1
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
2
|
Moser MS, Hallem EA. Astacin metalloproteases in human-parasitic nematodes. ADVANCES IN PARASITOLOGY 2024; 126:177-204. [PMID: 39448190 DOI: 10.1016/bs.apar.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Parasitic nematodes infect over 2 billion individuals worldwide, primarily in low-resource areas, and are responsible for several chronic and potentially deadly diseases. Throughout their life cycle, these parasites are thought to use astacin metalloproteases, a subfamily of zinc-containing metalloendopeptidases, for processes such as skin penetration, molting, and tissue migration. Here, we review the known functions of astacins in human-infective, soil-transmitted parasitic nematodes - including the hookworms Necator americanus and Ancylostoma duodenale, the threadworm Strongyloides stercoralis, the giant roundworm Ascaris lumbricoides, and the whipworm Trichuris trichiura - as well as the human-infective, vector-borne filarial nematodes Wuchereria bancrofti, Onchocerca volvulus, and Brugia malayi. We also review astacin function in parasitic nematodes that infect other mammalian hosts and discuss the potential of astacins as anthelmintic drug targets. Finally, we highlight the molecular and genetic tools that are now available for further exploration of astacin function and discuss how a better understanding of astacin function in human-parasitic nematodes could lead to new avenues for nematode control and drug therapies.
Collapse
Affiliation(s)
- Matthew S Moser
- Molecular Biology Interdepartmental PhD Program; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
3
|
Ishita Y, Onodera A, Ekino T, Chihara T, Okumura M. Co-option of an Astacin Metalloprotease Is Associated with an Evolutionarily Novel Feeding Morphology in a Predatory Nematode. Mol Biol Evol 2023; 40:msad266. [PMID: 38105444 PMCID: PMC10753534 DOI: 10.1093/molbev/msad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Animals consume a wide variety of food sources to adapt to different environments. However, the genetic mechanisms underlying the acquisition of evolutionarily novel feeding morphology remain largely unknown. While the nematode Caenorhabditis elegans feeds on bacteria, the satellite species Pristionchus pacificus exhibits predatory feeding behavior toward other nematodes, which is an evolutionarily novel feeding habit. Here, we found that the astacin metalloprotease Ppa-NAS-6 is required for the predatory killing by P. pacificus. Ppa-nas-6 mutants were defective in predation-associated characteristics, specifically the tooth morphogenesis and tooth movement during predation. Comparison of expression patterns and rescue experiments of nas-6 in P. pacificus and C. elegans suggested that alteration of the spatial expression patterns of NAS-6 may be vital for acquiring predation-related traits. Reporter analysis of the Ppa-nas-6 promoter in C. elegans revealed that the alteration in expression patterns was caused by evolutionary changes in cis- and trans-regulatory elements. This study suggests that the co-option of a metalloprotease is involved in an evolutionarily novel feeding morphology.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ageha Onodera
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
4
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion prior to assembly of the Caenorhabditis elegans cuticle. PLoS Genet 2023; 19:e1010944. [PMID: 37721936 PMCID: PMC10538796 DOI: 10.1371/journal.pgen.1010944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular puncta. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and the control of matrix assembly in vivo. Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K. Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer D. Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John I. Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer R. G. Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Andrew D. Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion during assembly of the Caenorhabditis elegans cuticle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.542650. [PMID: 37333289 PMCID: PMC10274747 DOI: 10.1101/2023.06.06.542650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular aggregates. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and in the spatial and temporal restriction of matrix assembly in vivo . Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - John I Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer R G Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Andrew D Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| |
Collapse
|
6
|
Pei J, Feng T, Long H, Chen Y, Pei Y, Sun Y. Molecular Characterization and Virus-Induced Gene Silencing of a Collagen Gene, Me-col-1, in Root-Knot Nematode Meloidogyne enterolobii. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122103. [PMID: 36556467 PMCID: PMC9784238 DOI: 10.3390/life12122103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Meloidogyne enterolobii, a highly pathogenic root-knot nematode species, causes serious damage to agricultural production worldwide. Collagen is an important part of the nematode epidermis, which is crucial for nematode shape maintenance, motility, and reproduction. In this study, we report that a novel collagen gene, Me-col-1, from the highly pathogenic root-knot nematode species Meloidogyne enterolobi was required for the egg formation of this pathogen. Me-col-1 encodes a protein with the size of 35 kDa, which is closely related to collagen found in other nematodes. Real-time PCR assays showed that the expression of Me-col-1 was highest in eggs and lowest in pre-parasitic second-stage juveniles (preJ2). Interestingly, knockdown of Me-col-1 did not compromise the survival rate of preJ2 but significantly reduced the egg production and consequentially caused 35.79% lower multiplication rate (Pf/Pi) compared with control. Our study provides valuable information for better understanding the function of collagen genes in the nematode life cycle, which can be used in the development of effective approaches for nematode control.
Collapse
Affiliation(s)
- Ji Pei
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tuizi Feng
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haibo Long
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence:
| | - Yuan Chen
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yueling Pei
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yanfang Sun
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
7
|
Ren HN, Bai SJ, Wang Z, Han LL, Yan SW, Jiang P, Zhang X, Wang ZQ, Cui J. A metalloproteinase Tsdpy31 from Trichinella spiralis participates in larval molting and development. Int J Biol Macromol 2021; 192:883-894. [PMID: 34656542 DOI: 10.1016/j.ijbiomac.2021.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/20/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023]
Abstract
Trichinellosis is a serious food-borne zoonotic parasitic disease with global distribution, causing serious harm to public health and food safety. Molting is prerequisite for intestinal larval development in the life cycle of T. spiralis. Metalloproteinases play an important role in the molting process of T. spiralis intestinal infective larvae (IIL). In this study, the metalloproteinase Tsdpy31 was cloned, expressed and characterized. The results revealed that the Tsdpy31 was expressed at various T. spiralis stages and it was principally located in cuticle, hypodermis and embryos of the nematode. Recombinant Tsdpy31 (rTsdpy31) had the catalytic activity of natural metalloproteinase. Silencing of Tsdpy31 increased the permeability of larval new cuticle. When the mice were orally challenged with dsRNA treated- muscle larvae, the burden of intestinal adult and muscle larvae in Tsdpy31 dsRNA treatment group was significantly reduced, compared with the control green fluorescent protein (GFP) dsRNA and PBS groups (P < 0.05). Tsdpy31 may play a major role in the new cuticle synthesis and old cuticle shedding. Tsdpy31 also participates in T. spiralis embryonic development. We conclude that Tsdpy31 could be a candidate vaccine target molecule against intestinal T. spiralis ecdysis and development.
