed microbial growth stimulation involves metabolic exchange during two ordered events. The first is an emission of fungal metabolites, including organic acids used or modified by bacteria. A second signal of unknown nature is produced by bacteria which increases fungal growth rates. We find this symbiosis is initiated in part by metabolic exchange involving fungal organic acids.
Collapse
Affiliation(s)
- Jessie K Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.,Department of Biology, Duke University, Durham, NC, United States
| | - Matthew R Entler
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hannah R Meredith
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Larry J Millet
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,The Bredesen Center, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Collin M Timm
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jayde A Aufrecht
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gregory M Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Nancy L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jessy L Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Genome Science & Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Genome Science & Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Scott T Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | | | - Rytas J Vilgalys
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
16
|
Stöckli M, Morinaka BI, Lackner G, Kombrink A, Sieber R, Margot C, Stanley CE, deMello AJ, Piel J, Künzler M. Bacteria‐induced production of the antibacterial sesquiterpene lagopodin B in
Coprinopsis cinerea. Mol Microbiol 2019; 112:605-619. [DOI: 10.1111/mmi.14277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Martina Stöckli
- Institute of Microbiology, Department of Biology ETH Zurich Vladimir‐Prelog‐Weg 4 ZürichCH‐8093Switzerland
| | - Brandon I. Morinaka
- Institute of Microbiology, Department of Biology ETH Zurich Vladimir‐Prelog‐Weg 4 ZürichCH‐8093Switzerland
| | - Gerald Lackner
- Institute of Microbiology, Department of Biology ETH Zurich Vladimir‐Prelog‐Weg 4 ZürichCH‐8093Switzerland
| | - Anja Kombrink
- Institute of Microbiology, Department of Biology ETH Zurich Vladimir‐Prelog‐Weg 4 ZürichCH‐8093Switzerland
| | - Ramon Sieber
- Institute of Microbiology, Department of Biology ETH Zurich Vladimir‐Prelog‐Weg 4 ZürichCH‐8093Switzerland
| | - Céline Margot
- Institute of Microbiology, Department of Biology ETH Zurich Vladimir‐Prelog‐Weg 4 ZürichCH‐8093Switzerland
| | - Claire E. Stanley
- Institute for Chemical and Bioengineering ETH Zurich Vladimir‐Prelog‐Weg 1 Zürich CH‐8093Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering ETH Zurich Vladimir‐Prelog‐Weg 1 Zürich CH‐8093Switzerland
| | - Jörn Piel
- Institute of Microbiology, Department of Biology ETH Zurich Vladimir‐Prelog‐Weg 4 ZürichCH‐8093Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology ETH Zurich Vladimir‐Prelog‐Weg 4 ZürichCH‐8093Switzerland
| |
Collapse
|
17
|
Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 2019; 103:1155-1166. [PMID: 30570692 PMCID: PMC6394481 DOI: 10.1007/s00253-018-9556-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The well-being of the microbial community that densely populates the rhizosphere is aided by a plant's root exudates. Maintaining a plant's health is a key factor in its continued existence. As minute as rhizospheric microbes are, their importance in plant growth cannot be overemphasized. They depend on plants for nutrients and other necessary requirements. The relationship between the rhizosphere-microbiome (rhizobiome) and plant hosts can be beneficial, non-effectual, or pathogenic depending on the microbes and the plant involved. This relationship, to a large extent, determines the fate of the host plant's survival. Modern molecular techniques have been used to unravel rhizobiome species' composition, but the interplay between the rhizobiome root exudates and other factors in the maintenance of a healthy plant have not as yet been thoroughly investigated. Many functional proteins are activated in plants upon contact with external factors. These proteins may elicit growth promoting or growth suppressing responses from the plants. To optimize the growth and productivity of host plants, rhizobiome microbial diversity and modulatory techniques need to be clearly understood for improved plant health.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, 2735, South Africa.
