1
|
Li X, Perdomo IM, Rodrigues Alves Barbosa V, Diao C, Tarailo-Graovac M. The critical role of the iron-sulfur cluster and CTC components in DOG-1/BRIP1 function in Caenorhabditis elegans. Nucleic Acids Res 2024; 52:9586-9595. [PMID: 39011897 PMCID: PMC11381322 DOI: 10.1093/nar/gkae617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
FANCJ/BRIP1, initially identified as DOG-1 (Deletions Of G-rich DNA) in Caenorhabditis elegans, plays a critical role in genome integrity by facilitating DNA interstrand cross-link repair and resolving G-quadruplex structures. Its function is tightly linked to a conserved [4Fe-4S] cluster-binding motif, mutations of which contribute to Fanconi anemia and various cancers. This study investigates the critical role of the iron-sulfur (Fe-S) cluster in DOG-1 and its relationship with the cytosolic iron-sulfur protein assembly targeting complex (CTC). We found that a DOG-1 mutant, expected to be defective in Fe-S cluster binding, is primarily localized in the cytoplasm, leading to heightened DNA damage sensitivity and G-rich DNA deletions. We further discovered that the deletion of mms-19, a nonessential CTC component, also resulted in DOG-1 sequestered in cytoplasm and increased DNA damage sensitivity. Additionally, we identified that CIAO-1 and CIAO-2B are vital for DOG-1's stability and repair functions but unlike MMS-19 have essential roles in C. elegans. These findings confirm the CTC and Fe-S cluster as key elements in regulating DOG-1, crucial for genome integrity. Additionally, this study advances our understanding of the CTC's role in Fe-S protein regulation and development in C. elegans, offering a model to study its impact on multicellular organism development.
Collapse
Affiliation(s)
- Xiao Li
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Ivette Maria Menendez Perdomo
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Victoria Rodrigues Alves Barbosa
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Catherine Diao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Maja Tarailo-Graovac
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
2
|
Xu J, Sabatino B, Yan J, Ermakova G, Doering KRS, Taubert S. The unfolded protein response of the endoplasmic reticulum protects Caenorhabditis elegans against DNA damage caused by stalled replication forks. G3 (BETHESDA, MD.) 2024; 14:jkae017. [PMID: 38267027 PMCID: PMC10989892 DOI: 10.1093/g3journal/jkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
All animals must maintain genome and proteome integrity, especially when experiencing endogenous or exogenous stress. To cope, organisms have evolved sophisticated and conserved response systems: unfolded protein responses (UPRs) ensure proteostasis, while DNA damage responses (DDRs) maintain genome integrity. Emerging evidence suggests that UPRs and DDRs crosstalk, but this remains poorly understood. Here, we demonstrate that depletion of the DNA primases pri-1 or pri-2, which synthesize RNA primers at replication forks and whose inactivation causes DNA damage, activates the UPR of the endoplasmic reticulum (UPR-ER) in Caenorhabditis elegans, with especially strong activation in the germline. We observed activation of both the inositol-requiring-enzyme 1 (ire-1) and the protein kinase RNA-like endoplasmic reticulum kinase (pek-1) branches of the (UPR-ER). Interestingly, activation of the (UPR-ER) output gene heat shock protein 4 (hsp-4) was partially independent of its canonical activators, ire-1 and X-box binding protein (xbp-1), and instead required the third branch of the (UPR-ER), activating transcription factor 6 (atf-6), suggesting functional redundancy. We further found that primase depletion specifically induces the (UPR-ER), but not the distinct cytosolic or mitochondrial UPRs, suggesting that primase inactivation causes compartment-specific rather than global stress. Functionally, loss of ire-1 or pek-1 sensitizes animals to replication stress caused by hydroxyurea. Finally, transcriptome analysis of pri-1 embryos revealed several deregulated processes that could cause (UPR-ER) activation, including protein glycosylation, calcium signaling, and fatty acid desaturation. Together, our data show that the (UPR-ER), but not other UPRs, responds to replication fork stress and that the (UPR-ER) is required to alleviate this stress.
Collapse
Affiliation(s)
- Jiaming Xu
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Brendil Sabatino
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Junran Yan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Kelsie R S Doering
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Stefan Taubert
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- British Columbia Children’s Hospital Research Institute, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
3
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
5
|
McMullen M, Karakasis K, Madariaga A, Oza AM. Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061607. [PMID: 32560564 PMCID: PMC7352566 DOI: 10.3390/cancers12061607] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Platinum chemotherapy remains the cornerstone of treatment for epithelial ovarian cancer (OC) and Poly (ADP-ribose) polymerase inhibitors (PARPi) now have an established role as maintenance therapy. The mechanisms of action of these agents is, in many ways, complementary, and crucially reliant on the intracellular DNA Damage Repair (DDR) response. Here, we review mechanisms of primary and acquired resistance to treatment with platinum and PARPi, examining the interplay between both classes of agents. A key resistance mechanism appears to be the restoration of the Homologous Recombination (HR) repair pathway, through BRCA reversion mutations and epigenetic upregulation of BRCA1. Alterations in non-homologous end-joint (NHEJ) repair, replication fork protection, upregulation of cellular drug efflux pumps, reduction in PARP1 activity and alterations to the tumour microenvironment have also been described. These resistance mechanisms reveal molecular vulnerabilities, which may be targeted to re-sensitise OC to platinum or PARPi treatment. Promising therapeutic strategies include ATR inhibition, epigenetic re-sensitisation through DNMT inhibition, cell cycle checkpoint inhibition, combination with anti-angiogenic therapy, BET inhibition and G-quadruplex stabilisation. Translational studies to elucidate mechanisms of treatment resistance should be incorporated into future clinical trials, as understanding these biologic mechanisms is crucial to developing new and effective therapeutic approaches in advanced OC.
Collapse
Affiliation(s)
| | | | | | - Amit M. Oza
- Correspondence: ; Tel.: +1-416-946-4450; Fax: +1-416-946-4467
| |
Collapse
|
6
|
Bellelli R, Youds J, Borel V, Svendsen J, Pavicic-Kaltenbrunner V, Boulton SJ. Synthetic Lethality between DNA Polymerase Epsilon and RTEL1 in Metazoan DNA Replication. Cell Rep 2020; 31:107675. [PMID: 32460026 PMCID: PMC7262601 DOI: 10.1016/j.celrep.2020.107675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Genome stability requires coordination of DNA replication origin activation and replication fork progression. RTEL1 is a regulator of homologous recombination (HR) implicated in meiotic cross-over control and DNA repair in C. elegans. Through a genome-wide synthetic lethal screen, we uncovered an essential genetic interaction between RTEL1 and DNA polymerase (Pol) epsilon. Loss of POLE4, an accessory subunit of Pol epsilon, has no overt phenotype in worms. In contrast, the combined loss of POLE-4 and RTEL-1 results in embryonic lethality, accumulation of HR intermediates, genome instability, and cessation of DNA replication. Similarly, loss of Rtel1 in Pole4-/- mouse cells inhibits cellular proliferation, which is associated with persistent HR intermediates and incomplete DNA replication. We propose that RTEL1 facilitates genome-wide fork progression through its ability to metabolize DNA secondary structures that form during DNA replication. Loss of this function becomes incompatible with cell survival under conditions of reduced origin activation, such as Pol epsilon hypomorphy.
Collapse
Affiliation(s)
| | - Jillian Youds
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Valerie Borel
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | | | | | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
7
|
A Multimodal Genotoxic Anticancer Drug Characterized by Pharmacogenetic Analysis in Caenorhabditis elegans. Genetics 2020; 215:609-621. [PMID: 32414869 PMCID: PMC7337070 DOI: 10.1534/genetics.120.303169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 01/05/2023] Open
Abstract
New anticancer therapeutics require extensive in vivo characterization to identify endogenous and exogenous factors affecting efficacy, to measure toxicity and mutagenicity, and to determine genotypes that result in therapeutic sensitivity or resistance. We used Caenorhabditis elegans as a platform with which to characterize properties of the anticancer therapeutic CX-5461. To understand the processes that respond to CX-5461-induced damage, we generated pharmacogenetic profiles for a panel of C. elegans DNA replication and repair mutants with common DNA-damaging agents for comparison with the profile of CX-5461. We found that multiple repair pathways, including homology-directed repair, microhomology-mediated end joining, nucleotide excision repair, and translesion synthesis, were needed for CX-5461 tolerance. To determine the frequency and spectrum of CX-5461-induced mutations, we used a genetic balancer to capture CX-5461-induced mutations. We found that CX-5461 is mutagenic, resulting in both large copy number variations and a high frequency of single-nucleotide variations (SNVs), which are consistent with the pharmacogenetic profile for CX-5461. Whole-genome sequencing of CX-5461-exposed animals found that CX-5461-induced SNVs exhibited a distinct mutational signature. We also phenocopied the CX-5461 photoreactivity observed in clinical trials and demonstrated that CX-5461 generates reactive oxygen species when exposed to UVA radiation. Together, the data from C. elegans demonstrate that CX-5461 is a multimodal DNA-damaging anticancer agent.