Collapse
Affiliation(s)
- Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhen Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
8
|
Huang Y, Wu J, Chen X, Tong D, Zhou J, Wu F, Zhang H, Yang Y, Ma G, Du A. A Zinc Metalloprotease nas-33 Is Required for Molting and Survival in Parasitic Nematode Haemonchus contortus. Front Cell Dev Biol 2021; 9:695003. [PMID: 34327203 PMCID: PMC8313830 DOI: 10.3389/fcell.2021.695003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Molting is of great importance for the survival and development of nematodes. Nematode astacins (NAS), a large family of zinc metalloproteases, have been proposed as novel anthelmintic targets due to their multiple roles in biological processes of parasitic nematodes. In this study, we report a well conserved nas-33 gene in nematodes of clade V and elucidate how this gene is involved in the molting process of the free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. A predominant transcription of nas-33 is detected in the larval stages of these worms, particularly in the molting process. Knockdown of this gene results in marked molecular changes of genes involved in cuticle synthesis and ecdysis, compromised shedding of the old cuticle, and reduced worm viability in H. contortus. The crucial role of nas-33 in molting is closely associated with a G protein beta subunit (GPB-1). Suppression of both nas-33 and gpb-1 blocks shedding of the old cuticle, compromises the connection between the cuticle and hypodermis, and leads to an increased number of sick and dead worms, indicating essentiality of this module in nematode development and survival. These findings reveal the functional role of nas-33 in nematode molting process and identify astacins as novel anthelmintic targets for parasitic nematodes of socioeconomic significance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Sandhu A, Badal D, Sheokand R, Tyagi S, Singh V. Specific collagens maintain the cuticle permeability barrier in Caenorhabditis elegans. Genetics 2021; 217:iyaa047. [PMID: 33789349 PMCID: PMC8045729 DOI: 10.1093/genetics/iyaa047] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023] Open
Abstract
Collagen-enriched cuticle forms the outermost layer of skin in nematode Caenorhabditis elegans. The nematode's genome encodes 177 collagens, but little is known about their role in maintaining the structure or barrier function of the cuticle. In this study, we found six permeability determining (PD) collagens. Loss of any of these PD collagens-DPY-2, DPY-3, DPY-7, DPY-8, DPY-9, and DPY-10-led to enhanced susceptibility of nematodes to paraquat (PQ) and antihelminthic drugs- levamisole and ivermectin. Upon exposure to PQ, PD collagen mutants accumulated more PQ and incurred more damage and death despite the robust activation of antioxidant machinery. We find that BLMP-1, a zinc finger transcription factor, maintains the barrier function of the cuticle by regulating the expression of PD collagens. We show that the permeability barrier maintained by PD collagens acts in parallel to FOXO transcription factor DAF-16 to enhance survival of insulin-like receptor mutant, daf-2. In all, this study shows that PD collagens regulate cuticle permeability by maintaining the structure of C. elegans cuticle and thus provide protection against exogenous toxins.
Collapse
Affiliation(s)
- Anjali Sandhu
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Divakar Badal
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Riya Sheokand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Shalini Tyagi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Lead contact
| |
Collapse
|
10
|
Lang AE, Lundquist EA. The Collagens DPY-17 and SQT-3 Direct Anterior-Posterior Migration of the Q Neuroblasts in C. elegans. J Dev Biol 2021; 9:jdb9010007. [PMID: 33669899 PMCID: PMC8006237 DOI: 10.3390/jdb9010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cell adhesion molecules and their extracellular ligands control morphogenetic events such as directed cell migration. The migration of neuroblasts and neural crest cells establishes the structure of the central and peripheral nervous systems. In C. elegans, the bilateral Q neuroblasts and their descendants undergo long-range migrations with left/right asymmetry. QR and its descendants on the right migrate anteriorly, and QL and its descendants on the left migrate posteriorly, despite identical patterns of cell division, cell death, and neuronal generation. The initial direction of protrusion of the Q cells relies on the left/right asymmetric functions of the transmembrane receptors UNC-40/DCC and PTP-3/LAR in the Q cells. Here, we show that Q cell left/right asymmetry of migration is independent of the GPA-16/Gα pathway which regulates other left/right asymmetries, including nervous system L/R asymmetry. No extracellular cue has been identified that guides initial Q anterior versus posterior migrations. We show that collagens DPY-17 and SQT-3 control initial Q direction of protrusion. Genetic interactions with UNC-40/DCC and PTP-3/LAR suggest that DPY-17 and SQT-3 drive posterior migration and might act with both receptors or in a parallel pathway. Analysis of mutants in other collagens and extracellular matrix components indicated that general perturbation of collagens and the extracellular matrix (ECM) did not result in directional defects, and that the effect of DPY-17 and SQT-3 on Q direction is specific. DPY-17 and SQT-3 are components of the cuticle, but a role in the basement membrane cannot be excluded. Possibly, DPY-17 and SQT-3 are part of a pattern in the cuticle and/or basement membrane that is oriented to the anterior–posterior axis of the animal and that is deciphered by the Q cells in a left–right asymmetric fashion. Alternatively, DPY-17 and SQT-3 might be involved in the production or stabilization of a guidance cue that directs Q migrations. In any case, these results describe a novel role for the DPY-17 and SQT-3 collagens in directing posterior Q neuroblast migration.
Collapse
|
11
|
Sinner MP, Masurat F, Ewbank JJ, Pujol N, Bringmann H. Innate Immunity Promotes Sleep through Epidermal Antimicrobial Peptides. Curr Biol 2021; 31:564-577.e12. [PMID: 33259791 DOI: 10.1016/j.cub.2020.10.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
Wounding and infection trigger a protective innate immune response that includes the production of antimicrobial peptides in the affected tissue as well as increased sleep. Little is known, however, how peripheral wounds or innate immunity signal to the nervous system to increase sleep. We found that, during C. elegans larval molting, an epidermal tolloid/bone morphogenic protein (BMP)-1-like protein called NAS-38 promotes sleep. NAS-38 is negatively regulated by its thrombospondin domain and acts through its astacin protease domain to activate p38 mitogen-activated protein (MAP)/PMK-1 kinase and transforming growth factor β (TGF-β)-SMAD/SMA-3-dependent innate immune pathways in the epidermis that cause STAT/STA-2 and SLC6 (solute carrier)/SNF-12-dependent expression of antimicrobial peptide (AMP) genes. We show that more than a dozen epidermal AMPs act as somnogens, signaling across tissues to promote sleep through the sleep-active RIS neuron. In the adult, epidermal injury activates innate immunity and turns up AMP production to trigger sleep, a process that requires epidermal growth factor receptor (EGFR) signaling that is known to promote sleep following cellular stress. We show for one AMP, neuropeptide-like protein (NLP)-29, that it acts through the neuropeptide receptor NPR-12 in locomotion-controlling neurons that are presynaptic to RIS and that depolarize this neuron to induce sleep. Sleep in turn increases the chance of surviving injury. Thus, we found a novel mechanism by which peripheral wounds signal to the nervous system to increase protective sleep. Such a cross-tissue somnogen-signaling function of AMPs might also boost sleep in other animals, including humans.
