1
|
Pinheiro A, Borges JR, Côrte-Real JV, Esteves PJ. Evolution of guanylate binding protein genes shows a remarkable variability within bats (Chiroptera). Front Immunol 2024; 15:1329098. [PMID: 38357541 PMCID: PMC10864436 DOI: 10.3389/fimmu.2024.1329098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Background GBPs (guanylate binding proteins), an evolutionary ancient protein family, play a key role in the host's innate immune response against bacterial, parasitic and viral infections. In Humans, seven GBP genes have been described (GBP1-7). Despite the interest these proteins have received over the last years, evolutionary studies have only been performed in primates, Tupaia and rodents. These have shown a pattern of gene gain and loss in each family, indicative of the birth-and-death evolution process. Results In this study, we analysed the evolution of this gene cluster in several bat species, belonging to the Yangochiroptera and Yinpterochiroptera sub-orders. Detailed analysis shows a conserved synteny and a gene expansion and loss history. Phylogenetic analysis showed that bats have GBPs 1,2 and 4-6. GBP2 has been lost in several bat families, being present only in Hipposideidae and Pteropodidae. GBPs1, 4 and 5 are present mostly as single-copy genes in all families but have suffered duplication events, particularly in Myotis myotis and Eptesicus fuscus. Most interestingly, we demonstrate that GBP6 duplicated in a Chiroptera ancestor species originating two genes, which we named GBP6a and GBP6b, with different subsequent evolutionary histories. GBP6a underwent several duplication events in all families while GBP6b is present as a single copy gene and has been lost in Pteropodidae, Miniopteridae and Desmodus rotundus, a Phyllostomidae. With 14 and 15 GBP genes, Myotis myotis and Eptesicus fuscus stand out as having far more copies than all other studied bat species. Antagonistically, Pteropodidae have the lowest number of GBP genes in bats. Conclusion Bats are important reservoirs of viruses, many of which have become zoonotic diseases in the last decades. Further functional studies on bats GBPs will help elucidate their function, evolutionary history, and the role of bats as virus reservoirs.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - J. Ricardo Borges
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - João Vasco Côrte-Real
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich (LMU) München, Munich, Germany
| | - Pedro J. Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| |
Collapse
|
2
|
Nawae W, Sonthirod C, Yoocha T, Waiyamitra P, Soisook P, Tangphatsornruang S, Pootakham W. Genome assembly of the Pendlebury's roundleaf bat, Hipposideros pendleburyi, revealed the expansion of Tc1/Mariner DNA transposons in Rhinolophoidea. DNA Res 2022; 29:dsac026. [PMID: 36214371 PMCID: PMC9549598 DOI: 10.1093/dnares/dsac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Bats (Chiroptera) constitute the second largest order of mammals and have several distinctive features, such as true self-powered flight and strong immunity. The Pendlebury's roundleaf bat, Hipposideros pendleburyi, is endemic to Thailand and listed as a vulnerable species. We employed the 10× Genomics linked-read technology to obtain a genome assembly of H. pendleburyi. The assembly size was 2.17 Gb with a scaffold N50 length of 15,398,518 bases. Our phylogenetic analysis placed H. pendleburyi within the rhinolophoid clade of the suborder Yinpterochiroptera. A synteny analysis showed that H. pendleburyi shared conserved chromosome segments (up to 105 Mb) with Rhinolophus ferrumequinum and Phyllostomus discolor albeit having different chromosome numbers and belonging different families. We found positive selection signals in genes involved in inflammation, spermatogenesis and Wnt signalling. The analyses of transposable elements suggested the contraction of short interspersed nuclear elements (SINEs) and the accumulation of young mariner DNA transposons in the analysed hipposiderids. Distinct mariners were likely horizontally transferred to hipposiderid genomes over the evolution of this family. The lineage-specific profiles of SINEs and mariners might involve in the evolution of hipposiderids and be associated with the phylogenetic separations of these bats from other bat families.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Pitchaporn Waiyamitra
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Hat Yai, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
3
|
Petersen M, Winter S, Coimbra R, J de Jong M, Kapitonov VV, Nilsson MA. Population analysis of retrotransposons in giraffe genomes supports RTE decline and widespread LINE1 activity in Giraffidae. Mob DNA 2021; 12:27. [PMID: 34836553 PMCID: PMC8620236 DOI: 10.1186/s13100-021-00254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The majority of structural variation in genomes is caused by insertions of transposable elements (TEs). In mammalian genomes, the main TE fraction is made up of autonomous and non-autonomous non-LTR retrotransposons commonly known as LINEs and SINEs (Long and Short Interspersed Nuclear Elements). Here we present one of the first population-level analysis of TE insertions in a non-model organism, the giraffe. Giraffes are ruminant artiodactyls, one of the few mammalian groups with genomes that are colonized by putatively active LINEs of two different clades of non-LTR retrotransposons, namely the LINE1 and RTE/BovB LINEs as well as their associated SINEs. We analyzed TE insertions of both types, and their associated SINEs in three giraffe genome assemblies, as well as across a population level sampling of 48 individuals covering all extant giraffe species. RESULTS The comparative genome screen identified 139,525 recent LINE1 and RTE insertions in the sampled giraffe population. The analysis revealed a drastically reduced RTE activity in giraffes, whereas LINE1 is still actively propagating in the genomes of extant (sub)-species. In concert with the extremely low activity of the giraffe RTE, we also found that RTE-dependent SINEs, namely Bov-tA and Bov-A2, have been virtually immobile in the last 2 million years. Despite the high current activity of the giraffe LINE1, we did not find evidence for the presence of currently active LINE1-dependent SINEs. TE insertion heterozygosity rates differ among the different (sub)-species, likely due to divergent population histories. CONCLUSIONS The horizontally transferred RTE/BovB and its derived SINEs appear to be close to inactivation and subsequent extinction in the genomes of extant giraffe species. This is the first time that the decline of a TE family has been meticulously analyzed from a population genetics perspective. Our study shows how detailed information about past and present TE activity can be obtained by analyzing large-scale population-level genomic data sets.
Collapse
Affiliation(s)
- Malte Petersen
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Raphael Coimbra
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany
| | - Menno J de Jong
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Vladimir V Kapitonov
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Nikaido M, Kondo S, Zhang Z, Wu J, Nishihara H, Niimura Y, Suzuki S, Touhara K, Suzuki Y, Noguchi H, Minakuchi Y, Toyoda A, Fujiyama A, Sugano S, Yoneda M, Kai C. Comparative genomic analyses illuminate the distinct evolution of megabats within Chiroptera. DNA Res 2020; 27:5910551. [PMID: 32966557 PMCID: PMC7547651 DOI: 10.1093/dnares/dsaa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/09/2020] [Indexed: 11/12/2022] Open
Abstract
The revision of the sub-order Microchiroptera is one of the most intriguing outcomes in recent mammalian molecular phylogeny. The unexpected sister–taxon relationship between rhinolophoid microbats and megabats, with the exclusion of other microbats, suggests that megabats arose in a relatively short period of time from a microbat-like ancestor. In order to understand the genetic mechanism underlying adaptive evolution in megabats, we determined the whole-genome sequences of two rousette megabats, Leschenault’s rousette (Rousettus leschenaultia) and the Egyptian fruit bat (R. aegyptiacus). The sequences were compared with those of 22 other mammals, including nine bats, available in the database. We identified that megabat genomes are distinct in that they have extremely low activity of SINE retrotranspositions, expansion of two chemosensory gene families, including the trace amine receptor (TAAR) and olfactory receptor (OR), and elevation of the dN/dS ratio in genes for immunity and protein catabolism. The adaptive signatures discovered in the genomes of megabats may provide crucial insight into their distinct evolution, including key processes such as virus resistance, loss of echolocation, and frugivorous feeding.