Collapse
|
8
|
Berroyer A, Alvarado G, Larson ED. Response of Sulfolobus solfataricus Dpo4 polymerase in vitro to a DNA G-quadruplex. Mutagenesis 2020; 34:289-297. [PMID: 31169295 DOI: 10.1093/mutage/gez010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
Repetitive DNA sequences support the formation of structures that can interrupt replication and repair, leading to breaks and mutagenesis. One particularly stable structure is G-quadruplex (G4) DNA, which is four-stranded and formed from tandemly repetitive guanine bases. When folded within a template, G4 interferes with DNA synthesis. Similar to non-duplex structures, DNA base lesions can also halt an advancing replication fork, but the Y-family polymerases solve this problem by bypassing the damage. In order to better understand how guanine-rich DNA is replicated, we have investigated the activity of the model Y-family polymerase, Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), on guanine-rich templates in vitro. We find that Dpo4 progression on templates containing either a single GC-rich hairpin or a G4 DNA structure is greatly reduced and synthesis stalls at the structure. Human polymerase eta (hPol eta) showed the same pattern of stalling at G4; however, and in contrast to Klenow, hPol eta and Dpo4 partially synthesise into the guanine repeat. Substitution of the nucleotide selectivity residue in Dpo4 with alanine permitted ribonucleotide incorporation on unstructured templates, but this further reduced the ability of Dpo4 to synthesise across from the guanine repeats. The advancement of Dpo4 on G4 templates was highest when the reaction was supplied with only deoxycytidine triphosphate, suggesting that high-fidelity synthesis is favoured over misincorporation. Our results are consistent with a model where the Y-family polymerases pause upon encountering G4 structures but have an ability to negotiate some synthesis through tetrad-associated guanines. This suggests that the Y-family polymerases reduce mutagenesis by catalysing the accurate replication of repetitive DNA sequences, but most likely in concert with additional replication and structure resolution activities.
Collapse
Affiliation(s)
- Alexandra Berroyer
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Gloria Alvarado
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
9
|
Bhargava V, Goldstein CD, Russell L, Xu L, Ahmed M, Li W, Casey A, Servage K, Kollipara R, Picciarelli Z, Kittler R, Yatsenko A, Carmell M, Orth K, Amatruda JF, Yanowitz JL, Buszczak M. GCNA Preserves Genome Integrity and Fertility Across Species. Dev Cell 2019; 52:38-52.e10. [PMID: 31839537 DOI: 10.1016/j.devcel.2019.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
The propagation of species depends on the ability of germ cells to protect their genome from numerous exogenous and endogenous threats. While these cells employ ubiquitous repair pathways, specialized mechanisms that ensure high-fidelity replication, chromosome segregation, and repair of germ cell genomes remain incompletely understood. We identified Germ Cell Nuclear Acidic Peptidase (GCNA) as a conserved regulator of genome stability in flies, worms, zebrafish, and human germ cell tumors. GCNA contains an acidic intrinsically disordered region (IDR) and a protease-like SprT domain. In addition to chromosomal instability and replication stress, Gcna mutants accumulate DNA-protein crosslinks (DPCs). GCNA acts in parallel with the SprT domain protein Spartan. Structural analysis reveals that while the SprT domain is needed to limit DNA damage, the IDR imparts significant function. This work shows that GCNA protects germ cells from various sources of damage, providing insights into conserved mechanisms that promote genome integrity across generations.
Collapse
Affiliation(s)
- Varsha Bhargava
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Courtney D Goldstein
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Logan Russell
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Murtaza Ahmed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Li
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA; Tsinghua University MD Program, School of Medicine, Tsinghua University, Haidian District, Beijing 100084, PR China
| | - Amanda Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, 6000 Harry Hines Boulevard NA5.120F, Dallas, TX 75235, USA
| | - Rahul Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary Picciarelli
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Ralf Kittler
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexander Yatsenko
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Michelle Carmell
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, 6000 Harry Hines Boulevard NA5.120F, Dallas, TX 75235, USA
| | - James F Amatruda
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA.
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
11
|
Yang B, Xu X, Russell L, Sullenberger MT, Yanowitz JL, Maine EM. A DNA repair protein and histone methyltransferase interact to promote genome stability in the Caenorhabditis elegans germ line. PLoS Genet 2019; 15:e1007992. [PMID: 30794539 PMCID: PMC6402707 DOI: 10.1371/journal.pgen.1007992] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 03/06/2019] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
Histone modifications regulate gene expression and chromosomal events, yet how histone-modifying enzymes are targeted is poorly understood. Here we report that a conserved DNA repair protein, SMRC-1, associates with MET-2, the C. elegans histone methyltransferase responsible for H3K9me1 and me2 deposition. We used molecular, genetic, and biochemical methods to investigate the biological role of SMRC-1 and to explore its relationship with MET-2. SMRC-1, like its mammalian ortholog SMARCAL1, provides protection from DNA replication stress. SMRC-1 limits accumulation of DNA damage and promotes germline and embryonic viability. MET-2 and SMRC-1 localize to mitotic and meiotic germline nuclei, and SMRC-1 promotes an increase in MET-2 abundance in mitotic germline nuclei upon replication stress. In the absence of SMRC-1, germline H3K9me2 generally decreases after multiple generations at high culture temperature. Genetic data are consistent with MET-2 and SMRC-1 functioning together to limit replication stress in the germ line and in parallel to promote other germline processes. We hypothesize that loss of SMRC-1 activity causes chronic replication stress, in part because of insufficient recruitment of MET-2 to nuclei.
Collapse
Affiliation(s)
- Bing Yang
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Xia Xu
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Logan Russell
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | - Judith L. Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Eleanor M. Maine
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
12
|
Lerner LK, Sale JE. Replication of G Quadruplex DNA. Genes (Basel) 2019; 10:genes10020095. [PMID: 30700033 PMCID: PMC6409989 DOI: 10.3390/genes10020095] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
Collapse
Affiliation(s)
- Leticia Koch Lerner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
13
|
Faridounnia M, Folkers GE, Boelens R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 2018; 23:E3205. [PMID: 30563071 PMCID: PMC6320978 DOI: 10.3390/molecules23123205] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/28/2022] Open
Abstract
Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.
Collapse
Affiliation(s)
- Maryam Faridounnia
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Gert E Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
14
|
Frézal L, Demoinet E, Braendle C, Miska E, Félix MA. Natural Genetic Variation in a Multigenerational Phenotype in C. elegans. Curr Biol 2018; 28:2588-2596.e8. [PMID: 30078564 PMCID: PMC6984962 DOI: 10.1016/j.cub.2018.05.091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
Although heredity mostly relies on the transmission of DNA sequence, additional molecular and cellular features are heritable across several generations. In the nematode Caenorhabditis elegans, insights into such unconventional inheritance result from two lines of work. First, the mortal germline (Mrt) phenotype was defined as a multigenerational phenotype whereby a selfing lineage becomes sterile after several generations, implying multigenerational memory [1, 2]. Second, certain RNAi effects are heritable over several generations in the absence of the initial trigger [3-5]. Both lines of work converged when the subset of Mrt mutants that are heat sensitive were found to closely correspond to mutants defective in the RNAi-inheritance machinery, including histone modifiers [6-9]. Here, we report the surprising finding that several C. elegans wild isolates display a heat-sensitive mortal germline phenotype in laboratory conditions: upon chronic exposure to higher temperatures, such as 25°C, lines reproducibly become sterile after several generations. This phenomenon is reversible, as it can be suppressed by temperature alternations at each generation, suggesting a non-genetic basis for the sterility. We tested whether natural variation in the temperature-induced Mrt phenotype was of genetic nature by building recombinant inbred lines between the isolates MY10 (Mrt) and JU1395 (non-Mrt). Using bulk segregant analysis, we detected two quantitative trait loci. After further recombinant mapping and genome editing, we identified the major causal locus as a polymorphism in the set-24 gene, encoding a SET- and SPK-domain protein. We conclude that C. elegans natural populations may harbor natural genetic variation in epigenetic inheritance phenomena.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France; Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | | - Eric Miska
- Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK.
