1
|
Chakraborty M, Ramaiah A, Adolfi A, Halas P, Kaduskar B, Ngo LT, Jayaprasad S, Paul K, Whadgar S, Srinivasan S, Subramani S, Bier E, James AA, Emerson JJ. Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly. BMC Biol 2021; 19:28. [PMID: 33568145 PMCID: PMC7876825 DOI: 10.1186/s12915-021-00963-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The mosquito Anopheles stephensi is a vector of urban malaria in Asia that recently invaded Africa. Studying the genetic basis of vectorial capacity and engineering genetic interventions are both impeded by limitations of a vector's genome assembly. The existing assemblies of An. stephensi are draft-quality and contain thousands of sequence gaps, potentially missing genetic elements important for its biology and evolution. RESULTS To access previously intractable genomic regions, we generated a reference-grade genome assembly and full transcript annotations that achieve a new standard for reference genomes of disease vectors. Here, we report novel species-specific transposable element (TE) families and insertions in functional genetic elements, demonstrating the widespread role of TEs in genome evolution and phenotypic variation. We discovered 29 previously hidden members of insecticide resistance genes, uncovering new candidate genetic elements for the widespread insecticide resistance observed in An. stephensi. We identified 2.4 Mb of the Y chromosome and seven new male-linked gene candidates, representing the most extensive coverage of the Y chromosome in any mosquito. By tracking full-length mRNA for > 15 days following blood feeding, we discover distinct roles of previously uncharacterized genes in blood metabolism and female reproduction. The Y-linked heterochromatin landscape reveals extensive accumulation of long-terminal repeat retrotransposons throughout the evolution and degeneration of this chromosome. Finally, we identify a novel Y-linked putative transcription factor that is expressed constitutively throughout male development and adulthood, suggesting an important role. CONCLUSION Collectively, these results and resources underscore the significance of previously hidden genomic elements in the biology of malaria mosquitoes and will accelerate the development of genetic control strategies of malaria transmission.
Collapse
Affiliation(s)
- Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Arunachalam Ramaiah
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Adriana Adolfi
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
| | - Paige Halas
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
| | - Bhagyashree Kaduskar
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
| | - Luna Thanh Ngo
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Suvratha Jayaprasad
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Kiran Paul
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Saurabh Whadgar
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Subhashini Srinivasan
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, KA, 560100, India
| | - Suresh Subramani
- Tata Institute for Genetics and Society, Center at inStem, Bangalore, Karnataka, 560065, India
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093-0322, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, 92093-0335, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697, USA
| | - J J Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Bernardo LP, Mombach DM, Loreto ELS. Characterization of Herves-like transposable elements (hATs) in Drosophila species and their evolutionary scenario. INSECT MOLECULAR BIOLOGY 2019; 28:616-627. [PMID: 30793407 DOI: 10.1111/imb.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A monophyletic group of Drosophila hAT transposable elements, referred to as Herves-like, was characterized and found to be present in 46% of 57 screened Drosophila species. A remarkable characteristic of these elements is the presence of a long array of minisatellite repeats (MnRs) in both subterminal extremities of the elements. The copy number of these minisatellites was highly variable between and within populations. Twenty-three strains of Drosophila willistoni, covering its geographic distribution, were screened for polymorphism in the copy number of 5' MnRs, showing a variation from 7 to 20 repeat copies. These MnRs are well conserved among Drosophila species and probably function as transposase binding sequences, as provided by short subterminal repeats in other hAT elements. Miniature inverted repeat transposable elements were found in 27% of species carrying Herves-like elements. Phylogenetic analysis showed incongruences between transposable elements and species phylogenies, suggesting that at least four horizontal transfer events have occurred.
Collapse
Affiliation(s)
- L P Bernardo
- PPG Biodiverdade Animal, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - D M Mombach
- Department of Biochemistry and Molecular Biology, CCNE, Univeridade Federal de Santa Maria, Santa Maria, Brazil
| | - E L S Loreto
- Department of Biochemistry and Molecular Biology, CCNE, Univeridade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
3
|
Macias VM, Ohm JR, Rasgon JL. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1006. [PMID: 28869513 PMCID: PMC5615543 DOI: 10.3390/ijerph14091006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023]
Abstract
Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.
Collapse
Affiliation(s)
- Vanessa M Macias
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Johanna R Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Macias VM, Jimenez AJ, Burini-Kojin B, Pledger D, Jasinskiene N, Phong CH, Chu K, Fazekas A, Martin K, Marinotti O, James AA. nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:81-89. [PMID: 28676355 PMCID: PMC5580807 DOI: 10.1016/j.ibmb.2017.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so.
