1
|
Tonelli A, Cousin P, Jankowski A, Wang B, Dorier J, Barraud J, Zunjarrao S, Gambetta MC. Systematic screening of enhancer-blocking insulators in Drosophila identifies their DNA sequence determinants. Dev Cell 2024:S1534-5807(24)00636-1. [PMID: 39532105 DOI: 10.1016/j.devcel.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long-range transcriptional activation of gene promoters by abundant enhancers in animal genomes calls for mechanisms to limit inappropriate regulation. DNA elements called insulators serve this purpose by shielding promoters from an enhancer when interposed. Unlike promoters and enhancers, insulators have not been systematically characterized due to lacking high-throughput screening assays, and questions regarding how insulators are distributed and encoded in the genome remain. Here, we establish "insulator-seq" as a plasmid-based massively parallel reporter assay in Drosophila cultured cells to perform a systematic insulator screen of selected genomic loci. Screening developmental gene loci showed that not all insulator protein binding sites effectively block enhancer-promoter communication. Deep insulator mutagenesis identified sequences flexibly positioned around the CTCF insulator protein binding motif that are critical for functionality. The ability to screen millions of DNA sequences without positional effect has enabled functional mapping of insulators and provided further insights into the determinants of insulators.
Collapse
Affiliation(s)
- Anastasiia Tonelli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleksander Jankowski
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Bihan Wang
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Jonas Barraud
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sanyami Zunjarrao
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
2
|
Zhang X, Avellaneda J, Spletter ML, Lemke SB, Mangeol P, Habermann BH, Schnorrer F. Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono. Curr Biol 2024; 34:4143-4159.e6. [PMID: 39163855 DOI: 10.1016/j.cub.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
Collapse
Affiliation(s)
- Xu Zhang
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China
| | - Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; Department of Physiological Chemistry, Biomedical Center, Ludwig Maximilians University of Munich, Großhaderner Strasse, Martinsried, 82152 Munich, Germany; Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rockhill Road, Kansas City, MO 64110, USA
| | - Sandra B Lemke
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
3
|
Kotb NM, Ulukaya G, Chavan A, Nguyen SC, Proskauer L, Joyce EF, Hasson D, Jagannathan M, Rangan P. Genome organization regulates nuclear pore complex formation and promotes differentiation during Drosophila oogenesis. Genes Dev 2024; 38:436-454. [PMID: 38866556 PMCID: PMC11216175 DOI: 10.1101/gad.351402.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ cell genes during differentiation, and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we found that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ cell genes into a silenced state and activating a group of oocyte genes and nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, cross-talk between genome architecture and NPCs is essential for successful cell fate transitions.
Collapse
Affiliation(s)
- Noor M Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany State University of New York (SUNY), Albany, New York 12202, USA
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12202, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Gulay Ulukaya
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ankita Chavan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Son C Nguyen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lydia Proskauer
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12202, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dan Hasson
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Madhav Jagannathan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA;
| |
Collapse
|
4
|
Salzler HR, Vandadi V, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592390. [PMID: 38766267 PMCID: PMC11100620 DOI: 10.1101/2024.05.03.592390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions of MSL3 (male-specific lethal 3) with histone marks; in particular, Set2-dependent H3 lysine-36 trimethylation (H3K36me3). However, Set2 might affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Further, it is difficult to parse male-specific effects from those that are simply X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 (residue) and Set2 (writer) mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global male-specific reduction of X-genes in Set2/H3K36 mutants, the effects were heterogeneous. We identified cohorts of genes whose expression was significantly altered following loss of H3K36 or Set2, but the changes were in opposite directions, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, analysis of combined H3.2K36R/H3.3K36R mutants neither showed consistent reduction in X-gene expression, nor any correlation with MSL3 binding. Examination of other developmental stages/tissues revealed additional layers of context-dependence. Our studies implicate BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 directly recruits the MSL complex. We propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
McKowen JK, Dassanayake M, Hart CM. The Tofu mutation restores female fertility to Drosophila with a null BEAF mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580197. [PMID: 38405992 PMCID: PMC10888741 DOI: 10.1101/2024.02.13.580197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Compensatory mutations offer clues to deciphering the role of a particular protein in cellular processes. Here we investigate an unknown compensatory mutation, present in the BEAFNP6377 fly line, that provides sufficient rescue of the defective ovary phenotype caused by null BEAF alleles to allow maintenance of fly stocks lacking the chromatin domain insulator proteins Boundary Element-Associated Factors BEAF-32A and BEAF-32B. We call this mutation Tofu. We employ both classical genetics and genomic sequencing to attempt to identify the mutation. We find evidence that points to a mutation in a predicted Polycomb response element upstream of the ribbon gene, which may lead to aberrant rib expression.
Collapse
Affiliation(s)
- J. Keller McKowen
- Louisiana State University Department of Biological Sciences, Baton Rouge, Louisiana, 70803
| | - Maheshi Dassanayake
- Louisiana State University Department of Biological Sciences, Baton Rouge, Louisiana, 70803
| | - Craig M. Hart
- Louisiana State University Department of Biological Sciences, Baton Rouge, Louisiana, 70803
| |
Collapse
|
6
|
Cavalheiro GR, Girardot C, Viales RR, Pollex T, Cao TBN, Lacour P, Feng S, Rabinowitz A, Furlong EEM. CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles. SCIENCE ADVANCES 2023; 9:eade1085. [PMID: 36735786 PMCID: PMC9897672 DOI: 10.1126/sciadv.ade1085] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 05/31/2023]
Abstract
The boundaries of topologically associating domains (TADs) are delimited by insulators and/or active promoters; however, how they are initially established during embryogenesis remains unclear. Here, we examined this during the first hours of Drosophila embryogenesis. DNA-FISH confirms that intra-TAD pairwise proximity is established during zygotic genome activation (ZGA) but with extensive cell-to-cell heterogeneity. Most newly formed boundaries are occupied by combinations of CTCF, BEAF-32, and/or CP190. Depleting each insulator individually from chromatin revealed that TADs can still establish, although with lower insulation, with a subset of boundaries (~10%) being more dependent on specific insulators. Some weakened boundaries have aberrant gene expression due to unconstrained enhancer activity. However, the majority of misexpressed genes have no obvious direct relationship to changes in domain-boundary insulation. Deletion of an active promoter (thereby blocking transcription) at one boundary had a greater impact than deleting the insulator-bound region itself. This suggests that cross-talk between insulators and active promoters and/or transcription might reinforce domain boundary insulation during embryogenesis.