Collapse
Affiliation(s)
- Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Shinji Kondo
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Zicong Zhang
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan
| | - Jiaqi Wu
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshihito Niimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shunta Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-0882, Japan
| | - Hideki Noguchi
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Chiba 277-0882, Japan
| | - Misako Yoneda
- Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.,Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Chieko Kai
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
5
|
Wichman HA, Scott L, Howell EK, Martinez AR, Yang L, Baker RJ. Flying Around in the Genome: Characterization of LINE-1 in Chiroptera. SPECIAL PUBLICATIONS (TEXAS TECH UNIVERSITY. MUSEUM) 2019; 71:379-392. [PMID: 32095030 PMCID: PMC7039574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
L1s are transposable elements that move by a copy-and-paste mechanism that continuously increases their copy number in the genome, such that each genome has a record of the L1 history in that host lineage. They make up about 20% of the genomes of eutherian mammals and have played a major role in shaping genome evolution. Chiroptera has the lowest average genome size among mammalian orders and the only documented case of L1 extinction affecting an entire mammalian family. Herein, L1 activity and extinction are characterized in all families of the order Chiroptera using a method that enriches for the youngest lineages of L1s in the genome. In addition to the previously reported L1 extinction in Pteropodidae, L1 extinction was documented to occur in Mormoops blainvilli, but this event did not affect all species of Mormoopidae. Further, there was no evidence of concordance between the evolution of L1s and their chiropteran host. There were two L1 lineages present before the divergence of all extant bats. Both lineages are extinct in the Pteropodidae. One or the other L1 lineage is extinct in almost all bat families, but Taphozous melanopogon maintains active members of both. Most intriguingly, some families within the Rhinolophoidea retain one active L1 lineage whereas other families retain the other, creating a deep discontinuity between L1 phylogeny and chiropteran phylogeny. These results indicate that there have been numerous losses of active L1 lineages over the history of chiropteran evolution, but that all chiropteran families except Pteropodidae have retained L1 activity.
Collapse
Affiliation(s)
- Holly A Wichman
- Center for Modeling Complex Interactions & Department of Biological Sciences, University of Idaho, MS 1122, Moscow, ID 83844 -3051 USA
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051 USA
| | - Eric K Howell
- ÅF AB, Frösundaleden 2A, 169 99, Solna, Stockholm, Sweden
| | - Armando R Martinez
- Environmental Compliance Division, City of Nampa, 340 W. Railroad St. Nampa, ID 83687 USA
| | - Lei Yang
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122 USA
| | - Robert J Baker
- Department of Biological Sciences and the Museum, Texas Tech University, Lubbock, TX 79409-3131 USA
| |
Collapse
|
6
|
Hayward JA, Tachedjian M, Cui J, Cheng AZ, Johnson A, Baker ML, Harris RS, Wang LF, Tachedjian G. Differential Evolution of Antiretroviral Restriction Factors in Pteropid Bats as Revealed by APOBEC3 Gene Complexity. Mol Biol Evol 2019; 35:1626-1637. [PMID: 29617834 PMCID: PMC5995163 DOI: 10.1093/molbev/msy048] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bats have attracted attention in recent years as important reservoirs of viruses deadly to humans and other mammals. These infections are typically nonpathogenic in bats raising questions about innate immune differences that might exist between bats and other mammals. The APOBEC3 gene family encodes antiviral DNA cytosine deaminases with important roles in the suppression of diverse viruses and genomic parasites. Here, we characterize pteropid APOBEC3 genes and show that species within the genus Pteropus possess the largest and most diverse array of APOBEC3 genes identified in any mammal reported to date. Several bat APOBEC3 proteins are antiviral as demonstrated by restriction of retroviral infectivity using HIV-1 as a model, and recombinant A3Z1 subtypes possess strong DNA deaminase activity. These genes represent the first group of antiviral restriction factors identified in bats with extensive diversification relative to homologues in other mammals.
Collapse
Affiliation(s)
- Joshua A Hayward
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Mary Tachedjian
- Australian Animal Health Laboratory, Health and Biosecurity Business Unit, CSIRO, Geelong, VIC, Australia
| | - Jie Cui
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Adam Z Cheng
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN
| | - Adam Johnson
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Michelle L Baker
- Australian Animal Health Laboratory, Health and Biosecurity Business Unit, CSIRO, Geelong, VIC, Australia
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gilda Tachedjian
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia.,School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia.,Department of Microbiology and Immunology at the Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Yang L, Scott L, Wichman HA. Tracing the history of LINE and SINE extinction in sigmodontine rodents. Mob DNA 2019; 10:22. [PMID: 31139266 PMCID: PMC6530004 DOI: 10.1186/s13100-019-0164-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background L1 retrotransposons have co-evolved with their mammalian hosts for the entire history of mammals and currently compose ~ 20% of a mammalian genome. B1 retrotransposons are dependent on L1 for retrotransposition and span the evolutionary history of rodents since their radiation. L1s were found to have lost their activity in a group of South American rodents, the Sigmodontinae, and B1 inactivation preceded the extinction of L1 in the same group. Consequently, a basal group of sigmodontines have active L1s but inactive B1s and a derived clade have both inactive L1s and B1s. It has been suggested that B1s became extinct during a long period of L1 quiescence and that L1s subsequently reemerged in the basal group. Results Here we investigate the evolutionary histories of L1 and B1 in the sigmodontine rodents and show that L1 activity continued until after the L1-extinct clade and the basal group diverged. After the split, L1 had a small burst of activity in the former group, followed by extinction. In the basal group, activity was initially low but was followed by a dramatic increase in L1 activity. We found the last wave of B1 retrotransposition was large and probably preceded the split between the two rodent clades. Conclusions Given that L1s had been steadily retrotransposing during the time corresponding to B1 extinction and that the burst of B1 activity preceding B1 extinction was large, we conclude that B1 extinction was not a result of L1 quiescence. Rather, the burst of B1 activity may have contributed to L1 extinction both by competition with L1 and by putting strong selective pressure on the host to control retrotransposition. Electronic supplementary material The online version of this article (10.1186/s13100-019-0164-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Yang
- 1Department of Biological Sciences, University of Idaho, Moscow, ID USA.,2Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID USA
| | - LuAnn Scott
- 1Department of Biological Sciences, University of Idaho, Moscow, ID USA.,2Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID USA
| | - Holly A Wichman
- 1Department of Biological Sciences, University of Idaho, Moscow, ID USA.,2Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID USA
| |
Collapse
|
8
|
Chen C, Wang W, Wang X, Shen D, Wang S, Wang Y, Gao B, Wimmers K, Mao J, Li K, Song C. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mob DNA 2019; 10:19. [PMID: 31080521 PMCID: PMC6501411 DOI: 10.1186/s13100-019-0161-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Retrotransposons are the major determinants of genome sizes and they have shaped both genes and genomes in mammalian organisms, but their overall activity, diversity, and evolution dynamics, particularly their impact on protein coding and lncRNA genes in pigs remain largely unknown. RESULTS In the present study, we performed de novo detection of retrotransposons in pigs by using multiple pipelines, four distinct families of pig-specific L1 s classified into 51 distinct subfamilies and representing four evolution models and three expansion waves of pig-specific SINEs represented by three distinct families were identified. ERVs were classified into 18 families and found two most "modern" subfamilies in the pig genome. The transposition activity of pig L1 was verified by experiment, the sense and antisense promoter activities of young L1 5'UTRs and ERV LTRs and expression profiles of young retrotransposons in multiple tissues and cell lines were also validated. Furthermore, retrotransposons had an extensive impact on lncRNA and protein coding genes at both the genomic and transcriptomic levels. Most protein coding and lncRNA (> 80%) genes contained retrotransposon insertions, and about half of protein coding genes (44.30%) and one-fourth (24.13%) of lncRNA genes contained the youngest retrotransposon insertions. Nearly half of protein coding genes (43.78%) could generate chimeric transcripts with retrotransposons. Significant distribution bias of retrotransposon composition, location, and orientation in lncRNA and protein coding genes, and their transcripts, were observed. CONCLUSIONS In the current study, we characterized the classification and evolution profile of retrotransposons in pigs, experimentally proved the transposition activity of the young pig L1 subfamily, characterized the sense and antisense expression profiles and promoter activities of young retrotransposons, and investigated their impact on lncRNA and protein coding genes by defining the mobilome landscapes at the genomic and transcriptomic levels. These findings help provide a better understanding of retrotransposon evolution in mammal and their impact on the genome and transcriptome.
