1
|
Uddin A. Compositional Features and Codon Usage Pattern of Genes Associated with Parkinson's Disease. Mol Neurobiol 2024; 61:8279-8292. [PMID: 38488980 DOI: 10.1007/s12035-024-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Codon usage bias (CUB) is the phenomenon of non-uniform usage of synonymous codons in which some codons are more used than others and it helps in understanding the molecular organization of genome. Bioinformatic approach was used to analyze the protein-coding sequences of genes associated with Parkinson's disease (PD) to explore compositional features and codon usage pattern as no details work was reported yet. The average improved effective number of codons (Nc) and Nc prime were 42.74 and 44.26 respectively, indicated that CUB was low in these genes. In most of the genes, the overall GC content was almost 50% and GC content at the 1st codon position was the highest while GC content at the 2nd codon position was lowest. Relative synonymous codon usage (RSCU) analysis elucidated over-represented (p > 1.6) and under-represented codons (p < 0.6). The GTG (Val) is the only codon over-represented in all genes. Over-represented codons except (GTG) were A or T ending while under-represented codons (except ACT) were G or C ending. The codons namely TTA (Leu), CTA (Leu), ATC (Ile), ATA (Ile), AGT (Ser), AAC (Asn), TGT (Cys), TGC (Cys), CGC (Arg), AGA (Arg), and AGG (Arg) were absent in SNCA1 to SNCA8 genes. The codon TCG (Ser) was absent in all genes except UCHL1 and PINK1. Correspondence analysis (COA) revealed that the pattern of codon usage differs among genes associated with PD. Neutrality plot analysis indicated some of the points are diagonal distribution suggested that mutation pressure influenced the CUB in genes associated with PD.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi-788150, Assam, India.
| |
Collapse
|
2
|
Gudkov M, Thibaut L, Giannoulatou E. Quantifying negative selection on synonymous variants. HGG ADVANCES 2024; 5:100262. [PMID: 38192100 PMCID: PMC10835449 DOI: 10.1016/j.xhgg.2024.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 01/10/2024] Open
Abstract
Widespread adoption of DNA sequencing has resulted in large numbers of genetic variants, whose contribution to disease is not easily determined. Although many types of variation are known to disrupt cellular processes in predictable ways, for some categories of variants, the effects may not be directly detectable. A particular example is synonymous variants, that is, those single-nucleotide variants that create a codon substitution, such that the produced amino acid sequence is unaffected. Contrary to the original theory suggesting that synonymous variants are benign, there is a growing volume of research showing that, despite their "silent" mechanism of action, some synonymous variation may be deleterious. Here, we studied the extent of the negative selective pressure acting on different classes of synonymous variants by analyzing the relative enrichment of synonymous singleton variants in the human exomes provided by gnomAD. Using a modification of the mutability-adjusted proportion of singletons (MAPS) metric as a measure of purifying selection, we found that some classes of synonymous variants are subject to stronger negative selection than others. For instance, variants that reduce codon optimality undergo stronger selection than optimality-increasing variants. Besides, selection affects synonymous variants implicated in splice-site-loss or splice-site-gain events. To understand what drives this negative selection, we tested a number of predictors in the aim to explain the variability in the selection scores. Our findings provide insights into the effects of synonymous variants at the population level, highlighting the specifics of the role that these variants play in health and disease.
Collapse
Affiliation(s)
- Mikhail Gudkov
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Loïc Thibaut
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Lu MX, He FJ, Zhu F, Du YZ. The regulation of inhibitor of apoptosis proteins (IAPs) during the apoptosis of Cotesia chilonis. Front Physiol 2023; 14:1328167. [PMID: 38192740 PMCID: PMC10773855 DOI: 10.3389/fphys.2023.1328167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Inhibitor of apoptosis proteins (IAPs) are crucial components of apoptosis that perform vital roles in the regulation of caspase activity in organisms. In this study, two IAPs genes were identified from Cotesia chilonis, the dominant parasitic wasp of Chilo suppressalis. CcIAP1 gene is a typical IAP and contains two BIR domains and a RING domain, whereas CcIAP gene is an atypical IAP1 only containing two BIR domains. Phylogenetic analysis indicated that CcIAP1 and CcIAP were grouped with other Hymenopteran IAPs and IAP1 in C. suppressalis. Real-time quantitative PCR revealed that CcIAP1 and CcIAP genes were both highly induced at -6°C and 30°C, and expression was highest at the third instar stage. The expression of CcIAP1 and CcIAP genes were significantly induced during parasitism of C. suppressalis, and the 7-d time point resulted in the highest expression levels for both genes, in which was an advanced stage of larval development of C. chilonis. RNAi experiments showed that CcIAP1 gene was the key IAP in the regulation of apoptosis of C. chilonis and its host. In conclusion, CcIAP1 and CcIAP correlate with the development of C. chilonis and their responses to temperature stress.
Collapse
Affiliation(s)
- Ming-Xing Lu
- College of Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Fu-Jing He
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing, China
| | - Feng Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Plant Protection and Institute of Applied Entomology, Yangzhou University, Yangzhou, China
- Wuxi Vocational Institute of Commerce, Wuxi, China
| |
Collapse
|
4
|
Dong CL, Zhu F, Du YZ, Lu MX. Depending on different apoptosis pathways, the effector Cscaspase-3 in Chilo suppressalis exposed to temperature and parasitic stress was induced. Int J Biol Macromol 2023; 238:124270. [PMID: 37003373 DOI: 10.1016/j.ijbiomac.2023.124270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Apoptosis is a form of programmed cell death (PCD) that is largely triggered by caspases through both the mitochondria-dependent and mitochondria-independent pathways. The rice stem borer, Chilo suppressalis, serves as an economically important pest of rice, which is often suffered by temperature and parasitic stress under natural conditions. In the present study, effector Cscaspase-3 encoding caspase was obtained from the rice pest Chilo suppressalis. CsCaspase-3 possesses p20 and p10 subunits, two active sites, four substrate-binding sites, and two cleavage motifs. Real-time quantitative PCR showed that Cscaspase-3 was expressed at maximal levels in hemocytes; furthermore, transcription was most highly in female adults. Expression of Cscaspase-3 was induced by hot and cold temperatures, with the highest expression at 39 °C. Cscaspase-3 expression was also significantly induced at 10 h, 2 d, 5 d, and 7 d of parasitism. Flow cytometry results showed that both temperature and parasitism trigger apoptosis, but only parasitism induces apoptosis via the mitochondrial apoptosis pathway in C. suppressalis. RNAi-mediated silencing of Cscaspase-3 expression reduced C. suppressalis survival at -3 °C. This study provides a foundation for further studies of caspases in insects during biotic and abiotic stress.
Collapse
Affiliation(s)
- Chuan-Lei Dong
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Feng Zhu
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210000, PR China
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Ming-Xing Lu
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Tyagi S, Kabade PG, Gnanapragasam N, Singh UM, Gurjar AKS, Rai A, Sinha P, Kumar A, Singh VK. Codon Usage Provide Insights into the Adaptation of Rice Genes under Stress Condition. Int J Mol Sci 2023; 24:ijms24021098. [PMID: 36674611 PMCID: PMC9861248 DOI: 10.3390/ijms24021098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Plants experience different stresses, i.e., abiotic, or biotic, and to combat them, plants re-program the expression of growth-, metabolism-, and resistance-related genes. These genes differ in their synonymous codon usage frequency and show codon usage bias. Here, we investigated the correlation among codon usage bias, gene expression, and underlying mechanisms in rice under abiotic and biotic stress conditions. The results indicated that genes with higher expression (up- or downregulated) levels had high GC content (≥60%), a low effective number of codon usage (≤40), and exhibited strong biases towards the codons with C/G at the third nucleotide position, irrespective of stress received. TTC, ATC, and CTC were the most preferred codons, while TAC, CAC, AAC, GAC, and TGC were moderately preferred under any stress (abiotic or biotic) condition. Additionally, downregulated genes are under mutational pressure (R2 ≥ 0.5) while upregulated genes are under natural selection pressure (R2 ≤ 0.5). Based on these results, we also identified the possible target codons that can be used to design an optimized set of genes with specific codons to develop climate-resilient varieties. Conclusively, under stress, rice has a bias towards codon usage which is correlated with GC content, gene expression level, and gene length.
