1
|
Muhammad T, Edwards SL, Morphis AC, Johnson MV, Oliveira VD, Chamera T, Liu S, Nguyen NGT, Li J. Non-cell-autonomous regulation of germline proteostasis by insulin/IGF-1 signaling-induced dietary peptide uptake via PEPT-1. EMBO J 2024; 43:4892-4921. [PMID: 39284915 PMCID: PMC11535032 DOI: 10.1038/s44318-024-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 11/06/2024] Open
Abstract
Gametogenesis involves active protein synthesis and is proposed to rely on proteostasis. Our previous work in C. elegans indicates that germline development requires coordinated activities of insulin/IGF-1 signaling (IIS) and HSF-1, the central regulator of the heat shock response. However, the downstream mechanisms were not identified. Here, we show that depletion of HSF-1 from germ cells impairs chaperone gene expression, causing protein degradation and aggregation and, consequently, reduced fecundity and gamete quality. Conversely, reduced IIS confers germ cell resilience to HSF-1 depletion-induced protein folding defects and various proteotoxic stresses. Surprisingly, this effect was not mediated by an enhanced stress response, which underlies longevity in low IIS conditions, but by reduced ribosome biogenesis and translation rate. We found that IIS activates the expression of intestinal peptide transporter PEPT-1 by alleviating its repression by FOXO/DAF-16, allowing dietary proteins to be efficiently incorporated into an amino acid pool that fuels germline protein synthesis. Our data suggest this non-cell-autonomous pathway is critical for proteostasis regulation during gametogenesis.
Collapse
Affiliation(s)
- Tahir Muhammad
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Stacey L Edwards
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Allison C Morphis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Mary V Johnson
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Vitor De Oliveira
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Tomasz Chamera
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siyan Liu
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | | | - Jian Li
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
2
|
Butt A, Van Damme S, Santiago E, Olson A, Beets I, Koelle MR. Neuropeptide and serotonin co-transmission sets the activity pattern in the C. elegans egg-laying circuit. Curr Biol 2024; 34:4704-4714.e5. [PMID: 39395419 DOI: 10.1016/j.cub.2024.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 10/14/2024]
Abstract
Neurons typically release both a neurotransmitter and one or more neuropeptides, but how these signals are integrated within neural circuits to generate and tune behaviors remains poorly understood. We studied how the two hermaphrodite-specific neurons (HSNs) activate the egg-laying circuit of Caenorhabditis elegans by releasing both the neurotransmitter serotonin and NLP-3 neuropeptides. Egg laying occurs in a temporal pattern with approximately 2-min active phases, during which eggs are laid, separated by approximately 20-min inactive phases, during which no eggs are laid. To understand how serotonin and NLP-3 neuropeptides together help produce this behavior pattern, we identified the G-protein-coupled receptor neuropeptide receptor 36 (NPR-36) as an NLP-3 neuropeptide receptor using genetic and molecular experiments. We found that NPR-36 is expressed in, and promotes egg laying within, the egg-laying muscle cells, the same cells where two serotonin receptors also promote egg laying. During the active phase, when HSN activity is high, we found that serotonin and NLP-3 neuropeptides each have a different effect on the timing of egg laying. During the inactive phase, HSN activity is low, which may result in release of only serotonin, yet mutants lacking either serotonin or nlp-3 signaling have longer inactive phases. This suggests that NLP-3 peptide signaling may persist through the inactive phase to help serotonin signaling terminate the inactive phase. We propose a model for neural circuit function in which multiple signals with short- and long-lasting effects compete to generate and terminate persistent internal states, thus patterning a behavior over tens of minutes.
Collapse
Affiliation(s)
- Allison Butt
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA
| | | | - Emerson Santiago
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Andrew Olson
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
3
|
Meyer-Schuman R, Cale AR, Pierluissi JA, Jonatzke KE, Park YN, Lenk GM, Oprescu SN, Grachtchouk MA, Dlugosz AA, Beg AA, Meisler MH, Antonellis A. A model organism pipeline provides insight into the clinical heterogeneity of TARS1 loss-of-function variants. HGG ADVANCES 2024; 5:100324. [PMID: 38956874 PMCID: PMC11284558 DOI: 10.1016/j.xhgg.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous systems, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense variants at conserved residues and studied these variants in Saccharomyces cerevisiae and Caenorhabditis elegans models. This revealed two loss-of-function variants, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R432H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.
Collapse
Affiliation(s)
| | - Allison R Cale
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Kira E Jonatzke
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Young N Park
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Asim A Beg
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Clites BL, Frohock B, Koury EJ, Andersen EC, Pierce JT. Natural variation in protein kinase D modifies alcohol sensitivity in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598102. [PMID: 38895441 PMCID: PMC11185769 DOI: 10.1101/2024.06.09.598102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Differences in naïve alcohol sensitivity between individuals are a strong predictor of later life alcohol use disorders (AUD). However, the genetic bases for alcohol sensitivity (beyond ethanol metabolism) and pharmacological approaches to modulate alcohol sensitivity remain poorly understood. We used a high-throughput behavioral screen to measure acute behavioral sensitivity to alcohol, a model of intoxication, in a genetically diverse set of over 150 wild strains of the nematode Caenorhabditis elegans. We performed a genome-wide association study to identify loci that underlie natural variation in alcohol sensitivity. We identified five quantitative trait loci (QTL) and further show that variants in the C. elegans ortholog of protein kinase D, dkf-2, likely underlie the chromosome V QTL. We found that resistance to intoxication was conferred by dkf-2 loss-of-function mutations as well as partly by a PKD inhibitor in a dkf-2-dependent manner. Protein kinase D might represent a conserved, druggable target to modify alcohol sensitivity with application towards AUD.
Collapse
Affiliation(s)
- Benjamin L Clites
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Brooke Frohock
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Emily J Koury
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Jonathan T Pierce
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| |
Collapse
|
5
|
Meyer-Schuman R, Cale AR, Pierluissi JA, Jonatzke KE, Park YN, Lenk GM, Oprescu SN, Grachtchouk MA, Dlugosz AA, Beg AA, Meisler MH, Antonellis A. Predictive modeling provides insight into the clinical heterogeneity associated with TARS1 loss-of-function mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586600. [PMID: 38585737 PMCID: PMC10996635 DOI: 10.1101/2024.03.25.586600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes that complete the first step of protein translation: ligation of amino acids to cognate tRNAs. Genes encoding ARSs have been implicated in myriad dominant and recessive phenotypes, the latter often affecting multiple tissues but with frequent involvement of the central and peripheral nervous system, liver, and lungs. Threonyl-tRNA synthetase (TARS1) encodes the enzyme that ligates threonine to tRNATHR in the cytoplasm. To date, TARS1 variants have been implicated in a recessive brittle hair phenotype. To better understand TARS1-related recessive phenotypes, we engineered three TARS1 missense mutations predicted to cause a loss-of-function effect and studied these variants in yeast and worm models. This revealed two loss-of-function mutations, including one hypomorphic allele (R433H). We next used R433H to study the effects of partial loss of TARS1 function in a compound heterozygous mouse model (R433H/null). This model presents with phenotypes reminiscent of patients with TARS1 variants and with distinct lung and skin defects. This study expands the potential clinical heterogeneity of TARS1-related recessive disease, which should guide future clinical and genetic evaluations of patient populations.
