1
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Cheng Q, Huang S, Lin L, Zhong Q, Huang T, He H, Bian J. Genetic Analysis for the Flag Leaf Heterosis of a Super-Hybrid Rice WFYT025 Combination Using RNA-Seq. PLANTS (BASEL, SWITZERLAND) 2023; 12:2496. [PMID: 37447057 DOI: 10.3390/plants12132496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The photosynthetic capacity of flag leaf plays a key role in grain yield in rice. Nevertheless, there are few studies on the heterosis of the rice flag leaf. Therefore, this study focuses on investigating the genetic basis of heterosis for flag leaf in the indica super hybrid rice combination WFYT025 in China using a high-throughput next-generation RNA-seq strategy. We analyzed the gene expression of flag leaf in different environments and different time periods between WFYT025 and its female parent. After obtaining the gene expression profile of the flag leaf, we further investigated the gene regulatory network. Weighted gene expression network analysis (WGCNA) was used to identify the co-expressed gene sets, and a total of 5000 highly expressed genes were divided into 24 co-expression groups. In CHT025, we found 13 WRKY family transcription factors in SDGhps under the environment of early rice and 16 WRKY family genes in SDGhps of under the environment of middle rice. We found nine identical transcription factors in the two stages. Except for five reported TFs, the other four TFs might play an important role in heterosis for grain number and photosynthesis. Transcription factors such as WRKY3, WRKY68, and WRKY77 were found in both environments. To eliminate the influence of the environment, we examined the metabolic pathway with the same SDGhp (SSDGhp) in two environments. There were 312 SSDGhps in total. These SSDGhps mainly focused on the phosphorus metallic process, phosphorylation, plasma membrane, etc. These results provide resources for studying heterosis during super hybrid rice flag leaf development.
Collapse
Affiliation(s)
- Qin Cheng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lan Lin
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tao Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
3
|
Aakanksha, Yadava SK, Yadav BG, Gupta V, Mukhopadhyay A, Pental D, Pradhan AK. Genetic Analysis of Heterosis for Yield Influencing Traits in Brassica juncea Using a Doubled Haploid Population and Its Backcross Progenies. FRONTIERS IN PLANT SCIENCE 2021; 12:721631. [PMID: 34603351 PMCID: PMC8481694 DOI: 10.3389/fpls.2021.721631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2024]
Abstract
The exploitation of heterosis through hybrid breeding is one of the major breeding objectives for productivity increase in crop plants. This research analyzes the genetic basis of heterosis in Brassica juncea by using a doubled haploid (DH) mapping population derived from F1 between two heterotic inbred parents, one belonging to the Indian and the other belonging to the east European gene pool, and their two corresponding sets of backcross hybrids. An Illumina Infinium Brassica 90K SNP array-based genetic map was used to identify yield influencing quantitative trait loci (QTL) related to plant architecture, flowering, and silique- and seed-related traits using five different data sets from multiple trials, allowing the estimation of additive and dominance effects, as well as digenic epistatic interactions. In total, 695 additive QTL were detected for the 14 traits in the three trials using five data sets, with overdominance observed to be the predominant type of effect in determining the expression of heterotic QTL. The results indicated that the design in the present study was efficient for identifying common QTL across multiple trials and populations, which constitute a valuable resource for marker-assisted selection and further research. In addition, a total of 637 epistatic loci were identified, and it was concluded that epistasis among loci without detectable main effects plays an important role in controlling heterosis in yield of B. juncea.
Collapse
Affiliation(s)
- Aakanksha
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Bal Govind Yadav
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Arundhati Mukhopadhyay
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
4
|
Cao S, Xu D, Hanif M, Xia X, He Z. Genetic architecture underpinning yield component traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1811-1823. [PMID: 32062676 DOI: 10.1007/s00122-020-03562-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/06/2020] [Indexed: 05/19/2023]
Abstract
Genetic atlas, reliable QTL and candidate genes of yield component traits in wheat were figured out, laying concrete foundations for map-based gene cloning and dissection of regulatory mechanisms underlying yield. Mining genetic loci for yield is challenging due to the polygenic nature, large influence of environment and complex relationship among yield component traits (YCT). Many genetic loci related to wheat yield have been identified, but its genetic architecture and key genetic loci for selection are largely unknown. Wheat yield potential can be determined by three YCT, thousand kernel weight, kernel number per spike and spike number. Here, we summarized the genetic loci underpinning YCT from QTL mapping, association analysis and homology-based gene cloning. The major loci determining yield-associated agronomic traits, such as flowering time and plant height, were also included in comparative analyses with those for YCT. We integrated yield-related genetic loci onto chromosomes based on their physical locations. To identify the major stable loci for YCT, 58 QTL-rich clusters (QRC) were defined based on their distribution on chromosomes. Candidate genes in each QRC were predicted according to gene annotation of the wheat reference genome and previous information on validation of those genes in other species. Finally, a technological route was proposed to take full advantage of the resultant resources for gene cloning, molecular marker-assisted breeding and dissection of molecular regulatory mechanisms underlying wheat yield.
Collapse
Affiliation(s)
- Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| | - Dengan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Mamoona Hanif
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
5
|
Liu J, Li M, Zhang Q, Wei X, Huang X. Exploring the molecular basis of heterosis for plant breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:287-298. [PMID: 30916464 DOI: 10.1111/jipb.12804] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/13/2019] [Indexed: 05/18/2023]
Abstract
Since approximate a century ago, many hybrid crops have been continually developed by crossing two inbred varieties. Owing to heterosis (hybrid vigor) in plants, these hybrids often have superior agricultural performances in yield or disease resistance succeeding their inbred parental lines. Several classical hypotheses have been proposed to explain the genetic causes of heterosis. During recent years, many new genetics and genomics strategies have been developed and used for the identifications of heterotic genes in plants. Heterotic effects of the heterotic loci and molecular functions of the heterotic genes are being investigated in many plants such as rice, maize, sorghum, Arabidopsis and tomato. More and more data and knowledge coming from the molecular studies of heterotic loci and genes will serve as a valuable resource for hybrid breeding by molecular design in future. This review aims to address recent advances in our understanding of the genetic and molecular mechanisms of heterosis in plants. The remaining scientific questions on the molecular basis of heterosis and the potential applications in breeding are also proposed and discussed.