Collapse
Affiliation(s)
- Vanessa M Macias
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Alyssa J Jimenez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Bianca Burini-Kojin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - David Pledger
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Nijole Jasinskiene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Celine Hien Phong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Karen Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Aniko Fazekas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Kelcie Martin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Anthony A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States; Department of Microbiology and Molecular Genetics, B240 Med Sci Bldg., School of Medicine, University of California, Irvine, CA 92697-4025, United States.
| |
Collapse
|
5
|
Fernández-Medina RD, Carareto CMA, Struchiner CJ, Ribeiro JMC. Transposable elements in the Anopheles funestus transcriptome. Genetica 2017; 145:275-293. [PMID: 28424974 DOI: 10.1007/s10709-017-9964-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/27/2017] [Indexed: 12/27/2022]
Abstract
Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Av. Brasil, 4365, Rio de Janeiro, Brazil.
| | - Claudia M A Carareto
- Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, Brazil
| | - Cláudio J Struchiner
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública, Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - José M C Ribeiro
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, 20852, USA
| |
Collapse
|
6
|
Hickman AB, Ewis HE, Li X, Knapp JA, Laver T, Doss AL, Tolun G, Steven AC, Grishaev A, Bax A, Atkinson PW, Craig NL, Dyda F. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA transposase from Musca domestica. Cell 2014; 158:353-367. [PMID: 25036632 DOI: 10.1016/j.cell.2014.05.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
Hermes is a member of the hAT transposon superfamily that has active representatives, including McClintock's archetypal Ac mobile genetic element, in many eukaryotic species. The crystal structure of the Hermes transposase-DNA complex reveals that Hermes forms an octameric ring organized as a tetramer of dimers. Although isolated dimers are active in vitro for all the chemical steps of transposition, only octamers are active in vivo. The octamer can provide not only multiple specific DNA-binding domains to recognize repeated subterminal sequences within the transposon ends, which are important for activity, but also multiple nonspecific DNA binding surfaces for target capture. The unusual assembly explains the basis of bipartite DNA recognition at hAT transposon ends, provides a rationale for transposon end asymmetry, and suggests how the avidity provided by multiple sites of interaction could allow a transposase to locate its transposon ends amidst a sea of chromosomal DNA.
Collapse
Affiliation(s)
- Alison B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hosam E Ewis
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xianghong Li
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua A Knapp
- Graduate Program in Biochemistry and Molecular Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Thomas Laver
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California Riverside, Riverside, CA 92521, USA
| | - Anna-Louise Doss
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Gökhan Tolun
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Grishaev
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter W Atkinson
- Graduate Program in Biochemistry and Molecular Biology, University of California Riverside, Riverside, CA 92521, USA; Graduate Program in Genetics, Genomics, and Bioinformatics, University of California Riverside, Riverside, CA 92521, USA; Graduate Program in Cell, Molecular, and Developmental Biology, University of California Riverside, Riverside, CA 92521, USA; Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Nancy L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Rossato DO, Ludwig A, Deprá M, Loreto ELS, Ruiz A, Valente VLS. BuT2 is a member of the third major group of hAT transposons and is involved in horizontal transfer events in the genus Drosophila. Genome Biol Evol 2014; 6:352-65. [PMID: 24459285 PMCID: PMC3942097 DOI: 10.1093/gbe/evu017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 12/24/2022] Open
Abstract
The hAT superfamily comprises a large and diverse array of DNA transposons found in all supergroups of eukaryotes. Here we characterized the Drosophila buzzatii BuT2 element and found that it harbors a five-exon gene encoding a 643-aa putatively functional transposase. A phylogeny built with 85 hAT transposases yielded, in addition to the two major groups already described, Ac and Buster, a third one comprising 20 sequences that includes BuT2, Tip100, hAT-4_BM, and RP-hAT1. This third group is here named Tip. In addition, we studied the phylogenetic distribution and evolution of BuT2 by in silico searches and molecular approaches. Our data revealed BuT2 was, most often, vertically transmitted during the evolution of genus Drosophila being lost independently in several species. Nevertheless, we propose the occurrence of three horizontal transfer events to explain its distribution and conservation among species. Another aspect of BuT2 evolution and life cycle is the presence of short related sequences, which contain similar 5' and 3' regions, including the terminal inverted repeats. These sequences that can be considered as miniature inverted repeat transposable elements probably originated by internal deletion of complete copies and show evidences of recent mobilization.