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, INSERM, École Normale Supérieure, Paris Sciences et Lettres, Paris, France.
| |
Collapse
|
15
|
Tyson JR, O'Neil NJ, Jain M, Olsen HE, Hieter P, Snutch TP. MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome. Genome Res 2018; 28:266-274. [PMID: 29273626 PMCID: PMC5793790 DOI: 10.1101/gr.221184.117] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/19/2017] [Indexed: 12/04/2022]
Abstract
Advances in long-read single molecule sequencing have opened new possibilities for 'benchtop' whole-genome sequencing. The Oxford Nanopore Technologies MinION is a portable device that uses nanopore technology that can directly sequence DNA molecules. MinION single molecule long sequence reads are well suited for de novo assembly of complex genomes as they facilitate the construction of highly contiguous physical genome maps obviating the need for labor-intensive physical genome mapping. Long sequence reads can also be used to delineate complex chromosomal rearrangements, such as those that occur in tumor cells, that can confound analysis using short reads. Here, we assessed MinION long-read-derived sequences for feasibility concerning: (1) the de novo assembly of a large complex genome, and (2) the elucidation of complex rearrangements. The genomes of two Caenorhabditis elegans strains, a wild-type strain and a strain containing two complex rearrangements, were sequenced with MinION. Up to 42-fold coverage was obtained from a single flow cell, and the best pooled data assembly produced a highly contiguous wild-type C. elegans genome containing 48 contigs (N50 contig length = 3.99 Mb) covering >99% of the 100,286,401-base reference genome. Further, the MinION-derived genome assembly expanded the C. elegans reference genome by >2 Mb due to a more accurate determination of repetitive sequence elements and assembled the complete genomes of two co-extracted bacteria. MinION long-read sequence data also facilitated the elucidation of complex rearrangements in a mutagenized strain. The sequence accuracy of the MinION long-read contigs (∼98%) was improved using Illumina-derived sequence data to polish the final genome assembly to 99.8% nucleotide accuracy when compared to the reference assembly.
Collapse
Affiliation(s)
- John R Tyson
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Nigel J O'Neil
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Miten Jain
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Hugh E Olsen
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
16
|
Zafar MK, Eoff RL. Translesion DNA Synthesis in Cancer: Molecular Mechanisms and Therapeutic Opportunities. Chem Res Toxicol 2017; 30:1942-1955. [PMID: 28841374 DOI: 10.1021/acs.chemrestox.7b00157] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The genomic landscape of cancer is one marred by instability, but the mechanisms that underlie these alterations are multifaceted and remain a topic of intense research. Cellular responses to DNA damage and/or replication stress can affect genome stability in tumors and influence the response of patients to therapy. In addition to direct repair, DNA damage tolerance (DDT) is an element of genomic maintenance programs that contributes to the etiology of several types of cancer. DDT mechanisms primarily act to resolve replication stress, and this can influence the effectiveness of genotoxic drugs. Translesion DNA synthesis (TLS) is an important component of DDT that facilitates direct bypass of DNA adducts and other barriers to replication. The central role of TLS in the bypass of drug-induced DNA lesions, the promotion of tumor heterogeneity, and the involvement of these enzymes in the maintenance of the cancer stem cell niche presents an opportunity to leverage inhibition of TLS as a way of improving existing therapies. In the review that follows, we summarize mechanisms of DDT, misregulation of TLS in cancer, and discuss the potential for targeting these pathways as a means of improving cancer therapies.
Collapse
Affiliation(s)
- Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
17
|
Xu H, Di Antonio M, McKinney S, Mathew V, Ho B, O'Neil NJ, Santos ND, Silvester J, Wei V, Garcia J, Kabeer F, Lai D, Soriano P, Banáth J, Chiu DS, Yap D, Le DD, Ye FB, Zhang A, Thu K, Soong J, Lin SC, Tsai AHC, Osako T, Algara T, Saunders DN, Wong J, Xian J, Bally MB, Brenton JD, Brown GW, Shah SP, Cescon D, Mak TW, Caldas C, Stirling PC, Hieter P, Balasubramanian S, Aparicio S. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun 2017; 8:14432. [PMID: 28211448 PMCID: PMC5321743 DOI: 10.1038/ncomms14432] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/28/2016] [Indexed: 12/29/2022] Open
Abstract
G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).
Collapse
Affiliation(s)
- Hong Xu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Marco Di Antonio
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Steven McKinney
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Veena Mathew
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Brandon Ho
- Department of Biochemistry and Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | - Nigel J. O'Neil
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Nancy Dos Santos
- Advanced Therapeutics, BC Cancer Agency and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jennifer Silvester
- Campbell Family Institute for Breast Cancer Research, Princess Margret Cancer Centre, 610 University Avenue, Toronto, Canada M5G 2M9
| | - Vivien Wei
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jessica Garcia
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Farhia Kabeer
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Priscilla Soriano
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Judit Banáth
- Department of Integrative Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Derek S. Chiu
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Damian Yap
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Daniel D. Le
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Frank B. Ye
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Anni Zhang
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Kelsie Thu
- Campbell Family Institute for Breast Cancer Research, Princess Margret Cancer Centre, 610 University Avenue, Toronto, Canada M5G 2M9
| | - John Soong
- Senhwa Biosciences, Inc., 9 F, No.205-1, Section 3, Peihsin Road, Hsintien District, New Taipei City 23143, Taiwan R.O.C
| | - Shu-chuan Lin
- Senhwa Biosciences, Inc., 9 F, No.205-1, Section 3, Peihsin Road, Hsintien District, New Taipei City 23143, Taiwan R.O.C
| | - Angela Hsin Chin Tsai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Tomo Osako
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Teresa Algara
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Darren N. Saunders
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jason Wong
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Jian Xian
- Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Marcel B. Bally
- Advanced Therapeutics, BC Cancer Agency and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - James D. Brenton
- Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S 3E1
| | - Sohrab P. Shah
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - David Cescon
- Campbell Family Institute for Breast Cancer Research, Princess Margret Cancer Centre, 610 University Avenue, Toronto, Canada M5G 2M9
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada M5S 1A8
| | - Tak W. Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margret Cancer Centre, 610 University Avenue, Toronto, Canada M5G 2M9
| | - Carlos Caldas
- Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - Peter C. Stirling
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | - Phil Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, and Department of Pathology and Laboratory Medicine, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| |
Collapse
|
18
|
Eddy S, Tillman M, Maddukuri L, Ketkar A, Zafar MK, Eoff RL. Human Translesion Polymerase κ Exhibits Enhanced Activity and Reduced Fidelity Two Nucleotides from G-Quadruplex DNA. Biochemistry 2016; 55:5218-29. [PMID: 27525498 DOI: 10.1021/acs.biochem.6b00374] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have investigated the in vitro properties of human Y-family polymerase κ (hpol κ) on G-quadruplex DNA (G4 DNA). Similar to hpol η, another Y-family member implicated in replication of G4 motifs, hpol κ bound G4 DNA with a 5.7-fold preference over control, non-G4 DNA. Results from pol extension assays are consistent with the notion that G-quadruplexes present a stronger barrier to DNA synthesis by hpol κ than they do to that by hpol η. However, kinetic analysis revealed that hpol κ activity increases considerably when the enzyme is 2-3 nucleotides from the G4 motif, a trend that was reported previously for hpol η, though the increase was less pronounced. The increase in hpol κ activity on G4 DNA was readily observed in the presence of either potassium or sodium but much less so when lithium was used in the buffer. The increased activity 2-3 nucleotides from the G4 motif was accompanied by a decrease in the fidelity of hpol κ when the counterion was either potassium or sodium but not in the presence of lithium. The activity of hpol κ decreased progressively as the primer was moved closer than 2 nucleotides from the G4 motif when either potassium or sodium was used to stabilize the G-quadruplex. Interestingly, the decrease in catalytic activity at the site of the quadruplex observed in potassium-containing buffer was accompanied by an increase in fidelity on G4 substrates versus control non-G4 substrates. This trend of increased fidelity in copying a tetrad-associated guanine was observed previously for hpol η, but not for the B-family member hpol ε, which exhibited a large decrease in both efficiency and fidelity in the attempt to copy the first guanine in the G4 motif. In summary, hpol κ activity was enhanced relative to those of other Y-family members when the enzyme is 2-3 nucleotides from the G4 motif, but hpol κ appears to be less competent than hpol η at copying tetrad-associated guanines.
Collapse
Affiliation(s)
- Sarah Eddy
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Magdalena Tillman
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
19
|
Getting Ready for the Dance: FANCJ Irons Out DNA Wrinkles. Genes (Basel) 2016; 7:genes7070031. [PMID: 27376332 PMCID: PMC4962001 DOI: 10.3390/genes7070031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence indicates that alternate DNA structures, which deviate from normal double helical DNA, form in vivo and influence cellular processes such as replication and transcription. However, our understanding of how the cellular machinery deals with unusual DNA structures such as G-quadruplexes (G4), triplexes, or hairpins is only beginning to emerge. New advances in the field implicate a direct role of the Fanconi Anemia Group J (FANCJ) helicase, which is linked to a hereditary chromosomal instability disorder and important for cancer suppression, in replication past unusual DNA obstacles. This work sets the stage for significant progress in dissecting the molecular mechanisms whereby replication perturbation by abnormal DNA structures leads to genomic instability. In this review, we focus on FANCJ and its role to enable efficient DNA replication when the fork encounters vastly abundant naturally occurring DNA obstacles, which may have implications for targeting rapidly dividing cancer cells.