Collapse
Affiliation(s)
- Marina P Sinner
- BIOTEC, Technical University Dresden, Dresden, Germany; University of Marburg, Marburg, Germany; Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Jonathan J Ewbank
- Aix Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Nathalie Pujol
- Aix Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Henrik Bringmann
- BIOTEC, Technical University Dresden, Dresden, Germany; University of Marburg, Marburg, Germany; Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
12
|
Kobaisi F, Fayyad N, Sulpice E, Badran B, Fayyad-Kazan H, Rachidi W, Gidrol X. High-throughput synthetic rescue for exhaustive characterization of suppressor mutations in human genes. Cell Mol Life Sci 2020; 77:4209-4222. [PMID: 32270227 PMCID: PMC7588364 DOI: 10.1007/s00018-020-03519-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Inherited or acquired mutations can lead to pathological outcomes. However, in a process defined as synthetic rescue, phenotypic outcome created by primary mutation is alleviated by suppressor mutations. An exhaustive characterization of these mutations in humans is extremely valuable to better comprehend why patients carrying the same detrimental mutation exhibit different pathological outcomes or different responses to treatment. Here, we first review all known suppressor mutations' mechanisms characterized by genetic screens on model species like yeast or flies. However, human suppressor mutations are scarce, despite some being discovered based on orthologue genes. Because of recent advances in high-throughput screening, developing an inventory of human suppressor mutations for pathological processes seems achievable. In addition, we review several screening methods for suppressor mutations in cultured human cells through knock-out, knock-down or random mutagenesis screens on large scale. We provide examples of studies published over the past years that opened new therapeutic avenues, particularly in oncology.
Collapse
Affiliation(s)
- Farah Kobaisi
- University of Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
- University of Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, IRIG/CEA-Grenoble, Grenoble, France
| | - Nour Fayyad
- University of Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, IRIG/CEA-Grenoble, Grenoble, France
| | - Eric Sulpice
- University of Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Walid Rachidi
- University of Grenoble Alpes, SYMMES/CIBEST UMR 5819 UGA-CNRS-CEA, IRIG/CEA-Grenoble, Grenoble, France
| | - Xavier Gidrol
- University of Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France.
| |
Collapse
|
13
|
Cong Y, Yang H, Zhang P, Xie Y, Cao X, Zhang L. Transcriptome Analysis of the Nematode Caenorhabditis elegans in Acidic Stress Environments. Front Physiol 2020; 11:1107. [PMID: 33013473 PMCID: PMC7511720 DOI: 10.3389/fphys.2020.01107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Ocean acidification and acid rain, caused by modern industries' fossil fuel burning, lead to a decrease in the living environmental pH, which results in a series of negative effects on many organisms. However, the underlying mechanisms of animals' response to acidic pH stress are largely unknown. In this study, we used the nematode Caenorhabditis elegans as an animal model to explore the regulatory mechanisms of organisms' response to pH decline. Two major stress-responsive pathways were found through transcriptome analysis in acidic stress environments. First, when the pH dropped from 6.33 to 4.33, the worms responded to the pH stress by upregulation of the col, nas, and dpy genes, which are required for cuticle synthesis and structure integrity. Second, when the pH continued to decrease from 4.33, the metabolism of xenobiotics by cytochrome P450 pathway genes (cyp, gst, ugt, and ABC transporters) played a major role in protecting the nematodes from the toxic substances probably produced by the more acidic environment. At the same time, the slowing down of cuticle synthesis might be due to its insufficient protective ability. Moreover, the systematic regulation pattern we found in nematodes might also be applied to other invertebrate and vertebrate animals to survive in the changing pH environments. Thus, our data might lay the foundation to identify the master gene(s) responding and adapting to acidic pH stress in further studies, and might also provide new solutions to improve assessment and monitoring of ecological restoration outcomes, or generate novel genotypes via genome editing for restoring in challenging environments especially in the context of acidic stress through global climate change.
Collapse
Affiliation(s)
- Yanyi Cong
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanwen Yang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Pengchi Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yusu Xie
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xuwen Cao
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liusuo Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
14
|
Harnessing the power of genetics: fast forward genetics in Caenorhabditis elegans. Mol Genet Genomics 2020; 296:1-20. [PMID: 32888055 DOI: 10.1007/s00438-020-01721-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
Forward genetics is a powerful tool to unravel molecular mechanisms of diverse biological processes. The success of genetic screens primarily relies on the ease of genetic manipulation of an organism and the availability of a plethora of genetic tools. The roundworm Caenorhabditis elegans has been one of the favorite models for genetic studies due to its hermaphroditic lifestyle, ease of maintenance, and availability of various genetic manipulation tools. The strength of C. elegans genetics is highlighted by the leading role of this organism in the discovery of several conserved biological processes. In this review, the principles and strategies for forward genetics in C. elegans are discussed. Further, the recent advancements that have drastically accelerated the otherwise time-consuming process of mutation identification, making forward genetic screens a method of choice for understanding biological functions, are discussed. The emphasis of the review has been on providing practical and conceptual pointers for designing genetic screens that will identify mutations, specifically disrupting the biological processes of interest.