Collapse
Affiliation(s)
- Swati Tyagi
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | | | - Niranjani Gnanapragasam
- International Rice Research Institute (IRRI)-South-Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Uma Maheshwar Singh
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | | | - Ashutosh Rai
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | - Pallavi Sinha
- International Rice Research Institute (IRRI)-South-Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Arvind Kumar
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | - Vikas Kumar Singh
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
- International Rice Research Institute (IRRI)-South-Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
- Correspondence:
| |
Collapse
|
6
|
Bai H, Ata G, Sun Q, Rahman SU, Tao S. Natural selection pressure exerted on "Silent" mutations during the evolution of SARS-CoV-2: Evidence from codon usage and RNA structure. Virus Res 2023; 323:198966. [PMID: 36244617 PMCID: PMC9561399 DOI: 10.1016/j.virusres.2022.198966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
From the first emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) till now, multiple mutations that caused synonymous and nonsynonymous substitutions have accumulated. Among them, synonymous substitutions were regarded as "silent" mutations that received less attention than nonsynonymous substitutions that cause amino acid variations. However, the importance of synonymous substitutions can not be neglected. This research focuses on synonymous substitutions on SARS-CoV-2 and proves that synonymous substitutions were under purifying selection in its evolution. The evidence of purifying selection is provided by comparing the mutation number per site in coding and non-coding regions. We then study the two forces of purifying selection: synonymous codon usage and RNA secondary structure. Results show that the codon usage optimization leads to an adapted codon usage towards humans. Furthermore, our results show that the maintenance of RNA secondary structure causes the purifying of synonymous substitutions in the structural region. These results explain the selection pressure on synonymous substitutions during the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Haoxiang Bai
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Galal Ata
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Qing Sun
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, Pakistan
| | - Shiheng Tao
- College of Life Sciences, Northwest A&F University, Yangling, China; Bioinformatics Center, Northwest A&F University, Yangling, China.
| |
Collapse
|
7
|
Yuan JW, Song HX, Chang YW, Yang F, Xie HF, Gong WR, Du YZ. Identification, expression analysis and functional verification of two genes encoding small heat shock proteins in the western flower thrips, Frankliniella occidentalis (Pergande). Int J Biol Macromol 2022; 211:74-84. [PMID: 35561856 DOI: 10.1016/j.ijbiomac.2022.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
Small heat shock proteins (sHSPs) help prevent the irreversible aggregation of denatured proteins that occurs in response to organismal stress. In this study, we identified two intron-free genes encoding sHSPs from Frankliniella occidentalis; these were designated FoHSP11.6 and FoHSP28.0 and belonged to an atypical and typical sHSP family, respectively. Both FoHSPs were transcribed in all developmental stages of F. occidentalis with the highest expression levels in pupae and adults and greater expression in males than females. Although the FoHSPs had different temperature-induced expression profiles, they were generally induced by both low and high temperatures and reached maximal expression levels after 0.5-1 h of temperature stress. The FoHSPs expression levels in pupae were induced by drought and high humidity, and higher expression levels were correlated with lower survival rates. The thermotolerance of F. occidentalis decreased when theFoHSPs were silenced by RNA interference. Our results show that FoHSP11.6 and FoHSP28.0 are involved in the response to temperature and drought and may also function in growth and development of F. occidentalis.
Collapse
Affiliation(s)
- Jia-Wen Yuan
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Xia Song
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Hong-Fang Xie
- Plant Protection and Quarantine Station of Nanjing City, Jiangsu Province, Nanjing 210029, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210036, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection, Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
8
|
Ramazzotti D, Angaroni F, Maspero D, Mauri M, D’Aliberti D, Fontana D, Antoniotti M, Elli EM, Graudenzi A, Piazza R. Large-Scale Analysis of SARS-CoV-2 Synonymous Mutations Reveals the Adaptation to the Human Codon Usage During the Virus Evolution. Virus Evol 2022; 8:veac026. [PMID: 35371557 PMCID: PMC8971538 DOI: 10.1093/ve/veac026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022] Open
Abstract
Many large national and transnational studies have been dedicated to the analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genome, most of which focused on missense and nonsense mutations. However, approximately 30 per cent of the SARS-CoV-2 variants are synonymous, therefore changing the target codon without affecting the corresponding protein sequence. By performing a large-scale analysis of sequencing data generated from almost 400,000 SARS-CoV-2 samples, we show that silent mutations increasing the similarity of viral codons to the human ones tend to fixate in the viral genome overtime. This indicates that SARS-CoV-2 codon usage is adapting to the human host, likely improving its effectiveness in using the human aminoacyl-tRNA set through the accumulation of deceitfully neutral silent mutations. One-Sentence Summary. Synonymous SARS-CoV-2 mutations related to the activity of different mutational processes may positively impact viral evolution by increasing its adaptation to the human codon usage.
Collapse
Affiliation(s)
- Daniele Ramazzotti
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
| | - Fabrizio Angaroni
- Dept. of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca; Milan, Italy
| | - Davide Maspero
- Dept. of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca; Milan, Italy
- Inst. of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR); Segrate, Milan, Italy
| | - Mario Mauri
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
| | - Deborah D’Aliberti
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
| | - Diletta Fontana
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
| | - Marco Antoniotti
- Dept. of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca; Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Center – B4; Milan, Italy
| | - Elena Maria Elli
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Alex Graudenzi
- Inst. of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR); Segrate, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Center – B4; Milan, Italy
| | - Rocco Piazza
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Center – B4; Milan, Italy
| |
Collapse
|
9
|
Bai J, Wang YC, Liu YC, Chang YW, Liu XN, Gong WR, Du YZ. Isolation of two new genes encoding heat shock protein 70 in Bemisia tabaci and analysis during thermal stress. Int J Biol Macromol 2021; 193:933-940. [PMID: 34728307 DOI: 10.1016/j.ijbiomac.2021.10.186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
The heat shock protein 70 family (HSP70) is among the most varied HSP family with respect to structure and function. The phloem-feeding insect Bemisia tabaci (Gennadius) is an important pest of cotton, vegetables and ornamentals that transmits several plant viruses and causes enormous agricultural losses. In this study, two new HSP70 genes (Bthsp70-2 and Bthsp70-3) were isolated from the MED cryptic species B. tabaci, an important phloem-feeding pest of vegetables and ornamentals. Bthsp70-2 and Bthsp70-3 encoded proteins comprised of 652 and 676 amino acids, and the deduced proteins were closely related to other HSP70s in Hemiptera. Expression analyses using real-time quantitative PCR indicated that Bthsp70-2 and Bthsp70-3 were induced in B. tabaci pupae and adults during high and low thermal stress. Bthsp70-2 and Bthsp70-3 exhibited similar, but not identical, expression patterns when exposed to different durations of high temperature stress. Oral ingestion of dsBthsp70 reduced the expression level of Bthsp70-2 and Bthsp70-3 in B. tabaci and increased the mortality of B. tabaci during heat shock. In conclusion, Bthsp70-2 and Bthsp70-3 exhibit different expression patterns during thermal stress, thus expanding the roles of HSPs in B. tabaci.
Collapse
Affiliation(s)
- Jing Bai
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yu-Cheng Wang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yun-Cai Liu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Na Liu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Wei-Rong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 21003, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
10
|
Characterization and functional analysis of Cshsp19.0 encoding a small heat shock protein in Chilo suppressalis (Walker). Int J Biol Macromol 2021; 188:924-931. [PMID: 34352319 DOI: 10.1016/j.ijbiomac.2021.07.186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
Small heat shock proteins (sHSPs) function as ATP-independent chaperones that preserve cellular proteostasis under stressful conditions. In this study, Cshsp19.0, which encodes a new small heat shock protein, was isolated and characterized from Chilo suppressalis (Walker) to better understand the contribution of sHSPs to insect development and stress tolerance. The full-length Cshsp19.0 cDNA was 697 bp and encoded a 19.0 kDa protein with an isoelectric point of 5.95. Phylogenetic analysis and amino acid alignments indicated that Cshsp19.0 is a member of the sHSP family. Cshsp19.0 was expressed at maximal levels in foreguts and showed the least amount of expression in fat bodies. Expression analysis in different developmental stages of C. suppressalis revealed that Cshsp19.0 was most highly expressed in 1st instar larvae. Furthermore, Cshsp19.0 was upregulated when insects were exposed to heat and cold stress for a 2-h period. There were significant differences in the male and female pupae in response to humidity; Cshsp19.0 expression increased in male pupae as RH increased, whereas the inverse pattern was observed in female pupae. Larvae exhibited a lower rate of survival when Cshsp19.0 was silenced by a nanomaterial-promoted RNAi method. The results confirm that Cshsp19.0 functions to increase environmental stress tolerance and regulates physiological activities in C. suppressalis.