Collapse
Affiliation(s)
- Dirleane Ottonelli Rossato
- Programa de Pós-Graduação em
Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do
Sul, Brazil
| | - Adriana Ludwig
- Laboratório de Genômica Funcional, Instituto
Carlos Chagas (ICC), Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Maríndia Deprá
- Programa de Pós-Graduação em Biologia
Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do
Sul, Brazil
- Departamento de Genética, Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Elgion L. S. Loreto
- Programa de Pós-Graduação em
Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Biologia, Universidade Federal de Santa
Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Alfredo Ruiz
- Departament de Genètica i Microbiologia, Facultat
de Biociènces, Universitat Autònoma de Barcelona, Spain
| | - Vera L. S. Valente
- Programa de Pós-Graduação em Biologia
Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do
Sul, Brazil
- Departamento de Genética, Universidade Federal do
Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em
Genética e Biologia Molecular Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Wright JA, Smith RC, Xie K, Craig NL, Atkinson PW. IPB7 transposase behavior in Drosophila melanogaster and Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:899-906. [PMID: 23835045 PMCID: PMC3888874 DOI: 10.1016/j.ibmb.2013.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Transposons are used in insect science as genetic tools that enable the transformation of insects and the identification and isolation of genes though their ability to insert in or near to them. Four transposons, piggyBac, Mos1, Hermes and Minos are commonly used in insects beyond Drosophila melanogaster with piggyBac, due to its wide host range and frequency of transposition, being the most commonly chosen. The utility of these transposons as genetic tools is directly proportional to their activity since higher transposition rates would be expected to lead to higher transformation frequencies and higher frequencies of insertion throughout the genome. As a consequence there is an ongoing need for hyperactive transposases for use in insect genetics, however these have proven difficult to obtain. IPB7 is a hyperactive mutant of the piggyBac transposase that was identified by a genetic screen performed in yeast, a mammalian codon optimized version of which was then found to be highly active in rodent embryonic stem cells with no apparent deleterious effects. Here we report the activity of IPB7 in D. melanogaster and the mosquito, Aedes aegypti. Somatic transposition assays revealed an increase in IPB7's transposition rate from wild-type piggyBac transposase in D. melanogaster but not Ae. aegypti. However the use of IPB7 in D. melanogaster genetic transformations produced a high rate of sterility and a low transformation rate compared to wild-type transposase. This high rate of sterility was accompanied by significant gonadal atrophy that was also observed in the absence of the piggyBac vector transposon. We conclude that IPB7 has increased activity in the D. melanogaster germ-line but that a component of the sterility associated with its activity is independent of the presence of the piggyBac transposon.
Collapse
Affiliation(s)
- Jennifer A. Wright
- Department of Entomology, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Ryan C. Smith
- Cell Molecular and Developmental Biology Graduate Program, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Kefong Xie
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Nancy L. Craig
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Peter W. Atkinson
- Department of Entomology, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
- Cell Molecular and Developmental Biology Graduate Program, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
- Center for Disease Vector Research, Institute for Integrative Genome Biology, University California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Badal M, Xamena N, Cabré O. FB-NOF is a non-autonomous transposable element, expressed in Drosophila melanogaster and present only in the melanogaster group. Gene 2013; 526:459-63. [PMID: 23685284 DOI: 10.1016/j.gene.2013.04.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/04/2013] [Accepted: 04/24/2013] [Indexed: 11/17/2022]
Abstract
Most foldback elements are defective due to the lack of coding sequences but some are associated with coding sequences and may represent the entire element. This is the case of the NOF sequences found in the FB of Drosophila melanogaster, formerly considered as an autonomous TE and currently proposed as part of the so-called FB-NOF element, the transposon that would be complete and fully functional. NOF is always associated with FB and never seen apart from the FB inverted repeats (IR). This is the reason why the FB-NOF composite element can be considered the complete element. At least one of its ORFs encodes a protein that has always been considered its transposase, but no detailed studies have been carried out to verify this. In this work we test the hypothesis that FB-NOF is an active transposon nowadays. We search for its expression product, obtaining its cDNA, and propose the ORF and the sequence of its potential protein. We found that the NOF protein is not a transposase as it lacks any of the motifs of known transposases and also shows structural homology with hydrolases, therefore FB-NOF cannot belong to the superfamily MuDR/foldback, as up to now it has been classified, and can be considered as a non-autonomous transposable element. The alignment with the published genomes of 12 Drosophila species shows that NOF presence is restricted only to the 6 Drosophila species belonging to the melanogaster group.
Collapse
Affiliation(s)
- Martí Badal
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain
| | | | | |
Collapse
|
10
|
Salgueiro P, Moreno M, Simard F, O'Brochta D, Pinto J. New insights into the population structure of Anopheles gambiae s.s. in the Gulf of Guinea Islands revealed by Herves transposable elements. PLoS One 2013; 8:e62964. [PMID: 23638171 PMCID: PMC3637158 DOI: 10.1371/journal.pone.0062964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/27/2013] [Indexed: 01/14/2023] Open
Abstract
Transposable elements (TEs) are mobile portions of DNA that are able to replicate and spread in the genome of many organisms. TEs can be used as a means to insert transgenes in insects, being stably inherited throughout generations. Anopheles gambiae is the main vector of human malaria in Sub-Saharan Africa. Given the extraordinary burden this disease imposes, the mosquito became a choice target for genetic control approaches with the purpose of reducing malaria transmission. In this study, we investigated the abundance and distribution of Herves TE in An. gambiae s.s. from Cameroon and four islands in the Gulf of Guinea, in order to determine their genetic structure. We have detected a population subdivision between Equatorial Guinea islands and the islands of São Tomé, Príncipe and mainland. This partitioning associates more with political rather than geographic boundaries, possibly reflecting different mainland source populations colonizing the islands.