| |
Collapse
|
18
|
Trichoderma atroviride from Predator to Prey: Role of the Mitogen-Activated Protein Kinase Tmk3 in Fungal Chemical Defense against Fungivory by Drosophila melanogaster Larvae. Appl Environ Microbiol 2019; 85:AEM.01825-18. [PMID: 30389761 PMCID: PMC6328759 DOI: 10.1128/aem.01825-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022] Open
Abstract
Fungi, like other organisms, have natural predators, including fungivorous nematodes and arthropods that use them as an important food source. Thus, they require mechanisms to detect and respond to injury. Trichoderma atroviride responds to mycelial injury by rapidly regenerating its hyphae and developing asexual reproduction structures. Whether this injury response is associated with attack by fungivorous insects is unknown. Therefore, determining the possible conservation of a defense mechanism to predation in T. atroviride and plants and elucidating the mechanisms involved in the establishment of this response is of major interest. Here, we describe the chemical response of T. atroviride to mechanical injury and fungivory and the role of a MAPK pathway in the regulation of this response. The response to injury represents an important strategy for animals and plants to survive mechanical damage and predation. Plants respond to injury by activating a defense response that includes the production of an important variety of compounds that help them withstand predator attack and recover from mechanical injury (MI). Similarly, the filamentous fungus Trichoderma atroviride responds to MI by strongly modifying its transcriptional profile and producing asexual reproduction structures (conidia). Here, we analyzed whether the response to MI in T. atroviride is related to a possible predator defense mechanism from a metabolic perspective. We found that the production of specific groups of secondary metabolites increases in response to MI but is reduced after fungivory by Drosophila melanogaster larvae. We further show that fungivory results in repression of the expression of genes putatively involved in the regulation of secondary metabolite production in T. atroviride. Activation of secondary metabolite production appears to depend on the mitogen-activated protein kinase (MAPK) Tmk3. Interestingly, D. melanogaster larvae preferred to feed on a tmk3 gene replacement mutant rather than on the wild-type strain. Consumption of the mutant strain, however, resulted in increased larval mortality. IMPORTANCE Fungi, like other organisms, have natural predators, including fungivorous nematodes and arthropods that use them as an important food source. Thus, they require mechanisms to detect and respond to injury. Trichoderma atroviride responds to mycelial injury by rapidly regenerating its hyphae and developing asexual reproduction structures. Whether this injury response is associated with attack by fungivorous insects is unknown. Therefore, determining the possible conservation of a defense mechanism to predation in T. atroviride and plants and elucidating the mechanisms involved in the establishment of this response is of major interest. Here, we describe the chemical response of T. atroviride to mechanical injury and fungivory and the role of a MAPK pathway in the regulation of this response.
Collapse
|
19
|
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 2018; 42:335-352. [PMID: 29471481 DOI: 10.1093/femsre/fuy008] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Fungi and bacteria are found living together in a wide variety of environments. Their interactions are significant drivers of many ecosystem functions and are important for the health of plants and animals. A large number of fungal and bacterial families engage in complex interactions that lead to critical behavioural shifts of the microorganisms ranging from mutualism to antagonism. The importance of bacterial-fungal interactions (BFI) in environmental science, medicine and biotechnology has led to the emergence of a dynamic and multidisciplinary research field that combines highly diverse approaches including molecular biology, genomics, geochemistry, chemical and microbial ecology, biophysics and ecological modelling. In this review, we discuss recent advances that underscore the roles of BFI across relevant habitats and ecosystems. A particular focus is placed on the understanding of BFI within complex microbial communities and in regard of the metaorganism concept. We also discuss recent discoveries that clarify the (molecular) mechanisms involved in bacterial-fungal relationships, and the contribution of new technologies to decipher generic principles of BFI in terms of physical associations and molecular dialogues. Finally, we discuss future directions for research in order to stimulate synergy within the BFI research area and to resolve outstanding questions.
Collapse
Affiliation(s)
- Aurélie Deveau
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jessie Uehling
- Biology Department, Duke University, Box 90338, Durham, NC 27705, USA.,Plant and Microbial Biology, University of California, Berkeley, CA 94703, USA
| | - Mathieu Paoletti
- Institut de Biologie et Génétique Cellulaire, UMR 5095 CNRS et Université de Bordeaux, 1 rue Camille Saint-Saëns, 33077 Bordeaux cedex, France
| | - Matthias Becker
- IGZ, Leibniz-Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Stéphane Hacquard
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Vincent Hervé
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.,Laboratory of Biogeosciences, Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Sophie Mieszkin
- Université de Lorraine, INRA, UMR IAM, 54280 Champenoux, France
| | - Larry J Millet
- Joint Institute for Biological Science, University of Tennessee, and the Biosciences Division of Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Balázs Vajna
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Torino, 10125 Torino, Italy
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry, G. Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Jan Dirk van Elsas
- Microbial Ecology group, GELIFES, University of Groningen, 9747 Groningen, The Netherlands
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
20
|
Ancheeva E, Mándi A, Király SB, Kurtán T, Hartmann R, Akone SH, Weber H, Daletos G, Proksch P. Chaetolines A and B, Pyrano[3,2- f]isoquinoline Alkaloids from Cultivation of Chaetomium sp. in the Presence of Autoclaved Pseudomonas aeruginosa. JOURNAL OF NATURAL PRODUCTS 2018; 81:2392-2398. [PMID: 30343566 DOI: 10.1021/acs.jnatprod.8b00373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The first members of a new alkaloid class, chaetolines A (1) and B (2), which feature a pyrano[3,2- f]isoquinoline core structure, were obtained from a crude extract of the fungal endophyte Chaetomium sp. after cultivation in the presence of autoclaved Pseudomonas aeruginosa. The structures of the new compounds, including the absolute configuration of the major stereoisomer, were determined through detailed analysis of HRESIMS, 1D/2D NMR, and calculation of ECD data. The possible biosynthetic origin of the unprecedented scaffold of 1 and 2 is proposed. The current study provides further evidence for mixed fermentation as a powerful tool to induce the accumulation of cryptic fungal natural products even in the absence of viable bacterial cells.