Collapse
|
11
|
Dwyer K, Agarwal N, Gega A, Ansari A. Proximity to the Promoter and Terminator Regions Regulates the Transcription Enhancement Potential of an Intron. Front Mol Biosci 2021; 8:712639. [PMID: 34291091 PMCID: PMC8287100 DOI: 10.3389/fmolb.2021.712639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 11/15/2022] Open
Abstract
An evolutionarily conserved feature of introns is their ability to enhance expression of genes that harbor them. Introns have been shown to regulate gene expression at the transcription and post-transcription level. The general perception is that a promoter-proximal intron is most efficient in enhancing gene expression and the effect diminishes with the increase in distance from the promoter. Here we show that the intron regains its positive influence on gene expression when in proximity to the terminator. We inserted ACT1 intron into different positions within IMD4 and INO1 genes. Transcription Run-On (TRO) analysis revealed that the transcription of both IMD4 and INO1 was maximal in constructs with a promoter-proximal intron and decreased with the increase in distance of the intron from the promoter. However, activation was partially restored when the intron was placed close to the terminator. We previously demonstrated that the promoter-proximal intron stimulates transcription by affecting promoter directionality through gene looping-mediated recruitment of termination factors in the vicinity of the promoter region. Here we show that the terminator-proximal intron also enhances promoter directionality and results in compact gene architecture with the promoter and terminator regions in close physical proximity. Furthermore, we show that both the promoter and terminator-proximal introns facilitate assembly or stabilization of the preinitiation complex (PIC) on the promoter. On the basis of these findings, we propose that proximity to both the promoter and the terminator regions affects the transcription regulatory potential of an intron, and the terminator-proximal intron enhances transcription by affecting both the assembly of preinitiation complex and promoter directionality.
Collapse
Affiliation(s)
| | | | | | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, United States
| |
Collapse
|
12
|
Genome-wide role of codon usage on transcription and identification of potential regulators. Proc Natl Acad Sci U S A 2021; 118:2022590118. [PMID: 33526697 DOI: 10.1073/pnas.2022590118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Codon usage bias is a fundamental feature of all genomes and plays an important role in determining gene expression levels. The codon usage was thought to influence gene expression mainly due to its impact on translation. Recently, however, codon usage was shown to affect transcription of fungal and mammalian genes, indicating the existence of a gene regulatory phenomenon with unknown mechanism. In Neurospora, codon usage biases strongly correlate with mRNA levels genome-wide, and here we show that the correlation between codon usage and RNA levels is maintained in the nucleus. In addition, codon optimality is tightly correlated with both total and nuclear RNA levels, suggesting that codon usage broadly influences mRNA levels through transcription in a translation-independent manner. A large-scale RNA sequencing-based genetic screen in Neurospora identified 18 candidate factors that when deleted decreased the genome-wide correlation between codon usage and RNA levels and reduced the codon usage effect on gene expression. Most of these factors, such as the H3K36 methyltransferase, are chromatin regulators or transcription factors. Together, our results suggest that the transcriptional effect of codon usage is mediated by multiple transcriptional regulatory mechanisms.
Collapse
|
13
|
Kumar U, Khandia R, Singhal S, Puranik N, Tripathi M, Pateriya AK, Khan R, Emran TB, Dhama K, Munjal A, Alqahtani T, Alqahtani AM. Insight into Codon Utilization Pattern of Tumor Suppressor Gene EPB41L3 from Different Mammalian Species Indicates Dominant Role of Selection Force. Cancers (Basel) 2021; 13:cancers13112739. [PMID: 34205890 PMCID: PMC8198080 DOI: 10.3390/cancers13112739] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The present study envisaged the codon usage pattern analysis of tumor suppressor gene EPB41L3 for the human, brown rat, domesticated cattle, and Sumatran orangutan. Most amino acids are coded by more than one synonymous codon, but they are used in a biased manner. The codon usage bias results from multiple factors like compositional properties, dinucleotide abundance, neutrality, parity, tRNA pool, etc. Understanding codon bias is central to fields as diverse as molecular evolution, gene expressivity, protein translation, and protein folding. This kind of studies is important to see the effects of various evolutionary forces on codon usage. The present study indicated that the selection force is dominant over other forces shaping codon usage in the envisaged organisms. Abstract Uneven codon usage within genes as well as among genomes is a usual phenomenon across organisms. It plays a significant role in the translational efficiency and evolution of a particular gene. EPB41L3 is a tumor suppressor protein-coding gene, and in the present study, the pattern of codon usage was envisaged. The full-length sequences of the EPB41L3 gene for the human, brown rat, domesticated cattle, and Sumatran orangutan available at the NCBI were retrieved and utilized to analyze CUB patterns across the selected mammalian species. Compositional properties, dinucleotide abundance, and parity analysis showed the dominance of A and G whilst RSCU analysis indicated the dominance of G/C-ending codons. The neutrality plot plotted between GC12 and GC3 to determine the variation between the mutation pressure and natural selection indicated the dominance of selection pressure (R = 0.926; p < 0.00001) over the three codon positions across the gene. The result is in concordance with the codon adaptation index analysis and the ENc-GC3 plot analysis, as well as the translational selection index (P2). Overall selection pressure is the dominant pressure acting during the evolution of the EPB41L3 gene.
Collapse
Affiliation(s)
- Utsang Kumar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
- Correspondence: (R.K.); (K.D.)
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Nidhi Puranik
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Meghna Tripathi
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462043, India; (M.T.); (A.K.P.)
| | - Atul Kumar Pateriya
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462043, India; (M.T.); (A.K.P.)
| | - Raju Khan
- Microfluidics & MEMS Center, (MRS & CFC), CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
- Correspondence: (R.K.); (K.D.)
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India; (U.K.); (S.S.); (N.P.); (A.M.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (A.M.A.)
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (T.A.); (A.M.A.)
| |
Collapse
|
14
|
Analysis of synonymous codon usage bias in human monocytes, B, and T lymphocytes based on transcriptome data. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Chu D, Wei L. Context-dependent and -independent selection on synonymous mutations revealed by 1,135 genomes of Arabidopsis thaliana. BMC Ecol Evol 2021; 21:68. [PMID: 33910528 PMCID: PMC8079846 DOI: 10.1186/s12862-021-01792-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synonymous mutations do not alter the amino acids and therefore are regarded as neutral for a long time. However, they do change the tRNA adaptation index (tAI) of a particular codon (independent of its context), affecting the tRNA availability during translation. They could also change the isoaccepting relationship with its neighboring synonymous codons in particular context, which again affects the local translation process. Evidence of selection pressure on synonymous mutations has emerged. RESULTS The proposed selection patterns on synonymous mutations are never formally and systematically tested in plant species. We fully take advantage of the SNP data from 1,135 A. thaliana lines, and found that the synonymous mutations that increase tAI or the isoaccepting mutations in isoaccepting codon context tend to have higher derived allele frequencies (DAF) compared to other synonymous mutations of the opposite effects. CONCLUSIONS Synonymous mutations are not strictly neutral. The synonymous mutations that increase tAI or the isoaccepting mutations in isoaccepting codon context are likely to be positively selected. We propose the concept of context-dependent and -independent selection on synonymous mutations. These concepts broaden our knowledge of the functional consequences of synonymous mutations, and should be appealing to phytologists and evolutionary biologists.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian, Beijing, China.
| |
Collapse
|
16
|
Kumar N, Kaushik R, Tennakoon C, Uversky VN, Longhi S, Zhang KYJ, Bhatia S. Insights into the evolutionary forces that shape the codon usage in the viral genome segments encoding intrinsically disordered protein regions. Brief Bioinform 2021; 22:6231751. [PMID: 33866372 DOI: 10.1093/bib/bbab145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered regions/proteins (IDRs) are abundant across all the domains of life, where they perform important regulatory roles and supplement the biological functions of structured proteins/regions (SRs). Despite the multifunctionality features of IDRs, several interrogations on the evolution of viral genomic regions encoding IDRs in diverse viral proteins remain unreciprocated. To fill this gap, we benchmarked the findings of two most widely used and reliable intrinsic disorder prediction algorithms (IUPred2A and ESpritz) to a dataset of 6108 reference viral proteomes to unravel the multifaceted evolutionary forces that shape the codon usage in the viral genomic regions encoding for IDRs and SRs. We found persuasive evidence that the natural selection predominantly governs the evolution of codon usage in regions encoding IDRs by most of the viruses. In addition, we confirm not only that codon usage in regions encoding IDRs is less optimized for the protein synthesis machinery (transfer RNAs pool) of their host than for those encoding SRs, but also that the selective constraints imposed by codon bias sustain this reduced optimization in IDRs. Our analysis also establishes that IDRs in viruses are likely to tolerate more translational errors than SRs. All these findings hold true, irrespective of the disorder prediction algorithms used to classify IDRs. In conclusion, our study offers a novel perspective on the evolution of viral IDRs and the evolutionary adaptability to multiple taxonomically divergent hosts.