Collapse
Affiliation(s)
- Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Mengjie Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qi Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
6
|
Oakley CG, Lundemo S, Ågren J, Schemske DW. Heterosis is common and inbreeding depression absent in natural populations of
Arabidopsis thaliana. J Evol Biol 2019; 32:592-603. [DOI: 10.1111/jeb.13441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 01/09/2023]
Affiliation(s)
| | - Sverre Lundemo
- Plant Ecology and Evolution Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Jon Ågren
- Plant Ecology and Evolution Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Douglas W. Schemske
- Department of Plant Biology W. K. Kellogg Biological Station Michigan State University East Lansing Michigan
| |
Collapse
|
7
|
Vasseur F, Fouqueau L, de Vienne D, Nidelet T, Violle C, Weigel D. Nonlinear phenotypic variation uncovers the emergence of heterosis in Arabidopsis thaliana. PLoS Biol 2019; 17:e3000214. [PMID: 31017902 PMCID: PMC6481775 DOI: 10.1371/journal.pbio.3000214] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Heterosis describes the phenotypic superiority of hybrids over their parents in traits related to agronomic performance and fitness. Understanding and predicting nonadditive inheritance such as heterosis is crucial for evolutionary biology as well as for plant and animal breeding. However, the physiological bases of heterosis remain debated. Moreover, empirical data in various species have shown that diverse genetic and molecular mechanisms are likely to explain heterosis, making it difficult to predict its emergence and amplitude from parental genotypes alone. In this study, we examined a model of physiological dominance initially proposed by Sewall Wright to explain the nonadditive inheritance of traits like metabolic fluxes at the cellular level. We evaluated Wright's model for two fitness-related traits at the whole-plant level, growth rate and fruit number, using 450 hybrids derived from crosses among natural accessions of A. thaliana. We found that allometric relationships between traits constrain phenotypic variation in a nonlinear and similar manner in hybrids and accessions. These allometric relationships behave predictably, explaining up to 75% of heterosis amplitude, while genetic distance among parents at best explains 7%. Thus, our findings are consistent with Wright's model of physiological dominance and suggest that the emergence of heterosis on plant performance is an intrinsic property of nonlinear relationships between traits. Furthermore, our study highlights the potential of a geometric approach of phenotypic relationships for predicting heterosis of major components of crop productivity and yield.
Collapse
Affiliation(s)
- François Vasseur
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, UMR759, Montpellier, France
| | - Louise Fouqueau
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Dominique de Vienne
- GQE–Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Univ Paris-Saclay, Gif-sur-Yvette, France
| | - Thibault Nidelet
- SPO, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Cyrille Violle
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
8
|
A Low Resolution Epistasis Mapping Approach To Identify Chromosome Arm Interactions in Allohexaploid Wheat. G3-GENES GENOMES GENETICS 2019; 9:675-684. [PMID: 30455184 PMCID: PMC6404624 DOI: 10.1534/g3.118.200646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epistasis is an important contributor to genetic variance. In inbred populations, pairwise epistasis is present as additive by additive interactions. Testing for epistasis presents a multiple testing problem as the pairwise search space for modest numbers of markers is large. Single markers do not necessarily track functional units of interacting chromatin as well as haplotype based methods do. To harness the power of multiple markers while minimizing the number of tests conducted, we present a low resolution test for epistatic interactions across whole chromosome arms. Epistasis covariance matrices were constructed from the additive covariances of individual chromosome arms. These covariances were subsequently used to estimate an epistatic variance parameter while correcting for background additive and epistatic effects. We find significant epistasis for 2% of the interactions tested for four agronomic traits in a winter wheat breeding population. Interactions across homeologous chromosome arms were identified, but were less abundant than other chromosome arm pair interactions. The homeologous chromosome arm pair 4BL/4DL showed a strong negative relationship between additive and interaction effects that may be indicative of functional redundancy. Several chromosome arms appeared to act as hubs in an interaction network, suggesting that they may contain important regulatory factors. The differential patterns of epistasis across different traits demonstrate that detection of epistatic interactions is robust when correcting for background additive and epistatic effects in the population. The low resolution epistasis mapping method presented here identifies important epistatic interactions with a limited number of statistical tests at the cost of low precision.
Collapse
|
9
|
Chen L, Bian J, Shi S, Yu J, Khanzada H, Wassan GM, Zhu C, Luo X, Tong S, Yang X, Peng X, Yong S, Yu Q, He X, Fu J, Chen X, Hu L, Ouyang L, He H. Genetic analysis for the grain number heterosis of a super-hybrid rice WFYT025 combination using RNA-Seq. RICE (NEW YORK, N.Y.) 2018; 11:37. [PMID: 29904811 PMCID: PMC6003258 DOI: 10.1186/s12284-018-0229-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/06/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Despite the great contributions of utilizing heterosis to crop productivity worldwide, the molecular mechanism of heterosis remains largely unexplored. Thus, the present research is focused on the grain number heterosis of a widely used late-cropping indica super hybrid rice combination in China using a high-throughput next-generation RNA-seq strategy. RESULTS Here, we obtained 872 million clean reads, and at least one read could maps 27,917 transcripts out of 35,679 annotations. Transcript differential expression analysis revealed a total of 5910 differentially expressed genes (DGHP) between super-hybrid rice Wufengyou T025 (WFYT025) and its parents were identified in the young panicles. Out of the 5910 DGHP, 63.1% had a genetic action mode of over-dominance, 17.3% had a complete-dominance action, 15.6% had a partial-dominance action and 4.0% had an additive action. DGHP were significantly enriched in carotenoid biosynthesis, diterpenoid biosynthesis and plant hormone signal transduction pathways, with the key genes involved in the three pathways being up-regulated in the hybrid. By comparing the DGHP enriched in the KEGG pathway with QTLs associated with grain number, several DGHP were located on the same chromosomal segment with some of these grain number QTLs. CONCLUSION Through young panicle development transcriptome analysis, we conclude that the over-dominant effect is probably the major contributor to the grain number heterosis of WFYT025. The DGHP sharing the same location with grain number QTLs could be considered a candidate gene and provide valuable targets for the cloning and functional analysis of these grain number QTLs.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Shilai Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Jianfeng Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Hira Khanzada
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Ghulam Mustafa Wassan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Xin Luo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Shan Tong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xiaorong Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xiaosong Peng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Shuang Yong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Qiuying Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| | - Linjuan Ouyang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, China
| |
Collapse
|
10
|
van Tol N, Rolloos M, Pinas JE, Henkel CV, Augustijn D, Hooykaas PJJ, van der Zaal BJ. Enhancement of Arabidopsis growth characteristics using genome interrogation with artificial transcription factors. PLoS One 2017; 12:e0174236. [PMID: 28358915 PMCID: PMC5373528 DOI: 10.1371/journal.pone.0174236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
The rapidly growing world population has a greatly increasing demand for plant biomass, thus creating a great interest in the development of methods to enhance the growth and biomass accumulation of crop species. In this study, we used zinc finger artificial transcription factor (ZF-ATF)-mediated genome interrogation to manipulate the growth characteristics and biomass of Arabidopsis plants. We describe the construction of two collections of Arabidopsis lines expressing fusions of three zinc fingers (3F) to the transcriptional repressor motif EAR (3F-EAR) or the transcriptional activator VP16 (3F-VP16), and the characterization of their growth characteristics. In total, six different 3F-ATF lines with a consistent increase in rosette surface area (RSA) of up to 55% were isolated. For two lines we demonstrated that 3F-ATF constructs function as dominant in trans acting causative agents for an increase in RSA and biomass, and for five larger plant lines we have investigated 3F-ATF induced transcriptomic changes. Our results indicate that genome interrogation can be used as a powerful tool for the manipulation of plant growth and biomass and that it might supply novel cues for the discovery of genes and pathways involved in these properties.