Collapse
Affiliation(s)
| | - Allison R. Cale
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Kira E. Jonatzke
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Young N. Park
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Guy M. Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Andrzej A. Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Asim A. Beg
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Morphis AC, Edwards SL, Erdenebat P, Kumar L, Li J. Auxin-Inducible Degron System Reveals Temporal-Spatial Roles of HSF-1 and Its Transcriptional Program in Lifespan Assurance. FRONTIERS IN AGING 2022; 3:899744. [PMID: 35899092 PMCID: PMC9309338 DOI: 10.3389/fragi.2022.899744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022]
Abstract
HSF-1 is a key regulator of cellular proteotoxic stress response and is required for animal lifespan. In C. elegans, HSF-1 mediated heat shock response (HSR) declines sharply on the first day of adulthood, and HSF-1 was proposed to function primarily during larval stages for lifespan assurance based on studies using RNAi. The tissue requirement for HSF-1 in lifespan, however, is not well understood. Using the auxin-inducible degron (AID) system, we manage to uncouple the roles of HSF-1 in development and longevity. In wild-type animals, we find HSF-1 is required during the whole self-reproductive period for lifespan. This period is extended in long-lived animals that have arrested germline stem cells (GSC) or reduced insulin/IGF-1 signaling (IIS). While depletion of HSF-1 from any major somatic tissues during development results in severe defects, HSF-1 primarily functions in the intestine and likely neural system of adults to support lifespan. Finally, by combining AID and genome-wide transcriptional analyses, we find HSF-1 directly activates the transcription of constitutively-expressed chaperone and co-chaperone genes among others in early adulthood, which underlies its roles in longevity assurance.
Collapse
Affiliation(s)
| | | | | | | | - Jian Li
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, United States
| |
Collapse
|
7
|
Vicencio J, Sánchez-Bolaños C, Moreno-Sánchez I, Brena D, Vejnar CE, Kukhtar D, Ruiz-López M, Cots-Ponjoan M, Rubio A, Melero NR, Crespo-Cuadrado J, Carolis C, Pérez-Pulido AJ, Giráldez AJ, Kleinstiver BP, Cerón J, Moreno-Mateos MA. Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nat Commun 2022; 13:2601. [PMID: 35552388 PMCID: PMC9098488 DOI: 10.1038/s41467-022-30228-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/22/2022] [Indexed: 01/21/2023] Open
Abstract
The requirement for Cas nucleases to recognize a specific PAM is a major restriction for genome editing. SpCas9 variants SpG and SpRY, recognizing NGN and NRN PAMs, respectively, have contributed to increase the number of editable genomic sites in cell cultures and plants. However, their use has not been demonstrated in animals. Here we study the nuclease activity of SpG and SpRY by targeting 40 sites in zebrafish and C. elegans. Delivered as mRNA-gRNA or ribonucleoprotein (RNP) complexes, SpG and SpRY were able to induce mutations in vivo, albeit at a lower rate than SpCas9 in equivalent formulations. This lower activity was overcome by optimizing mRNA-gRNA or RNP concentration, leading to mutagenesis at regions inaccessible to SpCas9. We also found that the CRISPRscan algorithm could help to predict SpG and SpRY targets with high activity in vivo. Finally, we applied SpG and SpRY to generate knock-ins by homology-directed repair. Altogether, our results expand the CRISPR-Cas targeting genomic landscape in animals.
Collapse
Affiliation(s)
- Jeremy Vicencio
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Carlos Sánchez-Bolaños
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Ismael Moreno-Sánchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - David Brena
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Dmytro Kukhtar
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Miguel Ruiz-López
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Mariona Cots-Ponjoan
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Alejandro Rubio
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Natalia Rodrigo Melero
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Jesús Crespo-Cuadrado
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Antonio J Pérez-Pulido
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Antonio J Giráldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06510, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Julián Cerón
- Modeling human diseases in C. elegans Group; Genes, Disease and Therapy Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
| | - Miguel A Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain.
| |
Collapse
|
8
|
Engel MA, Wörmann YR, Kaestner H, Schüler C. An Optogenetic Arrhythmia Model—Insertion of Several Catecholaminergic Polymorphic Ventricular Tachycardia Mutations Into Caenorhabditis elegans UNC-68 Disturbs Calstabin-Mediated Stabilization of the Ryanodine Receptor Homolog. Front Physiol 2022; 13:691829. [PMID: 35399287 PMCID: PMC8990320 DOI: 10.3389/fphys.2022.691829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disturbance of the heart rhythm (arrhythmia) that is induced by stress or that occurs during exercise. Most mutations that have been linked to CPVT are found in two genes, i.e., ryanodine receptor 2 (RyR2) and calsequestrin 2 (CASQ2), two proteins fundamentally involved in the regulation of intracellular Ca2+ in cardiac myocytes. We inserted six CPVT-causing mutations via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 into unc-68 and csq-1, the Caenorhabditis elegans homologs of RyR and CASQ, respectively. We characterized those mutations via video-microscopy, electrophysiology, and calcium imaging in our previously established optogenetic arrhythmia model. In this study, we additionally enabled high(er) throughput recordings of intact animals by combining optogenetic stimulation with a microfluidic chip system. Whereas only minor/no pump deficiency of the pharynx was observed at baseline, three mutations of UNC-68 (S2378L, P2460S, Q4623R; RyR2-S2246L, -P2328S, -Q4201R) reduced the ability of the organ to follow 4 Hz optogenetic stimulation. One mutation (Q4623R) was accompanied by a strong reduction of maximal pump rate. In addition, S2378L and Q4623R evoked an altered calcium handling during optogenetic stimulation. The 1,4-benzothiazepine S107, which is suggested to stabilize RyR2 channels by enhancing the binding of calstabin2, reversed the reduction of pumping ability in a mutation-specific fashion. However, this depends on the presence of FKB-2, a C. elegans calstabin2 homolog, indicating the involvement of calstabin2 in the disease-causing mechanisms of the respective mutations. In conclusion, we showed for three CPVT-like mutations in C. elegans RyR a reduced pumping ability upon light stimulation, i.e., an arrhythmia-like phenotype, that can be reversed in two cases by the benzothiazepine S107 and that depends on stabilization via FKB-2. The genetically amenable nematode in combination with optogenetics and high(er) throughput recordings is a promising straightforward system for the investigation of RyR mutations and the selection of mutation-specific drugs.
Collapse
Affiliation(s)
- Marcial Alexander Engel
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Yves René Wörmann
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Hanna Kaestner
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Christina Schüler
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- *Correspondence: Christina Schüler,
| |
Collapse
|
9
|
Medley JC, Hebbar S, Sydzyik JT, Zinovyeva AY. Single nucleotide substitutions effectively block Cas9 and allow for scarless genome editing in Caenorhabditis elegans. Genetics 2022; 220:iyab199. [PMID: 34791245 PMCID: PMC8733430 DOI: 10.1093/genetics/iyab199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize "off-target" sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts postinjection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.
Collapse
Affiliation(s)
- Jeffrey C Medley
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Shilpa Hebbar
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Joel T Sydzyik
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| |
Collapse
|
10
|
Abstract
In Caenorhabditis elegans, targeted genome editing techniques are now routinely used to generate germline edits. The remarkable ease of C. elegans germline editing is attributed to the syncytial nature of the pachytene ovary which is easily accessed by microinjection. This protocol describes the step-by-step details and troubleshooting tips for the entire CRISPR-Cas genome editing procedure, including gRNA design and microinjection of ribonucleoprotein complexes, followed by screening and genotyping in C. elegans, to help accessing this powerful genetic animal system. For complete details on the use and execution of this protocol, please refer to Ghanta and Mello (2020).