Collapse
Affiliation(s)
- Naveen Kumar
- Diagnostic & Vaccine Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Moscow region, Pushchino 142290, Russia
| | - Sonia Longhi
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Sandeep Bhatia
- Diagnostic & Vaccine Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
17
|
Zhao S, Song S, Qi Q, Lei W. Cost-efficiency tradeoff is optimized in various cancer types revealed by genome-wide analysis. Mol Genet Genomics 2021; 296:369-378. [PMID: 33449159 DOI: 10.1007/s00438-020-01747-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
The tradeoff between cost and efficiency is omnipresent in organisms. Specifically, how the evolutionary force shapes the tradeoff between biosynthetic cost and translation efficiency remains unclear. In the cancer community, whether the adjustment of cost-efficiency tradeoff acts as a strategy to facilitate tumor proliferation and contributes to oncogenesis is uninvestigated. To address this issue, we retrieved the gene expression profile in various cancer types and the matched normal samples from The Cancer Genome Atlas (TCGA). We found that the highly expressed genes in cancers generally have higher tAI/nitro ratios than those in normal samples. This is possibly caused by the higher tAI/nitro ratios observed in oncogenes than tumor suppressor genes (TSG). Furthermore, in the cancer samples, derived mutations in oncogenes usually lead to higher tAI/nitro ratios, while those mutations in TSG lead to lower tAI/nitro. For a special case of kidney cancer, we investigated several crucial genes in tumor samples versus normal samples, and discovered that the changes in tAI/nitro ratios are correlated with the changes in translation level. Our study for the first time revealed the optimization of cost-efficiency tradeoff in cancers. The cost-efficiency dilemma is optimized by the tumor cells, and is possibly beneficial for the translation and production of oncogenes, and eventually contributes to proliferation and oncogenesis. Our findings could provide novel perspectives in depicting the cancer genomes and might help unravel the cancer evolution.
Collapse
Affiliation(s)
- Shufen Zhao
- Department of Oncological Radiotherapy, Affiliated Hospital of Medical College Qingdao University, Shandong, China
| | - Shanai Song
- Department of Oncological Radiotherapy, Affiliated Hospital of Medical College Qingdao University, Shandong, China
| | - Qi Qi
- Department of Oncological Radiotherapy, Affiliated Hospital of Medical College Qingdao University, Shandong, China
| | - Wei Lei
- Department of Oncological Radiotherapy, Affiliated Hospital of Medical College Qingdao University, Shandong, China.
| |
Collapse
|
18
|
Avcilar-Kucukgoze I, Kashina A. Hijacking tRNAs From Translation: Regulatory Functions of tRNAs in Mammalian Cell Physiology. Front Mol Biosci 2020; 7:610617. [PMID: 33392265 PMCID: PMC7773854 DOI: 10.3389/fmolb.2020.610617] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Transfer tRNAs (tRNAs) are small non-coding RNAs that are highly conserved in all kingdoms of life. Originally discovered as the molecules that deliver amino acids to the growing polypeptide chain during protein synthesis, tRNAs have been believed for a long time to play exclusive role in translation. However, recent studies have identified key roles for tRNAs and tRNA-derived small RNAs in multiple other processes, including regulation of transcription and translation, posttranslational modifications, stress response, and disease. These emerging roles suggest that tRNAs may be central players in the complex machinery of biological regulatory pathways. Here we overview these non-canonical roles of tRNA in normal physiology and disease, focusing largely on eukaryotic and mammalian systems.
Collapse
Affiliation(s)
- Irem Avcilar-Kucukgoze
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Nonoptimal Codon Usage Is Critical for Protein Structure and Function of the Master General Amino Acid Control Regulator CPC-1. mBio 2020; 11:mBio.02605-20. [PMID: 33051373 PMCID: PMC7554675 DOI: 10.1128/mbio.02605-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Under amino acid starvation conditions, eukaryotic organisms activate a general amino acid control response. In Neurospora crassa, Cross Pathway Control Protein 1 (CPC-1), the ortholog of the Saccharomyces cerevisiae bZIP transcription factor GCN4, functions as the master regulator of the general amino acid control response. Codon usage biases are a universal feature of eukaryotic genomes and are critical for regulation of gene expression. Although codon usage has also been implicated in the regulation of protein structure and function, genetic evidence supporting this conclusion is very limited. Here, we show that Neurospora cpc-1 has a nonoptimal NNU-rich codon usage profile that contrasts with the strong NNC codon preference in the genome. Although substitution of the cpc-1 NNU codons with synonymous NNC codons elevated CPC-1 expression in Neurospora, it altered the CPC-1 degradation rate and abolished its amino acid starvation-induced protein stabilization. The codon-manipulated CPC-1 protein also exhibited different sensitivity to limited protease digestion. Furthermore, CPC-1 functions in rescuing the cell growth of the cpc-1 deletion mutant and activation of the expression of its target genes were impaired by the synonymous codon changes. Together, these results reveal the critical role of codon usage in regulation of CPC-1 expression and function and establish a genetic example of the importance of codon usage in protein folding.IMPORTANCE The general amino acid control response is critical for adaptation of organisms to amino acid starvation conditions. The preference to use certain synonymous codons is a universal feature of all genomes. Synonymous codon changes were previously thought to be silent mutations. In this study, we showed that the Neurospora cpc-1 gene has an unusual codon usage profile compared to other genes in the genome. We found that codon optimization of the cpc-1 gene without changing its amino acid sequence resulted in elevated CPC-1 expression, an altered protein degradation rate, and impaired protein functions due to changes in protein structure. Together, these results reveal the critical role of synonymous codon usage in regulation of CPC-1 expression and function and establish a genetic example of the importance of codon usage in protein structure.
Collapse
|
20
|
Liu Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun Signal 2020; 18:145. [PMID: 32907610 PMCID: PMC7488015 DOI: 10.1186/s12964-020-00642-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023] Open
Abstract
The genetic code is degenerate, and most amino acids are encoded by two to six synonymous codons. Codon usage bias, the preference for certain synonymous codons, is a universal feature of all genomes examined. Synonymous codon mutations were previously thought to be silent; however, a growing body evidence now shows that codon usage regulates protein structure and gene expression through effects on co-translational protein folding, translation efficiency and accuracy, mRNA stability, and transcription. Codon usage regulates the speed of translation elongation, resulting in non-uniform ribosome decoding rates on mRNAs during translation that is adapted to co-translational protein folding process. Biochemical and genetic evidence demonstrate that codon usage plays an important role in regulating protein folding and function in both prokaryotic and eukaryotic organisms. Certain protein structural types are more sensitive than others to the effects of codon usage on protein folding, and predicted intrinsically disordered domains are more prone to misfolding caused by codon usage changes than other domain types. Bioinformatic analyses revealed that gene codon usage correlates with different protein structures in diverse organisms, indicating the existence of a codon usage code for co-translational protein folding. This review focuses on recent literature on the role and mechanism of codon usage in regulating translation kinetics and co-translational protein folding. Video abstract
![]()
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, ND13.214A, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9040, USA.
| |
Collapse
|
21
|
Chamani Mohasses F, Solouki M, Ghareyazie B, Fahmideh L, Mohsenpour M. Correlation between gene expression levels under drought stress and synonymous codon usage in rice plant by in-silico study. PLoS One 2020; 15:e0237334. [PMID: 32776991 PMCID: PMC7416939 DOI: 10.1371/journal.pone.0237334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
We studied the correlation of synonymous codon usage (SCU) on gene expression levels under drought stress in rice. Sixty genes related to drought stress (with high, intermediate and low expression) were selected from rice meta-analysis data and various codon usage indices such as the effective number of codon usage (ENC), codon adaptation index (CAI) and relative synonymous codon usage (RSCU) were calculated. We found that in genes highly expressing under drought 1) GC content was higher, 2) ENC value was lower, 3) the preferred codons of some amino acids changed and 4) the RSCU ratio of GC-end codons relative to AT-end codons for 18 amino acids increased significantly compared with those in other genes. We introduce ARSCU as the Average ratio of RSCUs of GC-end codons to AT-end codons in each gene that could significantly separate high-expression genes under drought from low-expression genes. ARSCU is calculated using the program ARSCU-Calculator developed by our group to help predicting expression level of rice genes under drought. An index above ARSCU threshold is expected to indicate that the gene under study may belong to the "high expression group under drought". This information may be applied for codon optimization of genes for rice genetic engineering. To validate these findings, we further used 60 other genes (randomly selected subset of 43233 genes studied for their response to drought stress). ARSCU value was able to predict the level of expression at 88.33% of the cases. Using third set of 60 genes selected amongst high expressing genes not related to drought, only 31.65% of the genes showed ARSCU value of higher than the set threshold. This indicates that the phenomenon we described in this report may be unique for drought related genes. To justify the observed correlation between CUB and high expressing genes under drought, possible role of tRNA post transcriptional modification and tRFs was hypothesized as possible underlying biological mechanism.