Collapse
|
20
|
Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans. Genetics 2016; 203:133-45. [PMID: 26936927 DOI: 10.1534/genetics.115.185827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability.
Collapse
|
21
|
Lemmens B, van Schendel R, Tijsterman M. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nat Commun 2015; 6:8909. [PMID: 26563448 PMCID: PMC4654259 DOI: 10.1038/ncomms9909] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/14/2015] [Indexed: 12/29/2022] Open
Abstract
Faithful DNA replication is vital to prevent disease-causing mutations, chromosomal aberrations and malignant transformation. However, accuracy conflicts with pace and flexibility and cells rely on specialized polymerases and helicases to ensure effective and timely replication of genomes that contain DNA lesions or secondary structures. If and how cells can tolerate a permanent barrier to replication is, however, unknown. Here we show that a single unresolved G-quadruplexed DNA structure can persist through multiple mitotic divisions without changing conformation. Failed replication across a G-quadruplex causes single-strand DNA gaps that give rise to DNA double-strand breaks in subsequent cell divisions, which are processed by polymerase theta (POLQ)-mediated alternative end joining. Lineage tracing experiments further reveal that persistent G-quadruplexes cause genetic heterogeneity during organ development. Our data demonstrate that a single lesion can cause multiple unique genomic rearrangements, and that alternative end joining enables cells to proliferate in the presence of mitotically inherited replication blocks.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Human Genetics, Leiden University Medical Center, Postzone S-4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Postzone S-4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Postzone S-4-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
22
|
Cea V, Cipolla L, Sabbioneda S. Replication of Structured DNA and its implication in epigenetic stability. Front Genet 2015; 6:209. [PMID: 26136769 PMCID: PMC4468945 DOI: 10.3389/fgene.2015.00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 11/23/2022] Open
Abstract
DNA replication is an extremely risky process that cells have to endure in order to correctly duplicate and segregate their genome. This task is particularly sensitive to DNA damage and multiple mechanisms have evolved to protect DNA replication as a block to the replication fork could lead to genomic instability and possibly cell death. The DNA in the genome folds, for the most part, into the canonical B-form but in some instances can form complex secondary structures such as G-quadruplexes (G4). These G rich regions are thermodynamically stable and can constitute an obstacle to DNA and RNA metabolism. The human genome contains more than 350,000 sequences potentially capable to form G-quadruplexes and these structures are involved in a variety of cellular processes such as initiation of DNA replication, telomere maintenance and control of gene expression. Only recently, we started to understand how G4 DNA poses a problem to DNA replication and how its successful bypass requires the coordinated activity of ssDNA binding proteins, helicases and specialized DNA polymerases. Their role in the resolution and replication of structured DNA crucially prevents both genetic and epigenetic instability across the genome.
Collapse
Affiliation(s)
- Valentina Cea
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche , Pavia, Italy
| | - Lina Cipolla
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche , Pavia, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche , Pavia, Italy
| |
Collapse
|
23
|
Eddy S, Maddukuri L, Ketkar A, Zafar MK, Henninger EE, Pursell ZF, Eoff RL. Evidence for the kinetic partitioning of polymerase activity on G-quadruplex DNA. Biochemistry 2015; 54:3218-30. [PMID: 25903680 DOI: 10.1021/acs.biochem.5b00060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have investigated the action of the human DNA polymerase ε (hpol ε) and η (hpol η) catalytic cores on G-quadruplex (G4) DNA substrates derived from the promoter of the c-MYC proto-oncogene. The translesion enzyme hpol η exhibits a 6.2-fold preference for binding to G4 DNA over non-G4 DNA, while hpol ε binds both G4 and non-G4 substrates with nearly equal affinity. Kinetic analysis of single-nucleotide insertion by hpol η reveals that it is able to maintain >25% activity on G4 substrates compared to non-G4 DNA substrates, even when the primer template junction is positioned directly adjacent to G22 (the first tetrad-associated guanine in the c-MYC G4 motif). Surprisingly, hpol η fidelity increases ~15-fold when copying G22. By way of comparison, hpol ε retains ~4% activity and has a 33-fold decrease in fidelity when copying G22. The fidelity of hpol η is ~100-fold greater than that of hpol ε when comparing the misinsertion frequencies of the two enzymes opposite a tetrad-associated guanine. The kinetic differences observed for the B- and Y-family pols on G4 DNA support a model in which a simple kinetic switch between replicative and TLS pols could help govern fork progress during G4 DNA replication.
Collapse
Affiliation(s)
- Sarah Eddy
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Amit Ketkar
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Maroof K Zafar
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| | - Erin E Henninger
- ‡Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| | - Zachary F Pursell
- ‡Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| | - Robert L Eoff
- †Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
24
|
Abstract
The various symptoms associated with hereditary defects in the DNA damage response (DDR), which range from developmental and neurological abnormalities and immunodeficiency to tissue-specific cancers and accelerated aging, suggest that DNA damage affects tissues differently. Mechanistic DDR studies are, however, mostly performed in vitro, in unicellular model systems or cultured cells, precluding a clear and comprehensive view of the DNA damage response of multicellular organisms. Studies performed in intact, multicellular animals models suggest that DDR can vary according to the type, proliferation and differentiation status of a cell. The nematode Caenorhabditis elegans has become an important DDR model and appears to be especially well suited to understand in vivo tissue-specific responses to DNA damage as well as the impact of DNA damage on development, reproduction and health of an entire multicellular organism. C. elegans germ cells are highly sensitive to DNA damage induction and respond via classical, evolutionary conserved DDR pathways aimed at efficient and error-free maintenance of the entire genome. Somatic tissues, however, respond differently to DNA damage and prioritize DDR mechanisms that promote growth and function. In this mini-review, we describe tissue-specific differences in DDR mechanisms that have been uncovered utilizing C. elegans as role model.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - Wim Vermeulen
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Tarailo-Graovac M, Wong T, Qin Z, Flibotte S, Taylor J, Moerman DG, Rose AM, Chen N. Spectrum of variations in dog-1/FANCJ and mdf-1/MAD1 defective Caenorhabditis elegans strains after long-term propagation. BMC Genomics 2015; 16:210. [PMID: 25880765 PMCID: PMC4369104 DOI: 10.1186/s12864-015-1402-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022] Open
Abstract
Background Whole and partial chromosome losses or gains and structural chromosome changes are hallmarks of human tumors. Guanine-rich DNA, which has a potential to form a G-quadruplex (G4) structure, is particularly vulnerable to changes. In Caenorhabditis elegans, faithful transmission of G-rich DNA is ensured by the DOG-1/FANCJ deadbox helicase. Results To identify a spectrum of mutations, after long-term propagation, we combined whole genome sequencing (WGS) and oligonucleotide array Comparative Genomic Hybridization (oaCGH) analysis of a C. elegans strain that was propagated, in the absence of DOG-1 and MDF-1/MAD1, for a total of 470 generations, with samples taken for long term storage (by freezing) in generations 170 and 270. We compared the genomes of F170 and F470 strains and identified 94 substitutions, 17 InDels, 3 duplications, and 139 deletions larger than 20 bp. These homozygous variants were predicted to impact 101 protein-coding genes. Phenotypic analysis of this strain revealed remarkable fitness recovery indicating that mutations, which have accumulated in the strain, are not only tolerated but also cooperate to achieve long-term population survival in the absence of DOG-1 and MDF-1. Furthermore, deletions larger than 20 bp were the only variants that frequently occurred in G-rich DNA. We showed that 126 of the possible 954 predicted monoG/C tracts, larger than 14 bp, were deleted in unc-46 mdf-1 such-4; dog-1 F470 (JNC170). Conclusions Here, we identified variants that accumulated in C. elegans’ genome after long-term propagation in the absence of DOG-1 and MDF-1. We showed that DNA sequences, with G4-forming potential, are vulnerable to deletion-formation in this genetic background. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1402-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maja Tarailo-Graovac
- Department of Molecular Biology and Biochemistry, Simon Fraser University, V5A 1S6, Burnaby, BC, Canada. .,Department of Medical Genetics, University of British Columbia, V6T 1Z3, Vancouver, BC, Canada. .,Current affiliation: Centre for Molecular Medicine and Therapeutics; Child and Family Research Institute, Vancouver, BC, Canada. .,Current affiliation: Treatable Intellectual Disability Endeavour in British Columbia, Vancouver, BC, Canada.
| | - Tammy Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, V5A 1S6, Burnaby, BC, Canada.
| | - Zhaozhao Qin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, V5A 1S6, Burnaby, BC, Canada.