Collapse
Affiliation(s)
- Gabriel R. Cavalheiro
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Baden-Württemberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Rebecca R. Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - T. B. Ngoc Cao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Perrine Lacour
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
- École Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France
| | - Songjie Feng
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| | - Eileen E. M. Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
7
|
McKowen JK, Avva SVSP, Maharjan M, Duarte FM, Tome JM, Judd J, Wood JL, Negedu S, Dong Y, Lis JT, Hart CM. The Drosophila BEAF insulator protein interacts with the polybromo subunit of the PBAP chromatin remodeling complex. G3 (BETHESDA, MD.) 2022; 12:jkac223. [PMID: 36029240 PMCID: PMC9635645 DOI: 10.1093/g3journal/jkac223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
The Drosophila Boundary Element-Associated Factor of 32 kDa (BEAF) binds in promoter regions of a few thousand mostly housekeeping genes. BEAF is implicated in both chromatin domain boundary activity and promoter function, although molecular mechanisms remain elusive. Here, we show that BEAF physically interacts with the polybromo subunit (Pbro) of PBAP, a SWI/SNF-class chromatin remodeling complex. BEAF also shows genetic interactions with Pbro and other PBAP subunits. We examine the effect of this interaction on gene expression and chromatin structure using precision run-on sequencing and micrococcal nuclease sequencing after RNAi-mediated knockdown in cultured S2 cells. Our results are consistent with the interaction playing a subtle role in gene activation. Fewer than 5% of BEAF-associated genes were significantly affected after BEAF knockdown. Most were downregulated, accompanied by fill-in of the promoter nucleosome-depleted region and a slight upstream shift of the +1 nucleosome. Pbro knockdown caused downregulation of several hundred genes and showed a correlation with BEAF knockdown but a better correlation with promoter-proximal GAGA factor binding. Micrococcal nuclease sequencing supports that BEAF binds near housekeeping gene promoters while Pbro is more important at regulated genes. Yet there is a similar general but slight reduction of promoter-proximal pausing by RNA polymerase II and increase in nucleosome-depleted region nucleosome occupancy after knockdown of either protein. We discuss the possibility of redundant factors keeping BEAF-associated promoters active and masking the role of interactions between BEAF and the Pbro subunit of PBAP in S2 cells. We identify Facilitates Chromatin Transcription (FACT) and Nucleosome Remodeling Factor (NURF) as candidate redundant factors.
Collapse
Affiliation(s)
- J Keller McKowen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Satya V S P Avva
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mukesh Maharjan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Jamie L Wood
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunday Negedu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yunkai Dong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Craig M Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
Herman N, Kadener S, Shifman S. The chromatin factor ROW cooperates with BEAF-32 in regulating long-range inducible genes. EMBO Rep 2022; 23:e54720. [PMID: 36245419 PMCID: PMC9724677 DOI: 10.15252/embr.202254720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Insulator proteins located at the boundaries of topological associated domains (TAD) are involved in higher-order chromatin organization and transcription regulation. However, it is still not clear how long-range contacts contribute to transcriptional regulation. Here, we show that relative-of-WOC (ROW) is essential for the long-range transcription regulation mediated by the boundary element-associated factor of 32kD (BEAF-32). We find that ROW physically interacts with heterochromatin proteins (HP1b and HP1c) and the insulator protein (BEAF-32). These proteins interact at TAD boundaries where ROW, through its AT-hook motifs, binds AT-rich sequences flanked by BEAF-32-binding sites and motifs. Knockdown of row downregulates genes that are long-range targets of BEAF-32 and bound indirectly by ROW (without binding motif). Analyses of high-throughput chromosome conformation capture (Hi-C) data reveal long-range interactions between promoters of housekeeping genes bound directly by ROW and promoters of developmental genes bound indirectly by ROW. Thus, our results show cooperation between BEAF-32 and the ROW complex, including HP1 proteins, to regulate the transcription of developmental and inducible genes through long-range interactions.
Collapse
Affiliation(s)
- Neta Herman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Sagiv Shifman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
9
|
Torres-Campana D, Horard B, Denaud S, Benoit G, Loppin B, Orsi GA. Three classes of epigenomic regulators converge to hyperactivate the essential maternal gene deadhead within a heterochromatin mini-domain. PLoS Genet 2022; 18:e1009615. [PMID: 34982772 PMCID: PMC8759638 DOI: 10.1371/journal.pgen.1009615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/14/2022] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
The formation of a diploid zygote is a highly complex cellular process that is entirely controlled by maternal gene products stored in the egg cytoplasm. This highly specialized transcriptional program is tightly controlled at the chromatin level in the female germline. As an extreme case in point, the massive and specific ovarian expression of the essential thioredoxin Deadhead (DHD) is critically regulated in Drosophila by the histone demethylase Lid and its partner, the histone deacetylase complex Sin3A/Rpd3, via yet unknown mechanisms. Here, we identified Snr1 and Mod(mdg4) as essential for dhd expression and investigated how these epigenomic effectors act with Lid and Sin3A to hyperactivate dhd. Using Cut&Run chromatin profiling with a dedicated data analysis procedure, we found that dhd is intriguingly embedded in an H3K27me3/H3K9me3-enriched mini-domain flanked by DNA regulatory elements, including a dhd promoter-proximal element essential for its expression. Surprisingly, Lid, Sin3a, Snr1 and Mod(mdg4) impact H3K27me3 and this regulatory element in distinct manners. However, we show that these effectors activate dhd independently of H3K27me3/H3K9me3, and that dhd remains silent in the absence of these marks. Together, our study demonstrates an atypical and critical role for chromatin regulators Lid, Sin3A, Snr1 and Mod(mdg4) to trigger tissue-specific hyperactivation within a unique heterochromatin mini-domain. Multicellular development depends on a tight control of gene expression in each cell type. This relies on the coordinated activities of nuclear proteins that interact with DNA or its histone scaffold to promote or restrict gene transcription. For example, we previously showed that the histone modifying enzymes Lid and Sin3A/Rpd3 are required in Drosophila ovaries for the massive expression of deadhead (dhd), a gene encoding for a thioredoxin that is essential for fertility. In this paper, we have further identified two additional dhd regulators, Snr1 and Mod(mdg4) and dissected the mechanism behind hyperactivation of this gene. Using the epigenomic profiling method Cut&Run with a dedicated data analysis approach, we unexpectedly found that dhd is embedded in an unusual chromatin mini-domain featuring repressive histone modifications H3K27me3 and H3K9me3 and flanked by two regulatory elements. However, we further showed that Lid, Sin3A, Snr1 and Mod(mdg4) behave like obligatory activators of dhd independently of this mini-domain. Our study unveils how multiple broad-acting epigenomic effectors operate in non-canonical manners to ensure a critical and specialized gene activation event. These findings challenge our knowledge on these regulatory mechanisms and their roles in development and pathology.
Collapse
Affiliation(s)
- Daniela Torres-Campana
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Béatrice Horard
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Sandrine Denaud
- Institute of Human Genetics, UMR 9002, CNRS, Université de Montpellier, Montpellier, France
| | - Gérard Benoit
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
- * E-mail: (BL); (GAO)
| | - Guillermo A. Orsi
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
- * E-mail: (BL); (GAO)
| |
Collapse
|
10
|
Melnikova LS, Molodina VV, Kostyuchenko MV, Georgiev PG, Golovnin AK. The BEAF-32 Protein Directly Interacts with Z4/putzig and Chriz/Chromator Proteins in Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2021; 498:184-189. [PMID: 34189647 DOI: 10.1134/s1607672921030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022]
Abstract
In Drosophila, the BEAF-32, Z4/putzig, and Chriz/Chromator proteins colocalize in the interbands of polytene chromosomes. It was assumed that these proteins can form a complex that affects the structure of chromatin. However, the mechanism of the formation of such a complex has not been studied. We have proved for the first time that the BEAF-32, Z4/putzig, and Chriz/Chromator proteins interact directly with each other and localized the protein domains that provide multiple protein-protein interactions. Based on the data obtained, we developed a model of the mechanism of the formation the BEAF/Z4/Chriz complex and its recruitment to chromatin.