Collapse
Affiliation(s)
- Fatemeh Chamani Mohasses
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Mahmood Solouki
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Behzad Ghareyazie
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Leila Fahmideh
- Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Motahhareh Mohsenpour
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
22
|
Lyu X, Yang Q, Li L, Dang Y, Zhou Z, Chen S, Liu Y. Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape. PLoS Genet 2020; 16:e1008836. [PMID: 32479508 PMCID: PMC7289440 DOI: 10.1371/journal.pgen.1008836] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/11/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Codon usage bias is a universal feature of all genomes and plays an important role in regulating protein expression levels. Modification of adenosine to inosine at the tRNA anticodon wobble position (I34) by adenosine deaminases (ADATs) is observed in all eukaryotes and has been proposed to explain the correlation between codon usage and tRNA pool. However, how the tRNA pool is affected by I34 modification to influence codon usage-dependent gene expression is unclear. Using Neurospora crassa as a model system, by combining molecular, biochemical and bioinformatics analyses, we show that silencing of adat2 expression severely impaired the I34 modification levels for the ADAT-related tRNAs, resulting in major ADAT-related tRNA profile changes and reprogramming of translation elongation kinetics on ADAT-related codons. adat2 silencing also caused genome-wide codon usage-biased ribosome pausing on mRNAs and proteome landscape changes, leading to selective translational repression or induction of different mRNAs. The induced expression of CPC-1, the Neurospora ortholog of yeast GCN4p, mediates the transcriptional response after adat2 silencing and amino acid starvation. Together, our results demonstrate that the tRNA I34 modification by ADAT plays a major role in driving codon usage-biased translation to shape proteome landscape. Modification of transfer RNA (tRNA) can have profound impacts on gene expression by shaping cellular tRNA pool. How codon usage bias and tRNA profiles synergistically regulate gene expression is unclear. By combining molecular, biochemical and bioinformatics analyses, we showed that the correlation between genome codon usage and tRNA I34 (inosine 34) modification modulates translation elongation kinetics and proteome landscape. Inhibition of tRNA I34 modification causes codon usage-dependent ribosome pausing on mRNAs during translation and changes cellular protein contents in a codon usage biased manner. Together, our results demonstrate that the tRNA I34 modification plays a major role in driving codon usage-dependent translation to determine proteome landscape in a eukaryotic organism.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Lin Li
- National Institute of Biological Sciences, Changping District, Beijing, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhipeng Zhou
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - She Chen
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Whittle CA, Kulkarni A, Extavour CG. Evidence of multifaceted functions of codon usage in translation within the model beetle Tribolium castaneum. DNA Res 2020; 26:473-484. [PMID: 31922535 PMCID: PMC6993815 DOI: 10.1093/dnares/dsz025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Synonymous codon use is non-random. Codons most used in highly transcribed genes, often called optimal codons, typically have high gene counts of matching tRNA genes (tRNA abundance) and promote accurate and/or efficient translation. Non-optimal codons, those least used in highly expressed genes, may also affect translation. In multicellular organisms, codon optimality may vary among tissues. At present, however, tissue specificity of codon use remains poorly understood. Here, we studied codon usage of genes highly transcribed in germ line (testis and ovary) and somatic tissues (gonadectomized males and females) of the beetle Tribolium castaneum. The results demonstrate that: (i) the majority of optimal codons were organism-wide, the same in all tissues, and had numerous matching tRNA gene copies (Opt-codon↑tRNAs), consistent with translational selection; (ii) some optimal codons varied among tissues, suggesting tissue-specific tRNA populations; (iii) wobble tRNA were required for translation of certain optimal codons (Opt-codonwobble), possibly allowing precise translation and/or protein folding; and (iv) remarkably, some non-optimal codons had abundant tRNA genes (Nonopt-codon↑tRNAs), and genes using those codons were tightly linked to ribosomal and stress-response functions. Thus, Nonopt-codon↑tRNAs codons may regulate translation of specific genes. Together, the evidence suggests that codon use and tRNA genes regulate multiple translational processes in T. castaneum.
Collapse
Affiliation(s)
| | | | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
24
|
Wei L. Selection On synonymous Mutations Revealed by 1135 Genomes of Arabidopsis thaliana. Evol Bioinform Online 2020; 16:1176934320916794. [PMID: 32313422 PMCID: PMC7154559 DOI: 10.1177/1176934320916794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/11/2020] [Indexed: 01/21/2023] Open
Abstract
Synonymous mutations do not change the amino acid but do change the synonymous codon usage. In genomes of different organisms, the gene conversion process is biased toward GC, which is irrespective of mutation bias. In the coding region, this trend is especially obvious and it is possibly caused by the preference on G/C-ending codons over the A/T-ending ones. If the G/C-ending codons are advantageous, then the synonymous mutations that change A/T to G/C would be "optimal" compared to the opposite ones. In theory, one should observe signals of positive selection on these optimal synonymous mutations. The recently released single-nucleotide polymorphism (SNP) data from the 1001 genome project of Arabidopsis thaliana provided researchers with an unprecedented opportunity to verify this assumption. I fully take advantage of the SNP data from 1,135 A thaliana lines and came to the conclusion that synonymous mutations in natural populations are not strictly neutral: the synonymous mutations that increase GC content (from A/T to G/C) tend to have higher derived allele frequencies (DAFs) and, therefore, are likely to be positively selected. My current study broadens our knowledge of the selection patterns of synonymous mutations and should be appealing to evolutionary biologists. One sentence summary: In 1135 genomes of Arabidopsis thaliana, the synonymous mutations that increase the GC content tend to have higher derived allele frequencies (DAFs) and are likely to be positively selected.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
25
|
Xing Y, Gong R, Xu Y, Liu K, Zhou M. Codon usage bias affects α-amylase mRNA level by altering RNA stability and cytosine methylation patterns in Escherichia coli. Can J Microbiol 2020; 66:521-528. [PMID: 32259457 DOI: 10.1139/cjm-2019-0624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Codon usage bias exists in almost every organism and is reported to regulate protein translation efficiency and folding. Besides translation, the preliminary role of codon usage bias on gene transcription has also been revealed in some eukaryotes such as Neurospora crassa. In this study, we took as an example the α-amylase-coding gene (amyA) and examined the role of codon usage bias in regulating gene expression in the typical prokaryote Escherichia coli. We confirmed the higher translation efficiency on codon-optimized amyA RNAs and found that the RNA level itself was also affected by codon optimization. The decreased RNA level was caused at least in part by altered mRNA stability at the post-transcriptional level. Codon optimization also altered the number of cytosine methylation sites. Examination on dcm knockouts suggested that cytosine methylation may be a minor mechanism adopted by codon bias to regulate gene RNA levels. More studies are required to verify the global effect of codon usage and to reveal its detailed mechanism on transcription.
Collapse
Affiliation(s)
- Yanzi Xing
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Ruiqing Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yichun Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Kunshan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
26
|
Gao P, Lu MX, Pan DD, Du YZ. Characterization of an inducible HSP70 gene in Chilo suppressalis and expression in response to environmental and biological stress. Cell Stress Chaperones 2020; 25:65-72. [PMID: 31792734 PMCID: PMC6985400 DOI: 10.1007/s12192-019-01047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
The highly conserved heat shock protein 70 (HSP70) contributes to survival at a cellular level and greatly enhances stress tolerance in many organisms. In this study, we isolate and characterize Cshsp702, which encodes an inducible form of HSP70 in the rice stem borer, Chilo suppressalis. Cshsp702 does not contain introns; the translational product is comprised of 629 amino acids with an isoelectric point of 5.69. Real-time quantitative PCR revealed that Cshsp702 was expressed at maximal levels in hemocytes and was minimally expressed in the midgut. Expression of Cshsp702 in response to a range of temperatures (-11 to 43 °C) indicated significant induction by extreme cold and hot temperatures, with maximum expression after 2 h at 42 °C. The induction of Cshsp702 in response to the endoparasite Cotesia chilonis was also studied; interestingly, Cshsp702 expression in C. suppressalis was significantly induced at 24 h and 5 days, which correspond to predicted times of C. chilonis feeding and growth, respectively. The potential induction of Cshsp702 as an inflammatory response due to parasitic stress is discussed. In conclusion, Cshsp702 is induced in response to both environmental and biotic stress and plays an important role in the physiological adaptation of C. suppressalis.