Collapse
Affiliation(s)
- Krishna S. Ghanta
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Takao Ishidate
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Edwards SL, Erdenebat P, Morphis AC, Kumar L, Wang L, Chamera T, Georgescu C, Wren JD, Li J. Insulin/IGF-1 signaling and heat stress differentially regulate HSF1 activities in germline development. Cell Rep 2021; 36:109623. [PMID: 34469721 PMCID: PMC8442575 DOI: 10.1016/j.celrep.2021.109623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Germline development is sensitive to nutrient availability and environmental perturbation. Heat shock transcription factor 1 (HSF1), a key transcription factor driving the cellular heat shock response (HSR), is also involved in gametogenesis. The precise function of HSF1 (HSF-1 in C. elegans) and its regulation in germline development are poorly understood. Using the auxin-inducible degron system in C. elegans, we uncovered a role of HSF-1 in progenitor cell proliferation and early meiosis and identified a compact but important transcriptional program of HSF-1 in germline development. Interestingly, heat stress only induces the canonical HSR in a subset of germ cells but impairs HSF-1 binding at its developmental targets. Conversely, insulin/insulin growth factor 1 (IGF-1) signaling dictates the requirement for HSF-1 in germline development and functions through repressing FOXO/DAF-16 in the soma to activate HSF-1 in germ cells. We propose that this non-cell-autonomous mechanism couples nutrient-sensing insulin/IGF-1 signaling to HSF-1 activation to support homeostasis in rapid germline growth.
Collapse
Affiliation(s)
- Stacey L Edwards
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Purevsuren Erdenebat
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Allison C Morphis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lalit Kumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lai Wang
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Tomasz Chamera
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jian Li
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Khodakova AS, Vilchis DV, Blackburn D, Amanor F, Samuel BS. Population scale nucleic acid delivery to Caenorhabditis elegans via electroporation. G3 (BETHESDA, MD.) 2021; 11:jkab123. [PMID: 33872353 PMCID: PMC8495937 DOI: 10.1093/g3journal/jkab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022]
Abstract
The free-living nematode Caenorhabditis elegans remains one of the most robust and flexible genetic systems for interrogating the complexities of animal biology. Targeted genetic manipulations, such as RNA interference (RNAi), CRISPR/Cas9- or array-based transgenesis, all depend on initial delivery of nucleic acids. Delivery of dsRNA by feeding can be effective, but the expression in Escherichia coli is not conducive to experiments intended to remain sterile or with defined microbial communities. Soaking-based delivery requires prolonged exposure of animals to high-material concentrations without a food source and is of limited throughput. Last, microinjection of individual animals can precisely deliver materials to animals' germlines, but is limited by the need to target and inject each animal one-by-one. Thus, we sought to address some of these challenges in nucleic acid delivery by developing a population-scale delivery method. We demonstrate efficient electroporation-mediated delivery of dsRNA throughout the worm and effective RNAi-based silencing, including in the germline. Finally, we show that guide RNA delivered by electroporation can be utilized by transgenic Cas9 expressing worms for population-scale genetic targeting. Together, these methods expand the scale and scope of genetic methodologies that can be applied to the C. elegans system.
Collapse
Affiliation(s)
- Anastasia S Khodakova
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela Vidal Vilchis
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ferdinand Amanor
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- SMART Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Goudeau J, Sharp CS, Paw J, Savy L, Leonetti MD, York AG, Updike DL, Kenyon C, Ingaramo M. Split-wrmScarlet and split-sfGFP: tools for faster, easier fluorescent labeling of endogenous proteins in Caenorhabditis elegans. Genetics 2021; 217:iyab014. [PMID: 33693628 PMCID: PMC8049552 DOI: 10.1093/genetics/iyab014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
We create and share a new red fluorophore, along with a set of strains, reagents and protocols, to make it faster and easier to label endogenous Caenorhabditis elegans proteins with fluorescent tags. CRISPR-mediated fluorescent labeling of C. elegans proteins is an invaluable tool, but it is much more difficult to insert fluorophore-size DNA segments than it is to make small gene edits. In principle, high-affinity asymmetrically split fluorescent proteins solve this problem in C. elegans: the small fragment can quickly and easily be fused to almost any protein of interest, and can be detected wherever the large fragment is expressed and complemented. However, there is currently only one available strain stably expressing the large fragment of a split fluorescent protein, restricting this solution to a single tissue (the germline) in the highly autofluorescent green channel. No available C. elegans lines express unbound large fragments of split red fluorescent proteins, and even state-of-the-art split red fluorescent proteins are dim compared to the canonical split-sfGFP protein. In this study, we engineer a bright, high-affinity new split red fluorophore, split-wrmScarlet. We generate transgenic C. elegans lines to allow easy single-color labeling in muscle or germline cells and dual-color labeling in somatic cells. We also describe a novel expression strategy for the germline, where traditional expression strategies struggle. We validate these strains by targeting split-wrmScarlet to several genes whose products label distinct organelles, and we provide a protocol for easy, cloning-free CRISPR/Cas9 editing. As the collection of split-FP strains for labeling in different tissues or organelles expands, we will post updates at doi.org/10.5281/zenodo.3993663.
Collapse
Affiliation(s)
- Jérôme Goudeau
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Catherine S Sharp
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Jonathan Paw
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Laura Savy
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Andrew G York
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Dustin L Updike
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Maria Ingaramo
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| |
Collapse
|
14
|
Vicencio J, Cerón J. A Living Organism in your CRISPR Toolbox: Caenorhabditis elegans Is a Rapid and Efficient Model for Developing CRISPR-Cas Technologies. CRISPR J 2021; 4:32-42. [PMID: 33538637 DOI: 10.1089/crispr.2020.0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Cas9 nuclease from Streptococcus pyogenes (SpCas9) is the most popular enzyme for CRISPR technologies. However, considering the wide diversity of microorganisms (discovered and still unknown), a massive number of CRISPR effectors are being and will be identified and characterized in the search of optimal Cas variants for each of the many applications of CRISPR. In this context, a versatile and efficient multicellular system for CRISPR editing such as Caenorhabditis elegans would be of great help in the development of these effectors. Here, we highlight the benefits of using C. elegans for the rapid evaluation of new CRISPR effectors, and for optimizing CRISPR efficiency in animals in several ways such as by modulating the balance between repair pathways, modifying chromatin accessibility, or controlling the expression and activity of nucleases and guide RNAs.