Collapse
|
15
|
Sieriebriennikov B, Sun S, Lightfoot JW, Witte H, Moreno E, Rödelsperger C, Sommer RJ. Conserved nuclear hormone receptors controlling a novel plastic trait target fast-evolving genes expressed in a single cell. PLoS Genet 2020; 16:e1008687. [PMID: 32282814 PMCID: PMC7179942 DOI: 10.1371/journal.pgen.1008687] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/23/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Environment shapes development through a phenomenon called developmental plasticity. Deciphering its genetic basis has potential to shed light on the origin of novel traits and adaptation to environmental change. However, molecular studies are scarce, and little is known about molecular mechanisms associated with plasticity. We investigated the gene regulatory network controlling predatory vs. non-predatory dimorphism in the nematode Pristionchus pacificus and found that it consists of genes of extremely different age classes. We isolated mutants in the conserved nuclear hormone receptor nhr-1 with previously unseen phenotypic effects. They disrupt mouth-form determination and result in animals combining features of both wild-type morphs. In contrast, mutants in another conserved nuclear hormone receptor nhr-40 display altered morph ratios, but no intermediate morphology. Despite divergent modes of control, NHR-1 and NHR-40 share transcriptional targets, which encode extracellular proteins that have no orthologs in Caenorhabditis elegans and result from lineage-specific expansions. An array of transcriptional reporters revealed co-expression of all tested targets in the same pharyngeal gland cell. Major morphological changes in this gland cell accompanied the evolution of teeth and predation, linking rapid gene turnover with morphological innovations. Thus, the origin of feeding plasticity involved novelty at the level of genes, cells and behavior.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuai Sun
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James W. Lightfoot
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
16
|
Game of Tissues: How the Epidermis Thrones C. elegans Shape. J Dev Biol 2020; 8:jdb8010007. [PMID: 32182901 PMCID: PMC7151205 DOI: 10.3390/jdb8010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The versatility of epithelial cell structure is universally exploited by organisms in multiple contexts. Epithelial cells can establish diverse polarized axes within their tridimensional structure which enables them to flexibly communicate with their neighbors in a 360° range. Hence, these cells are central to multicellularity, and participate in diverse biological processes such as organismal development, growth or immune response and their misfunction ultimately impacts disease. During the development of an organism, the first task epidermal cells must complete is the formation of a continuous sheet, which initiates its own morphogenic process. In this review, we will focus on the C. elegans embryonic epithelial morphogenesis. We will describe how its formation, maturation, and spatial arrangements set the final shape of the nematode C. elegans. Special importance will be given to the tissue-tissue interactions, regulatory tissue-tissue feedback mechanisms and the players orchestrating the process.
Collapse
|
17
|
Yang Z, Xue KS, Sun X, Williams PL, Wang JS, Tang L. Toxicogenomic responses to zearalenone in Caenorhabditis elegans reveal possible molecular mechanisms of reproductive toxicity. Food Chem Toxicol 2018; 122:49-58. [DOI: 10.1016/j.fct.2018.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
|
18
|
O'Neill M, Ballesteros C, Tritten L, Burkman E, Zaky WI, Xia J, Moorhead A, Williams SA, Geary TG. Profiling the macrofilaricidal effects of flubendazole on adult female Brugia malayi using RNAseq. Int J Parasitol Drugs Drug Resist 2016; 6:288-296. [PMID: 27733308 PMCID: PMC5196492 DOI: 10.1016/j.ijpddr.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/30/2022]
Abstract
The use of microfilaricidal drugs for the control of onchocerciasis and lymphatic filariasis (LF) necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by the availability of a macrofilaricidal drug. Flubendazole (FLBZ), a benzimidazole anthelmintic, is an appealing candidate. FLBZ has demonstrated potent macrofilaricidal effects in a number of experimental rodent models and in one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration campaigns due to its limited oral bioavailability. A new formulation that enables sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. Identification of drug-derived effects is important in ascertaining a dosage regimen which is predicted to be lethal to the parasite in situ. In previous histological studies, exposure to FLBZ induced damage to tissues required for reproduction and survival at pharmacologically relevant concentrations. However, more precise and quantitative indices of drug effects are needed. This study assessed drug effects using a transcriptomic approach to confirm effects observed histologically and to identify genes which were differentially expressed in treated adult female Brugia malayi. Comparative analysis across different concentrations (1 μM and 5 μM) and durations (48 and 120 h) provided an overview of the processes which are affected by FLBZ exposure. Genes with dysregulated expression were consistent with the reproductive effects observed via histology in our previous studies. This study revealed transcriptional changes in genes involved in embryo development. Additionally, significant downregulation was observed in genes encoding cuticle components, which may reflect changes in developing embryos, the adult worm cuticle or both. These data support the hypothesis that FLBZ acts predominantly on rapidly dividing cells, and provides a basis for selecting molecular markers of drug-induced damage which may be of use in predicting efficacious FLBZ regimens.
Collapse
Affiliation(s)
- Maeghan O'Neill
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Cristina Ballesteros
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Lucienne Tritten
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Erica Burkman
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA; Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA
| | - Weam I Zaky
- Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA; Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Jianguo Xia
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada; Department of Animal Science, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Andrew Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA; Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA
| | - Steven A Williams
- Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA; Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Timothy G Geary
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
19
|
France DJ, Stepek G, Houston DR, Williams L, McCormack G, Walkinshaw MD, Page AP. Identification and activity of inhibitors of the essential nematode-specific metalloprotease DPY-31. Bioorg Med Chem Lett 2015; 25:5752-5. [PMID: 26546217 PMCID: PMC4658336 DOI: 10.1016/j.bmcl.2015.10.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 11/26/2022]
Abstract
Infection by parasitic nematodes is widespread in the developing world causing extensive morbidity and mortality. Furthermore, infection of animals is a global problem, with a substantial impact on food production. Here we identify small molecule inhibitors of a nematode-specific metalloprotease, DPY-31, using both known metalloprotease inhibitors and virtual screening. This strategy successfully identified several μM inhibitors of DPY-31 from both the human filarial nematode Brugia malayi, and the parasitic gastrointestinal nematode of sheep Teladorsagia circumcincta. Further studies using both free living and parasitic nematodes show that these inhibitors elicit the severe body morphology defect 'Dumpy' (Dpy; shorter and fatter), a predominantly non-viable phenotype consistent with mutants lacking the DPY-31 gene. Taken together, these results represent a start point in developing DPY-31 inhibition as a totally novel mechanism for treating infection by parasitic nematodes in humans and animals.
Collapse
Affiliation(s)
- David J France
- WestChem School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Gillian Stepek
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Douglas R Houston
- Institute of Structural & Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Lewis Williams
- WestChem School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Gillian McCormack
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Malcolm D Walkinshaw
- Institute of Structural & Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Antony P Page
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
20
|
Ondrovics M, Gasser RB, Joachim A. Recent Advances in Elucidating Nematode Moulting - Prospects of Using Oesophagostomum dentatum as a Model. ADVANCES IN PARASITOLOGY 2015; 91:233-64. [PMID: 27015950 DOI: 10.1016/bs.apar.2015.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are major gaps in our knowledge of many molecular biological processes that take place during the development of parasitic nematodes, in spite of the fact that understanding such processes could lead to new ways of treating and controlling parasitic diseases via the disruption of one or more biological pathways in the parasites. Progress in genomics, transcriptomics, proteomics and bioinformatics now provides unique opportunities to investigate the molecular basis of key developmental processes in parasitic nematodes. The porcine nodule worm, Oesophagostomum dentatum, represents a large order (Strongylida) of socioeconomically important nematodes, and provides a useful platform for exploring molecular developmental processes, particularly given that this nematode can be grown and maintained in culture in vitro for periods longer than most other nematodes of this order. In this article, we focus on the moulting process (ecdysis) in nematodes; review recent advances in our understanding of molecular aspects of moulting in O. dentatum achieved by using integrated proteomic-bioinformatic tools and discuss key implications and future prospects for research in this area, also with respect to developing new anti-nematode interventions and biotechnological outcomes.