Collapse
Affiliation(s)
- Niels van Tol
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
- BioSolar Cells, Wageningen, The Netherlands
| | - Martijn Rolloos
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Johan E. Pinas
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Christiaan V. Henkel
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Dieuwertje Augustijn
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Paul J. J. Hooykaas
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Bert J. van der Zaal
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
11
|
Wang H, Zhang X, Yang H, Liu X, Li H, Yuan L, Li W, Fu Z, Tang J, Kang D. Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize. Sci Rep 2016; 6:38205. [PMID: 27917917 PMCID: PMC5137037 DOI: 10.1038/srep38205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022] Open
Abstract
Heterosis has widely been used to increase grain yield and quality. In this study, the genetic basis of heterosis on grain yield and its main components in maize were examined over 2 years in two locations in two test populations constructed from a set of 184 chromosome segment substitution lines (CSSLs) and two inbred lines (Zheng58 and Xun9058). Of the 169 heterotic loci (HL) associated with grain yield and its five components identified in CSSL × Zheng58 and CSSL × Xun9058 test populations, only 25 HL were detected in both populations. The comparison of quantitative trait loci (QTLs) detected in the CSSL population with HL detected in the two test populations revealed that only 15.46% and 17.35% of the HL in the given populations respectively, shared the same chromosomal regions as that of the corresponding QTLs and showed dominant effects as well as pleiotropism with additive and dominant effects. In addition, most of the HL (74.23% and 74.49%) had overdominant effects. These results suggest that overdominance is the main contributor to the effects of heterosis on grain yield and its components in maize, and different HL are associated with heterosis for different traits in different hybrids.
Collapse
Affiliation(s)
- Hongqiu Wang
- College of Agriculture and Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangge Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huili Yang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoyang Liu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huimin Li
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liang Yuan
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Li
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiyuan Fu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434023, China
| | - Dingming Kang
- College of Agriculture and Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids. Proc Natl Acad Sci U S A 2016; 113:E7317-E7326. [PMID: 27803326 DOI: 10.1073/pnas.1615268113] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ubiquity of nonparental hybrid phenotypes, such as hybrid vigor and hybrid inferiority, has interested biologists for over a century and is of considerable agricultural importance. Although examples of both phenomena have been subject to intense investigation, no general model for the molecular basis of nonadditive genetic variance has emerged, and prediction of hybrid phenotypes from parental information continues to be a challenge. Here we explore the genetics of hybrid phenotype in 435 Arabidopsis thaliana individuals derived from intercrosses of 30 parents in a half diallel mating scheme. We find that nonadditive genetic effects are a major component of genetic variation in this population and that the genetic basis of hybrid phenotype can be mapped using genome-wide association (GWA) techniques. Significant loci together can explain as much as 20% of phenotypic variation in the surveyed population and include examples that have both classical dominant and overdominant effects. One candidate region inherited dominantly in the half diallel contains the gene for the MADS-box transcription factor AGAMOUS-LIKE 50 (AGL50), which we show directly to alter flowering time in the predicted manner. Our study not only illustrates the promise of GWA approaches to dissect the genetic architecture underpinning hybrid performance but also demonstrates the contribution of classical dominance to genetic variance.
Collapse
|
13
|
Zhu D, Zhou G, Xu C, Zhang Q. Genetic Components of Heterosis for Seedling Traits in an Elite Rice Hybrid Analyzed Using an Immortalized F2 Population. J Genet Genomics 2016; 43:87-97. [PMID: 26924691 DOI: 10.1016/j.jgg.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/02/2016] [Accepted: 01/08/2016] [Indexed: 11/18/2022]
Abstract
Utilization of heterosis has greatly contributed to rice productivity in China and many Asian countries. Superior hybrids usually show heterosis at two stages: canopy development at vegetative stage and panicle development at reproductive stage resulting in heterosis in yield. Although the genetic basis of heterosis in rice has been extensively investigated, all the previous studies focused on yield traits at maturity stage. In this study, we analyzed the genetic basis of heterosis at seedling stage making use of an "immortalized F2" population composed of 105 hybrids produced by intercrossing recombinant inbred lines (RILs) from a cross between Zhenshan 97 and Minghui 63, the parents of Shanyou 63, which is an elite hybrid widely grown in China. Eight seedling traits, seedling height, tiller number, leaf number, root number, maximum root length, root dry weight, shoot dry weight and total dry weight, were investigated using hydroponic culture. We analyzed single-locus and digenic genetic effects at the whole genome level using an ultrahigh-density SNP bin map obtained by population re-sequencing. The analysis revealed large numbers of heterotic effects for seedling traits including dominance, overdominance and digenic dominance (epistasis) in both positive and negative directions. Overdominance effects were prevalent for all the traits, and digenic dominance effects also accounted for a large portion of the genetic effects. The results suggested that cumulative small advantages of the single-locus effects and two-locus interactions, most of which could not be detected statistically, could explain the genetic basis of seedling heterosis of the F1 hybrid.
Collapse
Affiliation(s)
- Dan Zhu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Caiguo Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Jiang L, Ge M, Zhao H, Zhang T. Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize. PLoS One 2015; 10:e0124779. [PMID: 25919458 PMCID: PMC4412835 DOI: 10.1371/journal.pone.0124779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 03/03/2015] [Indexed: 11/18/2022] Open
Abstract
Kernel shape related traits (KSRTs) have been shown to have important influences on grain yield. The previous studies that emphasize kernel length (KL) and kernel width (KW) lack a comprehensive evaluation of characters affecting kernel shape. In this study, materials of the basic generations (B73, Mo17, and B73 × Mo17), 82 intermated B73 × Mo17 (IBM) individuals, and the corresponding triple testcross (TTC) populations were used to evaluate heterosis, investigate correlations, and characterize the quantitative trait loci (QTL) for six KSRTs: KL, KW, length to width ratio (LWR), perimeter length (PL), kernel area (KA), and circularity (CS). The results showed that the mid-parent heterosis (MPH) for most of the KSRTs was moderate. The performance of KL, KW, PL, and KA exhibited significant positive correlation with heterozygosity but their Pearson’s R values were low. Among KSRTs, the strongest significant correlation was found between PL and KA with R values was up to 0.964. In addition, KW, PL, KA, and CS were shown to be significant positive correlation with 100-kernel weight (HKW). 28 QTLs were detected for KSRTs in which nine were augmented additive, 13 were augmented dominant, and six were dominance × additive epistatic. The contribution of a single QTL to total phenotypic variation ranged from 2.1% to 32.9%. Furthermore, 19 additive × additive digenic epistatic interactions were detected for all KSRTs with the highest total R2 for KW (78.8%), and nine dominance × dominance digenic epistatic interactions detected for KL, LWR, and CS with the highest total R2 (55.3%). Among significant digenic interactions, most occurred between genomic regions not mapped with main-effect QTLs. These findings display the complexity of the genetic basis for KSRTs and enhance our understanding on heterosis of KSRTs from the quantitative genetic perspective.