Collapse
Affiliation(s)
- Patrícia Salgueiro
- Centro de Malária e outras Doenças Tropicais/UEI Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
11
|
Kim YJ, Hice RH, O'Brochta DA, Atkinson PW. DNA sequence requirements for hobo transposable element transposition in Drosophila melanogaster. Genetica 2011; 139:985-97. [PMID: 21805320 DOI: 10.1007/s10709-011-9600-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 07/18/2011] [Indexed: 01/08/2023]
Abstract
We have conducted a structure and functional analysis of the hobo transposable element of Drosophila melanogaster. A minimum of 141 bp of the left (L) end and 65 bp of the right (R) end of the hobo were shown to contain sequences sufficient for transposition. Both ends of hobo contain multiple copies of the motifs GGGTG and GTGGC and we show that the frequency of hobo transposition increases as a function of the copy number of these motifs. The R end of hobo contains a unique 12 bp internal inverted repeat that is identical to the hobo terminal inverted repeats. We show that this internal inverted repeat suppresses transposition activity in a hobo element containing an intact L end and only 475 bp of the R end. In addition to establishing cis-sequences requirements for transposition, we analyzed trans-sequence effects of the hobo transposase. We show a hobo transposase lacking the first 49 amino acids catalyzed hobo transposition at a higher frequency than the full-length transposase suggesting that, similar to the related Ac transposase, residues at the amino end of the transposase reduce transposition. Finally, we compared target site sequences of hobo with those of the related Hermes element and found both transposons have strong preferences for the same insertion sites.
Collapse
Affiliation(s)
- Yu Jung Kim
- Graduate Program in Department of Biochemistry and Molecular Biology, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
12
|
Kahlon AS, Hice RH, O'Brochta DA, Atkinson PW. DNA binding activities of the Herves transposase from the mosquito Anopheles gambiae. Mob DNA 2011; 2:9. [PMID: 21689391 PMCID: PMC3143072 DOI: 10.1186/1759-8753-2-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 06/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Determining the mechanisms by which transposable elements move within a genome increases our understanding of how they can shape genome evolution. Class 2 transposable elements transpose via a 'cut-and-paste' mechanism mediated by a transposase that binds to sites at or near the ends of the transposon. Herves is a member of the hAT superfamily of class 2 transposons and was isolated from Anopheles gambiae, a medically important mosquito species that is the major vector of malaria in sub-Saharan Africa. Herves is transpositionally active and intact copies of it are found in field populations of A gambiae. In this study we report the binding activities of the Herves transposase to the sequences at the ends of the Herves transposon and compare these to other sequences recognized by hAT transposases isolated from other organisms. RESULTS We identified the specific DNA-binding sites of the Herves transposase. Active Herves transposase was purified using an Escherichia coli expression system and bound in a site-specific manner to the subterminal and terminal sequences of the left and right ends of the element, respectively, and also interacted with the right but not the left terminal inverted repeat. We identified a common subterminal DNA-binding motif (CG/AATTCAT) that is critical and sufficient for Herves transposase binding. CONCLUSIONS The Herves transposase binds specifically to a short motif located at both ends of the transposon but shows differential binding with respect to the left and right terminal inverted repeats. Despite similarities in the overall structures of hAT transposases, the regions to which they bind in their respective transposons differ in sequence ensuring the specificity of these enzymes to their respective transposon. The asymmetry with which the Herves terminal inverted repeats are bound by the transposase may indicate that these differ in their interactions with the enzyme.
Collapse
Affiliation(s)
- Amandeep S Kahlon
- Interdepartmental Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, CA, USA.
| | | | | | | |
Collapse
|
13
|
Du E, Ni X, Zhao H, Li X. Natural history and intragenomic dynamics of the Transib transposon Hztransib in the cotton bollworm Helicoverpa zea. INSECT MOLECULAR BIOLOGY 2011; 20:291-301. [PMID: 21166910 PMCID: PMC3086985 DOI: 10.1111/j.1365-2583.2010.01061.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hztransib, recently identified from Helicoverpa zea, represents the first intact and transcriptionally active Transib element. Its open reading frame was detected in Helicoverpa armigera, from which H. zea evolved, and in Helicoverpa assulta, the common ancestor of H. zea and H. armigera, but its remaining parts were found only in H. armigera. Thirty-nine Hztransib insertion sites, all of which are polymorphic, were detected from eight populations of H. zea. Out of the 39 insertion sites, 35 were not frequently occupied, with 1-33 occurrences in a total of 128 individuals from the eight populations (16 larvae per population). Its copy number ranged from 5.8 to 14.2 per individual, with putative intact copies always more abundant than internally deleted ones. Taking this evidence together, Hztransib probably transferred to H. zea from H. armigera and most likely still retains its capacity to maintain structural integrity, increase copy number and remobilize in H. zea.