Collapse
Affiliation(s)
- Martina Ondrovics
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
21
|
DPY-17 and MUA-3 Interact for Connective Tissue-Like Tissue Integrity in Caenorhabditis elegans: A Model for Marfan Syndrome. G3-GENES GENOMES GENETICS 2015; 5:1371-8. [PMID: 25917920 PMCID: PMC4502371 DOI: 10.1534/g3.115.018465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
mua-3 is a Caenorhabditis elegans homolog of the mammalian fibrillin1, a monogenic cause of Marfan syndrome. We identified a new mutation of mua-3 that carries an in-frame deletion of 131 amino acids in the extracellular domain, which allows the mutants to survive in a temperature-dependent manner; at the permissive temperature, the mutants grow normally without obvious phenotypes, but at the nonpermissive temperature, more than 90% die during the L4 molt due to internal organ detachment. Using the temperature-sensitive lethality, we performed unbiased genetic screens to isolate suppressors to find genetic interactors of MUA-3. From two independent screens, we isolated mutations in dpy-17 as a suppressor. RNAi of dpy-17 in mua-3 rescued the lethality, confirming dpy-17 is a suppressor. dpy-17 encodes a collagen known to genetically interact with dpy-31, a BMP-1/Tolloid-like metalloprotease required for TGFβ activation in mammals. Human fibrillin1 mutants fail to sequester TGFβ2 leading to excess TGFβ signaling, which in turn contributes to Marfan syndrome or Marfan-related syndrome. Consistent with that, RNAi of dbl-1, a TGFβ homolog, modestly rescued the lethality of mua-3 mutants, suggesting a potentially conserved interaction between MUA-3 and a TGFβ pathway in C. elegans. Our work provides genetic evidence of the interaction between TGFβ and a fibrillin homolog, and thus provides a simple yet powerful genetic model to study TGFβ function in development of Marfan pathology.
Collapse
|
22
|
A highly conserved, inhibitable astacin metalloprotease from Teladorsagia circumcincta is required for cuticle formation and nematode development. Int J Parasitol 2015; 45:345-55. [PMID: 25736599 PMCID: PMC4406453 DOI: 10.1016/j.ijpara.2015.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 11/21/2022]
Abstract
Astacin metalloprotease, DPY-31, is conserved throughout the nematode phylum. DPY-31 is crucial to Teladorsagia circumcincta cuticle formation. Matrix metalloprotease inhibitors are efficacious against recombinant DPY-31. Novel hydroxamate inhibitors caused Dumpy and Moult defects in nematodes. DPY-31 is a potential target for future nematode control.
Parasitic nematodes cause chronic, debilitating infections in both livestock and humans worldwide, and many have developed multiple resistance to the currently available anthelmintics. The protective collagenous cuticle of these parasites is required for nematode survival and its synthesis has been studied extensively in the free-living nematode, Caenorhabditis elegans. The collagen synthesis pathway is a complex, multi-step process involving numerous key enzymes, including the astacin metalloproteases. Nematode astacinsare crucial for C. elegans development, having specific roles in hatching, moulting and cuticle synthesis. NAS-35 (also called DPY-31) is a homologue of a vertebrate procollagen C-proteinase and performs a central role in cuticle formation of C. elegans as its mutation causes temperature-sensitive lethality and cuticle defects. The characterisation of DPY-31 from the ovine gastrointestinal nematode Teladorsagia circumcincta and its ability to rescue the C. elegans mutant is described. Compounds with a hydroxamate functional group have previously been shown to be potent inhibitors of procollagen C-proteinases and were therefore examined for inhibitory activity against the T. circumcincta enzyme. Phenotypic screening against T. circumcincta, Haemonchus contortus and C. elegans larval stages identified compounds that caused body morphology phenotypes consistent with the inhibition of proteases involved in cuticle collagen synthesis. These compounds correspondingly inhibited the activity of recombinant T. circumcincta DPY-31, supporting the hypothesis that this enzyme may represent a potentially novel anthelmintic drug target.
Collapse
|
23
|
Page AP, Stepek G, Winter AD, Pertab D. Enzymology of the nematode cuticle: A potential drug target? INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:133-41. [PMID: 25057463 PMCID: PMC4095051 DOI: 10.1016/j.ijpddr.2014.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/16/2022]
Abstract
All nematodes possess an external structure known as the cuticle, which is crucial for their development and survival. This structure is composed primarily of collagen, which is secreted from the underlying hypodermal cells. Extensive studies using the free-living nematode Caenorhabditis elegans demonstrate that formation of the cuticle requires the activity of an extensive range of enzymes. Enzymes are required both pre-secretion, for synthesis of component proteins such as collagen, and post-secretion, for removal of the previous developmental stage cuticle, in a process known as moulting or exsheathment. The excretion/secretion products of numerous parasitic nematodes contain metallo-, serine and cysteine proteases, and these proteases are conserved across the nematode phylum and many are involved in the moulting/exsheathment process. This review highlights the enzymes required for cuticle formation, with a focus on the post-secretion moulting events. Where orthologues of the C. elegans enzymes have been identified in parasitic nematodes these may represent novel candidate targets for future drug/vaccine development.
Collapse
Affiliation(s)
- Antony P Page
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Gillian Stepek
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - David Pertab
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
24
|
Jones MR, Rose AM, Baillie DL. The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans. Genesis 2013; 51:545-61. [PMID: 23733356 PMCID: PMC4232869 DOI: 10.1002/dvg.22405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL-3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL-3, the mucin SRAP-1, and BCC-1, the homolog of mRNA regulating protein Bicaudal-C. This study answers a longstanding question as to the developmental function of ROL-3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| | | | | |
Collapse
|
25
|
Meister P, Schott S, Bedet C, Xiao Y, Rohner S, Bodennec S, Hudry B, Molin L, Solari F, Gasser SM, Palladino F. Caenorhabditis elegans Heterochromatin protein 1 (HPL-2) links developmental plasticity, longevity and lipid metabolism. Genome Biol 2011; 12:R123. [PMID: 22185090 PMCID: PMC3334618 DOI: 10.1186/gb-2011-12-12-r123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/30/2011] [Accepted: 12/20/2011] [Indexed: 01/23/2023] Open
Abstract
Background Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. Results We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-β signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. Conclusions Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.