Collapse
Affiliation(s)
- Peng Gao
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Ming-Xing Lu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
| | - Dan-Dan Pan
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
27
|
Evolutionary Forces and Codon Bias in Different Flavors of Intrinsic Disorder in the Human Proteome. J Mol Evol 2019; 88:164-178. [DOI: 10.1007/s00239-019-09921-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
|
28
|
Yang Q, Yu CH, Zhao F, Dang Y, Wu C, Xie P, Sachs MS, Liu Y. eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucleic Acids Res 2019; 47:9243-9258. [PMID: 31410471 PMCID: PMC6755126 DOI: 10.1093/nar/gkz710] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and plays an important role in regulating gene expression levels. A major role of codon usage is thought to regulate protein expression levels by affecting mRNA translation efficiency, but the underlying mechanism is unclear. By analyzing ribosome profiling results, here we showed that codon usage regulates translation elongation rate and that rare codons are decoded more slowly than common codons in all codon families in Neurospora. Rare codons resulted in ribosome stalling in manners both dependent and independent of protein sequence context and caused premature translation termination. This mechanism was shown to be conserved in Drosophila cells. In both Neurospora and Drosophila cells, codon usage plays an important role in regulating mRNA translation efficiency. We found that the rare codon-dependent premature termination is mediated by the translation termination factor eRF1, which recognizes ribosomes stalled on rare sense codons. Silencing of eRF1 expression resulted in codon usage-dependent changes in protein expression. Together, these results establish a mechanism for how codon usage regulates mRNA translation efficiency.
Collapse
Affiliation(s)
- Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chien-Hung Yu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 701, Taiwan
| | - Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yunkun Dang
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Pancheng Xie
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
29
|
Chu D, Wei L. Parsing the synonymous mutations in the maize genome: isoaccepting mutations are more advantageous in regions with codon co-occurrence bias. BMC PLANT BIOLOGY 2019; 19:422. [PMID: 31610786 PMCID: PMC6791113 DOI: 10.1186/s12870-019-2050-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Synonymous mutations do not change amino acids but do sometimes change the tRNAs (anticodons) that decode a particular codon. An isoaccepting codon is a synonymous codon that shares the same tRNA. If a mutated codon could base pair with the same anticodon as the original, the mutation is termed an isoaccepting mutation. An interesting but less-studied type of codon bias is codon co-occurrence bias. There is a trend to cluster the isoaccepting codons in the genome. The proposed advantage of codon co-occurrence bias is that the tRNA released from the ribosome E site could be quickly recharged and subsequently decode the following isoaccepting codons. This advantage would enhance translation efficiency. In plant species, whether there are signals of positive selection on isoaccepting mutations in the codon co-occurred regions has not been studied. RESULTS We termed polymorphic mutations in coding regions using publicly available RNA-seq data in maize (Zea mays). Next, we classified all synonymous mutations into three categories according to the context, i.e., the relationship between the focal codon and the previous codon, as follows: isoaccepting, nonisoaccepting and nonsynonymous. We observed higher fractions of isoaccepting mutations in the isoaccepting context. If we looked at the minor allele frequency (MAF) spectrum, the isoaccepting mutations have a higher MAF in the isoaccepting context than that in other regions, and accordingly, the nonisoaccepting mutations have a higher MAF in the nonisoaccepting context. CONCLUSION Our results indicate that in regions with codon co-occurrence bias, natural selection maintains this pattern by suppressing the nonisoaccepting mutations. However, if the consecutive codons are nonisoaccepting, mutations tend to switch these codons to become isoaccepting. Our study demonstrates that the codon co-occurrence bias in the maize genome is selectively maintained by natural selection and that the advantage of this trend could potentially be the rapid recharging and reuse of tRNAs to increase translation efficiency.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
30
|
Chu D, Wei L. Characterizing the heat response of Arabidopsis thaliana from the perspective of codon usage bias and translational regulation. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153012. [PMID: 31362206 DOI: 10.1016/j.jplph.2019.153012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
mRNA translation is carefully regulated at both the initiation and the elongation step. Under heat stress, it is known that particular genes change their expression and translation levels to respond to the environment. Attention has been paid to the detailed mechanisms of how a few proteins work, and little is done to analyze whether the global evolutionary patterns affect the translational changes. Determinants like codon usage bias and its related evolutionary features are less studied in heat stress experiments, especially for plants. Utilizing the RNA-seq and Ribo-seq data of normal and heat-stressed Arabidopsis thaliana generated from a previous study, we conducted gene-level (global) and codon-resolution (local) translation analyses. We studied how codon usage bias and other evolutionary features could impact the translation patterns in the heat response of the plant. We found that the evolutionary features including codon usage bias, tAI, nitrogen cost, and conservation (identity) could affect the global and local translation efficiency. Under heat stress, the optimal and conserved codons are more likely to alter their local translation elongation speed to modulate the global translation of host genes. Meanwhile, we also verified the widely accepted notions that the secondary structures and proline codons could largely slow down the translation rate. Our results revealed the effect of codon usage bias and other evolutionary patterns on the translation regulation under heat stress. Unveiling the effect of these features on translational regulation of plants might be helpful in understanding the relationship and interaction between plants and the environment.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
31
|
SNV discovery and functional candidate gene identification for milk composition based on whole genome resequencing of Holstein bulls with extremely high and low breeding values. PLoS One 2019; 14:e0220629. [PMID: 31369641 PMCID: PMC6675115 DOI: 10.1371/journal.pone.0220629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
We have sequenced the whole genomes of eight proven Holstein bulls from the four half-sib or full-sib families with extremely high and low estimated breeding values (EBV) for milk protein percentage (PP) and fat percentage (FP) using Illumina re-sequencing technology. Consequently, 2.3 billion raw reads were obtained with an average effective depth of 8.1×. After single nucleotide variant (SNV) calling, total 10,961,243 SNVs were identified, and 57,451 of them showed opposite fixed sites between the bulls with high and low EBVs within each family (called as common differential SNVs). Next, we annotated the common differential SNVs based on the bovine reference genome, and observed that 45,188 SNVs (78.70%) were located in the intergenic region of genes and merely 11,871 SNVs (20.67%) located within the protein-coding genes. Of them, 13,099 common differential SNVs that were within or close to protein-coding genes with less than 5 kb were chosen for identification of candidate genes for milk compositions in dairy cattle. By integrated analysis of the 2,657 genes with the GO terms and pathways related to protein and fat metabolism, and the known quantitative trait loci (QTLs) for milk protein and fat traits, we identified 17 promising candidate genes: ALG14, ATP2C1, PLD1, C3H1orf85, SNX7, MTHFD2L, CDKN2D, COL5A3, FDX1L, PIN1, FIG4, EXOC7, LASP1, PGS1, SAO, GPLD1 and MGEA5. Our findings provided an important foundation for further study and a prompt for molecular breeding of dairy cattle.
Collapse
|
32
|
Davydov II, Salamin N, Robinson-Rechavi M. Large-Scale Comparative Analysis of Codon Models Accounting for Protein and Nucleotide Selection. Mol Biol Evol 2019; 36:1316-1332. [PMID: 30847475 PMCID: PMC6526913 DOI: 10.1093/molbev/msz048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There are numerous sources of variation in the rate of synonymous substitutions inside genes, such as direct selection on the nucleotide sequence, or mutation rate variation. Yet scans for positive selection rely on codon models which incorporate an assumption of effectively neutral synonymous substitution rate, constant between sites of each gene. Here we perform a large-scale comparison of approaches which incorporate codon substitution rate variation and propose our own simple yet effective modification of existing models. We find strong effects of substitution rate variation on positive selection inference. More than 70% of the genes detected by the classical branch-site model are presumably false positives caused by the incorrect assumption of uniform synonymous substitution rate. We propose a new model which is strongly favored by the data while remaining computationally tractable. With the new model we can capture signatures of nucleotide level selection acting on translation initiation and on splicing sites within the coding region. Finally, we show that rate variation is highest in the highly recombining regions, and we propose that recombination and mutation rate variation, such as high CpG mutation rate, are the two main sources of nucleotide rate variation. Although we detect fewer genes under positive selection in Drosophila than without rate variation, the genes which we detect contain a stronger signal of adaptation of dynein, which could be associated with Wolbachia infection. We provide software to perform positive selection analysis using the new model.
Collapse
Affiliation(s)
- Iakov I Davydov
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
33
|
Bai J, Liu XN, Lu MX, Du YZ. Characterization of genes encoding small heat shock proteins from Bemisia tabaci and expression under thermal stress. PeerJ 2019; 7:e6992. [PMID: 31205823 PMCID: PMC6556103 DOI: 10.7717/peerj.6992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/19/2019] [Indexed: 01/13/2023] Open
Abstract
Small heat shock proteins (sHSPs) are probably the most diverse in structure and function among the various super-families of stress proteins, and they play essential roles in various biological processes. The sweet potato whitefly, Bemisia tabaci (Gennadius), feeds in the phloem, transmits several plant viruses, and is an important pest on cotton, vegetables and ornamentals. In this research, we isolated and characterized three α-crystallin/sHSP family genes (Bthsp19.5, Bthsp19.2, and Bthsp21.3) from Bemisia tabaci. The three cDNAs encoded proteins of 171, 169, and 189 amino acids with calculated molecular weights of 19.5, 19.2, and 21.3 kDa and isoelectric points of 6.1, 6.2, and 6.0, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in Hemiptera and Thysanoptera insects species. All three sHSPs genes from Bemisia tabaci lacked introns. Quantitative real-time PCR analyses revealed that the three BtsHSPs genes were significantly up-regulated in Bemisia tabaci adults and pupae during high temperature stress (39, 41, 43, and 45 °C) but not in response to cold temperature stress (-6, -8, -10, and -12 °C). The expression levels of Bthsp19.2 and Bthsp21.3 in pupae was higher than adults in response to heat stress, while the expression level of Bthsp19.5 in adults was higher than pupae. In conclusion, this research results show that the sHSP genes of Bemisia tabaci had shown differential expression changes under thermal stress.