Collapse
Affiliation(s)
- Erxia Du
- Department of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
- Department of Entomology, University of Arizona, Tucson, AZ, 85719, USA
| | - Xinzhi Ni
- USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - Huiyan Zhao
- Department of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, 85719, USA
| |
Collapse
|
14
|
Fernández-Medina RD, Struchiner CJ, Ribeiro JMC. Novel transposable elements from Anopheles gambiae. BMC Genomics 2011; 12:260. [PMID: 21605407 PMCID: PMC3212995 DOI: 10.1186/1471-2164-12-260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/23/2011] [Indexed: 12/25/2022] Open
Abstract
Background Transposable elements (TEs) are DNA sequences, present in the genome of most eukaryotic organisms that hold the key characteristic of being able to mobilize and increase their copy number within chromosomes. These elements are important for eukaryotic genome structure and evolution and lately have been considered as potential drivers for introducing transgenes into pathogen-transmitting insects as a means to control vector-borne diseases. The aim of this work was to catalog the diversity and abundance of TEs within the Anopheles gambiae genome using the PILER tool and to consolidate a database in the form of a hyperlinked spreadsheet containing detailed and readily available information about the TEs present in the genome of An. gambiae. Results Here we present the spreadsheet named AnoTExcel that constitutes a database with detailed information on most of the repetitive elements present in the genome of the mosquito. Despite previous work on this topic, our approach permitted the identification and characterization both of previously described and novel TEs that are further described in detailed. Conclusions Identification and characterization of TEs in a given genome is important as a way to understand the diversity and evolution of the whole set of TEs present in a given species. This work contributes to a better understanding of the landscape of TEs present in the mosquito genome. It also presents a novel platform for the identification, analysis, and characterization of TEs on sequenced genomes.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sergio Arouca, Av, Brasil, 4365, 21040 360, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
15
|
Abstract
Transposons are found in virtually all organisms and play fundamental roles in genome evolution. They can also acquire new functions in the host organism and some have been developed as incisive genetic tools for transformation and mutagenesis. The hAT transposon superfamily contains members from the plant and animal kingdoms, some of which are active when introduced into new host organisms. We have identified two new active hAT transposons, AeBuster1, from the mosquito Aedes aegypti and TcBuster from the red flour beetle Tribolium castaneum. Activity of both transposons is illustrated by excision and transposition assays performed in Drosophila melanogaster and Ae. aegypti and by in vitro strand transfer assays. These two active insect transposons are more closely related to the Buster sequences identified in humans than they are to the previously identified active hAT transposons, Ac, Tam3, Tol2, hobo, and Hermes. We therefore reexamined the structural and functional relationships of hAT and hAT-like transposase sequences extracted from genome databases and found that the hAT superfamily is divided into at least two families. This division is supported by a difference in target-site selections generated by active transposons of each family. We name these families the Ac and Buster families after the first identified transposon or transposon-like sequence in each. We find that the recently discovered SPIN transposons of mammals are located within the family of Buster elements.
Collapse
|
16
|
Benedict M, Eckerstorfer M, Franz G, Gaugitsch H, Greiter A, Heissenberger A, Knols B, Kumschick S, Nentwig W, Rabitsch W. Defining Environment Risk Assessment Criteria for Genetically Modified Insects to be placed on the EU Market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Mota NR, Ludwig A, Valente VLDS, Loreto ELS. Harrow: new Drosophila hAT transposons involved in horizontal transfer. INSECT MOLECULAR BIOLOGY 2010; 19:217-228. [PMID: 20017754 DOI: 10.1111/j.1365-2583.2009.00977.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study we characterize the transposable elements harrow, which belong to the hAT superfamily of DNA transposons. Searches for harrow sequences were performed in 65 Drosophilidae species, mainly representing Neotropical and cosmopolitan groups from the genus Drosophila. The nucleotide divergence among elements found in these species suggests that harrow sequences could be clustered in a subfamily. The patchy distribution throughout the genus Drosophila and the high similarity presented between all harrow sequences indicate that horizontal transfer could play a major role in the evolution of harrow elements. The results obtained suggest an evolutionary scenario in which harrow would have undergone multiple horizontal transfer events in the Neotropics, involving D. tripuncatata, D. mojavensis (Subgenus Drosophila) and several species of the willistoni and saltans groups (subgenus Sophophora).