Collapse
Affiliation(s)
- Peter Meister
- Laboratory of Molecular and Cellular Biology, CNRS, Université de Lyon, Ecole Normale Supérieure, Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Deep insights into Dictyocaulus viviparus transcriptomes provides unique prospects for new drug targets and disease intervention. Biotechnol Adv 2010; 29:261-71. [PMID: 21182926 DOI: 10.1016/j.biotechadv.2010.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/22/2010] [Indexed: 11/23/2022]
Abstract
The lungworm, Dictyocaulus viviparus, causes parasitic bronchitis in cattle, and is responsible for substantial economic losses in temperate regions of the world. Here, we undertake the first large-scale exploration of available transcriptomic data for this lungworm, examine differences in transcription between different stages/both genders and identify and prioritize essential molecules linked to fundamental metabolic pathways, which could represent novel drug targets. Approximately 3 million expressed sequence tags (ESTs), generated by 454 sequencing from third-stage larvae (L3s) as well as adult females and males of D. viviparus, were assembled and annotated. The assembly of these sequences yielded ~61,000 contigs, of which relatively large proportions encoded collagens (4.3%), ubiquitins (2.1%) and serine/threonine protein kinases (1.9%). Subtractive analysis in silico identified 6928 nucleotide sequences as being uniquely transcribed in L3, and 5203 and 7889 transcripts as being exclusive to the adult female and male, respectively. Most peptides predicted from the conceptual translations were nucleoplasmins (L3), serine/threonine protein kinases (female) and major sperm proteins (male). Additional analyses allowed the prediction of three drug target candidates, whose Caenorhabditis elegans homologues were linked to a lethal RNA interference phenotype. This detailed exploration, combined with future transcriptomic sequencing of all developmental stages of D. viviparus, will facilitate future investigations of the molecular biology of this parasitic nematode as well as genomic sequencing. These advances will underpin the discovery of new drug and/or vaccine targets, focused on biotechnological outcomes.
Collapse
|
27
|
Kim TH, Kim YJ, Cho JW, Shim J. A novel zinc-carboxypeptidase SURO-1 regulates cuticle formation and body morphogenesis in Caenorhabditis elegans. FEBS Lett 2010; 585:121-7. [PMID: 21094156 DOI: 10.1016/j.febslet.2010.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/10/2010] [Accepted: 11/12/2010] [Indexed: 11/27/2022]
Abstract
Cuticle formation and molting are critical for the development of Caenorhabditis elegans. To understand cuticle formation more clearly, we screened for suppressors in transgenic worms that expressed dominant ROL-6 collagen proteins. The suro-1 mutant, which is mild dumpy, exhibited a different ROL-6::GFP localization pattern compared to other Dpy mutants. We identified mutations in three suro-1 mutants, and found that suro-1 (ORF R11A5.7) encodes a putative zinc-carboxypeptidase homologue. The expression of this enzyme in the hypodermis and the genetic interactions between this enzyme and other collagen-modifying enzyme mutants suggest a regulatory role in collagen processing and cuticle organization for this novel carboxypeptidase. These findings aid our understanding of cuticle formation during worm development.
Collapse
Affiliation(s)
- Tai Hoon Kim
- Cancer Experimental Resources Branch, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | | | | | | |
Collapse
|
28
|
The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes. Parasitology 2010; 138:237-48. [PMID: 20800010 DOI: 10.1017/s0031182010001113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nematodes represent one of the most abundant and species-rich groups of animals on the planet, with parasitic species causing chronic, debilitating infections in both livestock and humans worldwide. The prevalence and success of the nematodes is a direct consequence of the exceptionally protective properties of their cuticle. The synthesis of this cuticle is a complex multi-step process, which is repeated 4 times from hatchling to adult and has been investigated in detail in the free-living nematode, Caenorhabditis elegans. This process is known as moulting and involves numerous enzymes in the synthesis and degradation of the collagenous matrix. The nas-36 and nas-37 genes in C. elegans encode functionally conserved enzymes of the astacin metalloprotease family which, when mutated, result in a phenotype associated with the late-stage moulting defects, namely the inability to remove the preceding cuticle. Extensive genome searches in the gastrointestinal nematode of sheep, Haemonchus contortus, and in the filarial nematode of humans, Brugia malayi, identified NAS-36 but not NAS-37 homologues. Significantly, the nas-36 gene from B. malayi could successfully complement the moult defects associated with C. elegans nas-36, nas-37 and nas-36/nas-37 double mutants, suggesting a conserved function for NAS-36 between these diverse nematode species. This conservation between species was further indicated when the recombinant enzymes demonstrated a similar range of inhibitable metalloprotease activities.
Collapse
|
29
|
Park JO, Pan J, Möhrlen F, Schupp MO, Johnsen R, Baillie DL, Zapf R, Moerman DG, Hutter H. Characterization of the astacin family of metalloproteases in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2010; 10:14. [PMID: 20109220 PMCID: PMC2824743 DOI: 10.1186/1471-213x-10-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 01/28/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Astacins are a large family of zinc metalloproteases found in bacteria and animals. They have diverse roles ranging from digestion of food to processing of extracellular matrix components. The C. elegans genome contains an unusually large number of astacins, of which the majority have not been functionally characterized yet. RESULTS We analyzed the expression pattern of previously uncharacterized members of the astacin family to try and obtain clues to potential functions. Prominent sites of expression for many members of this family are the hypodermis, the alimentary system and several specialized cells including sensory sheath and sockets cells, which are located at openings in the body wall. We isolated mutants affecting representative members of the various subfamilies. Mutants in nas-5, nas-21 and nas-39 (the BMP-1/Tolloid homologue) are viable and have no apparent phenotypic defects. Mutants in nas-6 and nas-6; nas-7 double mutants are slow growing and have defects in the grinder of the pharynx, a cuticular structure important for food processing. CONCLUSIONS Expression data and phenotypic characterization of selected family members suggest a diversity of functions for members of the astacin family in nematodes. In part this might be due to extracellular structures unique to nematodes.