Collapse
Affiliation(s)
- L S Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - V V Molodina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - M V Kostyuchenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A K Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Funikov SY, Rezvykh AP, Kulikova DA, Zelentsova ES, Protsenko LA, Chuvakova LN, Tyukmaeva VI, Arkhipova IR, Evgen'ev MB. Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins. Sci Rep 2020; 10:11893. [PMID: 32681087 PMCID: PMC7368049 DOI: 10.1038/s41598-020-68879-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/23/2020] [Indexed: 01/11/2023] Open
Abstract
Pericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silencing remain unknown. Here, we find that the promoter region of genes that can be embedded in both euchromatin and heterochromatin exhibits a conserved structure throughout the Drosophila phylogeny and carries motifs for binding of certain chromatin remodeling factors, including insulator proteins. Using ChIP-seq data, we demonstrate that evolutionary gene relocation between euchromatin and pericentric heterochromatin occurred with preservation of sites of insulation of BEAF-32 in evolutionarily distant species, i.e. D. melanogaster and D. virilis. Moreover, promoters of virtually all protein-coding genes located in heterochromatin in D. melanogaster are enriched with insulator proteins BEAF-32, GAF and dCTCF. Applying RNA-seq of a BEAF-32 mutant, we show that the impairment of BEAF-32 function has a complex effect on gene expression in D. melanogaster, affecting even those genes that lack BEAF-32 association in their promoters. We propose that conserved intrinsic properties of genes, such as sites of insulation near the promoter regions, may contribute to adaptation of genes to the heterochromatic environment and, hence, facilitate the evolutionary relocation of genes loci between euchromatin and heterochromatin.
Collapse
Affiliation(s)
- Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander P Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Dina A Kulikova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Lyudmila A Protsenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Lyubov N Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Venera I Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Overlapping but Distinct Sequences Play Roles in the Insulator and Promoter Activities of the Drosophila BEAF-Dependent scs' Insulator. Genetics 2020; 215:1003-1012. [PMID: 32554599 DOI: 10.1534/genetics.120.303344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
Chromatin domain insulators are thought to help partition the genome into genetic units called topologically associating domains (TADs). In Drosophila, TADs are often separated by inter-TAD regions containing active housekeeping genes and associated insulator binding proteins. This raises the question of whether insulator binding proteins are involved primarily in chromosomal TAD architecture or gene activation, or if these two activities are linked. The Boundary Element-Associated Factor of 32 kDa (BEAF-32, or BEAF for short) is usually found in inter-TADs. BEAF was discovered based on binding to the scs' insulator, and is important for the insulator activity of scs' and other BEAF binding sites. There are divergent promoters in scs' with a BEAF binding site by each. Here, we dissect the scs' insulator to identify DNA sequences important for insulator and promoter activity, focusing on the half of scs' with a high affinity BEAF binding site. We find that the BEAF binding site is important for both insulator and promoter activity, as is another sequence we refer to as LS4. Aside from that, different sequences play roles in insulator and promoter activity. So while there is overlap and BEAF is important for both, insulator and promoter activity can be separated.
Collapse
|
13
|
Dong Y, Avva SVSP, Maharjan M, Jacobi J, Hart CM. Promoter-Proximal Chromatin Domain Insulator Protein BEAF Mediates Local and Long-Range Communication with a Transcription Factor and Directly Activates a Housekeeping Promoter in Drosophila. Genetics 2020; 215:89-101. [PMID: 32179582 PMCID: PMC7198264 DOI: 10.1534/genetics.120.303144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator-binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator-binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast two-hybrid assays. Here, we focus on the transcription factor Serendipity δ (Sry-δ). Interactions were confirmed in pull-down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-δ interacted with promoter-proximal BEAF both when bound to DNA adjacent to BEAF or > 2-kb upstream to activate a reporter gene in transient transfection experiments. The interaction between BEAF and Sry-δ was detected using both a minimal developmental promoter (y) and a housekeeping promoter (RpS12), while BEAF alone strongly activated the housekeeping promoter. These two functions for BEAF implicate it in playing a direct role in gene regulation at hundreds of BEAF-associated promoters.
Collapse
Affiliation(s)
- Yuankai Dong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - S V Satya Prakash Avva
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Mukesh Maharjan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Janice Jacobi
- Hayward Genetics Center, Tulane University, New Orleans, Louisiana 70112
| | - Craig M Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
14
|
Ueberschär M, Wang H, Zhang C, Kondo S, Aoki T, Schedl P, Lai EC, Wen J, Dai Q. BEN-solo factors partition active chromatin to ensure proper gene activation in Drosophila. Nat Commun 2019; 10:5700. [PMID: 31836703 PMCID: PMC6911014 DOI: 10.1038/s41467-019-13558-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022] Open
Abstract
The Drosophila genome encodes three BEN-solo proteins including Insensitive (Insv), Elba1 and Elba2 that possess activities in transcriptional repression and chromatin insulation. A fourth protein-Elba3-bridges Elba1 and Elba2 to form an ELBA complex. Here, we report comprehensive investigation of these proteins in Drosophila embryos. We assess common and distinct binding sites for Insv and ELBA and their genetic interdependencies. While Elba1 and Elba2 binding generally requires the ELBA complex, Elba3 can associate with chromatin independently of Elba1 and Elba2. We further demonstrate that ELBA collaborates with other insulators to regulate developmental patterning. Finally, we find that adjacent gene pairs separated by an ELBA bound sequence become less differentially expressed in ELBA mutants. Transgenic reporters confirm the insulating activity of ELBA- and Insv-bound sites. These findings define ELBA and Insv as general insulator proteins in Drosophila and demonstrate the functional importance of insulators to partition transcription units.
Collapse
Affiliation(s)
- Malin Ueberschär
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Huazhen Wang
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chun Zhang
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Developmental Biology of Freshwater Fish College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Japan
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eric C Lai
- Department of Developmental Biology, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Jiayu Wen
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Qi Dai
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
15
|
Maharjan M, Maeda RK, Karch F, Hart CM. Using a phiC31 "Disintegrase" to make new attP sites in the Drosophila genome at locations showing chromosomal position effects. PLoS One 2018; 13:e0205538. [PMID: 30296303 PMCID: PMC6175522 DOI: 10.1371/journal.pone.0205538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
An engineered phiC31 “Disintegrase” able to make an attP site in Drosophila out of an attR-attL pair is described. This was used to generate attP sites at genomic locations where a mini-white (mini-w) transgene was subject to chromosomal position effects (CPE). The first step was random genomic integration of a P-element-based transposon with an insulated mini-w transgene. We then removed the upstream insulator using FLP recombinase to detect CPE. Next mini-w and the downstream insulator were “dis-integrated” leaving behind an attP site. The location is marked by a yellow+ transgene that is flanked by loxP sites, so it can also be removed. Using this system, we generated 10 new attP landing platforms. Three of these showing strong activating CPE were selected for further analysis. We show that the attP sites are functional by integrating in plasmids with attB sites. The CPE is recapitulated and can be blocked by insulators. We show that a dimerized 215 bp fragment of the 500 bp BEAF-dependent scs’ insulator containing a high affinity BEAF binding site blocks the CPE, while a monomer of the sequence is less effective. This indicates that two BEAF binding sites make a stronger insulator than a single site. This system could be useful for generating attP sites at prescreened sites for other purposes, such as studying CPE in embryos or other tissues or for use with “trapped” enhancers of interest.