Collapse
Affiliation(s)
- Jing Bai
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Xiao-Na Liu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Ming-Xing Lu
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
34
|
Matsumoto H, Kawaguchi F, Itoh S, Yotsu S, Fukuda K, Oyama K, Mannen H, Sasazaki S. The SNPs in bovine MMP14 promoter influence on fat-related traits. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
35
|
Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer 2019; 19:359. [PMID: 30991970 PMCID: PMC6469204 DOI: 10.1186/s12885-019-5572-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background Nonsynonymous mutations change the protein sequences and are frequently subjected to natural selection. The same goes for nonsense mutations that introduce pre-mature stop codons into CDSs (coding sequences). Synonymous mutations, however, are intuitively thought to be functionally silent and evolutionarily neutral. Now researchers know that the optimized synonymous codon usage is advantageous in the speedy mRNA translation process. With the advent of NGS technique, the explosion of NGS data generated from the tumor tissues help researchers identify driver mutations in cancer-related genes, but relatively less attention is paid to the SNP data in healthy human populations when studying cancer. Methods Here, we analyzed the publically available human SNPs. We classified these SNPs according to their functional and evolutionary categories. By simply dividing the human genes into cancer-related genes and other genes, we compared the features of nonsynonymous, synonymous and nonsense mutations in these two gene sets from multiple aspects. Results We provided lines of evidence that the nonsynonymous, synonymous and nonsense mutations in cancer-related genes undergo stronger purifying selection when compared to the expected pattern in other genes. The lower nonsynonymous to synonymous ratio observed in cancer-related genes suggests the suppression of amino acid substitutions in these genes. The synonymous SNPs, after excluding those in splicing regions, exhibit preferred changes in codon usage and higher codon frequencies in cancer-related genes compared to other genes, indicating the constraint exerted on these mutations. Nonsense mutations are less frequent and located closer to stop codons in cancer-related genes than in other genes, which putatively minimize their deleterious effects. Conclusion Our study demonstrated the evolutionary constraint on mutations in CDS of cancer-related genes without the requirement of data from cancer tissues or patients. Our work provides novel perspectives on interpreting the constraint on mutations in cancer-related genes. We reveal extra constraint on synonymous mutations in cancer-related genes which is related to codon usage bias and is in addition to the splicing effect. Electronic supplementary material The online version of this article (10.1186/s12885-019-5572-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
36
|
Chang YW, Zhang XX, Chen JY, Lu MX, Gong WR, Du YZ. Characterization of three heat shock protein 70 genes from Liriomyza trifolii and expression during thermal stress and insect development. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:150-159. [PMID: 29743123 DOI: 10.1017/s0007485318000354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heat shock proteins (HSPs) participate in diverse physiological processes in insects, and HSP70 is one of the most highly conserved proteins in the HSP family. In this study, full-length cDNAs of three HSP70 genes (Lthsc70, Lthsp701, and Lthsp702) were cloned and characterized from Liriomyza trifolii, an important invasive pest of vegetable crops and horticultural crops worldwide. These three HSP70s exhibited signature sequences and motifs that are typical of the HSP70 family. The expression patterns of the three Lthsp70s during temperature stress and in different insect development stages were studied by real-time quantitative PCR. Lthsp701 was strongly induced by high- and low-temperature stress, but Lthsc70 and Lthsp702 were not very sensitive to temperature changes. All three Lthsp70s were expressed during insect development stages, but the expression patterns were quite different. The expression of Lthsc70 and Lthsp702 showed significant differences in expression during leafminer development; Lthsc70 was most highly expressed in female adults, whereas Lthsp702 was abundantly expressed in larvae and prepupae. Lthsp701 expression was not significantly different among leafminer stages. These results suggest that functional differentiation within the LtHSP70 subfamily has occurred in response to thermal stress and insect development.
Collapse
Affiliation(s)
- Y-W Chang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| | - X-X Zhang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| | - J-Y Chen
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| | - M-X Lu
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| | - W-R Gong
- Plant Protection and Quarantine Station of Jiangsu Province,Nanjing 21003,China
| | - Y-Z Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University,Yangzhou 225009,China
| |
Collapse
|
37
|
Das S, Bansal M. Variation of gene expression in plants is influenced by gene architecture and structural properties of promoters. PLoS One 2019; 14:e0212678. [PMID: 30908494 PMCID: PMC6433290 DOI: 10.1371/journal.pone.0212678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/07/2019] [Indexed: 12/03/2022] Open
Abstract
In higher eukaryotes, gene architecture and structural properties of promoters have emerged as significant factors influencing variation in number of transcripts (expression level) and specificity of gene expression in a tissue (expression breadth), which eventually shape the phenotype. In this study, transcriptome data of different tissue types at various developmental stages of A. thaliana, O. sativa, S. bicolor and Z. mays have been used to understand the relationship between properties of gene components and its expression. Our findings indicate that in plants, among all gene architecture and structural properties of promoters, compactness of genes in terms of intron content is significantly linked to gene expression level and breadth, whereas in human an exactly opposite scenario is seen. In plants, for the first time we have carried out a quantitative estimation of effect of a particular trait on expression level and breadth, by using multiple regression analysis and it confirms that intron content of primary transcript (as %) is a powerful determinant of expression breadth. Similarly, further regression analysis revealed that among structural properties of the promoters, stability is negatively linked to expression breadth, while DNase1 sensitivity strongly governs gene expression breadth in monocots and gene expression level in dicots. In addition, promoter regions of tissue specific genes are found to be enriched with TATA box and Y-patch motifs. Finally, multi copy orthologous genes in plants are found to be longer, highly regulated and tissue specific.
Collapse
Affiliation(s)
- Sanjukta Das
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
38
|
Fu J, Dang Y, Counter C, Liu Y. Codon usage regulates human KRAS expression at both transcriptional and translational levels. J Biol Chem 2018; 293:17929-17940. [PMID: 30275015 DOI: 10.1074/jbc.ra118.004908] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
KRAS and HRAS are highly homologous oncogenic Ras GTPase family members that are mutated in a wide spectrum of human cancers. Despite having high amino acid identity, KRAS and HRAS have very different codon usage biases: the HRAS gene contains many common codons, and KRAS is enriched for rare codons. Rare codons in KRAS suppress its protein expression, which has been shown to affect both normal and cancer biology in mammals. Here, using HRAS or KRAS expression in different human cell lines and in vitro transcription and translation assays, we show that KRAS rare codons inhibit both translation efficiency and transcription and that the contribution of these two processes varies among different cell lines. We observed that codon usage regulates mRNA translation efficiency such that WT KRAS mRNA is poorly translated. On the other hand, common codons increased transcriptional rates by promoting activating histone modifications and recruitment of transcriptional coactivators. Finally, we found that codon usage also influences KRAS protein conformation, likely because of its effect on co-translational protein folding. Together, our results reveal that codon usage has multidimensional effects on protein expression, ranging from effects on transcription to protein folding in human cells.
Collapse
Affiliation(s)
- Jingjing Fu
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Christopher Counter
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, North Carolina 27708
| | - Yi Liu
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235.
| |
Collapse
|
39
|
Abstract
Genome and transcript sequences are composed of long strings of nucleotide monomers (A, C, G, and T/U) that require different quantities of nitrogen atoms for biosynthesis. Here, it is shown that the strength of selection acting on transcript nitrogen content is influenced by the amount of nitrogen plants require to conduct photosynthesis. Specifically, plants that require more nitrogen to conduct photosynthesis experience stronger selection on transcript sequences to use synonymous codons that cost less nitrogen to biosynthesize. It is further shown that the strength of selection acting on transcript nitrogen cost constrains molecular sequence evolution such that genes experiencing stronger selection evolve at a slower rate. Together these findings reveal that the plant molecular clock is set by photosynthetic efficiency, and provide a mechanistic explanation for changes in plant speciation rates that occur concomitant with improvements in photosynthetic efficiency and changes in the environment such as light, temperature, and atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Uddin A, Chakraborty S. Codon Usage Pattern of Genes Involved in Central Nervous System. Mol Neurobiol 2018; 56:1737-1748. [PMID: 29922982 DOI: 10.1007/s12035-018-1173-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/01/2018] [Indexed: 11/28/2022]
Abstract
Codon usage bias (CUB) is the non-uniform usage of synonymous codons in which some codons are more preferred to others in the transcript. Analysis of codon usage bias has applications in understanding the basics of molecular biology, genetics, gene expression, and molecular evolution. To understand the patterns of codon usage in genes involved in the central nervous system (CNS), we used bioinformatic approaches to analyze the protein-coding sequences of genes involved in the CNS. The improved effective number of codons (ENC) suggested that the overall codon usage bias was low. The relative synonymous codon usage (RSCU) revealed that the most frequently occurring codons had a G or C at the third codon position. The codons namely TCC, AGC, CTG, CAG, CGC, ATC, ACC, GTG, GCC, GGC, and CGG (average RSCU > 1.6) were over-represented. Both mutation pressure and natural selection might affect the codon usage pattern as evident from correspondence and parity plot analyses. The overall GC content (59.93) was higher than AT content, i.e., genes were GC-rich. The correlation of GC12 with GC3 suggested that mutation pressure might affect the codon usage pattern.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam, 788150, India.