Collapse
Affiliation(s)
- Cai Chen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wei Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoyan Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Dan Shen
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Saisai Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yali Wang
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Bo Gao
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Jiude Mao
- Life Science Center, University of Missouri, Columbia, MO 65211 USA
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengyi Song
- Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
9
|
Blumenstiel JP. Birth, School, Work, Death, and Resurrection: The Life Stages and Dynamics of Transposable Element Proliferation. Genes (Basel) 2019; 10:genes10050336. [PMID: 31058854 PMCID: PMC6562965 DOI: 10.3390/genes10050336] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Transposable elements (TEs) can be maintained in sexually reproducing species even if they are harmful. However, the evolutionary strategies that TEs employ during proliferation can modulate their impact. In this review, I outline the different life stages of a TE lineage, from birth to proliferation to extinction. Through their interactions with the host, TEs can exploit diverse strategies that range from long-term coexistence to recurrent movement across species boundaries by horizontal transfer. TEs can also engage in a poorly understood phenomenon of TE resurrection, where TE lineages can apparently go extinct, only to proliferate again. By determining how this is possible, we may obtain new insights into the evolutionary dynamics of TEs and how they shape the genomes of their hosts.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA.
| |
Collapse
|
10
|
A comprehensive analysis of chimpanzee (Pan troglodytes)-specific LINE-1 retrotransposons. Gene 2019; 693:46-51. [DOI: 10.1016/j.gene.2019.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
|
11
|
Nimble and Ready to Mingle: Transposon Outbursts of Early Development. Trends Genet 2018; 34:806-820. [DOI: 10.1016/j.tig.2018.06.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
|
12
|
Schrader L, Schmitz J. The impact of transposable elements in adaptive evolution. Mol Ecol 2018; 28:1537-1549. [PMID: 30003608 DOI: 10.1111/mec.14794] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022]
Abstract
The growing knowledge about the influence of transposable elements (TEs) on (a) long-term genome and transcriptome evolution; (b) genomic, transcriptomic and epigenetic variation within populations; and (c) patterns of somatic genetic differences in individuals continues to spur the interest of evolutionary biologists in the role of TEs in adaptive evolution. As TEs can trigger a broad range of molecular variation in a population with potentially severe fitness and phenotypic consequences for individuals, different mechanisms evolved to keep TE activity in check, allowing for a dynamic interplay between the host, its TEs and the environment in evolution. Here, we review evidence for adaptive phenotypic changes associated with TEs and the basic molecular mechanisms by which the underlying genetic changes arise: (a) domestication, (b) exaptation, (c) host gene regulation, (d) TE-mediated formation of intronless gene copies-so-called retrogenes and (e) overall increased genome plasticity. Furthermore, we review and discuss how the stress-dependent incapacitation of defence mechanisms against the activity of TEs might facilitate adaptive responses to environmental challenges and how such mechanisms might be particularly relevant in species frequently facing novel environments, such as invasive, pathogenic or parasitic species.
Collapse
Affiliation(s)
- Lukas Schrader
- Institute for Evolution and Biodiversity (IEB), University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen X, Ramalho-Santos M. A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell 2018; 174:391-405.e19. [PMID: 29937225 PMCID: PMC6046266 DOI: 10.1016/j.cell.2018.05.043] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 03/20/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023]
Abstract
Transposable elements represent nearly half of mammalian genomes and are generally described as parasites, or "junk DNA." The LINE1 retrotransposon is the most abundant class and is thought to be deleterious for cells, yet it is paradoxically highly expressed during early development. Here, we report that LINE1 plays essential roles in mouse embryonic stem cells (ESCs) and pre-implantation embryos. In ESCs, LINE1 acts as a nuclear RNA scaffold that recruits Nucleolin and Kap1/Trim28 to repress Dux, the master activator of a transcriptional program specific to the 2-cell embryo. In parallel, LINE1 RNA mediates binding of Nucleolin and Kap1 to rDNA, promoting rRNA synthesis and ESC self-renewal. In embryos, LINE1 RNA is required for Dux silencing, synthesis of rRNA, and exit from the 2-cell stage. The results reveal an essential partnership between LINE1 RNA, Nucleolin, Kap1, and peri-nucleolar chromatin in the regulation of transcription, developmental potency, and ESC self-renewal.
Collapse
Affiliation(s)
- Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chih-Jen Lin
- The University of Edinburgh, MRC Centre for Reproductive Health, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Yafei Yin
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Juan Guan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gabriel A Peixoto
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steffen Biechele
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Xiaohua Shen
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Sookdeo A, Ruiz-García M, Schneider H, Boissinot S. Contrasting Rates of LINE-1 Amplification among New World Primates of the Atelidae Family. Cytogenet Genome Res 2018; 154:217-228. [PMID: 29991050 DOI: 10.1159/000490481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2018] [Indexed: 11/19/2022] Open
Abstract
LINE-1 (L1) retrotransposons constitute the dominant category of transposons in mammalian genomes. L1 elements are active in the vast majority of mammals, and only a few cases of L1 extinction have been documented. The only possible case of extinction in primates was suggested for South American spider monkeys. However, these previous studies were based on a single species. We revisited this question with a larger phylogenetic sample, covering all 4 genera of Atelidae and 3 species of spider monkeys. We used an enrichment method to clone recently inserted L1 elements and performed an evolutionary analysis of the sequences. We were able to identify young L1 elements in all taxa, suggesting that L1 is probably still active in all Atelidae examined. However, we also detected considerable variations in the proportion of recent elements indicating that the rate of L1 amplification varies among Atelidae by a 3-fold factor. The extent of L1 amplification in Atelidae remains overall lower than in other New World monkeys. Multiple factors can affect the amplification of L1, such as the demography of the host and the control of transposition. These factors are discussed in the context of host life history.
Collapse
|
15
|
Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL. Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Genome Biol 2018; 19:85. [PMID: 29983116 PMCID: PMC6036668 DOI: 10.1186/s13059-018-1456-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are mobile DNA sequences, colloquially known as jumping genes because of their ability to replicate to new genomic locations. TEs can jump between organisms or species when given a vector of transfer, such as a tick or virus, in a process known as horizontal transfer. Here, we propose that LINE-1 (L1) and Bovine-B (BovB), the two most abundant TE families in mammals, were initially introduced as foreign DNA via ancient horizontal transfer events. RESULTS Using analyses of 759 plant, fungal and animal genomes, we identify multiple possible L1 horizontal transfer events in eukaryotic species, primarily involving Tx-like L1s in marine eukaryotes. We also extend the BovB paradigm by increasing the number of estimated transfer events compared to previous studies, finding new parasite vectors of transfer such as bed bug, leech and locust, and BovB occurrences in new lineages such as bat and frog. Given that these transposable elements have colonised more than half of the genome sequence in today's mammals, our results support a role for horizontal transfer in causing long-term genomic change in new host organisms. CONCLUSIONS We describe extensive horizontal transfer of BovB retrotransposons and provide the first evidence that L1 elements can also undergo horizontal transfer. With the advancement of genome sequencing technologies and bioinformatics tools, we anticipate our study to be a valuable resource for inferring horizontal transfer from large-scale genomic data.
Collapse
Affiliation(s)
- Atma M Ivancevic
- Department of Genetics and Evolution, Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Neurogenetics Research Program, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - R Daniel Kortschak
- Department of Genetics and Evolution, Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Terry Bertozzi
- Department of Genetics and Evolution, Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, Australia
| | - David L Adelson
- Department of Genetics and Evolution, Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
16
|
Mukai Y, Horie M, Tomonaga K. Systematic estimation of insertion dates of endogenous bornavirus-like elements in vesper bats. J Vet Med Sci 2018; 80:1356-1363. [PMID: 29973433 PMCID: PMC6115245 DOI: 10.1292/jvms.18-0211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the
family Bornaviridae) that are integrated into animal genomes. They are
formed through germline insertions of segments of bornaviral transcripts into animal
genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious
sources of information to understand the evolutionary history of bornaviruses. Previous
studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and
suggested the long-term association between bats and bornaviruses. However, insertion
dates of EBLs are largely unknown because of the limitations of available bat genome
sequences in the public database. In this study, through a combination of database
searches, PCR, and sequencing approaches, we systematically determined the gene
orthologies of 13 lineages of EBLs in bats of the genus Myotis and
Eptesicus and family Vespertilionidae. Using the above data, we
estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2
to 53 million years ago. These results suggest that vesper bats have been repeatedly
infected by bornaviruses at different points in time during evolution. This study provides
novel insights into the evolutionary history of bornaviruses and demonstrates the
robustness of combining database searches, PCR, and sequencing approaches to estimate
insertion dates of bornaviruses.