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada.
| | - Jon Taylor
- Department of Zoology, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada.
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada.
| | - Ann M Rose
- Department of Medical Genetics, University of British Columbia, V6T 1Z3, Vancouver, BC, Canada.
| | - Nansheng Chen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, V5A 1S6, Burnaby, BC, Canada.
| |
Collapse
|
26
|
Wickramasinghe CM, Arzouk H, Frey A, Maiter A, Sale JE. Contributions of the specialised DNA polymerases to replication of structured DNA. DNA Repair (Amst) 2015; 29:83-90. [PMID: 25704659 DOI: 10.1016/j.dnarep.2015.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/16/2015] [Indexed: 01/06/2023]
Abstract
It is becoming increasingly clear that processive DNA replication is threatened not only by DNA damage but also by secondary structures that can form in the DNA template. Failure to resolve these structures promptly leads to both genetic instability, for instance DNA breaks and rearrangements, and to epigenetic instability, in which inaccurate propagation of the parental chromatin state leads to unscheduled changes in gene expression. Multiple overlapping mechanisms are needed to deal with the wide range of potential DNA structural challenges to replication. This review focuses on the emerging mechanisms by which specialised DNA polymerases, best known for their role in the replication of damaged DNA, contribute to the replication of undamaged but structured DNA, particularly G quadruplexes.
Collapse
Affiliation(s)
| | - Hayat Arzouk
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alexander Frey
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ahmed Maiter
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
27
|
Kim HM, Colaiácovo MP. ZTF-8 interacts with the 9-1-1 complex and is required for DNA damage response and double-strand break repair in the C. elegans germline. PLoS Genet 2014; 10:e1004723. [PMID: 25329393 PMCID: PMC4199516 DOI: 10.1371/journal.pgen.1004723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Germline mutations in DNA repair genes are linked to tumor progression. Furthermore, failure in either activating a DNA damage checkpoint or repairing programmed meiotic double-strand breaks (DSBs) can impair chromosome segregation. Therefore, understanding the molecular basis for DNA damage response (DDR) and DSB repair (DSBR) within the germline is highly important. Here we define ZTF-8, a previously uncharacterized protein conserved from worms to humans, as a novel factor involved in the repair of both mitotic and meiotic DSBs as well as in meiotic DNA damage checkpoint activation in the C. elegans germline. ztf-8 mutants exhibit specific sensitivity to γ-irradiation and hydroxyurea, mitotic nuclear arrest at S-phase accompanied by activation of the ATL-1 and CHK-1 DNA damage checkpoint kinases, as well as accumulation of both mitotic and meiotic recombination intermediates, indicating that ZTF-8 functions in DSBR. However, impaired meiotic DSBR progression partially fails to trigger the CEP-1/p53-dependent DNA damage checkpoint in late pachytene, also supporting a role for ZTF-8 in meiotic DDR. ZTF-8 partially co-localizes with the 9-1-1 DDR complex and interacts with MRT-2/Rad1, a component of this complex. The human RHINO protein rescues the phenotypes observed in ztf-8 mutants, suggesting functional conservation across species. We propose that ZTF-8 is involved in promoting repair at stalled replication forks and meiotic DSBs by transducing DNA damage checkpoint signaling via the 9-1-1 pathway. Our findings define a conserved function for ZTF-8/RHINO in promoting genomic stability in the germline.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Castillo Bosch P, Segura-Bayona S, Koole W, van Heteren JT, Dewar JM, Tijsterman M, Knipscheer P. FANCJ promotes DNA synthesis through G-quadruplex structures. EMBO J 2014; 33:2521-33. [PMID: 25193968 PMCID: PMC4282361 DOI: 10.15252/embj.201488663] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our genome contains many G-rich sequences, which have the propensity to fold into stable secondary DNA structures called G4 or G-quadruplex structures. These structures have been implicated in cellular processes such as gene regulation and telomere maintenance. However, G4 sequences are prone to mutations particularly upon replication stress or in the absence of specific helicases. To investigate how G-quadruplex structures are resolved during DNA replication, we developed a model system using ssDNA templates and Xenopus egg extracts that recapitulates eukaryotic G4 replication. Here, we show that G-quadruplex structures form a barrier for DNA replication. Nascent strand synthesis is blocked at one or two nucleotides from the G4. After transient stalling, G-quadruplexes are efficiently unwound and replicated. In contrast, depletion of the FANCJ/BRIP1 helicase causes persistent replication stalling at G-quadruplex structures, demonstrating a vital role for this helicase in resolving these structures. FANCJ performs this function independently of the classical Fanconi anemia pathway. These data provide evidence that the G4 sequence instability in FANCJ−/− cells and Fancj/dog1 deficient C. elegans is caused by replication stalling at G-quadruplexes.
Collapse
Affiliation(s)
- Pau Castillo Bosch
- Hubrecht Institute-KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, Utrecht, The Netherlands
| | - Sandra Segura-Bayona
- Hubrecht Institute-KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, Utrecht, The Netherlands
| | - Wouter Koole
- Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Puck Knipscheer
- Hubrecht Institute-KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, Utrecht, The Netherlands
| |
Collapse
|
29
|
van Kregten M, Tijsterman M. The repair of G-quadruplex-induced DNA damage. Exp Cell Res 2014; 329:178-83. [PMID: 25193076 DOI: 10.1016/j.yexcr.2014.08.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
G4 DNA motifs, which can form stable secondary structures called G-quadruplexes, are ubiquitous in eukaryotic genomes, and have been shown to cause genomic instability. Specialized helicases that unwind G-quadruplexes in vitro have been identified, and they have been shown to prevent genetic instability in vivo. In the absence of these helicases, G-quadruplexes can persist and cause replication fork stalling and collapse. Translesion synthesis (TLS) and homologous recombination (HR) have been proposed to play a role in the repair of this damage, but recently it was found in the nematode Caenorhabditis elegans that G4-induced genome alterations are generated by an error-prone repair mechanism that is dependent on the A-family polymerase Theta (Pol θ). Current data point towards a scenario where DNA replication blocked at G-quadruplexes causes DNA double strand breaks (DSBs), and where the choice of repair pathway that can act on these breaks dictates the nature of genomic alterations that are observed in various organisms.
Collapse
Affiliation(s)
- Maartje van Kregten
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
30
|
Meier B, Gartner A. Having a direct look: analysis of DNA damage and repair mechanisms by next generation sequencing. Exp Cell Res 2014; 329:35-41. [PMID: 25131498 PMCID: PMC4432029 DOI: 10.1016/j.yexcr.2014.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/04/2014] [Indexed: 11/25/2022]
Abstract
Genetic information is under constant attack from endogenous and exogenous sources, and the use of model organisms has provided important frameworks to understand how genome stability is maintained and how various DNA lesions are repaired. The advance of high throughput next generation sequencing (NGS) provides new inroads for investigating mechanisms needed for genome maintenance. These emerging studies, which aim to link genetic toxicology and mechanistic analyses of DNA repair processes in vivo, rely on defining mutational signatures caused by faulty replication, endogenous DNA damaging metabolites, or exogenously applied genotoxins; the analysis of their nature, their frequency and distribution. In contrast to classical studies, where DNA repair deficiency is assessed by reduced cellular survival, the localization of DNA repair factors and their interdependence as well as limited analysis of single locus reporter assays, NGS based approaches reveal the direct, quantal imprint of mutagenesis genome-wide, at the DNA sequence level. As we will show, such investigations require the analysis of DNA derived from single genotoxin treated cells, or DNA from cell populations regularly passaged through single cell bottlenecks when naturally occurring mutation accumulation is investigated. We will argue that the life cycle of the nematode Caenorhabditis elegans, its genetic malleability combined with whole genome sequencing provides an exciting model system to conduct such analysis.
Collapse
Affiliation(s)
- Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK.
| |
Collapse
|
31
|
Pillaire MJ, Bétous R, Hoffmann JS. Role of DNA polymerase κ in the maintenance of genomic stability. Mol Cell Oncol 2014; 1:e29902. [PMID: 27308312 PMCID: PMC4905163 DOI: 10.4161/mco.29902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022]
Abstract
To ensure high cell viability and genomic stability, cells have evolved two major mechanisms to deal with the constant challenge of DNA replication fork arrest during S phase of the cell cycle: (1) induction of the ataxia telangiectasia and Rad3-related (ATR) replication checkpoint mechanism, and (2) activation of a pathway that bypasses DNA damage and DNA with abnormal structure and is mediated by translesion synthesis (TLS) Y-family DNA polymerases. This review focuses on how DNA polymerase kappa (Pol κ), one of the most highly conserved TLS DNA polymerases, is involved in each of these pathways and thereby coordinates them to choreograph the response to a stalled replication fork. We also describe how loss of Pol κ regulation, which occurs frequently in human cancers, affects genomic stability and contributes to cancer development.