Collapse
Affiliation(s)
- N R Mota
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
18
|
Deprá M, Panzera Y, Ludwig A, Valente VLS, Loreto ELS. hosimary: a new hAT transposon group involved in horizontal transfer. Mol Genet Genomics 2010; 283:451-9. [DOI: 10.1007/s00438-010-0531-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
19
|
Damasceno JD, Beverley SM, Tosi LRO. A transposon toolkit for gene transfer and mutagenesis in protozoan parasites. Genetica 2009; 138:301-11. [PMID: 19763844 DOI: 10.1007/s10709-009-9406-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 08/25/2009] [Indexed: 11/27/2022]
Abstract
Protozoan parasites affect millions of people around the world. Treatment and control of these diseases are complicated partly due to the intricate biology of these organisms. The interactions of species of Plasmodium, Leishmania and trypanosomes with their hosts are mediated by an unusual control of gene expression that is not fully understood. The availability of the genome sequence of these protozoa sets the stage for using more comprehensive, genome-wide strategies to study gene function. Transposons are effective tools for the systematic introduction of genetic alterations and different transposition systems have been adapted to study gene function in these human pathogens. A mariner transposon toolkit for use in vivo or in vitro in Leishmania parasites has been developed and can be used in a variety of applications. These modified mariner elements not only permit the inactivation of genes, but also mediate the rescue of translational gene fusions, bringing a major contribution to the investigation of Leishmania gene function. The piggyBac and Tn5 transposons have also been shown to mobilize across Plasmodium spp. genomes circumventing the current limitations in the genetic manipulation of these organisms.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
20
|
O'Brochta DA, Handler AM. Perspectives on the state of insect transgenics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:1-18. [PMID: 18510010 DOI: 10.1007/978-0-387-78225-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetic transformation is a critical component to the fundamental genetic analysis of insect species and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which are currently subject to genomic sequence analysis, and intensive population control measures that must be improved for better efficacy and cost-effectiveness. Transposon-mediated germ-line transformation has been the ultimate goal for most fundamental and practical studies, and impressive strides have been made in recent development of transgene vector and marker systems for several mosquito species. This has resulted in rapid advances in functional genomic sequence analysis and new strategies for biological control based on conditional lethality. Importantly, advances have also been made in our ability to use these systems more effectively in terms of enhanced stability and targeting to specific genomic loci. Nevertheless, not all insects are currently amenable to germ-line transformation techniques, and thus advances in transient somatic expression and paratransgenesis have also been critical, if not preferable for some applications. Of particular importance is how this technology will be used for practical application. Early ideas for population replacement of indigenous pests with innocuous transgenic siblings by transposon-vector spread, may require reevaluation in terms of our current knowledge of the behavior of transposons currently available for transformation. The effective implementation of any control program using released transgenics, will also benefit from broadening the perspective of these control measures as being more mainstream than exotic.
Collapse
Affiliation(s)
- David A O'Brochta
- University of Maryland Biotechnology Institute, Center for Biosystems Research, Rockville, MD, USA.
| | | |
Collapse
|
21
|
Urasaki A, Mito T, Noji S, Ueda R, Kawakami K. Transposition of the vertebrate Tol2 transposable element in Drosophila melanogaster. Gene 2008; 425:64-8. [PMID: 18775483 DOI: 10.1016/j.gene.2008.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/24/2008] [Accepted: 08/05/2008] [Indexed: 11/16/2022]
Abstract
The Tol2 element is a transposon found from a genome of a vertebrate, a small teleost medaka fish. Tol2 encodes a gene for a transposase which is active in vertebrate animals so far tested; for instance, in fish, frog, chicken and mammals, and transgenesis methods using Tol2 have been developed in these model vertebrates. However, it has not been known whether Tol2 can transpose in animals other than vertebrates. Here we report transposition of Tol2 in an invertebrate Drosophila melanogaster. First, we injected a transposon donor plasmid containing a Tol2 construct and mRNA encoding the Tol2 transposase into Drosophila eggs, and found that the Tol2 construct could be excised from the plasmid. Second, we crossed the injected flies, raised the offspring, and found that the Tol2 construct was integrated into the genome of germ cells and transmitted to the next generation. Finally, we constructed a Tol2 construct containing the white gene and injected the transposon donor plasmid and the transposase mRNA into fertilized eggs from the white mutant. We analyzed their offspring, and found that G1 flies with wild type red eyes could be obtained from 35% of the injected fly. We cloned and sequenced 34 integration loci from these lines and showed that these insertions were indeed created through transposition and distributed throughout the genome. Our present study demonstrates that the medaka fish Tol2 transposable element does not require vertebrate-specific host factors for its transposition, and also provides a possibility that Tol2 may be used as a new genetic tool for transgenesis and genome analysis in Drosophila.
Collapse
Affiliation(s)
- Akihiro Urasaki
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
22
|
Sparagano OAE, De Luna CJ. From population structure to genetically-engineered vectors: New ways to control vector-borne diseases? INFECTION GENETICS AND EVOLUTION 2008; 8:520-5. [PMID: 17560836 DOI: 10.1016/j.meegid.2007.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/01/2007] [Indexed: 11/18/2022]
Abstract
Epidemiological studies on vectors and the pathogens they can carry (such as Borrelia burgdorferi) are showing some correlations between infection rates and biodiversity highlighting the "dilution" effects on potential vectors. Meanwhile other studies comparing sympatric small rodent species demonstrated that rodent species transmitting more pathogens are parasitized by more ectoparasite species. Studies on population structure and size have also proven a difference on the intensity of the parasitic infection. Furthermore, preliminary results in genetic improvement in mosquitoes (genetic markers, sexing, and genetic sterilization) will also increase performance as it has already been shown in field applications in developing countries. Recent results have greatly improved the fitness of genetically-modified insects compared to wild type populations with new approaches such as the post-integration elimination of transposon sequences, stabilising any insertion in genetically-modified insects. Encouraging results using the Sterile Insect Technique highlighted some metabolism manipulation to avoid the viability of offspring from released parent insect in the wild. Recent studies on vector symbionts would also bring a new angle in vector control capabilities, while complete DNA sequencing of some arthropods could point out ways to block the deadly impact on animal and human populations. These new potential approaches will improve the levels of control or even in some cases would eradicate vector species and consequently the vector-borne diseases they can transmit. In this paper we review some of the population biology theories, biological control methods, and the genetic techniques that have been published in the last years that are recommended to control for vector-borne diseases.