Collapse
Affiliation(s)
- Lu Jiang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Min Ge
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tifu Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail:
| |
Collapse
|
15
|
Heterosis and outbreeding depression in crosses between natural populations of Arabidopsis thaliana. Heredity (Edinb) 2015; 115:73-82. [PMID: 26059971 DOI: 10.1038/hdy.2015.18] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 02/03/2023] Open
Abstract
Understanding the causes and architecture of genetic differentiation between natural populations is of central importance in evolutionary biology. Crosses between natural populations can result in heterosis if recessive or nearly recessive deleterious mutations have become fixed within populations because of genetic drift. Divergence between populations can also result in outbreeding depression because of genetic incompatibilities. The net fitness consequences of between-population crosses will be a balance between heterosis and outbreeding depression. We estimated the magnitude of heterosis and outbreeding depression in the highly selfing model plant Arabidopsis thaliana, by crossing replicate line pairs from two sets of natural populations (C↔R, B↔S) separated by similar geographic distances (Italy↔Sweden). We examined the contribution of different modes of gene action to overall differences in estimates of lifetime fitness and fitness components using joint scaling tests with parental, reciprocal F1 and F2, and backcross lines. One of these population pairs (C↔R) was previously demonstrated to be locally adapted, but locally maladaptive quantitative trait loci were also found, suggesting a role for genetic drift in shaping adaptive variation. We found markedly different genetic architectures for fitness and fitness components in the two sets of populations. In one (C↔R), there were consistently positive effects of dominance, indicating the masking of recessive or nearly recessive deleterious mutations that had become fixed by genetic drift. The other set (B↔S) exhibited outbreeding depression because of negative dominance effects. Additional studies are needed to explore the molecular genetic basis of heterosis and outbreeding depression, and how their magnitudes vary across environments.
Collapse
|
16
|
Shen G, Zhan W, Chen H, Xing Y. Dominance and epistasis are the main contributors to heterosis for plant height in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:11-8. [PMID: 24388510 DOI: 10.1016/j.plantsci.2013.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/03/2013] [Accepted: 10/07/2013] [Indexed: 05/15/2023]
Abstract
The genetic basis of heterosis has been debated for over 100 years regarding whether dominance or overdominance plays a more important role and the answer is still unclear. The major limitation to assess the contribution of a single locus has been the genetic background noise due to genome-wide segregation of multiple loci. To dissect the genetic basis of heterosis at a single locus for plant height, we developed a set of 202 chromosome segment substitution lines (CSSLs) of an elite hybrid, Shanyou 63, the best hybrid rice in China in the 1990s. Fifteen CSSLs had varied plant heights within lines. A total of 15 partial dominance QTLs for plant height were detected in these 15 CSSL-F2 populations. All hybrids between the 15 CSSLs and the recurrent parent, Zhenshan 97, were shorter than the corresponding CSSLs, but taller than Zhenshan 97. These indicated that these 15 QTLs were also heterosis loci (HLs) contributed to heterosis acted in dominance. Each HL contributed from -7.4 to 14.4% of midparent heterosis. Additive by additive (AA) and additive by dominance (AD) interactions were detected in the Tetra-F2 population segregating at the four major QTLs with the largest effects on plant height. Substantial negative AA effects were detected between two major QTLs QPH7.2 and QPH7.3, which increased heterosis in the study. Thus we concluded that dominance and epistasis are the major genetic basis of plant height heterosis, which could explain the better parent heterosis in Shanyou 63.
Collapse
Affiliation(s)
- Guojing Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Huaxia Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Kaeppler S. Heterosis: Many Genes, Many Mechanisms—End the Search for an Undiscovered Unifying Theory. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/682824] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heterosis is the increase in vigor that is observed in progenies of matings of diverse individuals from different species, isolated populations, or selected strains within species or populations. Heterosis has been of immense economic value in agriculture and has important implications regarding the fitness and fecundity of individuals in natural populations. Genetic models based on complementation of deleterious alleles, especially in the context of linkage and epistasis, are consistent with many observed manifestations of heterosis. The search for the genes and alleles that underlie heterosis, as well as for broader allele-independent, genomewide mechanisms, has encompassed many species and systems. Common themes across these studies indicate that sequence diversity is necessary but not sufficient to produce heterotic phenotypes, and that the molecular pathways that produce heterosis involve chromatin modification, transcriptional control, translation and protein processing, and interactions between and within developmental and biochemical pathways. Taken together, there are many and diverse molecular mechanisms that translate DNA into phenotype, and it is the combination of all these mechanisms across many genes that produce heterosis in complex traits.
Collapse
Affiliation(s)
- Shawn Kaeppler
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
18
|
Abstract
Heterosis refers to the superior performance of hybrids relative to the parents. Utilization of heterosis has contributed tremendously to the increased productivity in many crops for decades. Although there have been a range of studies on various aspects of heterosis, the key to understanding the biological mechanisms of heterotic performance in crop hybrids is the genetic basis, much of which is still uncharacterized. In this study, we dissected the genetic composition of yield and yield component traits using data of replicated field trials of an "immortalized F(2)" population derived from an elite rice hybrid. On the basis of an ultrahigh-density SNP bin map constructed with population sequencing, we calculated single-locus and epistatic genetic effects in the whole genome and identified components pertaining to heterosis of the hybrid. The results showed that the relative contributions of the genetic components varied with traits. Overdominance/pseudo-overdominance is the most important contributor to heterosis of yield, number of grains per panicle, and grain weight. Dominance × dominance interaction is important for heterosis of tillers per plant and grain weight and has roles in yield and grain number. Single-locus dominance has relatively small contributions in all of the traits. The results suggest that cumulative effects of these components may adequately explain the genetic basis of heterosis in the hybrid.
Collapse
|
19
|
QTL analyses of heterosis for grain yield and yield-related traits in indica-japonica crosses of rice (Oryza sativa L.). Genes Genomics 2012. [DOI: 10.1007/s13258-011-0223-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Meyer RC, Witucka-Wall H, Becher M, Blacha A, Boudichevskaia A, Dörmann P, Fiehn O, Friedel S, von Korff M, Lisec J, Melzer M, Repsilber D, Schmidt R, Scholz M, Selbig J, Willmitzer L, Altmann T. Heterosis manifestation during early Arabidopsis seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:669-83. [PMID: 22487254 DOI: 10.1111/j.1365-313x.2012.05021.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Heterosis-associated cellular and molecular processes were analyzed in seeds and seedlings of Arabidopsis thaliana accessions Col-0 and C24 and their heterotic hybrids. Microscopic examination revealed no advantages in terms of hybrid mature embryo organ sizes or cell numbers. Increased cotyledon sizes were detectable 4 days after sowing. Growth heterosis results from elevated cell sizes and numbers, and is well established at 10 days after sowing. The relative growth rates of hybrid seedlings were most enhanced between 3 and 4 days after sowing. Global metabolite profiling and targeted fatty acid analysis revealed maternal inheritance patterns for a large proportion of metabolites in the very early stages. During developmental progression, the distribution shifts to dominant, intermediate and heterotic patterns, with most changes occurring between 4 and 6 days after sowing. The highest incidence of heterotic patterns coincides with establishment of size differences at 4 days after sowing. In contrast, overall transcript patterns at 4, 6 and 10 days after sowing are characterized by intermediate to dominant patterns, with parental transcript levels showing the largest differences. Overall, the results suggest that, during early developmental stages, intermediate gene expression and higher metabolic activity in the hybrids compared to the parents lead to better resource efficiency, and therefore enhanced performance in the hybrids.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang Z, Yu C, Liu X, Liu S, Yin C, Liu L, Lei J, Jiang L, Yang C, Chen L, Zhai H, Wan J. Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1351-1364. [PMID: 22311371 DOI: 10.1007/s00122-012-1792-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 12/22/2011] [Indexed: 05/27/2023]
Abstract
Exploitation of heterosis has brought significant advance in plant breeding and agricultural production, although its genetic basis is still poorly understood. In this study, a total of 66 chromosome segment substitution (CSS) lines, derived from a cross between japonica rice inbred line Asominori (as the recurrent parent) and indica rice inbred line IR24 (as the donor parent), were used to investigate the genetic basis of heterosis in indica × japonica inter-subspecific rice hybrids. Each CSS line was crossed with the background parent Asominori, and the heterosis of F(1) hybrids was estimated by comparing the F(1) performance with its two parental lines. Field experiments were carried out across six different environments to evaluate yield and yield-related traits in the 66 CSS lines and their 66 corresponding F(1) hybrids. Quantitative trait loci (QTL) analyses were conducted using a likelihood ratio test based on the stepwise regression. Thirty-six QTL were identified with significant effects in CSSL, 21 with significant effects in hybrids and 13 with significant effects in both. On the basis of average dominance degree, of all the 70 QTL affecting yield-related agronomic traits, 28.6% (20) showed an overdominance, 35.7% (25) a partial dominance and 30% (21) an additive effect, indicating that all effects contribute to trait variation in japonica-indica rice hybrids. Effects of these QTL were examined to identify Indica rice chromosome segments of interest for the improvement of japonica inbred lines and hybrids.