Collapse
Affiliation(s)
- Marie-Jeanne Pillaire
- Labellisée Ligue contre le Cancer 2013; INSERM Unit 1037; CNRS ERL 5294; Cancer Research Center of Toulouse; CHU Purpan; Toulouse, France; Université Paul Sabatier; University of Toulouse III; Toulouse, France
| | - Rémy Bétous
- Labellisée Ligue contre le Cancer 2013; INSERM Unit 1037; CNRS ERL 5294; Cancer Research Center of Toulouse; CHU Purpan; Toulouse, France; Université Paul Sabatier; University of Toulouse III; Toulouse, France
| | - Jean-Sébastien Hoffmann
- Labellisée Ligue contre le Cancer 2013; INSERM Unit 1037; CNRS ERL 5294; Cancer Research Center of Toulouse; CHU Purpan; Toulouse, France; Université Paul Sabatier; University of Toulouse III; Toulouse, France
| |
Collapse
|
32
|
Bharti SK, Khan I, Banerjee T, Sommers JA, Wu Y, Brosh RM. Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome. Cell Mol Life Sci 2014; 71:2625-39. [PMID: 24487782 PMCID: PMC4537069 DOI: 10.1007/s00018-014-1569-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/07/2014] [Accepted: 01/16/2014] [Indexed: 02/08/2023]
Abstract
In 2010, a new recessive cohesinopathy disorder, designated Warsaw breakage syndrome (WABS), was described. The individual with WABS displayed microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Cytogenetic analysis revealed mitomycin C (MMC)-induced chromosomal breakage; however, an additional sister chromatid cohesion defect was also observed. WABS is genetically linked to bi-allelic mutations in the ChlR1/DDX11 gene which encodes a protein of the conserved family of Iron-Sulfur (Fe-S) cluster DNA helicases. Mutations in the budding yeast ortholog of ChlR1, known as Chl1, were known to cause sister chromatid cohesion defects, indicating a conserved function of the gene. In 2012, three affected siblings were identified with similar symptoms to the original WABS case, and found to have a homozygous mutation in the conserved Fe-S domain of ChlR1, confirming the genetic linkage. Significantly, the clinically relevant mutations perturbed ChlR1 DNA unwinding activity. In addition to its genetic importance in human disease, ChlR1 is implicated in papillomavirus genome maintenance and cancer. Although its precise functions in genome homeostasis are still not well understood, ongoing molecular studies of ChlR1 suggest the helicase plays a critically important role in cellular replication and/or DNA repair.
Collapse
Affiliation(s)
- Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| | - Irfan Khan
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| | - Taraswi Banerjee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| | - Joshua A. Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| | - Yuliang Wu
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| |
Collapse
|
33
|
León-Ortiz AM, Svendsen J, Boulton SJ. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst) 2014; 19:152-62. [PMID: 24815912 DOI: 10.1016/j.dnarep.2014.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA secondary structures are largely advantageous for numerous cellular processes but can pose specific threats to the progression of the replication machinery and therefore genome duplication and cell division. A number of specialized enzymes dismantle these structures to allow replication fork progression to proceed faithfully. In this review, we discuss the in vitro and in vivo data that has lead to the identification of these enzymes in eukaryotes, and the evidence that suggests that they act specifically at replication forks to resolve secondary structures. We focus on the role of helicases, which catalyze the dissociation of nucleotide complexes, and on the role of nucleases, which cleave secondary structures to allow replication fork progression at the expense of local rearrangements. Finally, we discuss outstanding questions in terms of dismantling DNA secondary structures, as well as the interplay between diverse enzymes that act upon specific types of structures.
Collapse
Affiliation(s)
- Ana María León-Ortiz
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Jennifer Svendsen
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK.
| |
Collapse
|
34
|
Koole W, van Schendel R, Karambelas AE, van Heteren JT, Okihara KL, Tijsterman M. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat Commun 2014; 5:3216. [PMID: 24496117 DOI: 10.1038/ncomms4216] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/07/2014] [Indexed: 12/23/2022] Open
Abstract
Genomes contain many sequences that are intrinsically difficult to replicate. Tracts of tandem guanines, for instance, have the potential to adopt stable G-quadruplex structures, which are prone to cause genome alterations. Here we describe G4 DNA-induced mutagenesis in Caenorhabditis elegans and identify a non-canonical DNA break repair mechanism that generates deletions characterized by an extremely narrow size distribution, minimal homology of exactly one nucleotide at the junctions, and by the occasional presence of templated insertions. This typical mutation profile is fully dependent on the A-family polymerase Theta, the absence of which leads to profound loss of sequences surrounding G4 motifs. Theta-mediated end-joining prevails over non-homologous end joining and homologous recombination and prevents genomic havoc at replication fork barriers at the expense of small deletions. G4 DNA-induced deletions also manifest in the genomes of wild isolates of C. elegans, indicating a protective role for this pathway during evolution.
Collapse
Affiliation(s)
- Wouter Koole
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robin van Schendel
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Andrea E Karambelas
- Hubrecht Institute-KNAW-Utrecht University Medical Center, Uppsalalaan 8, 3584 CT, The Netherlands
| | - Jane T van Heteren
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Kristy L Okihara
- Hubrecht Institute-KNAW-Utrecht University Medical Center, Uppsalalaan 8, 3584 CT, The Netherlands
| | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
35
|
Lans H, Lindvall JM, Thijssen K, Karambelas AE, Cupac D, Fensgård O, Jansen G, Hoeijmakers JHJ, Nilsen H, Vermeulen W. DNA damage leads to progressive replicative decline but extends the life span of long-lived mutant animals. Cell Death Differ 2013; 20:1709-18. [PMID: 24013725 PMCID: PMC3824592 DOI: 10.1038/cdd.2013.126] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/18/2013] [Accepted: 08/01/2013] [Indexed: 11/09/2022] Open
Abstract
Human-nucleotide-excision repair (NER) deficiency leads to different developmental and segmental progeroid symptoms of which the pathogenesis is only partially understood. To understand the biological impact of accumulating spontaneous DNA damage, we studied the phenotypic consequences of DNA-repair deficiency in Caenorhabditis elegans. We find that DNA damage accumulation does not decrease the adult life span of post-mitotic tissue. Surprisingly, loss of functional ERCC-1/XPF even further extends the life span of long-lived daf-2 mutants, likely through an adaptive activation of stress signaling. Contrariwise, NER deficiency leads to a striking transgenerational decline in replicative capacity and viability of proliferating cells. DNA damage accumulation induces severe, stochastic impairment of development and growth, which is most pronounced in NER mutants that are also impaired in their response to ionizing radiation and inter-strand crosslinks. These results suggest that multiple DNA-repair pathways can protect against replicative decline and indicate that there might be a direct link between the severity of symptoms and the level of DNA-repair deficiency in patients.
Collapse
Affiliation(s)
- H Lans
- Department of Genetics, Biomedical Science, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Johnson NM, Lemmens BBLG, Tijsterman M. A role for the malignant brain tumour (MBT) domain protein LIN-61 in DNA double-strand break repair by homologous recombination. PLoS Genet 2013; 9:e1003339. [PMID: 23505385 PMCID: PMC3591299 DOI: 10.1371/journal.pgen.1003339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Malignant brain tumour (MBT) domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR) for the repair of DNA double-strand breaks (DSBs). lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT–deficient tumours may also have defective DSB repair. The genome is continually under threat from exogenous sources of DNA damage, as well as from sources that originate within the cell. DNA double-strand breaks (DSBs) are arguably the most problematic type of damage as they can cause dangerous chromosome rearrangements, which can lead to cancer, as well as mutation at the break site and/or cell death. A complex network of molecular pathways, collectively referred to as the DNA damage response (DDR), have evolved to protect the cell from these threats. We have discovered a new DDR factor, LIN-61, that promotes the repair of DSBs. This is a novel and unexpected role for LIN-61, which was previously known to act as a regulator of gene transcription during development.