Collapse
Affiliation(s)
- O A E Sparagano
- School of Agriculture, Food, and Rural Development, Agriculture Building, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
23
|
Subramanian RA, Akala OO, Adejinmi JO, O'Brochta DA. Topi, an IS630/Tc1/mariner-type transposable element in the African malaria mosquito, Anopheles gambiae. Gene 2008; 423:63-71. [PMID: 18634859 DOI: 10.1016/j.gene.2008.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 11/19/2022]
Abstract
IS630/Tc1/mariner elements are diverse and widespread within insects. The African malaria mosquito, Anopheles gambiae, contains over 30 families of IS630/Tc1/mariner elements although few have been studied in any detail. To examine the history of Topi elements in An. gambiae populations, Topi elements (n=73) were sampled from five distinct populations of An. gambiae from eastern and western Africa and evaluated with respect to copy number, nucleotide diversity and insertion site-occupancy frequency. Topi 1 and 2 elements were abundant (10-34 per diploid genome) and highly diverse (pi=0.051). Elements from mosquitoes collected in Nigeria were Topi 2 elements and those from mosquitoes collected in Mozambique were Topi 1 elements. Of the 49 Topi transposase open reading frames sequenced none were found to be identical. Intact elements with complete transposase open reading frames were common, although based on insertion site-occupancy frequency data it appeared that genetic drift was the major force acting on these IS630/Tc1/mariner-type elements. Topi 3 elements were not recovered from any of the populations sampled in this study and appear to be rare elements in An. gambiae, possibly due to a recent introduction.
Collapse
Affiliation(s)
- Ramanand A Subramanian
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | | | | | | |
Collapse
|
24
|
Ray DA, Feschotte C, Pagan HJT, Smith JD, Pritham EJ, Arensburger P, Atkinson PW, Craig NL. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res 2008; 18:717-28. [PMID: 18340040 DOI: 10.1101/gr.071886.107] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DNA transposons, or class 2 transposable elements, have successfully propagated in a wide variety of genomes. However, it is widely believed that DNA transposon activity has ceased in mammalian genomes for at least the last 40 million years. We recently reported evidence for the relatively recent activity of hAT and Helitron elements, two distinct groups of DNA transposons, in the lineage of the vespertilionid bat Myotis lucifugus. Here, we describe seven additional families that have also been recently active in the bat lineage. Early vespertilionid genome evolution was dominated by the activity of Helitrons, mariner-like and Tc2-like elements. This was followed by the colonization of Tc1-like elements, and by a more recent explosion of hAT-like elements. Finally, and most recently, piggyBac-like elements have amplified within the Myotis genome and our results indicate that one of these families is probably still expanding in natural populations. Together, these data suggest that there has been tremendous recent activity of various DNA transposons in the bat lineage that far exceeds those previously reported for any mammalian lineage. The diverse and recent populations of DNA transposons in genus Myotis will provide an unprecedented opportunity to study the impact of this class of elements on mammalian genome evolution and to better understand what makes some species more susceptible to invasion by genomic parasites than others.
Collapse
Affiliation(s)
- David A Ray
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tang M, Bideshi DK, Park HW, Federici BA. Iteron-binding ORF157 and FtsZ-like ORF156 proteins encoded by pBtoxis play a role in its replication in Bacillus thuringiensis subsp. israelensis. J Bacteriol 2007; 189:8053-8. [PMID: 17873046 PMCID: PMC2168668 DOI: 10.1128/jb.00908-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified a minireplicon of pBtoxis from Bacillus thuringiensis subsp. israelensis that contained an operon encoding two novel proteins (ORF156 and ORF157), both of which are required for replication. ORF157 contains a helix-turn-helix motif and shares no homology with known plasmid replication proteins (Rep), and ORF156 contains the signature motif present in FtsZ/tubulin proteins, the latter of which are known to function in cell division and chromosome segregation. Here we show that the minimal sequence composed of four 12-bp imperfect direct repeats (iterons) in the pBtoxis minireplicon was sufficient to replicate a reporter plasmid in B. thuringiensis subsp. israelensis when ORF156 and ORF157 functions were provided in trans. To further investigate the roles of ORF156 and ORF157 in pBtoxis replication, six-histidine-tagged recombinant rORF156 and rORF157 proteins were purified from Escherichia coli and used in electrophoretic mobility shift assays. Our results demonstrated that rORF157, but not rORF156, binds specifically to the pBtoxis iterons, suggesting that ORF157 functions as a Rep protein. Although rORF156 did not bind to the iteron sequence, we showed that it bound to rORF157-DNA complexes. In addition, we showed that rORF156 has GTPase activity characteristic of the FtsZ/tubulin superfamily of proteins. Taken together, these results suggest that the iterons compose the minimal replication origin (ori) of pBtoxis and that ORF157 and ORF156 are involved in the initiation of pBtoxis replication and possibly in the segregation and partitioning of this plasmid to daughter cells.