Collapse
Affiliation(s)
- Mukesh Maharjan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Robert K. Maeda
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - François Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Craig M. Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
16
|
Shrestha S, Oh DH, McKowen JK, Dassanayake M, Hart CM. 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin. PLoS One 2018; 13:e0203843. [PMID: 30248133 PMCID: PMC6152978 DOI: 10.1371/journal.pone.0203843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022] Open
Abstract
Chromatin organization is crucial for nuclear functions such as gene regulation, DNA replication and DNA repair. Insulator binding proteins, such as the Drosophila Boundary Element-Associated Factor (BEAF), are involved in chromatin organization. To further understand the role of BEAF, we detected cis- and trans-interaction partners of four BEAF binding regions (viewpoints) using 4C (circular chromosome conformation capture) and analyzed their association with different genomic features. Previous genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, so our viewpoints were selected to reflect this. Our 4C data show the interaction partners of our viewpoints are highly variable and generally enriched for active chromatin marks. The most consistent association was with housekeeping genes, a feature in common with our viewpoints. Fluorescence in situ hybridization indicated that the long-distance interactions occur even in the absence of BEAF. These data are most consistent with a model in which BEAF is redundant with other factors found at active promoters. Our results point to principles of long-distance interactions made by active chromatin, supporting a previously proposed model in which condensed chromatin is sticky and associates into topologically associating domains (TADs) separated by active chromatin. We propose that the highly variable long-distance interactions we detect are driven by redundant factors that open chromatin to promote transcription, combined with active chromatin filling spaces between TADs while packing of TADs relative to each other varies from cell to cell.
Collapse
Affiliation(s)
- Shraddha Shrestha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - J. Keller McKowen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Craig M. Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
The BEN Domain Protein Insensitive Binds to the Fab-7 Chromatin Boundary To Establish Proper Segmental Identity in Drosophila. Genetics 2018; 210:573-585. [PMID: 30082280 DOI: 10.1534/genetics.118.301259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023] Open
Abstract
Boundaries (insulators) in the Drosophila bithorax complex (BX-C) delimit autonomous regulatory domains that orchestrate the parasegment (PS)-specific expression of the BX-C homeotic genes. The Fab-7 boundary separates the iab-6 and iab-7 regulatory domains, which control Abd-B expression in PS11 and PS12, respectively. This boundary is composed of multiple functionally redundant elements and has two key functions: it blocks cross talk between iab-6 and iab-7 and facilitates boundary bypass. Here, we show that two BEN domain protein complexes, Insensitive and Elba, bind to multiple sequences located in the Fab-7 nuclease hypersensitive regions. Two of these sequences are recognized by both Insv and Elba and correspond to a CCAATTGG palindrome. Elba also binds to a related CCAATAAG sequence, while Insv does not. However, the third Insv recognition sequences is ∼100 bp in length and contains the CCAATAAG sequence at one end. Both Insv and Elba are assembled into large complexes (∼420 and ∼265-290 kDa, respectively) in nuclear extracts. Using a sensitized genetic background, we show that the Insv protein is required for Fab-7 boundary function and that PS11 identity is not properly established in insv mutants. This is the first demonstration that a BEN domain protein is important for the functioning of an endogenous fly boundary.
Collapse
|
18
|
De D, Kallappagoudar S, Lim JM, Pathak RU, Mishra RK. O-GlcNAcylation of boundary element associated factor (BEAF 32) in Drosophila melanogaster correlates with active histone marks at the promoters of its target genes. Nucleus 2018; 9:65-86. [PMID: 28910574 PMCID: PMC5973196 DOI: 10.1080/19491034.2017.1367887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Boundary Element-Associated Factor 32 (BEAF 32) is a sequence specific DNA binding protein involved in functioning of chromatin domain boundaries in Drosophila. Several studies also show it to be involved in transcriptional regulation of a large number of genes, many of which are annotated to have cell cycle, development and differentiation related function. Since post-translational modifications (PTMs) of proteins add to their functional capacity, we investigated the PTMs on BEAF 32. The protein is known to be phosphorylated and O-GlcNAcylated. We mapped O-GlcNAc site at T91 of BEAF 32 and showed that it is linked to the deposition of active histone (H3K4me3) marks at transcription start site (TSS) of associated genes. Its role as a boundary associated factor, however, does not depend on this modification. Our study shows that by virtue of O-GlcNAcylation, BEAF 32 is linked to epigenetic mechanisms that activate a subset of associated genes.
Collapse
Affiliation(s)
- Debaditya De
- a CSIR-Centre for Cellular and Molecular Biology , Hyderabad , India
| | | | - Jae-Min Lim
- b Department of Chemistry , Changwon National University , Changwon, Gyeongnam , South Korea
| | - Rashmi U Pathak
- a CSIR-Centre for Cellular and Molecular Biology , Hyderabad , India
| | - Rakesh K Mishra
- a CSIR-Centre for Cellular and Molecular Biology , Hyderabad , India
| |
Collapse
|
19
|
Stadler MR, Haines JE, Eisen MB. Convergence of topological domain boundaries, insulators, and polytene interbands revealed by high-resolution mapping of chromatin contacts in the early Drosophila melanogaster embryo. eLife 2017; 6:29550. [PMID: 29148971 PMCID: PMC5739541 DOI: 10.7554/elife.29550] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
High-throughput assays of three-dimensional interactions of chromosomes have shed considerable light on the structure of animal chromatin. Despite this progress, the precise physical nature of observed structures and the forces that govern their establishment remain poorly understood. Here we present high resolution Hi-C data from early Drosophila embryos. We demonstrate that boundaries between topological domains of various sizes map to DNA elements that resemble classical insulator elements: short genomic regions sensitive to DNase digestion that are strongly bound by known insulator proteins and are frequently located between divergent promoters. Further, we show a striking correspondence between these elements and the locations of mapped polytene interband regions. We believe it is likely this relationship between insulators, topological boundaries, and polytene interbands extends across the genome, and we therefore propose a model in which decompaction of boundary-insulator-interband regions drives the organization of interphase chromosomes by creating stable physical separation between adjacent domains.