Collapse
Affiliation(s)
- Zhiquan Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
An Evaluation of Arabidopsis thaliana Hybrid Traits and Their Genetic Control. G3-GENES GENOMES GENETICS 2011; 1:571-9. [PMID: 22384368 PMCID: PMC3276180 DOI: 10.1534/g3.111.001156] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/10/2011] [Indexed: 02/07/2023]
Abstract
Heterosis is an important phenomenon in agriculture. However, heterosis often greatly varies among hybrids and among traits. To investigate heterosis across a large number of traits and numerous genotypes, we evaluated 12 life history traits on parents and hybrids derived from five Arabidopsis thaliana ecotypes (Col, Ler-0, Cvi, Ws, and C24) by using a complete diallel analysis containing 20 hybrids. Parental contributions to heterosis were hybrid and trait specific with a few reciprocal differences. Most notably, C24 generated hybrids with flowering time, biomass, and reproductive traits that often exceeded high-parent values. However, reproductive traits of C24 and Col hybrids and flowering time traits of C24 and Ler hybrids had no heterosis. We investigated whether allelic variation at flowering time genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) could explain the genotype- and trait-specific contribution of C24 to hybrid traits. We evaluated both Col and Ler lines introgressed with various FRI and FLC alleles and hybrids between these lines and C24. Hybrids with functional FLC differed from hybrids with nonfunctional FLC for 21 of the 24 hybrid-trait combinations. In most crosses, heterosis was fully or partially explained by FRI and FLC. Our results describe the genetic diversity for heterosis within a sample of A. thaliana ecotypes and show that FRI and FLC are major factors that contribute to heterosis in a genotype and trait specific fashion.
Collapse
|
23
|
Heterosis for Plant Height and Ear Position in Maize Revealed by Quan-titative Trait Loci Analysis with Triple Testcross Design. ACTA AGRONOMICA SINICA 2011. [DOI: 10.3724/sp.j.1006.2011.01186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
A complete solution for dissecting pure main and epistatic effects of QTL in triple testcross design. PLoS One 2011; 6:e24575. [PMID: 21949729 PMCID: PMC3176238 DOI: 10.1371/journal.pone.0024575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/14/2011] [Indexed: 11/19/2022] Open
Abstract
Epistasis plays an important role in genetics, evolution and crop breeding. To detect the epistasis, triple test cross (TTC) design had been developed several decades ago. Classical procedures for the TTC design use only linear transformations Z(1), Z(2) and Z(3), calculated from the TTC family means of quantitative trait, to infer the nature of the collective additive, dominance and epistatic effects of all the genes. Although several quantitative trait loci (QTL) mapping approaches in the TTC design have been developed, these approaches do not provide a complete solution for dissecting pure main and epistatic effects. In this study, therefore, we developed a two-step approach to estimate all pure main and epistatic effects in the F(2)-based TTC design under the F(2) and F(∞) metric models. In the first step, with Z(1) and Z(2) the augmented main and epistatic effects in the full genetic model that simultaneously considered all putative QTL on the whole genome were estimated using empirical Bayes approach, and with Z(3) three pure epistatic effects were obtained using two-dimensional genome scans. In the second step, the three pure epistatic effects obtained in the first step were integrated with the augmented epistatic and main effects for the further estimation of all other pure effects. A series of Monte Carlo simulation experiments has been carried out to confirm the proposed method. The results from simulation experiments show that: 1) the newly defined genetic parameters could be rightly identified with satisfactory statistical power and precision; 2) the F(2)-based TTC design was superior to the F(2) and F(2:3) designs; 3) with Z(1) and Z(2) the statistical powers for the detection of augmented epistatic effects were substantively affected by the signs of pure epistatic effects; and 4) with Z(3) the estimation of pure epistatic effects required large sample size and family replication number. The extension of the proposed method in this study to other base populations was further discussed.
Collapse
|
25
|
Ma (马谦) Q, Hedden P, Zhang (张启发) Q. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. PLANT PHYSIOLOGY 2011; 156:1905-20. [PMID: 21693671 PMCID: PMC3149939 DOI: 10.1104/pp.111.178046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/19/2011] [Indexed: 05/06/2023]
Abstract
Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA₂₉ but negatively correlated with that of GA₁₉. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development.
Collapse
Affiliation(s)
| | | | - Qifa Zhang (张启发)
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China (Q.M., Q.Z.); Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom (P.H.)
| |
Collapse
|
26
|
Shi J, Li R, Zou J, Long Y, Meng J. A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS One 2011; 6:e21645. [PMID: 21747942 PMCID: PMC3128606 DOI: 10.1371/journal.pone.0021645] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 06/07/2011] [Indexed: 01/12/2023] Open
Abstract
Although much research has been conducted, the genetic architecture of heterosis remains ambiguous. To unravel the genetic architecture of heterosis, a reconstructed F2 population was produced by random intercross among 202 lines of a double haploid population in rapeseed (Brassica napus L.). Both populations were planted in three environments and 15 yield-correlated traits were measured, and only seed yield and eight yield-correlated traits showed significant mid-parent heterosis, with the mean ranging from 8.7% (branch number) to 31.4% (seed yield). Hundreds of QTL and epistatic interactions were identified for the 15 yield-correlated traits, involving numerous variable loci with moderate effect, genome-wide distribution and obvious hotspots. All kinds of mode-of-inheritance of QTL (additive, A; partial-dominant, PD; full-dominant, D; over-dominant, OD) and epistatic interactions (additive × additive, AA; additive × dominant/dominant × additive, AD/DA; dominant × dominant, DD) were observed and epistasis, especially AA epistasis, seemed to be the major genetic basis of heterosis in rapeseed. Consistent with the low correlation between marker heterozygosity and mid-parent heterosis/hybrid performance, a considerable proportion of dominant and DD epistatic effects were negative, indicating heterozygosity was not always advantageous for heterosis/hybrid performance. The implications of our results on evolution and crop breeding are discussed.