Collapse
Affiliation(s)
- Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Attila Mándi
- Department of Organic Chemistry , University of Debrecen , PO Box 400, 4002 Debrecen , Hungary
| | - Sándor B Király
- Department of Organic Chemistry , University of Debrecen , PO Box 400, 4002 Debrecen , Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry , University of Debrecen , PO Box 400, 4002 Debrecen , Hungary
| | - Rudolf Hartmann
- Institute of Complex Systems: Strukturbiochemie (ICS-6) , Forschungszentrum Jülich , Wilhelm-Johnen-Strasse , 52428 Jülich , Germany
| | - Sergi H Akone
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
- Faculty of Science, Department of Chemistry , University of Douala , PO Box 24157, Douala , Cameroon
| | - Horst Weber
- Institute of Pharmaceutical and Medicinal Chemistry , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology , Heinrich Heine University , Universitätsstrasse 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
21
|
Kombrink A, Tayyrov A, Essig A, Stöckli M, Micheller S, Hintze J, van Heuvel Y, Dürig N, Lin CW, Kallio PT, Aebi M, Künzler M. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. ISME JOURNAL 2018; 13:588-602. [PMID: 30301946 PMCID: PMC6461984 DOI: 10.1038/s41396-018-0293-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/23/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Bacteria are the main nutritional competitors of saprophytic fungi during colonization of their ecological niches. This competition involves the mutual secretion of antimicrobials that kill or inhibit the growth of the competitor. Over the last years it has been demonstrated that fungi respond to the presence of bacteria with changes of their transcriptome, but the significance of these changes with respect to competition for nutrients is not clear as functional proof of the antibacterial activity of the induced gene products is often lacking. Here, we report the genome-wide transcriptional response of the coprophilous mushroom Coprinopsis cinerea to the bacteria Bacillus subtilis and Escherichia coli. The genes induced upon co-cultivation with each bacterium were highly overlapping, suggesting that the fungus uses a similar arsenal of effectors against Gram-positive and -negative bacteria. Intriguingly, the induced genes appeare to encode predominantly secreted peptides and proteins with predicted antibacterial activities, which was validated by comparative proteomics of the C. cinerea secretome. Induced members of two putative antibacterial peptide and protein families in C. cinerea, the cysteine-stabilized αβ-defensins (Csαβ-defensins) and the GH24-type lysozymes, were purified, and their antibacterial activity was confirmed. These results provide compelling evidence that fungi are able to recognize the presence of bacteria and respond with the expression of an arsenal of secreted antibacterial peptides and proteins.
Collapse
Affiliation(s)
- Anja Kombrink
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Annageldi Tayyrov
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Andreas Essig
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Martina Stöckli
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.,rqmicro AG, Brandstrasse 24, 8952, Schlieren, Switzerland
| | - Sebastian Micheller
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - John Hintze
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.,Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| | - Yasemin van Heuvel
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Natalia Dürig
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Chia-Wei Lin
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Pauli T Kallio
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Markus Aebi
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
22
|
Ghodsalavi B, Svenningsen NB, Hao X, Olsson S, Nicolaisen MH, Al-Soud WA, Sørensen SJ, Nybroe O. A novel baiting microcosm approach used to identify the bacterial community associated with Penicillium bilaii hyphae in soil. PLoS One 2017; 12:e0187116. [PMID: 29077733 PMCID: PMC5659649 DOI: 10.1371/journal.pone.0187116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
It is important to identify and recover bacteria associating with fungi under natural soil conditions to enable eco-physiological studies, and to facilitate the use of bacterial-fungal consortia in environmental biotechnology. We have developed a novel type of baiting microcosm, where fungal hyphae interact with bacteria under close-to-natural soil conditions; an advantage compared to model systems that determine fungal influences on bacterial communities in laboratory media. In the current approach, the hyphae are placed on a solid support, which enables the recovery of hyphae with associated bacteria in contrast to model systems that compare bulk soil and mycosphere soil. We used the baiting microcosm approach to determine, for the first time, the composition of the bacterial community associating in the soil with hyphae of the phosphate-solubilizer, Penicillium bilaii. By applying a cultivation-independent 16S rRNA gene-targeted amplicon sequencing approach, we found a hypha-associated bacterial community with low diversity compared to the bulk soil community and exhibiting massive dominance of Burkholderia OTUs. Burkholderia is known be abundant in soil environments affected by fungi, but the discovery of this massive dominance among bacteria firmly associating with hyphae in soil is novel and made possible by the current bait approach.