Collapse
Affiliation(s)
- Michael R Stadler
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Jenna E Haines
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States
| | - Michael B Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.,Department of Integrative Biology, University of California, Berkeley, CA, United States.,Howard Hughes Medical Institute, Berkeley, CA, United States
| |
Collapse
|
20
|
Jox T, Buxa MK, Bohla D, Ullah I, Mačinković I, Brehm A, Bartkuhn M, Renkawitz R. Drosophila CP190- and dCTCF-mediated enhancer blocking is augmented by SUMOylation. Epigenetics Chromatin 2017; 10:32. [PMID: 28680483 PMCID: PMC5496309 DOI: 10.1186/s13072-017-0140-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/27/2017] [Indexed: 12/02/2022] Open
Abstract
Background Chromatin insulators shield promoters and chromatin domains from neighboring enhancers or chromatin regions with opposing activities. Insulator-binding proteins and their cofactors mediate the boundary function. In general, covalent modification of proteins by the small ubiquitin-like modifier (SUMO) is an important mechanism to control the interaction of proteins within complexes. Results Here we addressed the impact of dSUMO in respect of insulator function, chromatin binding of insulator factors and formation of insulator speckles in Drosophila. SUMOylation augments the enhancer blocking function of four different insulator sequences and increases the genome-wide binding of the insulator cofactor CP190. Conclusions These results indicate that enhanced chromatin binding of SUMOylated CP190 causes fusion of insulator speckles, which may allow for more efficient insulation. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0140-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Theresa Jox
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany.,Institute for Molecular Pathology, UKGM, 35392 Giessen, Germany
| | - Melanie K Buxa
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany.,Flohr Consult, Adenauerallee 136, 53113 Bonn, Germany
| | - Dorte Bohla
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Ikram Ullah
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, 35037 Marburg, Germany
| | - Igor Mačinković
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, 35037 Marburg, Germany
| | - Alexander Brehm
- Institute of Molecular Biology and Tumour Research, Philipps University Marburg, 35037 Marburg, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
21
|
Gerland TA, Sun B, Smialowski P, Lukacs A, Thomae AW, Imhof A. The Drosophila speciation factor HMR localizes to genomic insulator sites. PLoS One 2017; 12:e0171798. [PMID: 28207793 PMCID: PMC5312933 DOI: 10.1371/journal.pone.0171798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Hybrid incompatibility between Drosophila melanogaster and D. simulans is caused by a lethal interaction of the proteins encoded by the Hmr and Lhr genes. In D. melanogaster the loss of HMR results in mitotic defects, an increase in transcription of transposable elements and a deregulation of heterochromatic genes. To better understand the molecular mechanisms that mediate HMR’s function, we measured genome-wide localization of HMR in D. melanogaster tissue culture cells by chromatin immunoprecipitation. Interestingly, we find HMR localizing to genomic insulator sites that can be classified into two groups. One group belongs to gypsy insulators and another one borders HP1a bound regions at active genes. The transcription of the latter group genes is strongly affected in larvae and ovaries of Hmr mutant flies. Our data suggest a novel link between HMR and insulator proteins, a finding that implicates a potential role for genome organization in the formation of species.
Collapse
Affiliation(s)
- Thomas Andreas Gerland
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bo Sun
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Pawel Smialowski
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Biomedical Center, Core Facility Computational Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andrea Lukacs
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Andreas Walter Thomae
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
22
|
Avva SVSP, Hart CM. Characterization of the Drosophila BEAF-32A and BEAF-32B Insulator Proteins. PLoS One 2016; 11:e0162906. [PMID: 27622635 PMCID: PMC5021357 DOI: 10.1371/journal.pone.0162906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Data implicate the Drosophila 32 kDa Boundary Element-Associated Factors BEAF-32A and BEAF-32B in both chromatin domain insulator element function and promoter function. They might also function as an epigenetic memory by remaining bound to mitotic chromosomes. Both proteins are made from the same gene. They differ in their N-terminal 80 amino acids, which contain single DNA-binding BED fingers. The remaining 200 amino acids are identical in the two proteins. The structure and function of the middle region of 120 amino acids is unknown, while the C-terminal region of 80 amino acids has a putative leucine zipper and a BESS domain and mediates BEAF-BEAF interactions. Here we report a further characterization of BEAF. We show that the BESS domain alone is sufficient to mediate BEAF-BEAF interactions, although the presence of the putative leucine zipper on at least one protein strengthens the interactions. BEAF-32B is sufficient to rescue a null BEAF mutation in flies. Using mutant BEAF-32B rescue transgenes, we show that the middle region and the BESS domain are essential. In contrast, the last 40 amino acids of the middle region, which is poorly conserved among Drosophila species, is dispensable. Deleting the putative leucine zipper results in a hypomorphic mutant BEAF-32B protein. Finally, we document the dynamics of BEAF-32A-EGFP and BEAF-32B-mRFP during mitosis in embryos. A subpopulation of both proteins appears to remain on mitotic chromosomes and also on the mitotic spindle, while much of the fluorescence is dispersed during mitosis. Differences in the dynamics of the two proteins are observed in syncytial embryos, and both proteins show differences between syncytial and later embryos. This characterization of BEAF lays a foundation for future studies into molecular mechanisms of BEAF function.
Collapse
Affiliation(s)
- S. V. Satya Prakash Avva
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Craig M. Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
23
|
Deignan L, Pinheiro MT, Sutcliffe C, Saunders A, Wilcockson SG, Zeef LAH, Donaldson IJ, Ashe HL. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo. PLoS Genet 2016; 12:e1006164. [PMID: 27379389 PMCID: PMC4933369 DOI: 10.1371/journal.pgen.1006164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022] Open
Abstract
The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. Embryogenesis involves the patterning of many different cell fates by a limited number of types of signals. One way that these signals promote a particular cell fate is through the induction of a complex, yet highly reproducible, gene expression programme that instructs changes in the cell. For example, there is a conserved role for BMP signals in specifying cell fates during dorsal-ventral axis patterning. Here, we have used genomics approaches to identify the gene expression programme implemented in response to BMP signaling during axis patterning in the Drosophila embryo. Part of the gene network downstream of BMP signaling includes members of the EGF signaling pathway, with our data highlighting reciprocal interactions between these two pathways. We have also determined genome-wide binding of BMP-responsive transcription factors to gain new insights into how the BMP gene network is activated. Our data reveal roles for specific transcription factors and insulator binding proteins, with the latter traditionally associated with the separation of transcriptional domains. Overall, our data will provide a platform for exploiting the tractability of the Drosophila embryo to determine which features of the network are critical drivers of BMP-induced cell fate changes during embryogenesis.