Collapse
Affiliation(s)
- Nicholas M. Johnson
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
37
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
38
|
A DOG's View of Fanconi Anemia: Insights from C. elegans. Anemia 2012; 2012:323721. [PMID: 22690333 PMCID: PMC3368526 DOI: 10.1155/2012/323721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/27/2012] [Indexed: 11/22/2022] Open
Abstract
C. elegans provides an excellent model system for the study of the Fanconi Anemia (FA), one of the hallmarks of which is sensitivity to interstrand crosslinking agents. Central to our understanding of FA has been the investigation of DOG-1, the functional ortholog of the deadbox helicase FANCJ. Here we review the current understanding of the unique role of DOG-1 in maintaining stability of G-rich DNA in C. elegans and explore the question of why DOG-1 animals are crosslink sensitive. We propose a dynamic model in which noncovalently linked G-rich structures form and un-form in the presence of DOG-1. When DOG-1 is absent but crosslinking agents are present the G-rich structures are readily covalently crosslinked, resulting in increased crosslinks formation and thus giving increased crosslink sensitivity. In this interpretation DOG-1 is neither upstream nor downstream in the FA pathway, but works alongside it to limit the availability of crosslink substrates. This model reconciles the crosslink sensitivity observed in the absence of DOG-1 function with its unique role in maintaining G-Rich DNA and will help to formulate experiments to test this hypothesis.
Collapse
|
39
|
Chung G, O'Neil NJ, Rose AM. CHL-1 provides an essential function affecting cell proliferation and chromosome stability in Caenorhabditis elegans. DNA Repair (Amst) 2011; 10:1174-82. [PMID: 21968058 DOI: 10.1016/j.dnarep.2011.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/24/2011] [Accepted: 09/09/2011] [Indexed: 01/05/2023]
Abstract
A family of helicases that are important in maintaining genome stability is the iron-sulfur group. Members of this family include DOG-1/FANCJ, RTEL1, XPD and Chl1p/DDX11. In Caenorhabitis elegans, the predicted gene M03C11.2 has orthology to the CHL1 (Chromosome loss 1) gene in Saccharomyces cerevisiae and DDX11 (DEAD/H box polypeptide 11) in humans. In this paper, we show that the chl-1 gene in C. elegans is required for normal development and fertility. Mutants have lineage-independent cell proliferation defects that result in a Stu (sterile uncoordinated) phenotype, characterized by gonadal abnormalities and a reduced number of D motor neurons and seam cells. A chromosome stability defect is present in the germ cells, where an abnormal number of DAPI-staining chromosomes appear in diakinesis. CHL-1 function is required for the integrity of poly-guanine/poly-cytosine DNA in the absence of DOG-1/FANCJ: the loss of CHL-1 alone does not result in the deletion of G-tracts, but it does increase the number of deletions observed in the dog-1; chl-1 double mutant, indicating a role for CHL-1 during replication and repair. In addition, we observed that cohesin defects increased the number of deletions in the absence of DOG-1/FANCJ. Our results demonstrate a role for CHL-1 in cell proliferation and maintaining normal chromosome numbers, and implicate CHL-1 in chromosome stability and repair of unresolved secondary structures during replication.
Collapse
Affiliation(s)
- George Chung
- Department of Medical Genetics, University of British Columbia, 419-2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | | | | |
Collapse
|
40
|
Lans H, Vermeulen W. Nucleotide Excision Repair in Caenorhabditis elegans. Mol Biol Int 2011; 2011:542795. [PMID: 22091407 PMCID: PMC3195855 DOI: 10.4061/2011/542795] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/18/2011] [Indexed: 01/23/2023] Open
Abstract
Nucleotide excision repair (NER) plays an essential role in many organisms across life domains to preserve and faithfully transmit DNA to the next generation. In humans, NER is essential to prevent DNA damage-induced mutation accumulation and cell death leading to cancer and aging. NER is a versatile DNA repair pathway that repairs many types of DNA damage which distort the DNA helix, such as those induced by solar UV light. A detailed molecular model of the NER pathway has emerged from in vitro and live cell experiments, particularly using model systems such as bacteria, yeast, and mammalian cell cultures. In recent years, the versatility of the nematode C. elegans to study DNA damage response (DDR) mechanisms including NER has become increasingly clear. In particular, C. elegans seems to be a convenient tool to study NER during the UV response in vivo, to analyze this process in the context of a developing and multicellular organism, and to perform genetic screening. Here, we will discuss current knowledge gained from the use of C. elegans to study NER and the response to UV-induced DNA damage.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Medical Genetics Center, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Medical Genetics Center, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
41
|
Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. Proc Natl Acad Sci U S A 2011; 108:8305-10. [PMID: 21527717 DOI: 10.1073/pnas.1019290108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Methylation of histone H3 lysine 4 (H3K4me), a mark associated with gene activation, is mediated by SET1 and the related mixed lineage leukemia (MLL) histone methyltransferases (HMTs) across species. Mammals contain seven H3K4 HMTs, Set1A, Set1B, and MLL1-MLL5. The activity of SET1 and MLL proteins relies on protein-protein interactions within large multisubunit complexes that include three core components: RbBP5, Ash2L, and WDR5. It remains unclear how the composition and specificity of these complexes varies between cell types and during development. Caenorhabditis elegans contains one SET1 protein, SET-2, one MLL-like protein, SET-16, and single homologs of RbBP5, Ash2L, and WDR5. Here we show that SET-2 is responsible for the majority of bulk H3K4 methylation at all developmental stages. However, SET-2 and absent, small, or homeotic discs 2 (ASH-2) are differentially required for tri- and dimethylation of H3K4 (H3K4me3 and -me2) in embryos and adult germ cells. In embryos, whereas efficient H3K4me3 requires both SET-2 and ASH-2, H3K4me2 relies mostly on ASH-2. In adult germ cells by contrast, SET-2 serves a major role whereas ASH-2 is dispensable for H3K4me3 and most H3K4me2. Loss of SET-2 results in progressive sterility over several generations, suggesting an important function in the maintenance of a functional germ line. This study demonstrates that individual subunits of SET1-related complexes can show tissue specificity and developmental regulation and establishes C. elegans as a model to study SET1-related complexes in a multicellular organism.
Collapse
|
42
|
Sarkies P, Reams C, Simpson LJ, Sale JE. Epigenetic instability due to defective replication of structured DNA. Mol Cell 2011; 40:703-13. [PMID: 21145480 PMCID: PMC3145961 DOI: 10.1016/j.molcel.2010.11.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/30/2010] [Accepted: 09/10/2010] [Indexed: 01/22/2023]
Abstract
The accurate propagation of histone marks during chromosomal replication is proposed to rely on the tight coupling of replication with the recycling of parental histones to the daughter strands. Here, we show in the avian cell line DT40 that REV1, a key regulator of DNA translesion synthesis at the replication fork, is required for the maintenance of repressive chromatin marks and gene silencing in the vicinity of DNA capable of forming G-quadruplex (G4) structures. We demonstrate a previously unappreciated requirement for REV1 in replication of G4 forming sequences and show that transplanting a G4 forming sequence into a silent locus leads to its derepression in REV1-deficient cells. Together, our observations support a model in which failure to maintain processive DNA replication at G4 DNA in REV1-deficient cells leads to uncoupling of DNA synthesis from histone recycling, resulting in localized loss of repressive chromatin through biased incorporation of newly synthesized histones.
Collapse
Affiliation(s)
- Peter Sarkies
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Charlie Reams
- University of Cambridge Computer Laboratory, William Gates Building, 15, J.J. Thomson Avenue, Cambridge CB3 0FD, UK
| | - Laura J. Simpson
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Julian E. Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
- Corresponding author
| |
Collapse
|
43
|
Dai J, Cui X, Zhu Z, Hu W. Non-homologous end joining plays a key role in transgene concatemer formation in transgenic zebrafish embryos. Int J Biol Sci 2010; 6:756-68. [PMID: 21152116 PMCID: PMC2999851 DOI: 10.7150/ijbs.6.756] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 11/28/2010] [Indexed: 01/11/2023] Open
Abstract
This study focused on concatemer formation and integration pattern of transgenes in zebrafish embryos. A reporter plasmid based on enhanced green fluorescent protein (eGFP) driven by Cytomegalovirus (CMV) promoter, pCMV-pax6in-eGFP, was constructed to reflect transgene behavior in the host environment. After removal of the insertion fragment by double digestion with various combinations of restriction enzymes, linearized pCMV-pax6in-eGFP vectors were generated with different combinations of 5′-protruding, 3′-protruding, and blunt ends that were microinjected into zebrafish embryos. Repair of double-strand breaks (DSBs) was monitored by GFP expression following religation of the reporter gene. One-hundred-and-ninety-seven DNA fragments were amplified from GFP-positive embryos and sequenced to analyze the repair characteristics of different DSB end combinations. DSBs involving blunt and asymmetric protruding ends were repaired efficiently by direct ligation of blunt ends, ligation after blunting and fill-in, or removed by cutting. Repair of DSBs with symmetric 3′-3′ protrusions was less efficient and utilized template-directed repair. The results suggest that non-homologous end joining (NHEJ) was the principal mechanism of exogenous gene concatemer formation and integration of transgenes into the genome of transgenic zebrafish.