Collapse
Affiliation(s)
- Ja-On Park
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stepek G, McCormack G, Page AP. The kunitz domain protein BLI-5 plays a functionally conserved role in cuticle formation in a diverse range of nematodes. Mol Biochem Parasitol 2010; 169:1-11. [DOI: 10.1016/j.molbiopara.2009.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 11/16/2022]
|
31
|
Stepek G, McCormack G, Page AP. Collagen processing and cuticle formation is catalysed by the astacin metalloprotease DPY-31 in free-living and parasitic nematodes. Int J Parasitol 2009; 40:533-42. [PMID: 19883650 DOI: 10.1016/j.ijpara.2009.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 11/24/2022]
Abstract
The exoskeleton or cuticle performs many key roles in the development and survival of all nematodes. This structure is predominantly collagenous in nature and requires numerous enzymes to properly fold, modify, process and cross-link these essential structural proteins. The cuticle structure and its collagen components are conserved throughout the nematode phylum but differ from the collagenous matrices found in vertebrates. This structure, its formation and the enzymology of nematode cuticle collagen biogenesis have been elucidated in the free-living nematode Caenorhabditis elegans. The dpy-31 gene in C. elegans encodes a procollagen C-terminal processing enzyme of the astacin metalloprotease or bone morphogenetic protein class that, when mutated, results in a temperature-sensitive lethal phenotype associated with cuticle defects. In this study, orthologues of this essential gene have been identified in the phylogenetically diverse parasitic nematodes Haemonchus contortus and Brugia malayi. The DPY-31 protein is expressed in the gut and secretory system of C. elegans, a location also confirmed when a B. malayi transcriptional dpy-31 promoter-reporter gene fusion was expressed in C. elegans. Functional conservation between the nematode enzymes was supported by the fact that heterologous expression of the H. contortus dpy-31 orthologue in a C. elegans dpy-31 mutant resulted in the full rescue of the mutant body form. This interspecies conservation was further established when the recombinant nematode enzymes were found to have a similar range of inhibitable protease activities. In addition, the recombinant DPY-31 enzymes from both H. contortus and B. malayi were shown to efficiently process the C. elegans cuticle collagen SQT-3 at the correct C-terminal procollagen processing site.
Collapse
Affiliation(s)
- Gillian Stepek
- Division of Infection and Immunity, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G611QH, UK
| | | | | |
Collapse
|
32
|
Winter AD, McCormack G, Page AP. Protein disulfide isomerase activity is essential for viability and extracellular matrix formation in the nematode Caenorhabditis elegans. Dev Biol 2007; 308:449-61. [PMID: 17586485 DOI: 10.1016/j.ydbio.2007.05.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 05/21/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Protein disulfide isomerase (PDI) is a multifunctional protein required for many aspects of protein folding and transit through the endoplasmic reticulum. A conserved family of three PDIs has been functionally analysed using genetic mutants of the model organism Caenorhabditis elegans. PDI-1 and PDI-3 are individually non-essential, whereas PDI-2 is required for normal post-embryonic development. In combination, all three genes are synergistically essential for embryonic development in this nematode. Mutations in pdi-2 result in severe body morphology defects, uncoordinated movement, adult sterility, abnormal molting and aberrant collagen deposition. Many of these phenotypes are consistent with a role in collagen biogenesis and extracellular matrix formation. PDI-2 is required for the normal function of prolyl 4-hydroxylase, a key collagen-modifying enzyme. Site-directed mutagenesis indicates that the independent catalytic activity of PDI-2 may also perform an essential developmental function. PDI-2 therefore performs two critical roles during morphogenesis. The role of PDI-2 in collagen biogenesis can be restored following complementation of the mutant with human PDI.
Collapse
Affiliation(s)
- Alan D Winter
- Institute of Comparative Medicine, Veterinary Faculty, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | | | | |
Collapse
|
33
|
Craig H, Isaac RE, Brooks DR. Unravelling the moulting degradome: new opportunities for chemotherapy? Trends Parasitol 2007; 23:248-53. [PMID: 17459772 DOI: 10.1016/j.pt.2007.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/26/2007] [Accepted: 04/05/2007] [Indexed: 01/26/2023]
Abstract
Replacement of the nematode cuticle with a newly synthesized cuticle (a process known as moulting) occurs four times during larval development. Therefore, the key components of this essential developmental process represent attractive targets for new chemotherapeutic strategies. Recent advances in understanding the molecular genetics of nematode moulting should stimulate and facilitate development of novel drugs that target the essential molecules of the moulting cycle. In particular, we argue that further understanding of the moulting degradome and its key peptidase members offers an important opportunity for the development of novel antinematode agents.
Collapse
Affiliation(s)
- Hannah Craig
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | | |
Collapse
|
34
|
Guan X, Middlebrooks BW, Alexander S, Wasserman SA. Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc Natl Acad Sci U S A 2006; 103:16794-9. [PMID: 17075064 PMCID: PMC1636534 DOI: 10.1073/pnas.0607616103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Body shape determination represents a critical aspect of morphogenesis. In the course of investigating body shape regulation in Drosophila, we have identified a dominant mutation, TweedleD(1) (TwdlD(1)), that alters overall dimensions at the larval and pupal stages. Characterization of the affected locus led to the discovery of a gene family that has 27 members in Drosophila and is found only among insects. Analysis of gene expression at the RNA and protein levels revealed gene-specific temporal and spatial patterns in ectodermally derived tissues. In addition, light microscopic studies of fluorescently tagged proteins demonstrated that Tweedle proteins are incorporated into larval cuticular structures. This demonstration that a mutation in a Drosophila cuticular protein gene alters overall morphology confirms a role for the fly exoskeleton in determining body shape. Furthermore, parallels between these findings and studies of cuticle collagen genes in Caenorhabditis elegans suggest that the exoskeleton influences body shape in diverse organisms.
Collapse
Affiliation(s)
- Xiao Guan
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
| | - Brooke W. Middlebrooks
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
| | - Sherry Alexander
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
| | - Steven A. Wasserman
- Section of Cell and Developmental Biology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Harris J, Lowden M, Clejan I, Tzoneva M, Thomas JH, Hodgkin J, Ahmed S. Mutator phenotype of Caenorhabditis elegans DNA damage checkpoint mutants. Genetics 2006; 174:601-16. [PMID: 16951081 PMCID: PMC1602097 DOI: 10.1534/genetics.106.058701] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA damage response proteins identify sites of DNA damage and signal to downstream effectors that orchestrate either apoptosis or arrest of the cell cycle and DNA repair. The C. elegans DNA damage response mutants mrt-2, hus-1, and clk-2(mn159) displayed 8- to 15-fold increases in the frequency of spontaneous mutation in their germlines. Many of these mutations were small- to medium-sized deletions, some of which had unusual sequences at their breakpoints such as purine-rich tracts or direct or inverted repeats. Although DNA-damage-induced apoptosis is abrogated in the mrt-2, hus-1, and clk-2 mutant backgrounds, lack of the apoptotic branch of the DNA damage response pathway in cep-1/p53, ced-3, and ced-4 mutants did not result in a Mutator phenotype. Thus, DNA damage checkpoint proteins suppress the frequency of mutation by ensuring that spontaneous DNA damage is accurately repaired in C. elegans germ cells. Although DNA damage response defects that predispose humans to cancer are known to result in large-scale chromosome aberrations, our results suggest that small- to medium-sized deletions may also play roles in the development of cancer.