Collapse
Affiliation(s)
- Lisa Deignan
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Marco T. Pinheiro
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Catherine Sutcliffe
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Abbie Saunders
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Scott G. Wilcockson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo A. H. Zeef
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian J. Donaldson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hilary L. Ashe
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Jukam D, Viets K, Anderson C, Zhou C, DeFord P, Yan J, Cao J, Johnston RJ. The insulator protein BEAF-32 is required for Hippo pathway activity in the terminal differentiation of neuronal subtypes. Development 2016; 143:2389-97. [PMID: 27226322 DOI: 10.1242/dev.134700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/11/2016] [Indexed: 01/07/2023]
Abstract
The Hippo pathway is crucial for not only normal growth and apoptosis but also cell fate specification during development. What controls Hippo pathway activity during cell fate specification is incompletely understood. In this article, we identify the insulator protein BEAF-32 as a regulator of Hippo pathway activity in Drosophila photoreceptor differentiation. Though morphologically uniform, the fly eye is composed of two subtypes of R8 photoreceptor neurons defined by expression of light-detecting Rhodopsin proteins. In one R8 subtype, active Hippo signaling induces Rhodopsin 6 (Rh6) and represses Rhodopsin 5 (Rh5), whereas in the other subtype, inactive Hippo signaling induces Rh5 and represses Rh6. The activity state of the Hippo pathway in R8 cells is determined by the expression of warts, a core pathway kinase, which interacts with the growth regulator melted in a double-negative feedback loop. We show that BEAF-32 is required for expression of warts and repression of melted Furthermore, BEAF-32 plays a second role downstream of Warts to induce Rh6 and prevent Rh5 fate. BEAF-32 is dispensable for Warts feedback, indicating that BEAF-32 differentially regulates warts and Rhodopsins. Loss of BEAF-32 does not noticeably impair the functions of the Hippo pathway in eye growth regulation. Our study identifies a context-specific regulator of Hippo pathway activity in post-mitotic neuronal fate, and reveals a developmentally specific role for a broadly expressed insulator protein.
Collapse
Affiliation(s)
- David Jukam
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Kayla Viets
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Caitlin Anderson
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Cyrus Zhou
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Peter DeFord
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Jenny Yan
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| | - Jinshuai Cao
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA
| |
Collapse
|
25
|
Vogelmann J, Le Gall A, Dejardin S, Allemand F, Gamot A, Labesse G, Cuvier O, Nègre N, Cohen-Gonsaud M, Margeat E, Nöllmann M. Chromatin insulator factors involved in long-range DNA interactions and their role in the folding of the Drosophila genome. PLoS Genet 2014; 10:e1004544. [PMID: 25165871 PMCID: PMC4148193 DOI: 10.1371/journal.pgen.1004544] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/17/2014] [Indexed: 11/18/2022] Open
Abstract
Chromatin insulators are genetic elements implicated in the organization of chromatin and the regulation of transcription. In Drosophila, different insulator types were characterized by their locus-specific composition of insulator proteins and co-factors. Insulators mediate specific long-range DNA contacts required for the three dimensional organization of the interphase nucleus and for transcription regulation, but the mechanisms underlying the formation of these contacts is currently unknown. Here, we investigate the molecular associations between different components of insulator complexes (BEAF32, CP190 and Chromator) by biochemical and biophysical means, and develop a novel single-molecule assay to determine what factors are necessary and essential for the formation of long-range DNA interactions. We show that BEAF32 is able to bind DNA specifically and with high affinity, but not to bridge long-range interactions (LRI). In contrast, we show that CP190 and Chromator are able to mediate LRI between specifically-bound BEAF32 nucleoprotein complexes in vitro. This ability of CP190 and Chromator to establish LRI requires specific contacts between BEAF32 and their C-terminal domains, and dimerization through their N-terminal domains. In particular, the BTB/POZ domains of CP190 form a strict homodimer, and its C-terminal domain interacts with several insulator binding proteins. We propose a general model for insulator function in which BEAF32/dCTCF/Su(HW) provide DNA specificity (first layer proteins) whereas CP190/Chromator are responsible for the physical interactions required for long-range contacts (second layer). This network of organized, multi-layer interactions could explain the different activities of insulators as chromatin barriers, enhancer blockers, and transcriptional regulators, and suggest a general mechanism for how insulators may shape the organization of higher-order chromatin during cell division.
Collapse
Affiliation(s)
- Jutta Vogelmann
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Antoine Le Gall
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Stephanie Dejardin
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Frederic Allemand
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Adrien Gamot
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université de Toulouse, Toulouse; France
| | - Gilles Labesse
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Olivier Cuvier
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS and Université de Toulouse, Toulouse; France
| | - Nicolas Nègre
- Laboratoire Diversité, Génomes & Interactions Microorganismes-Insectes, INRA UMR1333, Université de Montpellier 2, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Emmanuel Margeat
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
| | - Marcelo Nöllmann
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5048, Centre de Biochimie Structurale, Montpellier, France
- Institut National de la Santé et la Recherche Médicale, Unité 1054, Montpellier, France
- Universités Montpellier I et II, Montpellier, France
- * E-mail:
| |
Collapse
|
26
|
Korenjak M, Kwon E, Morris RT, Anderssen E, Amzallag A, Ramaswamy S, Dyson NJ. dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes. Nucleic Acids Res 2014; 42:8939-53. [PMID: 25053843 PMCID: PMC4132727 DOI: 10.1093/nar/gku609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains.
Collapse
Affiliation(s)
- Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eunjeong Kwon
- Massachusetts General Hospital, Cutaneous Biology Research Center, Charlestown, MA 02129, USA
| | - Robert T Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Endre Anderssen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Arnaud Amzallag
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
27
|
Do the BEAF insulator proteins regulate genes involved in cell polarity and neoplastic growth? Dev Biol 2013; 389:121-3. [PMID: 24211761 DOI: 10.1016/j.ydbio.2013.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 11/23/2022]
Abstract
It was reported that a chromosome with the BEAF(NP6377) (NP6377) allele leads to a loss of cell polarity and neoplastic growth in Drosophila melanogaster when homozygous (Gurudatta et al., 2012). We had previously generated the BEAF(AB-KO) (AB-KO) allele by homologous recombination and did not note these phenotypes (Roy et al., 2007). Both alleles are null mutations. It was unclear why two null alleles of the same gene would give different phenotypes. To resolve this, we performed genetic tests to explore the possibility that the chromosome with the NP6377 allele contained other, second site mutations that might account for the different phenotypes. We found that the chromosome with NP6377 has at least two additional mutations. At least one of these, possibly in combination with the NP6377 allele, is presumably responsible for the reported effects on gene expression, cell polarity and neoplastic growth.
Collapse
|
28
|
Matzat LH, Lei EP. Surviving an identity crisis: a revised view of chromatin insulators in the genomics era. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:203-14. [PMID: 24189492 DOI: 10.1016/j.bbagrm.2013.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
The control of complex, developmentally regulated loci and partitioning of the genome into active and silent domains is in part accomplished through the activity of DNA-protein complexes termed chromatin insulators. Together, the multiple, well-studied classes of insulators in Drosophila melanogaster appear to be generally functionally conserved. In this review, we discuss recent genomic-scale experiments and attempt to reconcile these newer findings in the context of previously defined insulator characteristics based on classical genetic analyses and transgenic approaches. Finally, we discuss the emerging understanding of mechanisms of chromatin insulator regulation. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Leah H Matzat
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissa P Lei
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Transcriptional regulation of the purine de novo synthesis gene Prat in Drosophila melanogaster. Gene 2013; 518:280-6. [DOI: 10.1016/j.gene.2013.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 11/18/2022]
|
30
|
The BEAF insulator regulates genes involved in cell polarity and neoplastic growth. Dev Biol 2012; 369:124-32. [PMID: 22743648 DOI: 10.1016/j.ydbio.2012.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/01/2012] [Accepted: 06/20/2012] [Indexed: 01/05/2023]
Abstract
Boundary Element Associated Factor-32 (BEAF-32) is an insulator protein predominantly found near gene promoters and thought to play a role in gene expression. We find that mutations in BEAF-32 are lethal, show loss of epithelial morphology in imaginal discs and cause neoplastic growth defects. To investigate the molecular mechanisms underlying this phenotype, we carried out a genome-wide analysis of BEAF-32 localization in wing imaginal disc cells. Mutation of BEAF-32 results in miss-regulation of 3850 genes by at least 1.5-fold, 794 of which are bound by this protein in wing imaginal cells. Up-regulated genes encode proteins involved in cell polarity, cell proliferation and cell differentiation. Among the down-regulated genes are those encoding components of the wingless pathway, which is required for cell differentiation. Miss-regulation of these genes explains the unregulated cell growth and neoplastic phenotypes observed in imaginal tissues of BEAF-32 mutants.