Collapse
Affiliation(s)
- Yahiro Mukai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Masayuki Horie
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan.,Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Sookdeo A, Hepp CM, Boissinot S. Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction. Mob DNA 2018; 9:12. [PMID: 29610583 PMCID: PMC5872511 DOI: 10.1186/s13100-018-0117-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/22/2018] [Indexed: 12/30/2022] Open
Abstract
Background LINE-1 (L1) is the dominant autonomously replicating non-LTR retrotransposon in mammals. Although our knowledge of L1 evolution across the tree of life has considerably improved in recent years, what we know of L1 evolution in mammals is biased and comes mostly from studies in primates (mostly human) and rodents (mostly mouse). It is unclear if patterns of evolution that are shared between those two groups apply to other mammalian orders. Here we performed a detailed study on the evolution of L1 in perissodactyls by making use of the complete genome of the domestic horse and of the white rhinoceros. This mammalian order offers an excellent model to study the extinction of L1 since the rhinoceros is one of the few mammalian species to have lost active L1. Results We found that multiple L1 lineages, carrying different 5’UTRs, have been simultaneously active during the evolution of perissodactyls. We also found that L1 has continuously amplified and diversified in horse. In rhinoceros, L1 was very prolific early on. Two successful families were simultaneously active until ~20my ago but became extinct suddenly at exactly the same time. Conclusions The general pattern of L1 evolution in perissodactyls is very similar to what was previously described in mouse and human, suggesting some commonalities in the way mammalian genomes interact with L1. We confirmed the extinction of L1 in rhinoceros and we discuss several possible mechanisms. Electronic supplementary material The online version of this article (10.1186/s13100-018-0117-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akash Sookdeo
- 1Department of Biology, New York University, New York, NY USA
| | - Crystal M Hepp
- 2School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ USA
| | - Stéphane Boissinot
- 3New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Curr Opin Genet Dev 2018; 49:15-24. [PMID: 29505963 DOI: 10.1016/j.gde.2018.02.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/30/2022]
Abstract
It is becoming clear that most eukaryotic transposable elements (TEs) owe their evolutionary success in part to horizontal transfer events, which enable them to invade new species. Recent large-scale studies are beginning to unravel the mechanisms and ecological factors underlying this mode of transmission. Viruses are increasingly recognized as vectors in the process but also as a direct source of genetic material horizontally acquired by eukaryotic organisms. Because TEs and endogenous viruses are major catalysts of variation and innovation in genomes, we argue that horizontal inheritance has had a more profound impact in eukaryotic evolution than is commonly appreciated. To support this proposal, we compile a list of examples, including some previously unrecognized, whereby new host functions and phenotypes can be directly attributed to horizontally acquired TE or viral sequences. We predict that the number of examples will rapidly grow in the future as the prevalence of horizontal transfer in the life cycle of TEs becomes even more apparent, firmly establishing this form of non-Mendelian inheritance as a consequential facet of eukaryotic evolution.
Collapse
|
19
|
Platt RN, Vandewege MW, Ray DA. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res 2018; 26:25-43. [PMID: 29392473 PMCID: PMC5857283 DOI: 10.1007/s10577-017-9570-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/12/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
Transposable elements (TEs) are genetic elements with the ability to mobilize and replicate themselves in a genome. Mammalian genomes are dominated by TEs, which can reach copy numbers in the hundreds of thousands. As a result, TEs have had significant impacts on mammalian evolution. Here we summarize the current understanding of TE content in mammal genomes and find that, with a few exceptions, most fall within a predictable range of observations. First, one third to one half of the genome is derived from TEs. Second, most mammalian genomes are dominated by LINE and SINE retrotransposons, more limited LTR retrotransposons, and minimal DNA transposon accumulation. Third, most mammal genome contains at least one family of actively accumulating retrotransposon. Finally, horizontal transfer of TEs among lineages is rare. TE exaptation events are being recognized with increasing frequency. Despite these beneficial aspects of TE content and activity, the majority of TE insertions are neutral or deleterious. To limit the deleterious effects of TE proliferation, the genome has evolved several defense mechanisms that act at the epigenetic, transcriptional, and post-transcriptional levels. The interaction between TEs and these defense mechanisms has led to an evolutionary arms race where TEs are suppressed, evolve to escape suppression, then are suppressed again as the defense mechanisms undergo compensatory change. The result is complex and constantly evolving interactions between TEs and host genomes.
Collapse
Affiliation(s)
- Roy N Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| | | | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
20
|
Kojima KK. Human transposable elements in Repbase: genomic footprints from fish to humans. Mob DNA 2018; 9:2. [PMID: 29308093 PMCID: PMC5753468 DOI: 10.1186/s13100-017-0107-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Repbase is a comprehensive database of eukaryotic transposable elements (TEs) and repeat sequences, containing over 1300 human repeat sequences. Recent analyses of these repeat sequences have accumulated evidences for their contribution to human evolution through becoming functional elements, such as protein-coding regions or binding sites of transcriptional regulators. However, resolving the origins of repeat sequences is a challenge, due to their age, divergence, and degradation. Ancient repeats have been continuously classified as TEs by finding similar TEs from other organisms. Here, the most comprehensive picture of human repeat sequences is presented. The human genome contains traces of 10 clades (L1, CR1, L2, Crack, RTE, RTEX, R4, Vingi, Tx1 and Penelope) of non-long terminal repeat (non-LTR) retrotransposons (long interspersed elements, LINEs), 3 types (SINE1/7SL, SINE2/tRNA, and SINE3/5S) of short interspersed elements (SINEs), 1 composite retrotransposon (SVA) family, 5 classes (ERV1, ERV2, ERV3, Gypsy and DIRS) of LTR retrotransposons, and 12 superfamilies (Crypton, Ginger1, Harbinger, hAT, Helitron, Kolobok, Mariner, Merlin, MuDR, P, piggyBac and Transib) of DNA transposons. These TE footprints demonstrate an evolutionary continuum of the human genome.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, 465 Fairchild Drive, Suite 201, Mountain View, CA 94043 USA.,Department of Life Sciences, National Cheng Kung University, No. 1, Daxue Rd, East District, Tainan, 701 Taiwan
| |
Collapse
|
21
|
Dodt WG, Gallus S, Phillips MJ, Nilsson MA. Resolving kangaroo phylogeny and overcoming retrotransposon ascertainment bias. Sci Rep 2017; 7:16811. [PMID: 29196678 PMCID: PMC5711953 DOI: 10.1038/s41598-017-16148-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/26/2017] [Indexed: 01/31/2023] Open
Abstract
Reconstructing phylogeny from retrotransposon insertions is often limited by access to only a single reference genome, whereby support for clades that do not include the reference taxon cannot be directly observed. Here we have developed a new statistical framework that accounts for this ascertainment bias, allowing us to employ phylogenetically powerful retrotransposon markers to explore the radiation of the largest living marsupials, the kangaroos and wallabies of the genera Macropus and Wallabia. An exhaustive in silico screening of the tammar wallaby (Macropus eugenii) reference genome followed by experimental screening revealed 29 phylogenetically informative retrotransposon markers belonging to a family of endogenous retroviruses. We identified robust support for the enigmatic swamp wallaby (Wallabia bicolor) falling within a paraphyletic genus, Macropus. Our statistical approach provides a means to test for incomplete lineage sorting and introgression/hybridization in the presence of the ascertainment bias. Using retrotransposons as “molecular fossils”, we reveal one of the most complex patterns of hemiplasy yet identified, during the rapid diversification of kangaroos and wallabies. Ancestral state reconstruction incorporating the new retrotransposon phylogenetic information reveals multiple independent ecological shifts among kangaroos into more open habitats, coinciding with the Pliocene onset of increased aridification in Australia from ~3.6 million years ago.
Collapse
Affiliation(s)
- William G Dodt
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia.
| | - Susanne Gallus
- Senckenberg Biodiversity and Climate Research Centre (BiK-F) Frankfurt, Senckenberg Gesellschaft fuer Naturforschung, Senckenberganlage 25, Frankfurt am Main, Germany
| | - Matthew J Phillips
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia.
| | - Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Centre (BiK-F) Frankfurt, Senckenberg Gesellschaft fuer Naturforschung, Senckenberganlage 25, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Chromosomal Evolution in Chiroptera. Genes (Basel) 2017; 8:genes8100272. [PMID: 29027987 PMCID: PMC5664122 DOI: 10.3390/genes8100272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023] Open
Abstract
Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.