Collapse
Affiliation(s)
- Jeremy Vicencio
- Modeling human diseases in C. elegans Group, Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Julián Cerón
- Modeling human diseases in C. elegans Group, Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
15
|
Suzuki H, Inaba M, Yamada M, Uehara T, Takenouchi T, Mizuno S, Kosaki K, Doi M. Biallelic loss of OTUD7A causes severe muscular hypotonia, intellectual disability, and seizures. Am J Med Genet A 2020; 185:1182-1186. [PMID: 33381903 DOI: 10.1002/ajmg.a.62054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 02/02/2023]
Abstract
The heterozygous deletion of 15q13.3 is a recurrently observed microdeletion syndrome associated with a relatively mild phenotype including learning disability and language impairment. In contrast, the homozygous deletion of 15q13.3 is extremely rare and is associated with a much severer phenotype that includes epileptic encephalopathy, profound intellectual disability, and hypotonia. Which of the genes within the deleted interval is responsible for the more severe features when biallelically deleted is currently unknown. Here, we report a patient with profound hypotonia, severe intellectual disability, and seizures who had biallelic loss-of-function variants in OTUD7A: a 15q13.3 deletion including the OTUD7A locus, and a frameshift OTUD7A variant c.1125del, p.(Glu375Aspfs*11). Unexpectedly, both aberrations occurred de novo. Our experiment using Caenorhabditis elegans showed that worms carrying a corresponding homozygous variant in the homolog OTUB-2 exhibited weakened muscle contraction suggestive of aberrant neuromuscular transmission. We concluded that the biallelic complete loss of OTUD7A in humans represents a presumably new autosomal recessive disorder characterized by profound hypotonia, severe intellectual disability, and seizures.
Collapse
Affiliation(s)
- Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Mie Inaba
- Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Aichi, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.,Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Aichi, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Seiji Mizuno
- Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Aichi, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
16
|
Klapholz B, Levy H, Kumbha R, Hosny N, D'Angelo ME, Hering BJ, Burlak C. Highly efficient multiplex genetic engineering of porcine primary fetal fibroblasts. Surg Open Sci 2020; 4:26-31. [PMID: 33937740 PMCID: PMC8074785 DOI: 10.1016/j.sopen.2020.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 10/30/2022] Open
Abstract
Background Genetically engineered porcine donors are a potential solution for the shortage of human organs for transplantation. Incompatibilities between humans and porcine donors are largely due to carbohydrate xenoantigens on the surface of porcine cells, provoking an immune response which leads to xenograft rejection. Materials and Methods Multiplex genetic knockout of GGTA1, β4GalNT2, and CMAH is predicted to increase the rate of xenograft survival, as described previously for GGTA1. In this study, the clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 system was used to target genes relevant to xenotransplantation, and a method for highly efficient editing of multiple genes in primary porcine fibroblasts was described. Results Editing efficiencies greater than 85% were achieved for knockout of GGTA1, β4GalNT2, and CMAH. Conclusion The high-efficiency protocol presented here reduces scale and cost while accelerating the production of genetically engineered primary porcine fibroblast cells for in vitro studies and the production of animal models.
Collapse
Affiliation(s)
- Benjamin Klapholz
- Horizon Discovery, 8100 Cambridge Research Park, Waterbeach, Cambridge CB25 9TL, UK
| | - Heather Levy
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ramesh Kumbha
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nora Hosny
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael E D'Angelo
- Horizon Discovery, 8100 Cambridge Research Park, Waterbeach, Cambridge CB25 9TL, UK
| | - Bernhard J Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
17
|
Ghanta KS, Mello CC. Melting dsDNA Donor Molecules Greatly Improves Precision Genome Editing in Caenorhabditis elegans. Genetics 2020; 216:643-650. [PMID: 32963112 PMCID: PMC7648581 DOI: 10.1534/genetics.120.303564] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022] Open
Abstract
CRISPR genome editing has revolutionized genetics in many organisms. In the nematode Caenorhabditis elegans, one injection into each of the two gonad arms of an adult hermaphrodite exposes hundreds of meiotic germ cells to editing mixtures, permitting the recovery of multiple indels or small precision edits from each successfully injected animal. Unfortunately, particularly for long insertions, editing efficiencies can vary widely, necessitating multiple injections, and often requiring coselection strategies. Here, we show that melting double-stranded DNA (dsDNA) donor molecules prior to injection increases the frequency of precise homology-directed repair (HDR) by several fold for longer edits. We describe troubleshooting strategies that enable consistently high editing efficiencies resulting, for example, in up to 100 independent GFP knock-ins from a single injected animal. These efficiencies make C. elegans by far the easiest metazoan to genome edit, removing barriers to the use and adoption of this facile system as a model for understanding animal biology.
Collapse
Affiliation(s)
- Krishna S Ghanta
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
18
|
Dexheimer PJ, Wang J, Cochella L. Two MicroRNAs Are Sufficient for Embryonic Patterning in C. elegans. Curr Biol 2020; 30:5058-5065.e5. [PMID: 33125867 PMCID: PMC7758728 DOI: 10.1016/j.cub.2020.09.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are a class of post-transcriptional repressors with diverse roles in animal development and physiology [1]. The Microprocessor complex, composed of Drosha and Pasha/DGCR8, is necessary for the biogenesis of all canonical miRNAs and essential for the early stages of animal embryogenesis [2, 3, 4, 5, 6, 7, 8]. However, the cause for this requirement is largely unknown. Animals often express hundreds of miRNAs, and it remains unclear whether the Microprocessor is required to produce one or few essential miRNAs or many individually non-essential miRNAs. Additionally, both Drosha and Pasha/DGCR8 bind and cleave a variety of non-miRNA substrates [9, 10, 11, 12, 13, 14, 15], and it is unknown whether these activities account for the Microprocessor’s essential requirement. To distinguish between these possibilities, we developed a system in C. elegans to stringently deplete embryos of Microprocessor activity. Using a combination of auxin-inducible degradation (AID) and RNA interference (RNAi), we achieved Drosha and Pasha/DGCR8 depletion starting in the maternal germline, resulting in Microprocessor and miRNA-depleted embryos, which fail to undergo morphogenesis or form organs. Using a Microprocessor-bypass strategy, we show that this early embryonic arrest is rescued by the addition of just two miRNAs, one miR-35 and one miR-51 family member, resulting in morphologically normal larvae. Thus, just two out of ∼150 canonical miRNAs are sufficient for morphogenesis and organogenesis, and the processing of these miRNAs accounts for the essential requirement for Drosha and Pasha/DGCR8 during the early stages of C. elegans embryonic development. Video Abstract
Depletion of Drosha and Pasha results in embryos that fail to undergo morphogenesis The mirtron pathway enables expression of miRNAs in the absence of Drosha and Pasha Two miRNAs are sufficient to rescue embryogenesis in the absence of Drosha and Pasha miR-35 and miR-51 play an unexplored, likely conserved role in animal development
Collapse
Affiliation(s)
- Philipp J Dexheimer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
19
|
Gómez-Escribano AP, Bono-Yagüe J, García-Gimeno MA, Sequedo MD, Hervás D, Fornés-Ferrer V, Torres-Sánchez SC, Millán JM, Sanz P, Vázquez-Manrique RP. Synergistic activation of AMPK prevents from polyglutamine-induced toxicity in Caenorhabditis elegans. Pharmacol Res 2020; 161:105105. [PMID: 32739430 PMCID: PMC7755709 DOI: 10.1016/j.phrs.2020.105105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
Expression of abnormally long polyglutamine (polyQ) tracks is the source of a range of dominant neurodegenerative diseases, such as Huntington disease. Currently, there is no treatment for this devastating disease, although some chemicals, e.g., metformin, have been proposed as therapeutic solutions. In this work, we show that metformin, together with salicylate, can synergistically reduce the number of aggregates produced after polyQ expression in Caenorhabditis elegans. Moreover, we demonstrate that incubation polyQ-stressed worms with low doses of both chemicals restores neuronal functionality. Both substances are pleitotropic and may activate a range of different targets. However, we demonstrate in this report that the beneficial effect induced by the combination of these drugs depends entirely on the catalytic action of AMPK, since loss of function mutants of aak-2/AMPKα2 do not respond to the treatment. To further investigate the mechanism of the synergetic activity of metformin/salicylate, we used CRISPR to generate mutant alleles of the scaffolding subunit of AMPK, aakb-1/AMPKβ1. In addition, we used an RNAi strategy to silence the expression of the second AMPKβ subunit in worms, namely aakb-2/AMPKβ2. In this work, we demonstrated that both regulatory subunits of AMPK are modulators of protein homeostasis. Interestingly, only aakb-2/AMPKβ2 is required for the synergistic action of metformin/salicylate to reduce polyQ aggregation. Finally, we showed that autophagy acts downstream of metformin/salicylate-related AMPK activation to promote healthy protein homeostasis in worms.
