1
|
Al-Handawi MB, Commins P, Dinnebier RE, Abdellatief M, Li L, Naumov P. Harvesting of aerial humidity with natural hygroscopic salt excretions. Proc Natl Acad Sci U S A 2023; 120:e2313134120. [PMID: 37903263 PMCID: PMC10636306 DOI: 10.1073/pnas.2313134120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/05/2023] [Indexed: 11/01/2023] Open
Abstract
Plants and animals that thrive in arid regions utilize the diurnal changes in environmental temperature and humidity to optimize their water budget by combining water-harvesting mechanisms and morphophysiological traits. The Athel tamarisk (Tamarix aphylla) is a halophytic desert shrub that survives in arid, hypersaline conditions by excreting concentrated solutions of ions as droplets on its surface that crystallize into salt crystals and fall off the branches. Here, we describe the crystallization on the surface of the plant and explore the effects of external conditions such as diurnal changes in humidity and temperature. The salt mixtures contain at least ten common minerals, with NaCl and CaSO4·2H2O being the major products, SiO2 and CaCO3 main sand contaminants, and Li2SO4, CaSO4, KCl, K2Ca(SO4)2·H2O, CaMg(CO3)2 and AlNaSi3O8 present in smaller amounts. In natural conditions, the hanging or sitting droplets remain firmly attached to the surface, with an average adhesion force of 275 ± 3.5 µN measured for pure water. Rather than using morphological features of the surface, the droplets adhere by chemical interactions, predominantly by hydrogen bonding. Increasing ion concentration slightly increases the contact angle on the hydrophobic cuticle, thereby lowering surface wettability. Small amounts of lithium sulfate and possibly other hygroscopic salts result in strong hygroscopicity and propensity for deliquescence of the salt mixture overnight. Within a broader context, this natural mechanism for humidity harvesting that uses environmentally benign salts as moisture adsorbents could provide a bioinspired approach that complements the currently available water collection or cloud-seeding technologies.
Collapse
Affiliation(s)
- Marieh B. Al-Handawi
- Smart Materials Lab, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Patrick Commins
- Smart Materials Lab, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | | | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Smart Engineering Materials, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, MK-1000 Skopje, Macedonia
- Department of Chemistry, Molecular Design Institute, New York University, New York, NY10003
| |
Collapse
|
2
|
Cowan DA, Cary SC, DiRuggiero J, Eckardt F, Ferrari B, Hopkins DW, Lebre PH, Maggs-Kölling G, Pointing SB, Ramond JB, Tribbia D, Warren-Rhodes K. 'Follow the Water': Microbial Water Acquisition in Desert Soils. Microorganisms 2023; 11:1670. [PMID: 37512843 PMCID: PMC10386458 DOI: 10.3390/microorganisms11071670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions. It, therefore, follows that other, less obvious sources of water may sustain the microbial cellular and community functionality in desert soil niches. Such sources include a range of precipitation and condensation processes, including rainfall, snow, dew, fog, and nocturnal distillation, all of which may vary quantitatively depending on the location and geomorphological characteristics of the desert ecosystem. Other more obscure sources of bioavailable water may include groundwater-derived water vapour, hydrated minerals, and metabolic hydro-genesis. Here, we explore the possible sources of bioavailable water in the context of microbial survival and function in xeric desert soils. With global climate change projected to have profound effects on both hot and cold deserts, we also explore the potential impacts of climate-induced changes in water availability on soil microbiomes in these extreme environments.