Collapse
|
23
|
de Souza ÉMS, Gross MC, Silva CEFE, Sotero-Caio CG, Feldberg E. Heterochromatin variation and LINE-1 distribution in Artibeus (Chiroptera, Phyllostomidae) from Central Amazon, Brazil. COMPARATIVE CYTOGENETICS 2017; 11:613-626. [PMID: 29114357 PMCID: PMC5672158 DOI: 10.3897/compcytogen.v11i4.14562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Species in the subgenus Artibeus Leach, 1821 are widely distributed in Brazil. Conserved karyotypes characterize the group with identical diploid number and chromosome morphology. Recent studies suggested that the heterochromatin distribution and accumulation patterns can vary among species. In order to assess whether variation can also occur within species, we have analyzed the chromosomal distribution of constitutive heterochromatin in A. planirostris (Spix, 1823) and A. lituratus (Olfers, 1818) from Central Amazon (North Brazil) and contrasted our findings with those reported for other localities in Brazil. In addition, Ag-NOR staining and FISH with 18S rDNA, telomeric, and LINE-1 probes were performed to assess the potential role that these different repetitive markers had in shaping the current architecture of heterochromatic regions. Both species presented interindividual variation of constitutive heterochromatin. In addition, in A. planirostris the centromeres of most chromosomes are enriched with LINE-1, colocated with pericentromeric heterochromatin blocks. Overall, our data indicate that amplification and differential distribution of the investigated repetitive DNAs might have played a significant role in shaping the chromosome architecture of the subgenus Artibeus.
Collapse
Affiliation(s)
- Érica Martinha Silva de Souza
- Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| | - Maria Claudia Gross
- Universidade Federal da Integração Latino Americana, Laboratório de Genética, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, 85857-190, Foz do Iguaçu, PR, Brazil
| | - Carlos Eduardo Faresin e Silva
- Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| | - Cibele Gomes Sotero-Caio
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA 79409
- Laboratório de Genética e Citogenética Animal e Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. da Engenharia s/n; Cidade Universitária; CEP:50740-600; Recife-PE, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Aleixo, 69.060-001 Manaus, AM, Brazil
| |
Collapse
|
24
|
Abstract
Selfishness is pervasive and manifests at all scales of biology, from societies, to individuals, to genetic elements within a genome. The relentless struggle to seek evolutionary advantages drives perpetual cycles of adaptation and counter-adaptation, commonly referred to as Red Queen interactions. In this review, we explore insights gleaned from molecular and genetic studies of such genetic conflicts, both extrinsic (between genomes) and intrinsic (within genomes or cells). We argue that many different characteristics of selfish genetic elements can be distilled into two types of advantages: an over-replication advantage (e.g. mobile genetic elements in genomes) and a transmission distortion advantage (e.g. meiotic drivers in populations). These two general categories may help classify disparate types of selfish genetic elements.
Collapse
Affiliation(s)
- Richard N McLaughlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
25
|
Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 2017; 9:161-177. [PMID: 28158585 PMCID: PMC5381603 DOI: 10.1093/gbe/evw264] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.
Collapse
Affiliation(s)
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
26
|
Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL. LINEs between Species: Evolutionary Dynamics of LINE-1 Retrotransposons across the Eukaryotic Tree of Life. Genome Biol Evol 2016; 8:3301-3322. [PMID: 27702814 PMCID: PMC5203782 DOI: 10.1093/gbe/evw243] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
LINE-1 (L1) retrotransposons are dynamic elements. They have the potential to cause great genomic change because of their ability to ‘jump’ around the genome and amplify themselves, resulting in the duplication and rearrangement of regulatory DNA. Active L1, in particular, are often thought of as tightly constrained, homologous and ubiquitous elements with well-characterized domain organization. For the past 30 years, model organisms have been used to define L1s as 6–8 kb sequences containing a 5′-UTR, two open reading frames working harmoniously in cis, and a 3′-UTR with a polyA tail. In this study, we demonstrate the remarkable and overlooked diversity of L1s via a comprehensive phylogenetic analysis of elements from over 500 species from widely divergent branches of the tree of life. The rapid and recent growth of L1 elements in mammalian species is juxtaposed against the diverse lineages found in other metazoans and plants. In fact, some of these previously unexplored mammalian species (e.g. snub-nosed monkey, minke whale) exhibit L1 retrotranspositional ‘hyperactivity’ far surpassing that of human or mouse. In contrast, non-mammalian L1s have become so varied that the current classification system seems to inadequately capture their structural characteristics. Our findings illustrate how both long-term inherited evolutionary patterns and random bursts of activity in individual species can significantly alter genomes, highlighting the importance of L1 dynamics in eukaryotes.
Collapse
Affiliation(s)
- Atma M Ivancevic
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - R Daniel Kortschak
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Terry Bertozzi
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
27
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
28
|
Gallus S, Lammers F, Nilsson MA. When Genomics Is Not Enough: Experimental Evidence for a Decrease in LINE-1 Activity During the Evolution of Australian Marsupials. Genome Biol Evol 2016; 8:2406-12. [PMID: 27389686 PMCID: PMC5010896 DOI: 10.1093/gbe/evw159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The autonomous transposable element LINE-1 is a highly abundant element that makes up between 15% and 20% of therian mammal genomes. Since their origin before the divergence of marsupials and placental mammals, LINE-1 elements have contributed actively to the genome landscape. A previous in silico screen of the Tasmanian devil genome revealed a lack of functional coding LINE-1 sequences. In this study we present the results of an in vitro analysis from a partial LINE-1 reverse transcriptase coding sequence in five marsupial species. Our experimental screen supports the in silico findings of the genome-wide degradation of LINE-1 sequences in the Tasmanian devil, and identifies a high frequency of degraded LINE-1 sequences in other Australian marsupials. The comparison between the experimentally obtained LINE-1 sequences and reference genome assemblies suggests that conclusions from in silico analyses of retrotransposition activity can be influenced by incomplete genome assemblies from short reads.
Collapse
Affiliation(s)
- Susanne Gallus
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft fuer Naturforschung, Senckenberg Anlage 25, Frankfurt, Germany Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Johann Wolfgang Goethe University Frankfurt Am Main, Max-von-Laue Straβe 9, 60438 Frankfurt am Main, Germany
| | - Fritjof Lammers
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft fuer Naturforschung, Senckenberg Anlage 25, Frankfurt, Germany Institute for Ecology, Evolution and Diversity, Faculty of Biological Sciences, Johann Wolfgang Goethe University Frankfurt Am Main, Max-von-Laue Straβe 9, 60438 Frankfurt am Main, Germany
| | - Maria Anna Nilsson
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft fuer Naturforschung, Senckenberg Anlage 25, Frankfurt, Germany
| |
Collapse
|
29
|
Nätt D, Thorsell A. Stress-induced transposon reactivation: a mediator or an estimator of allostatic load? ENVIRONMENTAL EPIGENETICS 2016; 2:dvw015. [PMID: 29492295 PMCID: PMC5804529 DOI: 10.1093/eep/dvw015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/16/2016] [Accepted: 07/27/2016] [Indexed: 05/04/2023]
Abstract
Transposons are playing an important role in the evolution of eukaryotic genomes. These endogenous virus-like elements often amplify within their host genomes in a species specific manner. Today we have limited understanding when and how these amplification events happens. What we do know is that cells have evolved multiple line of defenses to keep these potentially invasive elements under control, often involving epigenetic mechanisms such as DNA-methylation and histone modifications. Emerging evidence shows a strong link between transposon activity and human aging and diseases, as well as a role for transposons in normal brain development. Controlling transposon activity may therefore uphold the fine balance between health and disease. In this article we investigate this balance, and sets it in relation to allostatic load, which conceptualize the link between stress and the "wear and tear" of the organism that leads to aging and disease. We hypothesize that stress-induced retrotransposon reactivation in humans may be used to estimate allostatic load, and may be a possible mechanism in which transposons amplify within species genomes.