Collapse
Affiliation(s)
- Jun Dai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
44
|
Abstract
Germline mutations in the BRCA1 and BRCA2 genes are characterized by deficient repair of DNA double-strand breaks by homologous recombination. Defective DNA double-strand break repair has been not only implicated as a key contributor to tumorigenesis in mutation carriers but also represents a potential target for therapy. The transcriptional similarities between BRCA1-deficient tumors and sporadic tumors of the basal-like subtype have led to the investigation of homologous recombination repair-directed therapy in triple-negative tumors, which demonstrates overlap with the basal-like subtype. We broaden the scope of this topic by addressing a "repair-defective" rather than "BRCA1-like" phenotype. We discuss structural and functional aspects of key repair proteins including BRCA1, BRCA2, BRCA1 interacting protein C-terminal helicase 1, and partner and localizer of BRCA2 and describe the phenotypic consequences of their loss at the cellular, tissue, and organism level. We review potential mechanisms of repair pathway dysfunction in sporadic tumors and address how the identification of such defects may guide the application of repair-directed therapies.
Collapse
|
45
|
Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet 2010; 6:e1000941. [PMID: 20463888 PMCID: PMC2865526 DOI: 10.1371/journal.pgen.1000941] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 04/06/2010] [Indexed: 01/22/2023] Open
Abstract
Nucleotide Excision Repair (NER), which removes a variety of helix-distorting lesions from DNA, is initiated by two distinct DNA damage-sensing mechanisms. Transcription Coupled Repair (TCR) removes damage from the active strand of transcribed genes and depends on the SWI/SNF family protein CSB. Global Genome Repair (GGR) removes damage present elsewhere in the genome and depends on damage recognition by the XPC/RAD23/Centrin2 complex. Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light. Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans. In C. elegans, involvement of TCR and GGR in the UV-induced DNA damage response changes during development. In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged. Furthermore, we identify four ISWI/Cohesin and four SWI/SNF family chromatin remodeling factors that are implicated in the UV damage response in a developmental stage dependent manner. These in vivo studies strongly suggest that involvement of different repair pathways and chromatin remodeling proteins in UV-induced DNA repair depends on developmental stage of cells.
Collapse
|
46
|
Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11:196-207. [PMID: 20177395 DOI: 10.1038/nrm2851] [Citation(s) in RCA: 679] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitotic homologous recombination promotes genome stability through the precise repair of DNA double-strand breaks and other lesions that are encountered during normal cellular metabolism and from exogenous insults. As a result, homologous recombination repair is essential during proliferative stages in development and during somatic cell renewal in adults to protect against cell death and mutagenic outcomes from DNA damage. Mutations in mammalian genes encoding homologous recombination proteins, including BRCA1, BRCA2 and PALB2, are associated with developmental abnormalities and tumorigenesis. Recent advances have provided a clearer understanding of the connections between these proteins and of the key steps of homologous recombination and DNA strand exchange.
Collapse
|
47
|
Abstract
The FANCJ protein (also known as BACH1 and BRIP1) is a DNA helicase that is required to preserve the genetic and structural integrity of the genome in complex eukaryotes. In humans, mutations in FANCJ are associated with the chromosome instability disorder Fanconi's anemia and also with the inherited predisposition early-onset breast cancer. Here I will discuss the contribution of FANCJ to human disease, its role in maintenance of genome stability and some current thoughts on the mechanisms through which this is achieved.
Collapse
Affiliation(s)
- Kevin Hiom
- Biomedical Research Institute, Ninewells Hospital & Medical School, University of Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
48
|
Caenorhabditis elegans HIM-18/SLX-4 interacts with SLX-1 and XPF-1 and maintains genomic integrity in the germline by processing recombination intermediates. PLoS Genet 2009; 5:e1000735. [PMID: 19936019 PMCID: PMC2770170 DOI: 10.1371/journal.pgen.1000735] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/20/2009] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination (HR) is essential for the repair of blocked or collapsed replication forks and for the production of crossovers between homologs that promote accurate meiotic chromosome segregation. Here, we identify HIM-18, an ortholog of MUS312/Slx4, as a critical player required in vivo for processing late HR intermediates in Caenorhabditis elegans. DNA damage sensitivity and an accumulation of HR intermediates (RAD-51 foci) during premeiotic entry suggest that HIM-18 is required for HR–mediated repair at stalled replication forks. A reduction in crossover recombination frequencies—accompanied by an increase in HR intermediates during meiosis, germ cell apoptosis, unstable bivalent attachments, and subsequent chromosome nondisjunction—support a role for HIM-18 in converting HR intermediates into crossover products. Such a role is suggested by physical interaction of HIM-18 with the nucleases SLX-1 and XPF-1 and by the synthetic lethality of him-18 with him-6, the C. elegans BLM homolog. We propose that HIM-18 facilitates processing of HR intermediates resulting from replication fork collapse and programmed meiotic DSBs in the C. elegans germline. Homologous recombination (HR) is a process that provides for the accurate and efficient repair of DNA double-strand breaks (DSBs) incurred by cells, thereby maintaining genomic integrity. Proper processing of HR intermediates is critical for biological processes ranging from replication fork restart to the accurate partitioning of chromosomes during meiotic cell divisions. This is further emphasized by the fact that impaired processing of HR intermediates in both mitotic and meiotic cells can result in tumorigenesis and congenital defects. Therefore, the identification of components involved in HR is essential to understand the molecular mechanism of HR. Here, we identify HIM-18/SLX-4 in C. elegans, a protein conserved from yeast to humans that interacts with the nucleases SLX-1 and XPF-1 and is required for DSB repair in the germline. Impaired HIM-18 function results in increased DNA damage sensitivity, the accumulation of recombination intermediates, decreased meiotic crossover frequencies, altered late meiotic chromosome remodeling, the formation of fragile connections between homologs, and an increased chromosome nondisjunction. Finally, HIM-18 is localized to both mitotic and meiotic nuclei in wild-type germlines. We propose that HIM-18 function is required during the processing of late HR intermediates resulting from replication fork collapse and meiotic DSBs.
Collapse
|
49
|
Wu Y, Brosh RM. FANCJ helicase operates in the Fanconi Anemia DNA repair pathway and the response to replicational stress. Curr Mol Med 2009; 9:470-82. [PMID: 19519404 PMCID: PMC2763586 DOI: 10.2174/156652409788167159] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is an autosomal recessive disorder characterized by multiple congenital anomalies, progressive bone marrow failure, and high cancer risk. Cells from FA patients exhibit spontaneous chromosomal instability and hypersensitivity to DNA interstrand cross-linking (ICL) agents. Although the precise mechanistic details of the FA/BRCA pathway of ICL-repair are not well understood, progress has been made in the identification of the FA proteins that are required for the pathway. Among the 13 FA complementation groups from which all the FA genes have been cloned, only a few of the FA proteins are predicted to have direct roles in DNA metabolism. One of the more recently identified FA proteins, shown to be responsible for complementation of the FA complementation group J, is the BRCA1 Associated C-terminal Helicase (BACH1, designated FANCJ), originally identified as a protein associated with breast cancer. FANCJ has been proposed to function downstream of FANCD2 monoubiquitination, a critical event in the FA pathway. Evidence supports a role for FANCJ in a homologous recombination (HR) pathway of double strand break (DSB) repair. In this review, we will summarize the current knowledge in terms of FANCJ functions through its enzymatic activities and protein interactions. The molecular roles of FANCJ in DNA repair and the response to replicational stress will be discussed.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| |
Collapse
|
50
|
Eddy J, Maizels N. Selection for the G4 DNA motif at the 5' end of human genes. Mol Carcinog 2009; 48:319-25. [PMID: 19306310 DOI: 10.1002/mc.20496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Formation of G4 DNA may occur in the course of replication and transcription, and contribute to genomic instability. We have quantitated abundance of G4 motifs and potential for G4 DNA formation of the nontemplate strand of 5' exons and introns of transcripts of human genes. We find that, for all human genes, G4 motifs are enriched in 5' regions of transcripts relative to downstream regions; and in 5' regulatory regions relative to coding regions. Notably, although tumor suppressor genes are depleted and proto-oncogenes enriched in G4 motifs, abundance of G4 motifs in the 5' regions of transcripts of genes in these categories does not differ. These results support the hypothesis that G4 motifs are under selection in the human genome. They further show that for tumor suppressor genes and proto-oncogenes, independent selection determines potential for G4 DNA formation of 5' regulatory regions of transcripts and downstream coding regions.
Collapse
Affiliation(s)
- Johanna Eddy
- Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine, 1959 N.E. Pacific Street, Seattle, WA 98195-7650, USA
| | | |
Collapse
|