Collapse
Affiliation(s)
- Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - S Craig Cary
- School of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand
| | - Jocelyne DiRuggiero
- Departments of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Frank Eckardt
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7701, South Africa
| | - Belinda Ferrari
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - David W Hopkins
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | | | - Stephen B Pointing
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Departamento Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dana Tribbia
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
3
|
Srinivasan J, Khadka J, Novoplansky N, Gillor O, Grafi G. Endophytic Bacteria Colonizing the Petiole of the Desert Plant Zygophyllum dumosum Boiss: Possible Role in Mitigating Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040484. [PMID: 35214818 PMCID: PMC8924888 DOI: 10.3390/plants11040484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Zygophyllum dumosum is a dominant shrub in the Negev Desert whose survival is accomplished by multiple mechanisms including abscission of leaflets to reduce whole plant transpiration while leaving the fleshy, wax-covered petioles alive but dormant during the dry season. Petioles that can survive for two full growing seasons maintain cell component integrity and resume metabolic activity at the beginning of the winter. This remarkable survival prompted us to investigate endophytic bacteria colonizing the internal tissues of the petiole and assess their role in stress tolerance. Twenty-one distinct endophytes were isolated by culturing from surface-sterile petioles and identified by sequencing of the 16S rDNA. Sequence alignments and the phylogenetic tree clustered the isolated endophytes into two phyla, Firmicutes and Actinobacteria. Most isolated endophytes displayed a relatively slow growth on nutrient agar, which was accelerated by adding petiole extracts. Metabolic analysis of selected endophytes showed several common metabolites whose level is affected by petiole extract in a species-dependent manner including phosphoric acid, pyroglutamic acid, and glutamic acid. Other metabolites appear to be endophyte-specific metabolites, such as proline and trehalose, which were implicated in stress tolerance. These results demonstrate the existence of multiple endophytic bacteria colonizing Z. dumosum petioles with the potential role in maintaining cell integrity and functionality via synthesis of multiple beneficial metabolites that mitigate stress and contribute to stress tolerance.
Collapse
Affiliation(s)
- Jansirani Srinivasan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel;
| | - Janardan Khadka
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
| | - Nurit Novoplansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel;
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel; (J.S.); (J.K.); (N.N.)
- Correspondence:
| |
Collapse
|
4
|
Cesur RM, Ansari IM, Chen F, Clark BC, Schneegurt MA. Bacterial Growth in Brines Formed by the Deliquescence of Salts Relevant to Cold Arid Worlds. ASTROBIOLOGY 2022; 22:104-115. [PMID: 34748403 PMCID: PMC8785760 DOI: 10.1089/ast.2020.2336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Hygroscopic salts at Mars' near-surface (MgSO4, (per)chlorates, NaCl) may form brines by absorbing moisture from the atmosphere at certain times through the process of deliquescence. We have previously shown strong bacterial growth in saturated MgSO4 (∼67% w/v as epsomite) at room temperature, and growth was observed at the MgSO4 eutectic point (43% w/v at -4°C). Here, we have investigated the growth of salinotolerant microbes (Halomonas, Marinococcus, Planococcus) from Hot Lake, Washington; Basque Lake, British Columbia; and Great Salt Plains, Oklahoma under deliquescing conditions. Bacterial cultures were grown to mid-log phase in SP medium supplemented with 50% MgSO4 (as epsomite), 20% NaClO3, or 10% NaCl (w/v), and small aliquots in cups were dried by vacuum desiccation. When the dried culture was rehydrated by the manual addition of water, the culture resumed growth in the reconstituted brine. When desiccated cultures were maintained in a sealed container with a brine reservoir of the matching growth medium controlling the humidity of the headspace, the desiccated microbial culture evaporites formed brine by deliquescence using humidity alone. Bacterial cultures resumed growth in all three salts once rehydrated by deliquescence. Cultures of Halomonas sp. str. HL12 showed robust survival and growth when subjected to several cycles of desiccation and deliquescent or manual rehydration. Our laboratory demonstrations of microbial growth in deliquescent brines are relevant to the surface and near-subsurface of cold arid worlds like Mars. When conditions become wetter, hygroscopic evaporite minerals can deliquesce to produce the earliest habitable brines. Survival after desiccation and growth in deliquescent brines increases the likelihood that microbes from Earth, carried on spacecraft, pose a contamination risk to Mars.