Collapse
Affiliation(s)
- A P Gómez-Escribano
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto De Investigación Sanitaria La Fe, Valencia, Spain; Centro De Investigación Biomédica En Red De Enfermedades Raras (CIBERER), Madrid, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - J Bono-Yagüe
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto De Investigación Sanitaria La Fe, Valencia, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - M A García-Gimeno
- Department of Biotechnology, Escuela Técnica Superior De Ingeniería Agronómica y Del Medio Natural (ETSIAMN), Universitat Politécnica De València, Valencia, Spain
| | - M D Sequedo
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto De Investigación Sanitaria La Fe, Valencia, Spain; Centro De Investigación Biomédica En Red De Enfermedades Raras (CIBERER), Madrid, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - D Hervás
- Department of Biostatistics, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - V Fornés-Ferrer
- Tau Analytics, Parc Científic De La Universitat De València, Paterna, Spain
| | - S C Torres-Sánchez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto De Investigación Sanitaria La Fe, Valencia, Spain
| | - J M Millán
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto De Investigación Sanitaria La Fe, Valencia, Spain; Centro De Investigación Biomédica En Red De Enfermedades Raras (CIBERER), Madrid, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain
| | - P Sanz
- Centro De Investigación Biomédica En Red De Enfermedades Raras (CIBERER), Madrid, Spain; Instituto De Biomedicina De València, CSIC, Valencia, Spain
| | - R P Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto De Investigación Sanitaria La Fe, Valencia, Spain; Centro De Investigación Biomédica En Red De Enfermedades Raras (CIBERER), Madrid, Spain; Joint Unit for Rare Diseases IIS La Fe-CIPF, Valencia, Spain.
| |
Collapse
|
20
|
Flores BN, Li X, Malik AM, Martinez J, Beg AA, Barmada SJ. An Intramolecular Salt Bridge Linking TDP43 RNA Binding, Protein Stability, and TDP43-Dependent Neurodegeneration. Cell Rep 2020; 27:1133-1150.e8. [PMID: 31018129 PMCID: PMC6499398 DOI: 10.1016/j.celrep.2019.03.093] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/28/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022] Open
Abstract
The majority of individuals with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) exhibit neuronal cytoplasmic inclusions rich in the RNA binding protein TDP43. Even so, the relation between the RNA binding properties of TDP43 and neurodegeneration remains obscure. Here, we show that engineered mutations disrupting a salt bridge between the RNA recognition motifs of TDP43 interfere with RNA binding and eliminate the recognition of native TDP43 substrates. The same mutations dramatically destabilize TDP43, alter its subcellular localization, and abrogate TDP43-dependent neuro-degeneration. Worms harboring homologous TDP-1 mutations phenocopy knockout strains, confirming the necessity of salt bridge residues for TDP43 function. Moreover, the accumulation of functional TDP43, but not RNA binding-deficient variants, disproportionately affects transcripts encoding ribo-some and oxidative phosphorylation components. These studies demonstrate the significance of the salt bridge in sustaining TDP43 stability and RNA binding properties, factors that are crucial for neurodegeneration arising from TDP43 deposition in ALS and FTD. Flores et al. uncover essential roles for an intramolecular salt bridge in the function of TDP43, an RNA binding protein implicated in neurodegenerative diseases. Salt bridge interruption attenuates TDP43 RNA binding affinity and specificity, destabilizes the protein, and prevents TDP43-mediated neurotoxicity arising from misprocessing of ribosomal and mitochondrial transcripts.
Collapse
Affiliation(s)
- Brittany N Flores
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48104, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Ahmed M Malik
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48104, USA; Neuroscience Graduate Program, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Jose Martinez
- Neuroscience Graduate Program, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Asim A Beg
- Neuroscience Graduate Program, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48104, USA
| | - Sami J Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48104, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48104, USA; Neuroscience Graduate Program, Department of Pharmacology, University of Michigan, Ann Arbor, MI 48104, USA.
| |
Collapse
|
21
|
Nyberg KG, Nguyen JQ, Kwon YJ, Blythe S, Beitel GJ, Carthew R. A pipeline for precise and efficient genome editing by sgRNA-Cas9 RNPs in Drosophila. Fly (Austin) 2020; 14:34-48. [PMID: 33016195 PMCID: PMC7746241 DOI: 10.1080/19336934.2020.1832416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing via homology-directed repair (HDR) has made possible precise and deliberate modifications to gene sequences. CRISPR/Cas9-mediated HDR is the simplest means to carry this out. However, technical challenges remain to improve efficiency and broaden applicability to any genetic background of Drosophila melanogaster as well as to other Drosophila species. To address these issues, we developed a two-stage marker-assisted strategy in which embryos are injected with RNPs and pre-screened using T7EI. Using sgRNA in complex with recombinant Cas9 protein, we assayed each sgRNA for genome-cutting efficiency. We then conducted HDR using sgRNAs that efficiently cut target genes and the application of a transformation marker that generates RNAi against eyes absent. This allows for screening based on eye morphology rather than colour. These new tools can be used to make a single change or a series of allelic substitutions in a region of interest, or to create additional genetic tools such as balancer chromosomes.
Collapse
Affiliation(s)
- Kevin G. Nyberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Joseph Q. Nguyen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yong-Jae Kwon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Shelby Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Greg J. Beitel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Richard Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
22
|
Ashkavand Z, Sarasija S, Ryan KC, Laboy JT, Norman KR. Corrupted ER-mitochondrial calcium homeostasis promotes the collapse of proteostasis. Aging Cell 2020; 19:e13065. [PMID: 31714672 PMCID: PMC6974732 DOI: 10.1111/acel.13065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022] Open
Abstract
Aging and age-related diseases are associated with a decline of protein homeostasis (proteostasis), but the mechanisms underlying this decline are not clear. In particular, decreased proteostasis is a widespread molecular feature of neurodegenerative diseases, such as Alzheimer's disease (AD). Familial AD is largely caused by mutations in the presenilin encoding genes; however, their role in AD is not understood. In this study, we investigate the role of presenilins in proteostasis using the model system Caenorhabditis elegans. Previously, we found that mutations in C. elegans presenilin cause elevated ER to mitochondria calcium signaling, which leads to an increase in mitochondrial generated oxidative stress. This, in turn, promotes neurodegeneration. To understand the cellular mechanisms driving neurodegeneration, using several molecular readouts of protein stability in C. elegans, we find that presenilin mutants have widespread defects in proteostasis. Markedly, we demonstrate that these defects are independent of the protease activity of presenilin and that reduction in ER to mitochondrial calcium signaling can significantly prevent the proteostasis defects observed in presenilin mutants. Furthermore, we show that supplementing presenilin mutants with antioxidants suppresses the proteostasis defects. Our findings indicate that defective ER to mitochondria calcium signaling promotes proteostatic collapse in presenilin mutants by increasing oxidative stress.