Collapse
Affiliation(s)
- Jiaqin Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ruiyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
27
|
Bergelson J, Roux F. Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet 2010; 11:867-79. [PMID: 21085205 DOI: 10.1038/nrg2896] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A major challenge in evolutionary biology and plant breeding is to identify the genetic basis of complex quantitative traits, including those that contribute to adaptive variation. Here we review the development of new methods and resources to fine-map intraspecific genetic variation that underlies natural phenotypic variation in plants. In particular, the analysis of 107 quantitative traits reported in the first genome-wide association mapping study in Arabidopsis thaliana sets the stage for an exciting time in our understanding of plant adaptation. We also argue for the need to place phenotype-genotype association studies in an ecological context if one is to predict the evolutionary trajectories of plant species.
Collapse
Affiliation(s)
- Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA.
| | | |
Collapse
|
28
|
Li L, Lu K, Chen Z, Mou T, Hu Z, Li X. Gene actions at loci underlying several quantitative traits in two elite rice hybrids. Mol Genet Genomics 2010; 284:383-97. [PMID: 20862496 DOI: 10.1007/s00438-010-0575-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/07/2010] [Indexed: 11/25/2022]
Abstract
To understand the gene activities controlling nine important agronomic quantitative traits in rice, we applied a North Carolina design 3 (NC III design) analysis to recombinant inbred lines (RILs) in highly heterotic inter- (IJ) and intra-subspecific (II) hybrids by performing the following tasks: (1) investigating the relative contribution of additive, dominant, and epistatic effects for performance traits by generation means analysis and variance component estimates; (2) detecting the number, genomic positions, and genetic effects of QTL for phenotypic traits; and (3) characterizing their mode of gene action. Under an F∞-metric, generation means analysis and variance components estimates revealed that epistatic effects prevailed for the majority of traits in the two hybrids. QTL analysis identified 48 and 66 main-effect QTL (M-QTL) for nine traits in IJ and II hybrids, respectively. In IJ hybrids, 20 QTL (41.7%) showed an additive effect of gene actions, 20 (41.7%) showed partial-to-complete dominance, and 8 (16.7%) showed overdominance. In II hybrids, 34 QTL (51.5%) exhibited additive effects, 14 (21.2%) partial-to-complete dominance, and 18 (27.3%) overdominance. There were 153 digenic interactions (E-QTL) in the IJ hybrid and 252 in the II hybrid. These results suggest that additive effects, dominance, overdominance, and particularly epistasis attribute to the genetic basis of the expression of traits in the two hybrids. Additionally, we determined that the genetic causes of phenotypic traits and their heterosis are different. In the plants we studied, the phenotypic traits investigated and their heterosis were conditioned by different M-QTL and E-QTL, respectively, and were mainly due to non-allelic interactions (epistasis).
Collapse
Affiliation(s)
- Lanzhi Li
- College of Bio-Safety Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | | | | | | | | | | |
Collapse
|
29
|
Elnaccash TW, Tonsor SJ. Something old and something new: wedding recombinant inbred lines with traditional line cross analysis increases power to describe gene interactions. PLoS One 2010; 5:e10200. [PMID: 20419131 PMCID: PMC2855707 DOI: 10.1371/journal.pone.0010200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/18/2010] [Indexed: 11/19/2022] Open
Abstract
In this paper we present a novel approach to quantifying genetic architecture that combines recombinant inbred lines (RIL) with line cross analysis (LCA). LCA is a method of quantifying directional genetic effects (i.e. summed effects of all loci) that differentiate two parental lines. Directional genetic effects are thought to be critical components of genetic architecture for the long term response to selection and as a cause of inbreeding depression. LCA typically begins with two inbred parental lines that are crossed to produce several generations such as F1, F2, and backcrosses to each parent. When a RIL population (founded from the same P1 and P2 as was used to found the line cross population) is added to the LCA, the sampling variance of several nonadditive genetic effect estimates is greatly reduced. Specifically, estimates of directional dominance, additive x additive, and dominance x dominance epistatic effects are reduced by 92%, 94%, and 56% respectively. The RIL population can be simultaneously used for QTL identification, thus uncovering the effects of specific loci or genomic regions as elements of genetic architecture. LCA and QTL mapping with RIL provide two qualitatively different measures of genetic architecture with the potential to overcome weaknesses of each approach alone. This approach provides cross-validation of the estimates of additive and additive x additive effects, much smaller confidence intervals on dominance, additive x additive and dominance x dominance estimates, qualitatively different measures of genetic architecture, and the potential when used together to balance the weaknesses of LCA or RIL QTL analyses when used alone.
Collapse
Affiliation(s)
- Tarek W Elnaccash
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
| | | |
Collapse
|
30
|
Meyer RC, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, Selbig J, Schurr U, Willmitzer L, Altmann T. QTL analysis of early stage heterosis for biomass in Arabidopsis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:227-37. [PMID: 19504257 PMCID: PMC2793381 DOI: 10.1007/s00122-009-1074-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/18/2009] [Indexed: 05/19/2023]
Abstract
The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F (1) hybrid exhibited 44% heterosis for biomass. Mid-parent heterosis in the RILs ranged from -31 to 99% for dry weight and from -58 to 143% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross.
Collapse
Affiliation(s)
- Rhonda Christiane Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:333-40. [PMID: 19936698 DOI: 10.1007/s00122-009-1213-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 10/30/2009] [Indexed: 05/18/2023]
Abstract
The genetic basis of heterosis for grain yield and its components was investigated at the single- and two-locus levels using molecular markers with an immortalized F(2) (IF(2)) population, which was developed by pair crosses among recombinant inbred lines (RILs) derived from the elite maize hybrid Yuyu22. Mid-parent heterosis of each cross in the IF(2) population was used to map heterotic quantitative trait loci. A total of 13 heterotic loci (HL) were detected. These included three HL for grain yield, seven for ear length, one for ear row number and two for 100-kernel weight. A total of 143 digenic interactions contributing to mid-parent heterosis were detected at the two-locus level involving all three types of interactions (additive x additive = AA, additive x dominance = AD or DA, dominance x dominance = DD). There were 25 digenic interactions for grain yield, 36 for ear length, 31 for ear row number and 51 for 100-kernel weight. Altogether, dominance effects of HL at the single-locus level as well as AA interactions played an important role in the genetic basis of heterosis for grain yield and its components in Yuyu22.