Collapse
Affiliation(s)
- Robin M. Cesur
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Irfan M. Ansari
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Fei Chen
- Jet Propulsion Laboratory, Pasadena, California, USA
| | | | - Mark A. Schneegurt
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
5
|
Mittelstrass J, Sperone FG, Horton MW. Using transects to disentangle the environmental drivers of plant-microbiome assembly. PLANT, CELL & ENVIRONMENT 2021; 44:3515-3525. [PMID: 34562029 PMCID: PMC9292149 DOI: 10.1111/pce.14190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Environmental heterogeneity is a major driver of plant-microbiome assembly, but the specific climate and soil conditions that are involved remain poorly understood. To better understand plant microbiome formation, we examined the bacteria and fungi that colonize wild strawberry (Fragaria vesca) plants in North American and European populations. Using transects as replicates, we found strong overlap among the environmental conditions that best predict the overall similarity and richness of the plant microbiome, including soil nutrients that replicate across continents. Temperature is also among the main predictors of diversity for both bacteria and fungi in both the leaf and, unexpectedly, the root microbiome. Our results indicate that a small number of environmental factors, and their interactions, consistently contribute to plant microbiome formation, which has implications for predicting the contributions of microbes to plant productivity in ever-changing environments.
Collapse
Affiliation(s)
- Jana Mittelstrass
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - F. Gianluca Sperone
- Department of Environmental Science and GeologyWayne State UniversityDetroitMichiganUSA
| | - Matthew W. Horton
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
6
|
Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nat Commun 2021; 12:4979. [PMID: 34404804 PMCID: PMC8370997 DOI: 10.1038/s41467-021-25256-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 01/26/2023] Open
Abstract
Relative contributions of pre-existing vs de novo genomic variation to adaptation are poorly understood, especially in polyploid organisms. We assess this in high resolution using autotetraploid Arabidopsis arenosa, which repeatedly adapted to toxic serpentine soils that exhibit skewed elemental profiles. Leveraging a fivefold replicated serpentine invasion, we assess selection on SNPs and structural variants (TEs) in 78 resequenced individuals and discover significant parallelism in candidate genes involved in ion homeostasis. We further model parallel selection and infer repeated sweeps on a shared pool of variants in nearly all these loci, supporting theoretical expectations. A single striking exception is represented by TWO PORE CHANNEL 1, which exhibits convergent evolution from independent de novo mutations at an identical, otherwise conserved site at the calcium channel selectivity gate. Taken together, this suggests that polyploid populations can rapidly adapt to environmental extremes, calling on both pre-existing variation and novel polymorphisms. Relative contributions of pre-existing versus de novo genomic variation to adaptation remain unclear. Here, the authors address this problem by examining the adaptation of autotetraploid Arabidopsis arenosa to serpentine soils and find that both types of variations contribute to rapid adaptation.
Collapse
|
7
|
Moroenyane I, Mendes L, Tremblay J, Tripathi B, Yergeau É. Plant Compartments and Developmental Stages Modulate the Balance between Niche-Based and Neutral Processes in Soybean Microbiome. MICROBIAL ECOLOGY 2021; 82:416-428. [PMID: 33462700 DOI: 10.1007/s00248-021-01688-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding the dynamics of plant-associated microbial communities within agriculture is well documented. However, the ecological processes that assemble the plant microbiome are not well understood. This study elucidates the relative dominance of assembly processes across plant compartments (root, stem, and leaves) and developmental stages (emergence, growth, flowering, and maturation). Bacterial community composition and assembly processes were assessed using 16S rRNA gene amplicon sequencing. Null models that couple phylogenetic community composition and species distribution models were used to evaluate ecological assembly processes of bacterial communities. All models highlighted that the balance between the assembly process was modulated by compartments and developmental stages. Dispersal limitation dominated amongst the epiphytic communities and at the maturation stage. Homogeneous selection dominated assembly across plant compartments and development stages. Overall, both sets of models were mostly in agreement in predicting the prevailing assembly processes. Our results show, for the first time, that even though niche-based processes dominate in the plant environment, the relative influence of dispersal limitation in community assembly is important.