Collapse
Affiliation(s)
- Daniel Nätt
- Department of Clinical and Experimental Medicine (IKE), Linkoping University, Center for Social and Affective Neuroscience (CSAN), Linkoping, Sweden
- *Correspondence address. Tel:
+46-10-103 06 71
; E-mail:
| | - Annika Thorsell
- Department of Clinical and Experimental Medicine (IKE), Linkoping University, Center for Social and Affective Neuroscience (CSAN), Linkoping, Sweden
| |
Collapse
|
30
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
31
|
Platt RN, Blanco-Berdugo L, Ray DA. Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies. Genome Biol Evol 2016; 8:403-10. [PMID: 26802115 PMCID: PMC4779615 DOI: 10.1093/gbe/evw009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements with the ability to replicate themselves throughout the host genome. In some taxa TEs reach copy numbers in hundreds of thousands and can occupy more than half of the genome. The increasing number of reference genomes from nonmodel species has begun to outpace efforts to identify and annotate TE content and methods that are used vary significantly between projects. Here, we demonstrate variation that arises in TE annotations when less than optimal methods are used. We found that across a variety of taxa, the ability to accurately identify TEs based solely on homology decreased as the phylogenetic distance between the queried genome and a reference increased. Next we annotated repeats using homology alone, as is often the case in new genome analyses, and a combination of homology and de novo methods as well as an additional manual curation step. Reannotation using these methods identified a substantial number of new TE subfamilies in previously characterized genomes, recognized a higher proportion of the genome as repetitive, and decreased the average genetic distance within TE families, implying recent TE accumulation. Finally, these finding-increased recognition of younger TEs-were confirmed via an analysis of the postman butterfly (Heliconius melpomene). These observations imply that complete TE annotation relies on a combination of homology and de novo-based repeat identification, manual curation, and classification and that relying on simple, homology-based methods is insufficient to accurately describe the TE landscape of a newly sequenced genome.
Collapse
Affiliation(s)
- Roy N Platt
- Department of Biological Sciences, Texas Tech University
| | | | - David A Ray
- Department of Biological Sciences, Texas Tech University
| |
Collapse
|
32
|
Nilsson MA. The devil is in the details: Transposable element analysis of the Tasmanian devil genome. Mob Genet Elements 2015; 6:e1119926. [PMID: 27066301 DOI: 10.1080/2159256x.2015.1119926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Abstract
The third marsupial genome was sequenced from the Tasmanian devil (Sarcophilus harrisii), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the Long INterspersed Element 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the Short INterspersed Elements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome.
Collapse
Affiliation(s)
- Maria A Nilsson
- Senckenberg Biodiversity and Climate Research Center, Senckenberg Gesellschaft für Naturforschung , Frankfurt am Main, Germany
| |
Collapse
|
33
|
Cui J, Wang LF. Genomic Mining Reveals Deep Evolutionary Relationships between Bornaviruses and Bats. Viruses 2015; 7:5792-800. [PMID: 26569285 PMCID: PMC4664979 DOI: 10.3390/v7112906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/05/2015] [Accepted: 11/03/2015] [Indexed: 11/23/2022] Open
Abstract
Bats globally harbor viruses in order Mononegavirales, such as lyssaviruses and henipaviruses; however, little is known about their relationships with bornaviruses. Previous studies showed that viral fossils of bornaviral origin are embedded in the genomes of several mammalian species such as primates, indicative of an ancient origin of exogenous bornaviruses. In this study, we mined the available 10 bat genomes and recreated a clear evolutionary relationship of endogenous bornaviral elements and bats. Comparative genomics showed that endogenization of bornaviral elements frequently occurred in vesper bats, harboring EBLLs (endogenous bornavirus-like L elements) in their genomes. Molecular dating uncovered a continuous bornavirus-bat interaction spanning 70 million years. We conclude that better understanding of modern exogenous bornaviral circulation in bat populations is warranted.
Collapse
Affiliation(s)
- Jie Cui
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| |
Collapse
|
34
|
Sotero-Caio CG, Volleth M, Hoffmann FG, Scott L, Wichman HA, Yang F, Baker RJ. Integration of molecular cytogenetics, dated molecular phylogeny, and model-based predictions to understand the extreme chromosome reorganization in the Neotropical genus Tonatia (Chiroptera: Phyllostomidae). BMC Evol Biol 2015; 15:220. [PMID: 26444412 PMCID: PMC4594642 DOI: 10.1186/s12862-015-0494-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022] Open
Abstract
Background Defining factors that contributed to the fixation of a high number of underdominant chromosomal rearrangements is a complex task because not only molecular mechanisms must be considered, but also the uniqueness of natural history attributes of each taxon. Ideally, detailed investigation of the chromosome architecture of an organism and related groups, placed within a phylogenetic context, is required. We used multiple approaches to investigate the dynamics of chromosomal evolution in lineages of bats with considerable karyotypic variation, focusing on the different facets contributing to fixation of the exceptional chromosomal changes in Tonatia saurophila. Integration of empirical data with proposed models of chromosome evolution was performed to understand the probable conditions for Tonatia’s karyotypic evolution. Results The trajectory of reorganization of chromosome blocks since the common ancestor of Glossophaginae and Phyllostominae subfamilies suggests that multiple tandem fusions, as well as disruption and fusions of conserved phyllostomid chromosomes were major drivers of karyotypic reshuffling in Tonatia. Considerable variation in the rates of chromosomal evolution between phyllostomid lineages was observed. Thirty–nine unique fusions and fission events reached fixation in Tonatia over a short period of time, followed by ~12 million years of chromosomal stasis. Physical mapping of repetitive DNA revealed an unusual accumulation of LINE-1 sequences on centromeric regions, probably associated with the chromosomal dynamics of this genus. Conclusions Multiple rearrangements have reached fixation in a wave-like fashion in phyllostomid bats. Different biological features of Tonatia support distinct models of rearrangement fixation, and it is unlikely that the fixations were a result of solely stochastic processes in small ancient populations. Increased recombination rates were probably facilitated by expansion of repetitive DNA, reinforced by aspects of taxon reproduction and ecology. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0494-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Marianne Volleth
- Department of Human Genetics, Otto-von-Guericke University, Magdeburg, Germany.
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi, MS, USA. .,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, USA.
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| | - Holly A Wichman
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| | - Robert J Baker
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
35
|
Doucet AJ, Droc G, Siol O, Audoux J, Gilbert N. U6 snRNA Pseudogenes: Markers of Retrotransposition Dynamics in Mammals. Mol Biol Evol 2015; 32:1815-32. [PMID: 25761766 PMCID: PMC4476161 DOI: 10.1093/molbev/msv062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transposable elements comprise more than 45% of the human genome and long interspersed nuclear element 1 (LINE-1 or L1) is the only autonomous mobile element remaining active. Since its identification, it has been proposed that L1 contributes to the mobilization and amplification of other cellular RNAs and more recently, experimental demonstrations of this function has been described for many transcripts such as Alu, a nonautonomous mobile element, cellular mRNAs, or small noncoding RNAs. Detailed examination of the mobilization of various cellular RNAs revealed distinct pathways by which they could be recruited during retrotransposition; template choice or template switching. Here, by analyzing genomic structures and retrotransposition signatures associated with small nuclear RNA (snRNA) sequences, we identified distinct recruiting steps during the L1 retrotransposition cycle for the formation of snRNA-processed pseudogenes. Interestingly, some of the identified recruiting steps take place in the nucleus. Moreover, after comparison to other vertebrate genomes, we established that snRNA amplification by template switching is common to many LINE families from several LINE clades. Finally, we suggest that U6 snRNA copies can serve as markers of L1 retrotransposition dynamics in mammalian genomes.