Collapse
Affiliation(s)
- Jihua Tang
- National Maize Improvement Center of China, China Agricultural University, 100193 Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Inbreeding depression - the reduced survival and fertility of offspring of related individuals - occurs in wild animal and plant populations as well as in humans, indicating that genetic variation in fitness traits exists in natural populations. Inbreeding depression is important in the evolution of outcrossing mating systems and, because intercrossing inbred strains improves yield (heterosis), which is important in crop breeding, the genetic basis of these effects has been debated since the early twentieth century. Classical genetic studies and modern molecular evolutionary approaches now suggest that inbreeding depression and heterosis are predominantly caused by the presence of recessive deleterious mutations in populations.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute for Evolutionary Biology, Ashworth Laboratories, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
33
|
Li X, Wei Y, Nettleton D, Brummer EC. Comparative gene expression profiles between heterotic and non-heterotic hybrids of tetraploid Medicago sativa. BMC PLANT BIOLOGY 2009; 9:107. [PMID: 19678936 PMCID: PMC2736959 DOI: 10.1186/1471-2229-9-107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 08/13/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND Heterosis, the superior performance of hybrids relative to parents, has clear agricultural value, but its genetic control is unknown. Our objective was to test the hypotheses that hybrids expressing heterosis for biomass yield would show more gene expression levels that were different from midparental values and outside the range of parental values than hybrids that do not exhibit heterosis. RESULTS We tested these hypotheses in three Medicago sativa (alfalfa) genotypes and their three hybrids, two of which expressed heterosis for biomass yield and a third that did not, using Affymetrix M. truncatula GeneChip arrays. Alfalfa hybridized to approximately 47% of the M. truncatula probe sets. Probe set signal intensities were analyzed using MicroArray Suite v.5.0 (MAS) and robust multi-array average (RMA) algorithms. Based on MAS analysis, the two heterotic hybrids performed similarly, with about 27% of genes showing differential expression among the parents and their hybrid compared to 12.5% for the non-heterotic hybrid. At a false discovery rate of 0.15, 4.7% of differentially expressed genes in hybrids (approximately 300 genes) showed nonadditive expression compared to only 0.5% (16 genes) in the non-heterotic hybrid. Of the nonadditively expressed genes, approximately 50% showed expression levels that fell outside the parental range in heterotic hybrids, but only one of 16 showed a similar profile in the non-heterotic hybrid. Genes whose expression differed in the parents were three times more likely to show nonadditive expression than genes whose parental transcript levels were equal. CONCLUSION The higher proportions of probe sets with expression level that differed from the parental midparent value and that were more extreme than either parental value in the heterotic hybrids compared to a non-heterotic hybrid were also found using RMA. We conclude that nonadditive expression of transcript levels may contribute to heterosis for biomass yield in alfalfa.
Collapse
Affiliation(s)
- Xuehui Li
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
| | - Yanling Wei
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa 50011, USA
| | - E Charles Brummer
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
34
|
Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M. What has natural variation taught us about plant development, physiology, and adaptation? THE PLANT CELL 2009; 21:1877-96. [PMID: 19574434 PMCID: PMC2729614 DOI: 10.1105/tpc.109.068114] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 05/17/2023]
Abstract
Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available.
Collapse
Affiliation(s)
- Carlos Alonso-Blanco
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Departamento de Genética Molecular de Plantas, Cantoblanco 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Gärtner T, Steinfath M, Andorf S, Lisec J, Meyer RC, Altmann T, Willmitzer L, Selbig J. Improved heterosis prediction by combining information on DNA- and metabolic markers. PLoS One 2009; 4:e5220. [PMID: 19370148 PMCID: PMC2666157 DOI: 10.1371/journal.pone.0005220] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 03/18/2009] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hybrids represent a cornerstone in the success story of breeding programs. The fundamental principle underlying this success is the phenomenon of hybrid vigour, or heterosis. It describes an advantage of the offspring as compared to the two parental lines with respect to parameters such as growth and resistance against abiotic or biotic stress. Dominance, overdominance or epistasis based models are commonly used explanations. CONCLUSION/SIGNIFICANCE The heterosis level is clearly a function of the combination of the parents used for offspring production. This results in a major challenge for plant breeders, as usually several thousand combinations of parents have to be tested for identifying the best combinations. Thus, any approach to reliably predict heterosis levels based on properties of the parental lines would be highly beneficial for plant breeding. METHODOLOGY/PRINCIPAL FINDINGS Recently, genetic data have been used to predict heterosis. Here we show that a combination of parental genetic and metabolic markers, identified via feature selection and minimum-description-length based regression methods, significantly improves the prediction of biomass heterosis in resulting offspring. These findings will help furthering our understanding of the molecular basis of heterosis, revealing, for instance, the presence of nonlinear genotype-phenotype relationships. In addition, we describe a possible approach for accelerated selection in plant breeding.
Collapse
Affiliation(s)
- Tanja Gärtner
- Department of Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Matthias Steinfath
- Department of Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Sandra Andorf
- Bioinformatics and Biomathematics Group, Genetics and Biometry Unit, Research Institute for the Biology of Farm Animals (FBN), Dummerstorf, Germany
| | - Jan Lisec
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rhonda C. Meyer
- Department of Molecular Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Thomas Altmann
- Department of Molecular Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Lothar Willmitzer
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Joachim Selbig
- Department of Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|
36
|
Luo X, Fu Y, Zhang P, Wu S, Tian F, Liu J, Zhu Z, Yang J, Sun C. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2009; 51:393-408. [PMID: 21452591 DOI: 10.1111/j.1744-7909.2008.00807.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A set of 148 F9 recombinant inbred lines (RILs) was developed from the cross of an indica cultivar 93-11 and japonica cultivar DT713, showing strong F1 heterosis. Subsequently, two backcross F1 (BCF1) populations were constructed by backcrossing these 148 RILs to two parents, 93-11 and DT713. These three related populations (281BCF1 lines, 148 RILs) were phenotyped for six yield-related traits in two locations. Significant inbreeding depression was detected in the population of RILS and a high level of heterosis was observed in the two BCF1 populations. A total of 42 main-effect quantitative trait loci (M-QTLs) and 109 epistatic effect QTL pairs (E-QTLs) were detected in the three related populations using the mixed model approach. By comparing the genetic effects of these QTLs detected in the RILs, BCF1 performance and mid-parental heterosis (HMP), we found that, in both BCF1 populations, the QTLs detected could be classified into two predominant types: additive and over-dominant loci, which indicated that the additive and over-dominant effect were more important than complete or partially dominance for M-QTLs and E-QTLs. Further, we found that the E-QTLs detected collectively explained a larger portion of the total phenotypic variation than the M-QTLs in both RILs and BCF1 populations. All of these results suggest that additive and over-dominance resulting from epistatic loci might be the primary genetic basis of heterosis in rice.
Collapse
Affiliation(s)
- Xiaojin Luo
- Department of Plant Genetics and Breeding and State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 2008; 180:1725-42. [PMID: 18791236 DOI: 10.1534/genetics.108.091942] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two recombinant inbred (RI) populations having 194 and 222 lines each, derived, respectively, from a highly heterotic inter- (IJ) and intrasubspecific (II) hybrid, were backcrossed to their respective parents. The RI and two backcross populations along with F1 and its two parents of each hybrid were evaluated for nine important traits, including grain yield and eight other yield-related traits. A total of 76 quantitative trait loci (QTL) for the IJ hybrid and 41 QTL for the II hybrid were detected in the RI population, midparent heterosis of two backcross populations, and two independent sets of data by summation (L1 + L2) and by subtraction (L1 - L2) of two backcross populations (L1 and L2). The variance explained by each QTL ranged from 2.6 to 58.3%. In the IJ hybrid, 42% (32) of the QTL showed an additive effect, 32% (24) a partial-to-complete dominant effect, and 26% (20) an overdominant effect. In the II hybrid, 32% (13) of the QTL demonstrated an additive effect, 29% (12) a partial-to-complete dominant effect, and 39% (16) an overdominant effect. There were 195 digenic interactions detected in the IJ hybrid and 328 in the II hybrid. The variance explained by each digenic interaction ranged from 2.0 to 14.9%. These results suggest that the heterosis in these two hybrids is attributable to the orchestrated outcome of partial-to-complete dominance, overdominance, and epistasis.