Collapse
Affiliation(s)
- I Moroenyane
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V1B7, Canada
| | - L Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - J Tremblay
- Energy, Mining, and Environment, National Research Council Canada, 6100 Avenue Royalmount, Montreal, Quebec, H4P 2R2, Canada
| | - B Tripathi
- Korea Polar Research Institute, Incheon, 21990, South Korea
| | - É Yergeau
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V1B7, Canada.
| |
Collapse
|
8
|
Gilbert KJ, Renner T. Acid or base? How do plants regulate the ecology of their phylloplane? AOB PLANTS 2021; 13:plab032. [PMID: 34285793 PMCID: PMC8286713 DOI: 10.1093/aobpla/plab032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/25/2021] [Indexed: 05/29/2023]
Abstract
Plants interface with and modify the external environment across their surfaces, and in so doing, can control or mitigate the impacts of abiotic stresses and also mediate their interactions with other organisms. Botanically, it is known that plant roots have a multi-faceted ability to modify rhizosphere conditions like pH, a factor with a large effect on a plant's biotic interactions with microbes. But plants can also modify pH levels on the surfaces of their leaves. Plants can neutralize acid rain inputs in a period of hours, and either acidify or alkalinize the pH of neutral water droplets in minutes. The pH of the phylloplane-that is, the outermost surface of the leaf-varies across species, from incredibly acidic (carnivorous plants: as low as pH 1) to exceptionally alkaline (species in the plant family, Malvaceae, up to pH 11). However, most species mildly acidify droplets on the phylloplane by 1.5 orders of magnitude in pH. Just as rhizosphere pH helps shape the plant microbiome and is known to influence belowground interactions, so too can phylloplane pH influence aboveground interactions in plant canopies. In this review, we discuss phylloplane pH regulation from the physiological, molecular, evolutionary, and ecological perspectives and address knowledge gaps and identify future research directions.
Collapse
Affiliation(s)
- Kadeem J Gilbert
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, 501 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| |
Collapse
|
9
|
Al Ashhab A, Meshner S, Alexander-Shani R, Dimerets H, Brandwein M, Bar-Lavan Y, Winters G. Temporal and Spatial Changes in Phyllosphere Microbiome of Acacia Trees Growing in Arid Environments. Front Microbiol 2021; 12:656269. [PMID: 34322096 PMCID: PMC8312645 DOI: 10.3389/fmicb.2021.656269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023] Open
Abstract
Background: The evolutionary relationships between plants and their microbiomes are of high importance to the survival of plants in general and even more in extreme conditions. Changes in the plant's microbiome can affect plant development, growth, fitness, and health. Along the arid Arava, southern Israel, acacia trees (Acacia raddiana and Acacia tortilis) are considered keystone species. In this study, we investigated the ecological effects of plant species, microclimate, phenology, and seasonality on the epiphytic and endophytic microbiome of acacia trees. One hundred thirty-nine leaf samples were collected throughout the sampling year and were assessed using 16S rDNA gene amplified with five different primers (targeting different gene regions) and sequenced (150 bp paired-end) on an Illumina MiSeq sequencing platform. Results: Epiphytic bacterial diversity indices (Shannon-Wiener, Chao1, Simpson, and observed number of operational taxonomic units) were found to be nearly double compared to endophyte counterparts. Epiphyte and endophyte communities were significantly different from each other in terms of the composition of the microbial associations. Interestingly, the epiphytic bacterial diversity was similar in the two acacia species, but the canopy sides and sample months exhibited different diversity, whereas the endophytic bacterial communities were different in the two acacia species but similar throughout the year. Abiotic factors, such as air temperature and precipitation, were shown to significantly affect both epiphyte and endophytes communities. Bacterial community compositions showed that Firmicutes dominate A. raddiana, and Proteobacteria dominate A. tortilis; these bacterial communities consisted of only a small number of bacterial families, mainly Bacillaceae and Comamonadaceae in the endophyte for A. raddiana and A. tortilis, respectively, and Geodematophilaceae and Micrococcaceae for epiphyte bacterial communities, respectively. Interestingly, ~60% of the obtained bacterial classifications were unclassified below family level (i.e., "new"). Conclusions: These results shed light on the unique desert phyllosphere microbiome highlighting the importance of multiple genotypic and abiotic factors in shaping the epiphytic and endophytic microbial communities. This study also shows that only a few bacterial families dominate both epiphyte and endophyte communities, highlighting the importance of climate change (precipitation, air temperature, and humidity) in affecting arid land ecosystems where acacia trees are considered keystone species.