Collapse
Affiliation(s)
- Jasper Harris
- Department of Biology, University of North Carolina, NC 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Belli SI, Smith NC, Ferguson DJP. The coccidian oocyst: a tough nut to crack! Trends Parasitol 2006; 22:416-23. [PMID: 16859995 DOI: 10.1016/j.pt.2006.07.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 06/06/2006] [Accepted: 07/05/2006] [Indexed: 11/15/2022]
Abstract
Coccidian parasites are transmitted between hosts by the ingestion of food or water contaminated with oocysts, followed by the release of infectious sporozoites and invasion of the gastro-intestinal tract. In the external environment, sporozoites are protected from desiccation and chemical disinfection by the oocyst wall. This unique structure guarantees successful disease transmission and is as vital to the coccidian parasite as the exoskeleton is to insects--without it they would die. Here, we revisit the early work and combine it with newer molecular data to describe our present understanding of the coccidian oocyst wall.
Collapse
Affiliation(s)
- Sabina I Belli
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, Australia.
| | | | | |
Collapse
|
37
|
Gallo M, Mah AK, Johnsen RC, Rose AM, Baillie DL. Caenorhabditis elegans dpy-14: an essential collagen gene with unique expression profile and physiological roles in early development. Mol Genet Genomics 2006; 275:527-39. [PMID: 16496175 DOI: 10.1007/s00438-006-0110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 02/01/2006] [Indexed: 10/25/2022]
Abstract
We describe the molecular characterisation of Caenorhabditis elegans dpy-14, a gene encoding an essential cuticular collagen annotated as col-59. Expression of dpy-14 starts at the 16 E cell stage, making it the earliest-expressing collagen reported to date. SAGE data and dpy-14 promoter::GFP reporter constructs indicate that the gene is transcribed mainly during embryogenesis, specifically in ciliated neurons and hypoderm. Water permeability assays and lectin staining showed that a mutation in the DPY-14 collagen results in defects in the channels of the amphids, which are a class of ciliated neuron, while the amphids appear morphologically normal by dye filling methods. Behavioural assays showed that the ciliated neurons expressing the gene are functional in dpy-14 mutants. All together, our data suggest that ciliated neurons and their hypodermal support cells collaborate in the transcription and synthesis of DPY-14, which then becomes a component of the amphid channels but not of the amphids proper. Interestingly, seam cells of dpy-14 mutants do not properly fuse to form a syncytium. This novel phenotype due to collagen mutations further stresses that dpy-14 plays a fundamental role in C. elegans physiology, since it is required for the proper development of the hypoderm.
Collapse
Affiliation(s)
- Marco Gallo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, BC, Canada
| | | | | | | | | |
Collapse
|
38
|
Page AP, McCormack G, Birnie AJ. Biosynthesis and enzymology of the Caenorhabditis elegans cuticle: identification and characterization of a novel serine protease inhibitor. Int J Parasitol 2006; 36:681-9. [PMID: 16500660 DOI: 10.1016/j.ijpara.2006.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/06/2006] [Accepted: 01/09/2006] [Indexed: 11/23/2022]
Abstract
Caenorhabditis elegans represents an excellent model in which to dissect the biosynthesis and assembly of the nematode cuticle. A sequenced genome, straightforward transgenesis, available mutants and practical genome-wide RNAi approaches provide an invaluable toolkit in the characterization of cuticle components. We have performed a targeted RNAi screen in an attempt to identify components of the cuticle collagen biosynthetic pathway. Collagen biosynthesis and cuticle assembly are multi-step processes that involve numerous key enzymes involved in post-translational modification, trimer folding, procollagen processing and subsequent cross-linking stages. For many of these steps, the modifications and the enzymes are unique to nematodes and may represent attractive targets for the control of parasitic nematodes. A novel serine protease inhibitor was uncovered during our targeted screen, which is involved in collagen maturation, proper cuticle assembly and the moulting process. We have confirmed a link between this inhibitor and the previously uncharacterised bli-5 locus in C. elegans. The mutant phenotype, spatial expression pattern and the over-expression phenotype of the BLI-5 protease inhibitor and their relevance to collagen biosynthesis are discussed.
Collapse
Affiliation(s)
- Antony P Page
- Faculty of Veterinary Medicine, Institute of Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | |
Collapse
|
39
|
Novelli J, Page AP, Hodgkin J. The C terminus of collagen SQT-3 has complex and essential functions in nematode collagen assembly. Genetics 2006; 172:2253-67. [PMID: 16452136 PMCID: PMC1456373 DOI: 10.1534/genetics.105.053637] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nematode exoskeleton is a multilayered structure secreted by the underlying hypodermal cells and mainly composed of small collagens, which are encoded by a large gene family. In previous work, we reported analysis of the C. elegans dpy-31 locus, encoding a hypodermally expressed zinc-metalloprotease of the BMP-1/TOLLOID family essential for viability and cuticle deposition. We have generated a large set of extragenic suppressors of dpy-31 lethality, most of which we show here to be allelic to the cuticle collagen genes sqt-3 and dpy-17. We analyzed the interaction among dpy-31, sqt-3, and dpy-17 using a SQT-3-specific antiserum, which was employed in immunofluorescence experiments. Our results support a role for DPY-31 in SQT-3 extracellular processing and suggest that the SQT-3 C-terminal nontrimeric region serves multiple roles during SQT-3 assembly. Different missense mutations of this region have diverse phenotypic consequences, including cold-sensitive lethality. Furthermore, the biochemical and genetic data indicate that the extracellular assemblies of DPY-17 and SQT-3 are interdependent, most likely because the collagens are incorporated into the same cuticular substructure. We find that absence of DPY-17 causes extensive intracellular retention of SQT-3, indicating that formation of the SQT-3-DPY-17 polymer could begin in the intracellular environment before secretion.
Collapse
Affiliation(s)
- Jacopo Novelli
- Genetics Unit, Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|