Collapse
|
38
|
Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 2008; 179:1547-58. [PMID: 18562665 DOI: 10.1534/genetics.108.089680] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The main objective in this research was the genetic analysis of heterosis in rapeseed at the QTL level. A linkage map comprising 235 SSR and 144 AFLP markers covering 2045 cM was constructed in a doubled-haploid population from a cross between the cultivar "Express" and the resynthesized line "R53." In field experiments at four locations in Germany 250 doubled-haploid (DH) lines and their corresponding testcrosses with Express were evaluated for grain yield and three yield components. The heterosis ranged from 30% for grain yield to 0.7% for kernel weight. QTL were mapped using three different data sets, allowing the estimation of additive and dominance effects as well as digenic epistatic interactions. In total, 33 QTL were detected, of which 10 showed significant dominance effects. For grain yield, mainly complete dominance or overdominance was observed, whereas the other traits showed mainly partial dominance. A large number of epistatic interactions were detected. It was concluded that epistasis together with all levels of dominance from partial to overdominance is responsible for the expression of heterosis in rapeseed.
Collapse
|
39
|
Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 2008; 178:489-511. [PMID: 18202390 DOI: 10.1534/genetics.107.077297] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Grain yield is a major goal for the improvement of durum wheat, particularly in drought-prone areas. In this study, the genetic basis of grain yield (GY), heading date (HD), and plant height (PH) was investigated in a durum wheat population of 249 recombinant inbred lines evaluated in 16 environments (10 rainfed and 6 irrigated) characterized by a broad range of water availability and GY (from 5.6 to 58.8 q ha(-1)). Among the 16 quantitative trait loci (QTL) that affected GY, two major QTL on chromosomes 2BL and 3BS showed significant effects in 8 and 7 environments, with R2 values of 21.5 and 13.8% (mean data of all 16 environments), respectively. In both cases, extensive overlap was observed between the LOD profiles of GY and PH, but not with those for HD. QTL specific for PH were identified on chromosomes 1BS, 3AL, and 7AS. Additionally, three major QTL for HD on chromosomes 2AS, 2BL, and 7BS showed limited or no effects on GY. For both PH and GY, notable epistasis between the chromosome 2BL and 3BS QTL was detected across several environments.
Collapse
|
40
|
Törjék O, Meyer RC, Zehnsdorf M, Teltow M, Strompen G, Witucka-Wall H, Blacha A, Altmann T. Construction and analysis of 2 reciprocal Arabidopsis introgression line populations. ACTA ACUST UNITED AC 2008; 99:396-406. [PMID: 18310067 DOI: 10.1093/jhered/esn014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two new large reciprocal sets of introgression lines (ILs) were created between the Arabidopsis accessions Col-0 and C24. In both sets (78 ILs with Col-0 background and 62 ILs with C24 background), the donor segments cover almost the entire genome with an average substitution size of 18.3 cM. In addition to the basic sets of ILs, further subILs were developed for 2 genomic regions allowing better mapping resolution. SubILs carrying donor segments with candidate genes for flowering time and reduced fertility were used to demonstrate the usefulness of the reciprocal ILs for quantitative trait loci detection and fine mapping. For subIL development at high resolution around the reduced fertility locus, we used modified CelI-based assays in one-well format for both marker development and genotyping. This serves as a very flexible and cost-effective approach.
Collapse
Affiliation(s)
- Ottó Törjék
- Department of Genetics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics 2008; 177:1839-50. [PMID: 18039885 DOI: 10.1534/genetics.107.077628] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis thaliana has emerged as a leading model species in plant genetics and functional genomics including research on the genetic causes of heterosis. We applied a triple testcross (TTC) design and a novel biometrical approach to identify and characterize quantitative trait loci (QTL) for heterosis of five biomass-related traits by (i) estimating the number, genomic positions, and genetic effects of heterotic QTL, (ii) characterizing their mode of gene action, and (iii) testing for presence of epistatic effects by a genomewide scan and marker x marker interactions. In total, 234 recombinant inbred lines (RILs) of Arabidopsis hybrid C24 x Col-0 were crossed to both parental lines and their F1 and analyzed with 110 single-nucleotide polymorphism (SNP) markers. QTL analyses were conducted using linear transformations Z1, Z2, and Z3 calculated from the adjusted entry means of TTC progenies. With Z1, we detected 12 QTL displaying augmented additive effects. With Z2, we mapped six QTL for augmented dominance effects. A one-dimensional genome scan with Z3 revealed two genomic regions with significantly negative dominance x additive epistatic effects. Two-way analyses of variance between marker pairs revealed nine digenic epistatic interactions: six reflecting dominance x dominance effects with variable sign and three reflecting additive x additive effects with positive sign. We conclude that heterosis for biomass-related traits in Arabidopsis has a polygenic basis with overdominance and/or epistasis being presumably the main types of gene action.
Collapse
|
42
|
Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 2008; 177:1827-37. [PMID: 18039884 DOI: 10.1534/genetics.107.080564] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epistasis seems to play a significant role in the manifestation of heterosis. However, the power of detecting epistatic interactions among quantitative trait loci (QTL) in segregating populations is low. We studied heterosis in Arabidopsis thaliana hybrid C24 x Col-0 by testing near-isogenic lines (NILs) and their triple testcross (TTC) progenies. Our objectives were to (i) provide the theoretical basis for estimating different types of genetic effects with this experimental design, (ii) determine the extent of heterosis for seven growth-related traits, (iii) map the underlying QTL, and (iv) determine their gene action. Two substitution libraries, each consisting of 28 NILs and covering approximately 61 and 39% of the Arabidopsis genome, were assayed by 110 single-nucleotide polymorphism (SNP) markers. With our novel generation means approach 38 QTL were detected, many of which confirmed heterotic QTL detected previously in the same cross with TTC progenies of recombinant inbred lines. Furthermore, many of the QTL were common for different traits and in common with the 58 QTL detected by a method that compares triplets consisting of a NIL, its recurrent parent, and their F(1) cross. While the latter approach revealed mostly (75%) overdominant QTL, the former approach allowed separation of dominance and epistasis by analyzing all materials simultaneously and yielded substantial positive additive x additive effects besides directional dominance. Positive epistatic effects reduced heterosis for growth-related traits in our materials.
Collapse
|
43
|
Holub EB. Natural variation in innate immunity of a pioneer species. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:415-24. [PMID: 17631039 DOI: 10.1016/j.pbi.2007.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/21/2007] [Accepted: 05/23/2007] [Indexed: 05/05/2023]
Abstract
By 2010, we will have detailed knowledge about the genome of Arabidopsis thaliana from a Linnean-like effort by an international research community to identify nearly all of the genes in the species and to classify the products that these genes encode according to a primary function in a generic plant cell. To know the wild species, however, we will require knowledge of which genes provide the raw material for phenotypic variation and natural selection, and consequently affect the adaptability of individual plants and local populations across their geographic range, and ultimately survival of the species. Natural variation in innate immunity will be at the forefront of this exciting research frontier as a model for the molecular ecology of plant-microbe interactions.
Collapse
Affiliation(s)
- Eric B Holub
- Warwick-HRI, University of Warwick, Wellesbourne, UK.
| |
Collapse
|