Collapse
|
31
|
Philip P, Pettersson F, Stenberg P. Sequence signatures involved in targeting the Male-Specific Lethal complex to X-chromosomal genes in Drosophila melanogaster. BMC Genomics 2012; 13:97. [PMID: 22424303 PMCID: PMC3355045 DOI: 10.1186/1471-2164-13-97] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 03/19/2012] [Indexed: 11/18/2022] Open
Abstract
Background In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s) and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL) complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. Results We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs) and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. Conclusions Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.
Collapse
Affiliation(s)
- Philge Philip
- Deptartment of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | |
Collapse
|
32
|
Abstract
Chromatin insulators are DNA-protein complexes with broad functions in nuclear biology. Based on the ability of insulator proteins to interact with each other, it was originally found that insulators form loops that bring together distant regions of the genome. Data from genome-wide localization studies indicate that insulator proteins can be present in intergenic regions as well as at the 5', introns or 3' of genes, suggesting a variety of roles for insulator loops in chromosome biology. Recent results suggest that insulators mediate intra- and interchromosomal interactions to affect transcription, imprinting, and recombination. Cells have developed mechanisms to control insulator activity by recruiting specialized proteins or by covalent modification of core components. It is then possible that insulator-mediated interactions set up cell-specific blueprints of nuclear organization that may contribute to the establishment of different patterns of gene expression during cell differentiation and development. As a consequence, disruption of insulator activity could result in the development of cancer or other disease states.
Collapse
Affiliation(s)
- Jingping Yang
- Department of Biology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
33
|
Amouyal M. Gene insulation. Part I: natural strategies in yeast and Drosophila. Biochem Cell Biol 2011; 88:875-84. [PMID: 21102650 DOI: 10.1139/o10-110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review in two parts deals with the increasing number of processes known to be used by eukaryotic cells to protect gene expression from undesired genomic enhancer or chromatin effects, by means of the so-called insulators or barriers. The most advanced studies in this expanding field concern yeasts and Drosophila (this article) and the vertebrates (next article in this issue). Clearly, the cell makes use of every gene context to find the appropriate, economic, solution. Thus, besides the elements formerly identified and specifically dedicated to insulation, a number of unexpected elements are diverted from their usual function to structure the genome and enhancer action or to prevent heterochromatin spreading. They are, for instance, genes actively transcribed by RNA polymerase II or III, partial elements of these transcriptional machineries (stalled RNA polymerase II, normally required by genes that must respond quickly to stimuli, or TFIIIC bound at its B-box, normally required by RNA polymerase III for assembly of the transcription initiation complex at tRNA genes), or genomic sequences occupied by variants of standard histones, which, being rapidly and permanently replaced, impede heterochromatin formation.
Collapse
|
34
|
Sultana H, Verma S, Mishra RK. A BEAF dependent chromatin domain boundary separates myoglianin and eyeless genes of Drosophila melanogaster. Nucleic Acids Res 2011; 39:3543-57. [PMID: 21247873 PMCID: PMC3089456 DOI: 10.1093/nar/gkq1297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Precise transcriptional control is dependent on specific interactions of a number of regulatory elements such as promoters, enhancers and silencers. Several studies indicate that the genome in higher eukaryotes is divided into chromatin domains with functional autonomy. Chromatin domain boundaries are a class of regulatory elements that restrict enhancers to interact with appropriate promoters and prevent misregulation of genes. While several boundary elements have been identified, a rational approach to search for such elements is lacking. With a view to identifying new chromatin domain boundary elements we analyzed genomic regions between closely spaced but differentially expressed genes of Drosophila melanogaster. We have identified a new boundary element between myoglianin and eyeless, ME boundary, that separates these two differentially expressed genes. ME boundary maps to a DNaseI hypersensitive site and acts as an enhancer blocker both in embryonic and adult stages in transgenic context. We also report that BEAF and GAF are the two major proteins responsible for the ME boundary function. Our studies demonstrate a rational approach to search for potential boundaries in genomic regions that are well annotated.
Collapse
Affiliation(s)
- Hina Sultana
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500007, India
| | | | | |
Collapse
|
35
|
Roy S, Jiang N, Hart CM. Lack of the Drosophila BEAF insulator proteins alters regulation of genes in the Antennapedia complex. Mol Genet Genomics 2010; 285:113-23. [PMID: 21132442 DOI: 10.1007/s00438-010-0591-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
In a screen based on a rough eye phenotype caused by a dominant negative form of the BEAF-32A and BEAF-32B insulator proteins, we previously identified 17 proteins that genetically interact with BEAF. Eleven of these are developmental transcription factors, seven of which are encoded by the Antennapedia complex (ANT-C). While investigating potential reasons for the genetic interactions, we obtained evidence that BEAF plays a role in the regulation of genes in the ANT-C. BEAF does not localize near the transcription start sites of any genes in the ANT-C, indicating that BEAF does not locally affect regulation of these genes. Although BEAF affects chromatin structure or dynamics, we also found no evidence for a general change in binding to polytene chromosomes in the absence of BEAF. However, because we were unable to detect proteins encoded by ANT-C genes in salivary glands, the DREF and MLE proteins were used as proxies to examine binding. This does not rule out limited effects at particular binding sites or the possibility that BEAF might directly interact with certain transcription factors to affect their binding. In contrast, the embryonic expression levels and patterns of four examined ANT-C genes were altered (bcd, Dfd, ftz, pb). A control gene, Dref, was not affected. A full understanding of the regulation of ANT-C genes during development will have to take the role of BEAF into account.
Collapse
Affiliation(s)
- Swarnava Roy
- NIDDK Metabolic Diseases Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
36
|
Gurudatta BV, Corces VG. Chromatin insulators: lessons from the fly. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:276-82. [PMID: 19752045 DOI: 10.1093/bfgp/elp032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Chromatin insulators are DNA-protein complexes with broad functions in nuclear biology. Drosophila has at least five different types of insulators; recent results suggest that these different insulators share some components that may allow them to function through common mechanisms. Data from genome-wide localization studies of insulator proteins indicate a possible functional specialization, with different insulators playing distinct roles in nuclear biology. Cells have developed mechanisms to control insulator activity by recruiting specialized proteins or by covalent modification of core components. Current results suggest that insulators set up cell-specific blueprints of nuclear organization that may contribute to the establishment of different patterns of gene expression during cell differentiation and development.