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
41
|
Zhou Z, Dang Y, Zhou M, Yuan H, Liu Y. Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. eLife 2018; 7:33569. [PMID: 29547124 PMCID: PMC5869017 DOI: 10.7554/elife.33569] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Codon usage biases are found in all genomes and influence protein expression levels. The codon usage effect on protein expression was thought to be mainly due to its impact on translation. Here, we show that transcription termination is an important driving force for codon usage bias in eukaryotes. Using Neurospora crassa as a model organism, we demonstrated that introduction of rare codons results in premature transcription termination (PTT) within open reading frames and abolishment of full-length mRNA. PTT is a wide-spread phenomenon in Neurospora, and there is a strong negative correlation between codon usage bias and PTT events. Rare codons lead to the formation of putative poly(A) signals and PTT. A similar role for codon usage bias was also observed in mouse cells. Together, these results suggest that codon usage biases co-evolve with the transcription termination machinery to suppress premature termination of transcription and thus allow for optimal gene expression.
Collapse
Affiliation(s)
- Zhipeng Zhou
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haiyan Yuan
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
42
|
Goswami AM. Codon usage patterns of 3β-hydroxysteroid dehydrogenase type 2 gene across mammalian species and the influence of mutation and selection pressure. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Zhao F, Yu CH, Liu Y. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res 2017; 45:8484-8492. [PMID: 28582582 PMCID: PMC5737824 DOI: 10.1093/nar/gkx501] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/26/2017] [Indexed: 11/14/2022] Open
Abstract
Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Chien-Hung Yu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
44
|
Abstract
Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system (e.g., sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition.
Collapse
|
45
|
Fu J, Murphy KA, Zhou M, Li YH, Lam VH, Tabuloc CA, Chiu JC, Liu Y. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD. Genes Dev 2017; 30:1761-75. [PMID: 27542830 PMCID: PMC5002980 DOI: 10.1101/gad.281030.116] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/15/2016] [Indexed: 11/25/2022]
Abstract
Fu et al. show that Drosophila period (dper) codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage “code” within genetic codons to regulate cotranslational protein folding.
Collapse
Affiliation(s)
- Jingjing Fu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Katherine A Murphy
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Mian Zhou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Ying H Li
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Vu H Lam
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Christine A Tabuloc
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, University of California at Davis, Davis, California 95616, USA
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
46
|
The Impact of Selection at the Amino Acid Level on the Usage of Synonymous Codons. G3-GENES GENOMES GENETICS 2017; 7:967-981. [PMID: 28122952 PMCID: PMC5345726 DOI: 10.1534/g3.116.038125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two main forces that affect usage of synonymous codons: directional mutational pressure and selection. The effectiveness of protein translation is usually considered as the main selectional factor. However, biased codon usage can also be a byproduct of a general selection at the amino acid level interacting with nucleotide replacements. To evaluate the validity and strength of such an effect, we superimposed >3.5 billion unrestricted mutational processes on the selection of nonsynonymous substitutions based on the differences in physicochemical properties of the coded amino acids. Using a modified evolutionary optimization algorithm, we determined the conditions in which the effect on the relative codon usage is maximized. We found that the effect is enhanced by mutational processes generating more adenine and thymine than guanine and cytosine, as well as more purines than pyrimidines. Interestingly, this effect is observed only under an unrestricted model of nucleotide substitution, and disappears when the mutational process is time-reversible. Comparison of the simulation results with data for real protein coding sequences indicates that the impact of selection at the amino acid level on synonymous codon usage cannot be neglected. Furthermore, it can considerably interfere, especially in AT-rich genomes, with other selections on codon usage, e.g., translational efficiency. It may also lead to difficulties in the recognition of other effects influencing codon bias, and an overestimation of protein coding sequences whose codon usage is subjected to adaptational selection.
Collapse
|
47
|
Romiguier J, Roux C. Analytical Biases Associated with GC-Content in Molecular Evolution. Front Genet 2017; 8:16. [PMID: 28261263 PMCID: PMC5309256 DOI: 10.3389/fgene.2017.00016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
Abstract
Molecular evolution is being revolutionized by high-throughput sequencing allowing an increased amount of genome-wide data available for multiple species. While base composition summarized by GC-content is one of the first metrics measured in genomes, its genomic distribution is a frequently neglected feature in downstream analyses based on DNA sequence comparisons. Here, we show how base composition heterogeneity among loci and taxa can bias common molecular evolution analyses such as phylogenetic tree reconstruction, detection of natural selection and estimation of codon usage. We then discuss the biological, technical and methodological causes of these GC-associated biases and suggest approaches to overcome them.
Collapse
Affiliation(s)
- Jonathan Romiguier
- Department of Ecology and Evolution, University of Lausanne Lausanne, Switzerland
| | - Camille Roux
- Department of Ecology and Evolution, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
48
|
Goodarzi H, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF. Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression. Cell 2016; 165:1416-1427. [PMID: 27259150 DOI: 10.1016/j.cell.2016.05.046] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/04/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023]
Abstract
Transfer RNAs (tRNAs) are primarily viewed as static contributors to gene expression. By developing a high-throughput tRNA profiling method, we find that specific tRNAs are upregulated in human breast cancer cells as they gain metastatic activity. Through loss-of-function, gain-of-function, and clinical-association studies, we implicate tRNAGluUUC and tRNAArgCCG as promoters of breast cancer metastasis. Upregulation of these tRNAs enhances stability and ribosome occupancy of transcripts enriched for their cognate codons. Specifically, tRNAGluUUC promotes metastatic progression by directly enhancing EXOSC2 expression and enhancing GRIPAP1-constituting an "inducible" pathway driven by a tRNA. The cellular proteomic shift toward a pro-metastatic state mirrors global tRNA shifts, allowing for cell-state and cell-type transgene expression optimization through codon content quantification. TRNA modulation represents a mechanism by which cells achieve altered expression of specific transcripts and proteins. TRNAs are thus dynamic regulators of gene expression and the tRNA codon landscape can causally and specifically impact disease progression.
Collapse
Affiliation(s)
- Hani Goodarzi
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Hoang C B Nguyen
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Steven Zhang
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Brian D Dill
- Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Henrik Molina
- Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
49
|
Abstract
tRNAs are best known as basic modules for global regulation of protein synthesis. Goodarzi et al. now show that two tRNAs upregulated in metastatic breast cancer cells enhance stability and translation of transcripts enriched with these codons, leading to specific increase in production of pro-metastatic proteins.
Collapse
Affiliation(s)
- Canan Kuscu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
50
|
Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci U S A 2016; 113:E6117-E6125. [PMID: 27671647 DOI: 10.1073/pnas.1606724113] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Codon usage biases are found in all eukaryotic and prokaryotic genomes, and preferred codons are more frequently used in highly expressed genes. The effects of codon usage on gene expression were previously thought to be mainly mediated by its impacts on translation. Here, we show that codon usage strongly correlates with both protein and mRNA levels genome-wide in the filamentous fungus Neurospora Gene codon optimization also results in strong up-regulation of protein and RNA levels, suggesting that codon usage is an important determinant of gene expression. Surprisingly, we found that the impact of codon usage on gene expression results mainly from effects on transcription and is largely independent of mRNA translation and mRNA stability. Furthermore, we show that histone H3 lysine 9 trimethylation is one of the mechanisms responsible for the codon usage-mediated transcriptional silencing of some genes with nonoptimal codons. Together, these results uncovered an unexpected important role of codon usage in ORF sequences in determining transcription levels and suggest that codon biases are an adaptation of protein coding sequences to both transcription and translation machineries. Therefore, synonymous codons not only specify protein sequences and translation dynamics, but also help determine gene expression levels.
Collapse
|