Collapse
Affiliation(s)
- Behnoushsadat Ghodsalavi
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Nanna Bygvraa Svenningsen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Xiuli Hao
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Stefan Olsson
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mette Haubjerg Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Waleed Abu Al-Soud
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
23
|
Do fungi have an innate immune response? An NLR-based comparison to plant and animal immune systems. PLoS Pathog 2017; 13:e1006578. [PMID: 29073287 PMCID: PMC5658179 DOI: 10.1371/journal.ppat.1006578] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
24
|
Xu X, Li G, Li L, Su Z, Chen C. Genome-wide comparative analysis of putative Pth11-related G protein-coupled receptors in fungi belonging to Pezizomycotina. BMC Microbiol 2017; 17:166. [PMID: 28743231 PMCID: PMC5526305 DOI: 10.1186/s12866-017-1076-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023] Open
Abstract
Background G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi, where they play important roles in signal transduction. Among them, the Pth11-related GPCRs form a large and divergent protein family, and are only found in fungi in Pezizomycotina. However, the evolutionary process and potential functions of Pth11-related GPCRs remain largely unknown. Results Twenty genomes of fungi in Pezizomycotina covering different nutritional strategies were mined for putative Pth11-related GPCRs. Phytopathogens encode much more putative Pth11-related GPCRs than symbionts, saprophytes, or entomopathogens. Based on the phylogenetic tree, these GPCRs can be divided into nine clades, with each clade containing fungi in different taxonomic orders. Instead of fungi from the same order, those fungi with similar nutritional strategies were inclined to share orthologs of putative Pth11-related GPCRs. Most of the CFEM domain-containing Pth11-related GPCRs, which were only included in two clades, were detected in phytopathogens. Furthermore, many putative Pth11-related GPCR genes of phytopathogens were upregulated during invasive plant infection, but downregulated under biotic stress. The expressions of putative Pth11-related GPCR genes of saprophytes and entomopathogens could be affected by nutrient conditions, especially the carbon source. The gene expressions revealed that Pth11-related GPCRs could respond to biotic/abiotic stress and invasive plant infection with different expression patterns. Conclusion Our results indicated that the Pth11-related GPCRs existed before the diversification of Pezizomycotina and have been gained and/or lost several times during the evolutionary process. Tandem duplications and trophic variations have been important factors in this evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xihui Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guopeng Li
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, China
| | - Lu Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenzhu Su
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Zhao Y, Qian G, Chen Y, Du L, Liu F. Transcriptional and Antagonistic Responses of Biocontrol Strain Lysobacter enzymogenes OH11 to the Plant Pathogenic Oomycete Pythium aphanidermatum. Front Microbiol 2017. [PMID: 28634478 PMCID: PMC5459918 DOI: 10.3389/fmicb.2017.01025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysobacter enzymogenes is a ubiquitous, beneficial, plant-associated bacterium emerging as a novel biological control agent. It has the potential to become a new source of antimicrobial secondary metabolites such as the Heat-Stable Antifungal Factor (HSAF), which is a broad-spectrum antimycotic with a novel mode of action. However, very little information about how L. enzymogenes detects and responds to fungi or oomycetes has been reported. An in vitro confrontation bioassay between the pathogenic oomycete Pythium aphanidermatum and the biocontrol bacterial strain L. enzymogenes OH11 was used to analyze the transcriptional changes in the bacteria that were induced by the oomycetes. Analysis was performed at three time points of the interaction, starting before inhibition zone formation until inhibition zone formation. A L. enzymogenes OH11 DNA microarray was constructed for the analysis. Microarray analysis indicated that a wide range of genes belonging to 14 diverse functions in L. enzymogenes were affected by P. aphanidermatum as critical antagonistic effects occurred. L. enzymogenes detected and responded to the presence of P. aphanidermatum early, but alteration of gene expression typically occurred after inhibition zone formation. The presence of P. aphanidermatum increased the twitching motility and HSAF production in L. enzymogenes. We also performed a contact interaction between L. enzymogenes and P. aphanidermatum, and found that HSAF played a critical role in the interaction. Our experiments demonstrated that L. enzymogenes displayed transcriptional and antagonistic responses to P. aphanidermatum in order to gain advantages in the competition with this oomycete. This study revealed new insights into the interactions between bacteria and oomycete.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Guoliang Qian
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Yuan Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-LincolnLincoln, NE, United States
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing, China
| |
Collapse
|