Collapse
Affiliation(s)
- B V Gurudatta
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | | |
Collapse
|
37
|
Genome-wide mapping of boundary element-associated factor (BEAF) binding sites in Drosophila melanogaster links BEAF to transcription. Mol Cell Biol 2009; 29:3556-68. [PMID: 19380483 DOI: 10.1128/mcb.01748-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulator elements play a role in gene regulation that is potentially linked to nuclear organization. Boundary element-associated factors (BEAFs) 32A and 32B associate with hundreds of sites on Drosophila polytene chromosomes. We hybridized DNA isolated by chromatin immunoprecipitation to genome tiling microarrays to construct a genome-wide map of BEAF binding locations. A distinct difference in the association of 32A and 32B with chromatin was noted. We identified 1,820 BEAF peaks and found that more than 85% were less than 300 bp from transcription start sites. Half are between head-to-head gene pairs. BEAF-associated genes are transcriptionally active as judged by the presence of RNA polymerase II, dimethylated histone H3 K4, and the alternative histone H3.3. Forty percent of these genes are also associated with the polymerase negative elongation factor NELF. Like NELF-associated genes, most BEAF-associated genes are highly expressed. Using quantitative reverse transcription-PCR, we found that the expression levels of most BEAF-associated genes decrease in embryos and cultured cells lacking BEAF. These results provide an unexpected link between BEAF and transcription, suggesting that BEAF plays a role in maintaining most associated promoter regions in an environment that facilitates high transcription levels.
Collapse
|
38
|
Emberly E, Blattes R, Schuettengruber B, Hennion M, Jiang N, Hart CM, Käs E, Cuvier O. BEAF regulates cell-cycle genes through the controlled deposition of H3K9 methylation marks into its conserved dual-core binding sites. PLoS Biol 2009; 6:2896-910. [PMID: 19108610 PMCID: PMC2605929 DOI: 10.1371/journal.pbio.0060327] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 11/11/2008] [Indexed: 12/25/2022] Open
Abstract
Chromatin insulators/boundary elements share the ability to insulate a transgene from its chromosomal context by blocking promiscuous enhancer–promoter interactions and heterochromatin spreading. Several insulating factors target different DNA consensus sequences, defining distinct subfamilies of insulators. Whether each of these families and factors might possess unique cellular functions is of particular interest. Here, we combined chromatin immunoprecipitations and computational approaches to break down the binding signature of the Drosophila boundary element–associated factor (BEAF) subfamily. We identify a dual-core BEAF binding signature at 1,720 sites genome-wide, defined by five to six BEAF binding motifs bracketing 200 bp AT-rich nuclease-resistant spacers. Dual-cores are tightly linked to hundreds of genes highly enriched in cell-cycle and chromosome organization/segregation annotations. siRNA depletion of BEAF from cells leads to cell-cycle and chromosome segregation defects. Quantitative RT-PCR analyses in BEAF-depleted cells show that BEAF controls the expression of dual core–associated genes, including key cell-cycle and chromosome segregation regulators. beaf mutants that impair its insulating function by preventing proper interactions of BEAF complexes with the dual-cores produce similar effects in embryos. Chromatin immunoprecipitations show that BEAF regulates transcriptional activity by restricting the deposition of methylated histone H3K9 marks in dual-cores. Our results reveal a novel role for BEAF chromatin dual-cores in regulating a distinct set of genes involved in chromosome organization/segregation and the cell cycle. The genome of eukaryotes is packaged in chromatin, which consists of DNA, histones, and accessory proteins. This leads to a general repression of genes, particularly for those exposed to mostly condensed, heterochromatin regions. DNA sequences called chromatin insulators/boundary elements are able to insulate a gene from its chromosomal context by blocking promiscuous heterochromatin spreading. No common feature has been identified among the insulators/boundary elements known so far. Rather, distinct subfamilies of insulators harbor different DNA consensus sequences targeted by different DNA-binding factors, which confer their insulating activity. Determining whether distinct subfamilies possess distinct cellular functions is important for understanding genome regulation. Here, using Drosophila, we have combined computational and experimental approaches to address the function of the boundary element-associated factor (BEAF) subfamily of insulators. We identify hundreds of BEAF dual-cores that are defined by a particular arrangement of DNA sequence motifs bracketing nucleosome binding sequences, and that mark the genomic BEAF binding sites. BEAF dual-cores are close to hundreds of genes that regulate chromosome organization/segregation and the cell cycle. Since BEAF acts by restricting the deposition of repressing epigenetic histone marks, which affects the accessibility of chromatin, its depletion affects the expression of cell-cycle genes. Our data reveal a new role for BEAF in regulating the cell cycle through its binding to highly conserved chromatin dual-cores. Chromatin Dual-Cores define new potent nucleosome-associatedcis-regulatory elements that regulate the accessibility of promoters of genes controlling chromosome organization/segregation and the cell cycle.
Collapse
Affiliation(s)
- Eldon Emberly
- Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada
- * To whom correspondence should be addressed. E-mail: (EE); (OC)
| | - Roxane Blattes
- CNRS, Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, UPS, France
| | - Bernd Schuettengruber
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Lousiana, United States of America
| | - Magali Hennion
- CNRS, Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, UPS, France
- Institut de Genetique Humaine, Department of Genome Dynamics, CNRS, Montpelier, France
| | - Nan Jiang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Lousiana, United States of America
| | - Craig M Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Lousiana, United States of America
| | - Emmanuel Käs
- CNRS, Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, UPS, France
| | - Olivier Cuvier
- Institut de Genetique Humaine, Department of Genome Dynamics, CNRS, Montpelier, France
- * To whom correspondence should be addressed. E-mail: (EE); (OC)
| |
Collapse
|
39
|
Maeda RK, Karch F. Making connections: boundaries and insulators in Drosophila. Curr Opin Genet Dev 2007; 17:394-9. [PMID: 17904351 DOI: 10.1016/j.gde.2007.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/07/2007] [Accepted: 08/17/2007] [Indexed: 11/23/2022]
Abstract
In eukaryotes, enhancers must often exert their effect over many tens of kilobases of DNA with a choice between many different promoters. Given this situation, elements known as chromatin boundaries have evolved to prevent adventitious interactions between enhancers and promoters. The amenability of Drosophila to molecular genetics has been crucial to the discovery and analysis of these elements. Since these elements are involved in such diverse processes and show little or no sequence similarity between them, no single molecular mechanism has been identified that accounts for their activity. However, over the past approximately 5 years, evidence has accumulated suggesting that boundaries probably function through the formation of long-distance chromatin loops. These loops have been proposed to play a crucial role in both controlling enhancer-promoter interactions and packing DNA.
Collapse
Affiliation(s)
- Robert K Maeda
- Department of Zoology and Animal Biology and NCCR Frontiers in Genetics, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland.
| | | |
Collapse
|