Collapse
Affiliation(s)
- Zahra Ashkavand
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| | - Shaarika Sarasija
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| | - Kerry C. Ryan
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| | - Jocelyn T. Laboy
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| | - Kenneth R. Norman
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNYUSA
| |
Collapse
|
23
|
Webb Chasser AM, Johnson RW, Chamberlin HM. EGL-38/Pax coordinates development in the Caenhorhabditis elegans egg-laying system through EGF pathway dependent and independent functions. Mech Dev 2019; 159:103566. [PMID: 31398431 PMCID: PMC6855382 DOI: 10.1016/j.mod.2019.103566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/26/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023]
Abstract
Paired box (Pax) proteins function as regulators of coordinated development in organogenesis by controlling factors such as cell growth and differentiation necessary to organize multiple cell types into a single, cohesive organ. Previous work has suggested that Pax transcription factors may regulate diverse cell types through participation in inductive cell-to-cell signaling, which has not been well explored. Here we show that EGL-38, a Pax2/5/8 ortholog, coordinates differentiation of the C. elegans egg-laying system through separate autonomous and non-autonomous functions synchronized by the EGF pathway. We find that EGL-38 protein is expressed at the correct times to both participate in and respond to the EGF pathway specifying uterine ventral (uv1) cell fate, and that EGL-38 is required for uv1 expression of nlp-2 and nlp-7, which are both markers of and participants in uv1 identity. Additionally, we have separated uv1 cell placement and gene expression as distinct hallmarks of uv1 identity and specification, with different dependencies on EGL-38. The parallels between EGL-38 participation in cell signaling events and previous Pax studies argue that coordination of signaling and response to an inductive pathway may be a common feature of Pax protein function.
Collapse
Affiliation(s)
- Allison M Webb Chasser
- Department of Molecular Genetics, United States of America; Ohio State Biochemistry Graduate Program, United States of America
| | - Ryan W Johnson
- Department of Molecular Genetics, United States of America
| | | |
Collapse
|
24
|
Xu W, Long L, Zhao Y, Stevens L, Felipe I, Munoz J, Ellis RE, McGrath PT. Evolution of Yin and Yang isoforms of a chromatin remodeling subunit precedes the creation of two genes. eLife 2019; 8:e48119. [PMID: 31498079 PMCID: PMC6752949 DOI: 10.7554/elife.48119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Genes can encode multiple isoforms, broadening their functions and providing a molecular substrate to evolve phenotypic diversity. Evolution of isoform function is a potential route to adapt to new environments. Here we show that de novo, beneficial alleles in the nurf-1 gene became fixed in two laboratory lineages of C. elegans after isolation from the wild in 1951, before methods of cryopreservation were developed. nurf-1 encodes an ortholog of BPTF, a large (>300 kD) multidomain subunit of the NURF chromatin remodeling complex. Using CRISPR-Cas9 genome editing and transgenic rescue, we demonstrate that in C. elegans, nurf-1 has split into two, largely non-overlapping isoforms (NURF-1.D and NURF-1.B, which we call Yin and Yang, respectively) that share only two of 26 exons. Both isoforms are essential for normal gametogenesis but have opposite effects on male/female gamete differentiation. Reproduction in hermaphrodites, which involves production of both sperm and oocytes, requires a balance of these opposing Yin and Yang isoforms. Transgenic rescue and genetic position of the fixed mutations suggest that different isoforms are modified in each laboratory strain. In a related clade of Caenorhabditis nematodes, the shared exons have duplicated, resulting in the split of the Yin and Yang isoforms into separate genes, each containing approximately 200 amino acids of duplicated sequence that has undergone accelerated protein evolution following the duplication. Associated with this duplication event is the loss of two additional nurf-1 transcripts, including the long-form transcript and a newly identified, highly expressed transcript encoded by the duplicated exons. We propose these lost transcripts are non-functional side products necessary to transcribe the Yin and Yang transcripts in the same cells. Our work demonstrates how gene sharing, through the production of multiple isoforms, can precede the creation of new, independent genes.
Collapse
Affiliation(s)
- Wen Xu
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lijiang Long
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative BiosciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Yuehui Zhao
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
| | - Lewis Stevens
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Irene Felipe
- Epithelial Carcinogenesis GroupSpanish National Cancer Research Center-CNIOMadridSpain
| | - Javier Munoz
- Proteomics Unit-ProteoRed-ISCIIISpanish National Cancer Research Center-CNIOMadridSpain
| | - Ronald E Ellis
- Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordUnited States
| | - Patrick T McGrath
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaUnited States
- Parker H. Petit Institute of Bioengineering and BioscienceGeorgia Institute of TechnologyAtlantaUnited States
- School of PhysicsGeorgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
25
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Vicencio J, Martínez-Fernández C, Serrat X, Cerón J. Efficient Generation of Endogenous Fluorescent Reporters by Nested CRISPR in Caenorhabditis elegans. Genetics 2019; 211:1143-1154. [PMID: 30696716 PMCID: PMC6456308 DOI: 10.1534/genetics.119.301965] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022] Open
Abstract
CRISPR-based genome-editing methods in model organisms are evolving at an extraordinary speed. Whereas the generation of deletion or missense mutants is quite straightforward, the production of endogenous fluorescent reporters is more challenging. We have developed Nested CRISPR, a cloning-free ribonucleoprotein-driven method that robustly produces endogenous fluorescent reporters with EGFP, mCherry or wrmScarlet in Caenorhabditis elegans This method is based on the division of the fluorescent protein (FP) sequence in three fragments. In the first step, single-stranded DNA (ssDNA) donors (≤200 bp) are used to insert the 5' and 3' fragments of the FP in the locus of interest. In the second step, these sequences act as homology regions for homology-directed repair using a double-stranded DNA (dsDNA) donor (PCR product) containing the middle fragment, thus completing the FP sequence. In Nested CRISPR, the first step involving ssDNA donors is a well-established method that yields high editing efficiencies, and the second step is reliable because it uses universal CRISPR RNAs (crRNAs) and PCR products. We have also used Nested CRISPR in a nonessential gene to produce a deletion mutant in the first step and a transcriptional reporter in the second step. In the search for modifications to optimize the method, we tested synthetic single guide RNAs (sgRNAs), but did not observe a significant increase in efficiency. To streamline the approach, we combined all step 1 and step 2 reagents in a single injection and were successful in three of five loci tested with editing efficiencies of up to 20%. Finally, we discuss the prospects of this method in the future.