Collapse
Affiliation(s)
- Mujin Tang
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
26
|
Subramanian RA, Arensburger P, Atkinson PW, O'Brochta DA. Transposable element dynamics of the hAT element Herves in the human malaria vector Anopheles gambiae s.s. Genetics 2007; 176:2477-87. [PMID: 17603116 PMCID: PMC1950647 DOI: 10.1534/genetics.107.071811] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements are being considered as genetic drive agents for introducing phenotype-altering genes into populations of vectors of human disease. The dynamics of endogenous elements will assist in predicting the behavior of introduced elements. Transposable element display was used to estimate the site-occupancy frequency distribution of Herves in six populations of Anopheles gambiae s.s. The site-occupancy distribution data suggest that the element has been recently active within the sampled populations. All 218 individuals sampled contained at least one copy of Herves with a mean of 3.6 elements per diploid genome. No significant differences in copy number were observed among populations. Nucleotide polymorphism within the element was high (pi = 0.0079 in noncoding sequences and 0.0046 in coding sequences) relative to that observed in some of the more well-studied elements in Drosophila melanogaster. In total, 33 distinct forms of Herves were found on the basis of the sequence of the first 528 bp of the transposase open reading frame. Only two forms were found in all six study populations. Although Herves elements in An. gambiae are quite diverse, 85% of the individuals examined had evidence of complete forms of the element. Evidence was found for the lateral transfer of Herves from an unknown source into the An. gambiae lineage prior to the diversification of the An. gambiae species complex. The characteristics of Herves in An. gambiae are somewhat unlike those of P elements in D. melanogaster.
Collapse
Affiliation(s)
- Ramanand A Subramanian
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
27
|
Buszczak M, Paterno S, Lighthouse D, Bachman J, Planck J, Owen S, Skora AD, Nystul TG, Ohlstein B, Allen A, Wilhelm JE, Murphy TD, Levis RW, Matunis E, Srivali N, Hoskins RA, Spradling AC. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 2006; 175:1505-31. [PMID: 17194782 PMCID: PMC1840051 DOI: 10.1534/genetics.106.065961] [Citation(s) in RCA: 444] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metazoan physiology depends on intricate patterns of gene expression that remain poorly known. Using transposon mutagenesis in Drosophila, we constructed a library of 7404 protein trap and enhancer trap lines, the Carnegie collection, to facilitate gene expression mapping at single-cell resolution. By sequencing the genomic insertion sites, determining splicing patterns downstream of the enhanced green fluorescent protein (EGFP) exon, and analyzing expression patterns in the ovary and salivary gland, we found that 600-900 different genes are trapped in our collection. A core set of 244 lines trapped different identifiable protein isoforms, while insertions likely to act as GFP-enhancer traps were found in 256 additional genes. At least 8 novel genes were also identified. Our results demonstrate that the Carnegie collection will be useful as a discovery tool in diverse areas of cell and developmental biology and suggest new strategies for greatly increasing the coverage of the Drosophila proteome with protein trap insertions.
Collapse
Affiliation(s)
- Michael Buszczak
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
O'Brochta DA, Subramanian RA, Orsetti J, Peckham E, Nolan N, Arensburger P, Atkinson PW, Charlwood DJ. hAT element population genetics in Anopheles gambiae s.l. in Mozambique. Genetica 2006; 127:185-98. [PMID: 16850223 DOI: 10.1007/s10709-005-3535-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 09/26/2005] [Indexed: 10/24/2022]
Abstract
Herves is a functional Class II transposable element in Anopheles gambiae belonging to the hAT superfamily of elements. Class II transposable elements are used as gene vectors in this species and are also being considered as genetic drive agents for spreading desirable genes through natural populations as part of an effort to control malaria transmission. In this study, Herves was investigated in populations of Anopheles gambiae s.s., Anopheles arabiensis and Anopheles merus in Mozambique over a period of 2 years. The copy number of Herves within these three species was approximately 5 copies per diploid genome and did not differ among species or between years. Based on the insertion-site occupancy-frequency distribution and existing models of transposable element dynamics, Herves appears to be transpositionally active currently or, at least recently, in all species tested. Ninety-five percent of the individuals within the populations of the three species tested contained intact elements with complete Herves transposase genes and this is consistent with the idea that these elements are currently active.
Collapse
Affiliation(s)
- David A O'Brochta
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Building 036/Room 5115, College Park, MD 20742, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The elegant mechanisms by which naturally occurring selfish genetic elements, such as transposable elements, meiotic drive genes, homing endonuclease genes and Wolbachia, spread at the expense of their hosts provide some of the most fascinating and remarkable subjects in evolutionary genetics. These elements also have enormous untapped potential to be used in the control of some of the world's most devastating diseases. Effective gene drive systems for spreading genes that can block the transmission of insect-borne pathogens are much needed. Here we explore the potential of natural gene drive systems and discuss the artificial constructs that could be envisaged for this purpose.
Collapse
Affiliation(s)
- Steven P Sinkins
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | | |
Collapse
|