Collapse
Affiliation(s)
- Aurélien J Doucet
- Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France Institute for Research on Cancer and Aging, Nice (IRCAN), INSERM, U1081, CNRS UMR 7284, Nice, France
| | - Gaëtan Droc
- Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), UMR AGAP, Montpellier, France
| | - Oliver Siol
- Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France
| | - Jérôme Audoux
- Institute for Regenerative Medicine and Biotherapy, INSERM, U1183, Montpellier, France
| | - Nicolas Gilbert
- Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France Institute for Regenerative Medicine and Biotherapy, INSERM, U1183, Montpellier, France
| |
Collapse
|
36
|
Noll A, Raabe CA, Churakov G, Brosius J, Schmitz J. Ancient traces of tailless retropseudogenes in therian genomes. Genome Biol Evol 2015; 7:889-900. [PMID: 25724209 PMCID: PMC5322556 DOI: 10.1093/gbe/evv040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transposable elements, once described by Barbara McClintock as controlling genetic units, not only occupy the largest part of our genome but are also a prominent moving force of genomic plasticity and innovation. They usually replicate and reintegrate into genomes silently, sometimes causing malfunctions or misregulations, but occasionally millions of years later, a few may evolve into new functional units. Retrotransposons make their way into the genome following reverse transcription of RNA molecules and chromosomal insertion. In therian mammals, long interspersed elements 1 (LINE1s) self-propagate but also coretropose many RNAs, including mRNAs and small RNAs that usually exhibit an oligo(A) tail. The revitalization of specific LINE1 elements in the mammalian lineage about 150 Ma parallels the rise of many other nonautonomous mobilized genomic elements. We previously identified and described hundreds of tRNA-derived retropseudogenes missing characteristic oligo(A) tails consequently termed tailless retropseudogenes. Additional analyses now revealed hundreds of thousands of tailless retropseudogenes derived from nearly all types of RNAs. We extracted 2,402 perfect tailless sequences (with discernible flanking target site duplications) originating from tRNAs, spliceosomal RNAs, 5S rRNAs, 7SK RNAs, mRNAs, and others. Interestingly, all are truncated at one or more defined positions that coincide with internal single-stranded regions. 5S ribosomal and U2 spliceosomal RNAs were analyzed in the context of mammalian phylogeny to discern the origin of the therian LINE1 retropositional system that evolved in our 150-Myr-old ancestor.
Collapse
Affiliation(s)
- Angela Noll
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany
| | - Carsten A Raabe
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany
| | - Gennady Churakov
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany Institute of Evolution and Biodiversity, University of Münster, Germany
| | - Jürgen Brosius
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany Institute of Evolutionary and Medical Genomics, Brandenburg Medical School, Neuruppin, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, Germany
| |
Collapse
|
37
|
Gallus S, Hallström BM, Kumar V, Dodt WG, Janke A, Schumann GG, Nilsson MA. Evolutionary histories of transposable elements in the genome of the largest living marsupial carnivore, the Tasmanian devil. Mol Biol Evol 2015; 32:1268-83. [PMID: 25633377 PMCID: PMC4408412 DOI: 10.1093/molbev/msv017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions.
Collapse
Affiliation(s)
- Susanne Gallus
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Björn M Hallström
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Vikas Kumar
- LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - William G Dodt
- LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Qld, Australia
| | - Axel Janke
- LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany Institute for Ecology, Evolution & Diversity, Biologicum, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Maria A Nilsson
- LOEWE Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Ayarpadikannan S, Kim HS. The impact of transposable elements in genome evolution and genetic instability and their implications in various diseases. Genomics Inform 2014; 12:98-104. [PMID: 25317108 PMCID: PMC4196381 DOI: 10.5808/gi.2014.12.3.98] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/15/2022] Open
Abstract
Approximately 45% of the human genome is comprised of transposable elements (TEs). Results from the Human Genome Project have emphasized the biological importance of TEs. Many studies have revealed that TEs are not simply "junk" DNA, but rather, they play various roles in processes, including genome evolution, gene expression regulation, genetic instability, and cancer disposition. The effects of TE insertion in the genome varies from negligible to disease conditions. For the past two decades, many studies have shown that TEs are the causative factors of various genetic disorders and cancer. TEs are a subject of interest worldwide, not only in terms of their clinical aspects but also in basic research, such as evolutionary tracking. Although active TEs contribute to genetic instability and disease states, non-long terminal repeat transposons are well studied, and their roles in these processes have been confirmed. In this review, we will give an overview of the importance of TEs in studying genome evolution and genetic instability, and we suggest that further in-depth studies on the mechanisms related to these phenomena will be useful for both evolutionary tracking and clinical diagnostics.
Collapse
Affiliation(s)
- Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
39
|
Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency. PLoS Genet 2014; 10:e1004531. [PMID: 25211013 PMCID: PMC4161310 DOI: 10.1371/journal.pgen.1004531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 06/10/2014] [Indexed: 11/19/2022] Open
Abstract
Mammalian genomes comprise many active and fossilized retroelements. The obligate requirement for retroelement integration affords host genomes an opportunity to 'domesticate' retroelement genes for their own purpose, leading to important innovations in genome defense and placentation. While many such exaptations involve retroviruses, the L1TD1 gene is the only known domesticated gene whose protein-coding sequence is almost entirely derived from a LINE-1 (L1) retroelement. Human L1TD1 has been shown to play an important role in pluripotency maintenance. To investigate how this role was acquired, we traced the origin and evolution of L1TD1. We find that L1TD1 originated in the common ancestor of eutherian mammals, but was lost or pseudogenized multiple times during mammalian evolution. We also find that L1TD1 has evolved under positive selection during primate and mouse evolution, and that one prosimian L1TD1 has 'replenished' itself with a more recent L1 ORF1 from the prosimian genome. These data suggest that L1TD1 has been recurrently selected for functional novelty, perhaps for a role in genome defense. L1TD1 loss is associated with L1 extinction in several megabat lineages, but not in sigmodontine rodents. We hypothesize that L1TD1 could have originally evolved for genome defense against L1 elements. Later, L1TD1 may have become incorporated into pluripotency maintenance in some lineages. Our study highlights the role of retroelement gene domestication in fundamental aspects of mammalian biology, and that such domesticated genes can adopt different functions in different lineages.
Collapse
|
40
|
Yang L, Brunsfeld J, Scott L, Wichman H. Reviving the dead: history and reactivation of an extinct l1. PLoS Genet 2014; 10:e1004395. [PMID: 24968166 PMCID: PMC4072516 DOI: 10.1371/journal.pgen.1004395] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Although L1 sequences are present in the genomes of all placental mammals and marsupials examined to date, their activity was lost in the megabat family, Pteropodidae, ∼24 million years ago. To examine the characteristics of L1s prior to their extinction, we analyzed the evolutionary history of L1s in the genome of a megabat, Pteropus vampyrus, and found a pattern of periodic L1 expansion and quiescence. In contrast to the well-characterized L1s in human and mouse, megabat genomes have accommodated two or more simultaneously active L1 families throughout their evolutionary history, and major peaks of L1 deposition into the genome always involved multiple families. We compared the consensus sequences of the two major megabat L1 families at the time of their extinction to consensus L1s of a variety of mammalian species. Megabat L1s are comparable to the other mammalian L1s in terms of adenosine content and conserved amino acids in the open reading frames (ORFs). However, the intergenic region (IGR) of the reconstructed element from the more active family is dramatically longer than the IGR of well-characterized human and mouse L1s. We synthesized the reconstructed element from this L1 family and tested the ability of its components to support retrotransposition in a tissue culture assay. Both ORFs are capable of supporting retrotransposition, while the IGR is inhibitory to retrotransposition, especially when combined with either of the reconstructed ORFs. We dissected the inhibitory effect of the IGR by testing truncated and shuffled versions and found that length is a key factor, but not the only one affecting inhibition of retrotransposition. Although the IGR is inhibitory to retrotransposition, this inhibition does not account for the extinction of L1s in megabats. Overall, the evolution of the L1 sequence or the quiescence of L1 is unlikely the reason of L1 extinction.
Collapse
Affiliation(s)
- Lei Yang
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
| | - John Brunsfeld
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - LuAnn Scott
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Holly Wichman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
41
|
Large Numbers of Novel miRNAs Originate from DNA Transposons and Are Coincident with a Large Species Radiation in Bats. Mol Biol Evol 2014; 31:1536-45. [DOI: 10.1093/molbev/msu112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
42
|
Smith JDL, Bickham JW, Gregory TR. Patterns of genome size diversity in bats (order Chiroptera). Genome 2013; 56:457-72. [PMID: 24168629 DOI: 10.1139/gen-2013-0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite being a group of particular interest in considering relationships between genome size and metabolic parameters, bats have not been well studied from this perspective. This study presents new estimates for 121 "microbat" species from 12 families and complements a previous study on members of the family Pteropodidae ("megabats"). The results confirm that diversity in genome size in bats is very limited even compared with other mammals, varying approximately 2-fold from 1.63 pg in Lophostoma carrikeri to 3.17 pg in Rhinopoma hardwickii and averaging only 2.35 pg ± 0.02 SE (versus 3.5 pg overall for mammals). However, contrary to some other vertebrate groups, and perhaps owing to the narrow range observed, genome size correlations were not apparent with any chromosomal, physiological, flight-related, developmental, or ecological characteristics within the order Chiroptera. Genome size is positively correlated with measures of body size in bats, though the strength of the relationships differs between pteropodids ("megabats") and nonpteropodids ("microbats").