Collapse
Affiliation(s)
- Jeremy Vicencio
- Genes, Diseases, and Therapies Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Carmen Martínez-Fernández
- Genes, Diseases, and Therapies Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Xènia Serrat
- Genes, Diseases, and Therapies Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Julián Cerón
- Genes, Diseases, and Therapies Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
27
|
McDiarmid TA, Au V, Loewen AD, Liang J, Mizumoto K, Moerman DG, Rankin CH. CRISPR-Cas9 human gene replacement and phenomic characterization in Caenorhabditis elegans to understand the functional conservation of human genes and decipher variants of uncertain significance. Dis Model Mech 2018; 11:dmm.036517. [PMID: 30361258 PMCID: PMC6307914 DOI: 10.1242/dmm.036517] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Our ability to sequence genomes has vastly surpassed our ability to interpret the genetic variation we discover. This presents a major challenge in the clinical setting, where the recent application of whole-exome and whole-genome sequencing has uncovered thousands of genetic variants of uncertain significance. Here, we present a strategy for targeted human gene replacement and phenomic characterization, based on CRISPR-Cas9 genome engineering in the genetic model organism Caenorhabditis elegans, that will facilitate assessment of the functional conservation of human genes and structure-function analysis of disease-associated variants with unprecedented precision. We validate our strategy by demonstrating that direct single-copy replacement of the C. elegans ortholog (daf-18) with the critical human disease-associated gene phosphatase and tensin homolog (PTEN) is sufficient to rescue multiple phenotypic abnormalities caused by complete deletion of daf-18, including complex chemosensory and mechanosensory impairments. In addition, we used our strategy to generate animals harboring a single copy of the known pathogenic lipid phosphatase inactive PTEN variant (PTEN-G129E), and showed that our automated in vivo phenotypic assays could accurately and efficiently classify this missense variant as loss of function. The integrated nature of the human transgenes allows for analysis of both homozygous and heterozygous variants and greatly facilitates high-throughput precision medicine drug screens. By combining genome engineering with rapid and automated phenotypic characterization, our strategy streamlines the identification of novel conserved gene functions in complex sensory and learning phenotypes that can be used as in vivo functional assays to decipher variants of uncertain significance.
Collapse
Affiliation(s)
- Troy A McDiarmid
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Vinci Au
- Department of Zoology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Aaron D Loewen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Joseph Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Kota Mizumoto
- Department of Zoology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada .,Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
28
|
Dokshin GA, Ghanta KS, Piscopo KM, Mello CC. Robust Genome Editing with Short Single-Stranded and Long, Partially Single-Stranded DNA Donors in Caenorhabditis elegans. Genetics 2018; 210:781-787. [PMID: 30213854 PMCID: PMC6218216 DOI: 10.1534/genetics.118.301532] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/25/2018] [Indexed: 01/24/2023] Open
Abstract
CRISPR-based genome editing using ribonucleoprotein complexes and synthetic single-stranded oligodeoxynucleotide (ssODN) donors can be highly effective. However, reproducibility can vary, and precise, targeted integration of longer constructs-such as green fluorescent protein tags remains challenging in many systems. Here, we describe a streamlined and optimized editing protocol for the nematode Caenorhabditis elegans We demonstrate its efficacy, flexibility, and cost-effectiveness by affinity-tagging 14 Argonaute proteins in C. elegans using ssODN donors. In addition, we describe a novel PCR-based, partially single-stranded, "hybrid" donor design that yields high efficiency editing with large (kilobase-scale) constructs. We use these hybrid donors to introduce fluorescent protein tags into multiple loci, achieving editing efficiencies that approach those previously obtained only with much shorter ssODN donors. The principals and strategies described here are likely to translate to other systems, and should allow researchers to reproducibly and efficiently obtain both long and short precision genome edits.
Collapse
Affiliation(s)
- Gregoriy A Dokshin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Krishna S Ghanta
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Katherine M Piscopo
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Howard Hughes Medical Institute, Worcester, Massachusetts 01605
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Howard Hughes Medical Institute, Worcester, Massachusetts 01605
| |
Collapse
|
29
|
Hahnel SR, Zdraljevic S, Rodriguez BC, Zhao Y, McGrath PT, Andersen EC. Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. PLoS Pathog 2018; 14:e1007226. [PMID: 30372484 PMCID: PMC6224181 DOI: 10.1371/journal.ppat.1007226] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
Benzimidazoles (BZ) are essential components of the limited chemotherapeutic arsenal available to control the global burden of parasitic nematodes. The emerging threat of BZ resistance among multiple nematode species necessitates the development of novel strategies to identify genetic and molecular mechanisms underlying this resistance. All detection of parasitic helminth resistance to BZ is focused on the genotyping of three variant sites in the orthologs of the β-tubulin gene found to confer resistance in the free-living nematode Caenorhabditis elegans. Because of the limitations of laboratory and field experiments in parasitic nematodes, it is difficult to look beyond these three sites to identify additional mechanisms that might contribute to BZ resistance in the field. Here, we took an unbiased genome-wide mapping approach in the free-living nematode species C. elegans to identify the genetic underpinnings of natural resistance to the commonly used BZ, albendazole (ABZ). We found a wide range of natural variation in ABZ resistance in natural C. elegans populations. In agreement with known mechanisms of BZ resistance in parasites, we found that a majority of the variation in ABZ resistance among wild C. elegans strains is caused by variation in the β-tubulin gene ben-1. This result shows empirically that resistance to ABZ naturally exists and segregates within the C. elegans population, suggesting that selection in natural niches could enrich for resistant alleles. We identified 25 distinct ben-1 alleles that are segregating at low frequencies within the C. elegans population, including many novel molecular variants. Population genetic analyses indicate that ben-1 variation arose multiple times during the evolutionary history of C. elegans and provide evidence that these alleles likely occurred recently because of local selective pressures. Additionally, we find purifying selection at all five β-tubulin genes, despite predicted loss-of-function variants in ben-1, indicating that BZ resistance in natural niches is a stronger selective pressure than loss of one β-tubulin gene. Furthermore, we used genome-editing to show that the most common parasitic nematode β-tubulin allele that confers BZ resistance, F200Y, confers resistance in C. elegans. Importantly, we identified a novel genomic region that is correlated with ABZ resistance in the C. elegans population but independent of ben-1 and the other β-tubulin loci, suggesting that there are multiple mechanisms underlying BZ resistance. Taken together, our results establish a population-level resource of nematode natural diversity as an important model for the study of mechanisms that give rise to BZ resistance.
Collapse
Affiliation(s)
- Steffen R. Hahnel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Briana C. Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Yuehui Zhao
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Patrick T. McGrath
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
30
|
Farr GH, Imani K, Pouv D, Maves L. Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects. Dis Model Mech 2018; 11:dmm035972. [PMID: 30355621 PMCID: PMC6215422 DOI: 10.1242/dmm.035972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Whole-genome and exome sequencing efforts are increasingly identifying candidate genetic variants associated with human disease. However, predicting and testing the pathogenicity of a genetic variant remains challenging. Genome editing allows for the rigorous functional testing of human genetic variants in animal models. Congenital heart defects (CHDs) are a prominent example of a human disorder with complex genetics. An inherited sequence variant in the human PBX3 gene (PBX3 p.A136V) has previously been shown to be enriched in a CHD patient cohort, indicating that the PBX3 p.A136V variant could be a modifier allele for CHDs. Pbx genes encode three-amino-acid loop extension (TALE)-class homeodomain-containing DNA-binding proteins with diverse roles in development and disease, and are required for heart development in mouse and zebrafish. Here, we used CRISPR-Cas9 genome editing to directly test whether this Pbx gene variant acts as a genetic modifier in zebrafish heart development. We used a single-stranded oligodeoxynucleotide to precisely introduce the human PBX3 p.A136V variant in the homologous zebrafish pbx4 gene (pbx4 p.A131V). We observed that zebrafish that are homozygous for pbx4 p.A131V are viable as adults. However, the pbx4 p.A131V variant enhances the embryonic cardiac morphogenesis phenotype caused by loss of the known cardiac specification factor, Hand2. Our study is the first example of using precision genome editing in zebrafish to demonstrate a function for a human disease-associated single nucleotide variant of unknown significance. Our work underscores the importance of testing the roles of inherited variants, not just de novo variants, as genetic modifiers of CHDs. Our study provides a novel approach toward advancing our understanding of the complex genetics of CHDs.
Collapse
Affiliation(s)
- Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kimia Imani
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- University of Washington, Seattle, WA 98195, USA
| | - Darren Pouv
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- University of Washington, Seattle, WA 98195, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
31
|
Papasergi-Scott MM, Stoveken HM, MacConnachie L, Chan PY, Gabay M, Wong D, Freeman RS, Beg AA, Tall GG. Dual phosphorylation of Ric-8A enhances its ability to mediate G protein α subunit folding and to stimulate guanine nucleotide exchange. Sci Signal 2018; 11:11/532/eaap8113. [PMID: 29844055 DOI: 10.1126/scisignal.aap8113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Resistance to inhibitors of cholinesterase-8A (Ric-8A) and Ric-8B are essential biosynthetic chaperones for heterotrimeric G protein α subunits. We provide evidence for the direct regulation of Ric-8A cellular activity by dual phosphorylation. Using proteomics, Western blotting, and mutational analyses, we determined that Ric-8A was constitutively phosphorylated at five serines and threonines by the protein kinase CK2. Phosphorylation of Ser435 and Thr440 in rat Ric-8A (corresponding to Ser436 and Thr441 in human Ric-8A) was required for high-affinity binding to Gα subunits, efficient stimulation of Gα subunit guanine nucleotide exchange, and mediation of Gα subunit folding. The CK2 consensus sites that contain Ser435 and Thr440 are conserved in Ric-8 homologs from worms to mammals. We found that the homologous residues in mouse Ric-8B, Ser468 and Ser473, were also phosphorylated. Mutation of the genomic copy of ric-8 in Caenorhabditis elegans to encode alanine in the homologous sites resulted in characteristic ric-8 reduction-of-function phenotypes that are associated with defective Gq and Gs signaling, including reduced locomotion and defective egg laying. The C. elegans ric-8 phosphorylation site mutant phenotypes were partially rescued by chemical stimulation of Gq signaling. These results indicate that dual phosphorylation represents a critical form of conserved Ric-8 regulation and demonstrate that Ric-8 proteins are needed for effective Gα signaling. The position of the CK2-phosphorylated sites within a structural model of Ric-8A reveals that these sites contribute to a key acidic and negatively charged surface that may be important for its interactions with Gα subunits.
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hannah M Stoveken
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lauren MacConnachie
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pui-Yee Chan
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Meital Gabay
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dorothy Wong
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert S Freeman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Asim A Beg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Farboud B, Jarvis E, Roth TL, Shin J, Corn JE, Marson A, Meyer BJ, Patel NH, Hochstrasser ML. Enhanced Genome Editing with Cas9 Ribonucleoprotein in Diverse Cells and Organisms. J Vis Exp 2018:57350. [PMID: 29889198 PMCID: PMC6101420 DOI: 10.3791/57350] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Site-specific eukaryotic genome editing with CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems has quickly become a commonplace amongst researchers pursuing a wide variety of biological questions. Users most often employ the Cas9 protein derived from Streptococcus pyogenes in a complex with an easily reprogrammed guide RNA (gRNA). These components are introduced into cells, and through a base pairing with a complementary region of the double-stranded DNA (dsDNA) genome, the enzyme cleaves both strands to generate a double-strand break (DSB). Subsequent repair leads to either random insertion or deletion events (indels) or the incorporation of experimenter-provided DNA at the site of the break. The use of a purified single-guide RNA and Cas9 protein, preassembled to form an RNP and delivered directly to cells, is a potent approach for achieving highly efficient gene editing. RNP editing particularly enhances the rate of gene insertion, an outcome that is often challenging to achieve. Compared to the delivery via a plasmid, the shorter persistence of the Cas9 RNP within the cell leads to fewer off-target events. Despite its advantages, many casual users of CRISPR gene editing are less familiar with this technique. To lower the barrier to entry, we outline detailed protocols for implementing the RNP strategy in a range of contexts, highlighting its distinct benefits and diverse applications. We cover editing in two types of primary human cells, T cells and hematopoietic stem/progenitor cells (HSPCs). We also show how Cas9 RNP editing enables the facile genetic manipulation of entire organisms, including the classic model roundworm Caenorhabditis elegans and the more recently introduced model crustacean, Parhyale hawaiensis.
Collapse
Affiliation(s)
- Behnom Farboud
- Department of Molecular Cell Biology, University of California, Berkeley; Howard Hughes Medical Institute, University of California, Berkeley
| | - Erin Jarvis
- Department of Molecular Cell Biology, University of California, Berkeley
| | - Theodore L Roth
- Innovative Genomics Institute, University of California, Berkeley; Biomedical Sciences Graduate Program, University of California, San Francisco; Department of Microbiology and Immunology, University of California, San Francisco; Diabetes Center, University of California, San Francisco
| | - Jiyung Shin
- Department of Molecular Cell Biology, University of California, Berkeley; Innovative Genomics Institute, University of California, Berkeley
| | - Jacob E Corn
- Department of Molecular Cell Biology, University of California, Berkeley; Innovative Genomics Institute, University of California, Berkeley
| | - Alexander Marson
- Innovative Genomics Institute, University of California, Berkeley; Department of Microbiology and Immunology, University of California, San Francisco; Diabetes Center, University of California, San Francisco; Chan Zuckerberg Biohub; Department of Medicine, University of California, San Francisco; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco
| | - Barbara J Meyer
- Department of Molecular Cell Biology, University of California, Berkeley; Howard Hughes Medical Institute, University of California, Berkeley
| | - Nipam H Patel
- Department of Molecular Cell Biology, University of California, Berkeley; Department of Integrative Biology, University of California, Berkeley
| | | |
Collapse
|
33
|
Prior H, MacConnachie L, Martinez JL, Nicholl GCB, Beg AA. A Rapid and Facile Pipeline for Generating Genomic Point Mutants in C. elegans Using CRISPR/Cas9 Ribonucleoproteins. J Vis Exp 2018:57518. [PMID: 29757293 PMCID: PMC6101052 DOI: 10.3791/57518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The clustered regularly interspersed palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) prokaryotic adaptive immune defense system has been co-opted as a powerful tool for precise eukaryotic genome engineering. Here, we present a rapid and simple method using chimeric single guide RNAs (sgRNA) and CRISPR-Cas9 Ribonucleoproteins (RNPs) for the efficient and precise generation of genomic point mutations in C. elegans. We describe a pipeline for sgRNA target selection, homology-directed repair (HDR) template design, CRISPR-Cas9-RNP complexing and delivery, and a genotyping strategy that enables the robust and rapid identification of correctly edited animals. Our approach not only permits the facile generation and identification of desired genomic point mutant animals, but also facilitates the detection of other complex indel alleles in approximately 4 - 5 days with high efficiency and a reduced screening workload.
Collapse
Affiliation(s)
| | | | | | | | - Asim A Beg
- Department of Pharmacology, University of Michigan;
| |
Collapse
|