Collapse
Affiliation(s)
- Jillian D L Smith
- a Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
43
|
Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 2013; 151:483-96. [PMID: 23101622 DOI: 10.1016/j.cell.2012.09.035] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 08/02/2012] [Accepted: 09/19/2012] [Indexed: 11/22/2022]
Abstract
A major unanswered question in neuroscience is whether there exists genomic variability between individual neurons of the brain, contributing to functional diversity or to an unexplained burden of neurological disease. To address this question, we developed a method to amplify genomes of single neurons from human brains. Because recent reports suggest frequent LINE-1 (L1) retrotransposition in human brains, we performed genome-wide L1 insertion profiling of 300 single neurons from cerebral cortex and caudate nucleus of three normal individuals, recovering >80% of germline insertions from single neurons. While we find somatic L1 insertions, we estimate <0.6 unique somatic insertions per neuron, and most neurons lack detectable somatic insertions, suggesting that L1 is not a major generator of neuronal diversity in cortex and caudate. We then genotyped single cortical cells to characterize the mosaicism of a somatic AKT3 mutation identified in a child with hemimegalencephaly. Single-neuron sequencing allows systematic assessment of genomic diversity in the human brain.
Collapse
|
44
|
Oliver KR, Greene WK. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2012; 2:2912-33. [PMID: 23170223 PMCID: PMC3501640 DOI: 10.1002/ece3.400] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/17/2022] Open
Abstract
In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE-Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE-Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE-Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. “Adaptive potential” and “evolutionary potential” are proposed as the extremes of a continuum of “intra-genomic potential” due to TE-Thrust. Specific data is given, indicating “adaptive potential” being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE-Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of “evolutionary potential” is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Biological Science and Biotechnology, Faculty of Science and Engineering, Murdoch University Perth, W.A., 6150, Australia
| | | |
Collapse
|
45
|
Fontana A, Wróbel B. A model of evolution of development based on germline penetration of new "no-junk" DNA. Genes (Basel) 2012; 3:492-504. [PMID: 24704981 PMCID: PMC3899995 DOI: 10.3390/genes3030492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 02/07/2023] Open
Abstract
There is a mounting body of evidence that somatic transposition may be involved in normal development of multicellular organisms and in pathology, especially cancer. Epigenetic Tracking (ET) is an abstract model of multicellular development, able to generate complex 3-dimensional structures. Its aim is not to model the development of a particular organism nor to merely summarise mainstream knowledge on genetic regulation of development. Rather, the goal of ET is to provide a theoretical framework to test new postulated genetic mechanisms, not fully established yet in mainstream biology. The first proposal is that development is orchestrated through a subset of cells which we call driver cells. In these cells, the cellular state determines a specific pattern of gene activation which leads to the occurrence of developmental events. The second proposal is that evolution of development is affected by somatic transposition events. We postulate that when the genome of a driver cell does not specify what developmental event should be undertaken when the cell is in a particular cellular state, somatic transposition events can reshape the genome, build new regulatory regions, and lead to a new pattern of gene activation in the cell. Our third hypothesis, not supported yet by direct evidence, but consistent with some experimental observations, is that these new “no-junk” sequences—regulatory regions created by transposable elements at new positions in the genome—can exit the cell and enter the germline, to be incorporated in the genome of the progeny. We call this mechanism germline penetration. This process allows heritable incorporation of novel developmental events in the developmental trajectory. In this paper we will present the model and link these three postulated mechanisms to biological observations.
Collapse
Affiliation(s)
- Alessandro Fontana
- Faculty of Electronics, Telecommunications and Informatics, Technical University of Gdansk, Gabriela Narutowicza 11/12, PL80233, Gdansk, Poland.
| | - Borys Wróbel
- Evolving Systems Laboratory, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, PL61614 Poznan, Poland.
| |
Collapse
|
46
|
Platt II RN, Ray DA. A non-LTR retroelement extinction in Spermophilus tridecemlineatus. Gene 2012; 500:47-53. [DOI: 10.1016/j.gene.2012.03.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
|
47
|
Abstract
Transposons are DNA sequences capable of moving in genomes. Early evidence showed their accumulation in many species and suggested their continued activity in at least isolated organisms. In the past decade, with the development of various genomic technologies, it has become abundantly clear that ongoing activity is the rule rather than the exception. Active transposons of various classes are observed throughout plants and animals, including humans. They continue to create new insertions, have an enormous variety of structural and functional impact on genes and genomes, and play important roles in genome evolution. Transposon activities have been identified and measured by employing various strategies. Here, we summarize evidence of current transposon activity in various plant and animal genomes.
Collapse
Affiliation(s)
- Cheng Ran Lisa Huang
- Institute of Genetic Medicine and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kathleen H. Burns
- Department of Pathology, Department of Oncology, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jef D. Boeke
- Molecular Biology and Genetics, Institute of Genetic Medicine, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
48
|
Retrofitting the genome: L1 extinction follows endogenous retroviral expansion in a group of muroid rodents. J Virol 2011; 85:12315-23. [PMID: 21957310 DOI: 10.1128/jvi.05180-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long interspersed nuclear element 1 (LINE-1; L1) retrotransposons are the most common retroelements in mammalian genomes. Unlike individual families of endogenous retroviruses (ERVs), they have remained active throughout the mammalian radiation and are responsible for most of the retroelement movement and much genome rearrangement within mammals. They can be viewed as occupying a substantial niche within mammalian genomes. Our previous demonstration that L1s and B1 short interspersed nuclear elements (SINEs) are inactive in a group of South American rodents led us to ask if other elements have amplified to fill the empty niche. We identified a novel and highly active family of ERVs (mysTR). To determine whether loss of L1 activity was correlated with expansion of mysTR, we examined mysTR activity in four South American rodent species that have lost L1 and B1 activity and four sister species with active L1s. The copy number of recent mysTR insertions was extremely high, with an average of 4,200 copies per genome. High copy numbers exist in both L1-active and L1-extinct species, so the mysTR expansion appears to have preceded the loss of both SINE and L1 activity rather than to have filled an empty niche created by their loss. It may be coincidental that two unusual genomic events--loss of L1 activity and massive expansion of an ERV family--occur in the same group of mammals. Alternatively, it is possible that this large ERV expansion set the stage for L1 extinction.
Collapse
|
49
|
Hedges DJ, Belancio VP. Restless genomes humans as a model organism for understanding host-retrotransposable element dynamics. ADVANCES IN GENETICS 2011; 73:219-62. [PMID: 21310298 DOI: 10.1016/b978-0-12-380860-8.00006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since their initial discovery in maize, there have been various attempts to categorize the relationship between transposable elements (TEs) and their host organisms. These have ranged from TEs being selfish parasites to their role as essential, functional components of organismal biology. Research over the past several decades has, in many respects, only served to complicate the issue even further. On the one hand, investigators have amassed substantial evidence concerning the negative effects that TE-mutagenic activity can have on host genomes and organismal fitness. On the other hand, we find an increasing number of examples, across several taxa, of TEs being incorporated into functional biological roles for their host organism. Some 45% of our own genomes are comprised of TE copies. While many of these copies are dormant, having lost their ability to mobilize, several lineages continue to actively proliferate in modern human populations. With its complement of ancestral and active TEs, the human genome exhibits key aspects of the host-TE dynamic that has played out since early on in organismal evolution. In this review, we examine what insights the particularly well-characterized human system can provide regarding the nature of the host-TE interaction.
Collapse
Affiliation(s)
- Dale J Hedges
- Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | |
Collapse
|
50
|
Abstract
Short interspersed elements (SINEs) are one of the two most prolific mobile genomic elements in most of the higher eukaryotes. Although their biology is still not thoroughly understood, unusual life cycle of these simple elements amplified as genomic parasites makes their evolution unique in many ways. In contrast to most genetic elements including other transposons, SINEs emerged de novo many times in evolution from available molecules (for example, tRNA). The involvement of reverse transcription in their amplification cycle, huge number of genomic copies and modular structure allow variation mechanisms in SINEs uncommon or rare in other genetic elements (module exchange between SINE families, dimerization, and so on.). Overall, SINE evolution includes their emergence, progressive optimization and counteraction to the cell's defense against mobile genetic elements.
Collapse
|