Collapse
Affiliation(s)
- Ashraf Al Ashhab
- Dead Sea and Arava Science Center, Masada, Israel.,Ben-Gurion University of the Negev, Eilat Campus, Be'er Sheva, Israel
| | | | | | | | - Michael Brandwein
- Dead Sea and Arava Science Center, Masada, Israel.,Biofilm Research Laboratory, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Gidon Winters
- Dead Sea and Arava Science Center, Masada, Israel.,Ben-Gurion University of the Negev, Eilat Campus, Be'er Sheva, Israel
| |
Collapse
|
10
|
Moroenyane I, Tremblay J, Yergeau É. Temporal and spatial interactions modulate the soybean microbiome. FEMS Microbiol Ecol 2021; 97:fiaa2062. [PMID: 33367840 DOI: 10.1093/femsec/fiaa206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Managed agricultural ecosystems are unique systems where crops and microbes are intrinsically linked. This study focuses on discerning microbiome successional patterns across all plant organs and tests for evidence of niche differentiation along temporal and spatial axes. Soybean plants were grown in an environmental chamber till seed maturation. Samples from various developmental stages (emergence, growth, flowering and maturation) and compartments (leaf, stem, root and rhizosphere) were collected. Community structure and composition were assessed with 16S rRNA gene and ITS region amplicon sequencing. Overall, the interaction between spatial and temporal dynamics modulated alpha and beta diversity patterns. Time lag analysis on measured diversity indices highlighted a strong temporal dependence of communities. Spatial and temporal interactions influenced the relative abundance of the most abundant genera, whilst random forest predictions reinforced the observed localisation patterns of abundant genera. Overall, our results show that spatial and temporal interactions tend to maintain high levels of biodiversity within the bacterial/archaeal community, whilst in fungal communities OTUs within the same genus tend to have overlapping niches.
Collapse
Affiliation(s)
- Itumeleng Moroenyane
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V1B7, Canada
| | - Julien Tremblay
- Energy, Mining, and Environment, Natural Resource Council Canada, 6100 avenue Royalmount, Montréal, Québec, H4P 2R2, Canada
| | - Étienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec, H7V1B7, Canada
| |
Collapse
|
11
|
Cerqueira F, Matamoros V, Bayona J, Elsinga G, Hornstra LM, Piña B. Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L.) grown under different watering regimes. ENVIRONMENTAL RESEARCH 2019; 170:16-25. [PMID: 30554053 DOI: 10.1016/j.envres.2018.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Social concern has raised during the last years due to the development of antibiotic resistance hotspots in different environmental compartments, including the edible parts of crops. To assess the influence of the water quality used for watering, we collected samples from soil, roots, leaves and beans from the legume plant Vicia faba (broad beans) in three agricultural peri-urban plots (Barcelona, NE Spain), irrigated with either groundwater, river water, or reclaimed water. Antibiotic resistance genes (ARGs) sul1, tetM, qnrS1, blaCTX-M-32,blaOXA-58, mecA, and blaTEM were quantified by real-time PCR, along with 16S rDNA and intl1 sequences, as proxies for bacterial abundance and integron prevalence, respectively. Microbiome composition of all samples were analyzed by high-throughput DNA sequencing. Results show a gradient of bacterial species diversity and of ARG prevalence from highly diverse soil samples to microbially-poor beans and leaves, in which Rhizobiales essentially displaced all other groups, and that presented very small loads of ARGs and integron sequences. The data suggest that the microbiome and the associated resistome were likely influenced by agricultural practices and water quality, and that future irrigation water legal standards should consider the specific Physiology of the different crop plants.
Collapse
Affiliation(s)
- Francisco Cerqueira
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain
| | - Josep Bayona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain
| | - Goffe Elsinga
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Luc M Hornstra
- KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, 08034 Barcelona, Spain.
| |
Collapse
|
12
|
Cerqueira F, Matamoros V, Bayona J, Piña B. Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:660-670. [PMID: 30380474 DOI: 10.1016/j.scitotenv.2018.10.268] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
While the presence of antibiotic resistance genes (ARGs) in agricultural soils and products has been firmly established, their distribution among the different plant parts and the contribution of agricultural practices, including irrigation with reclaimed water, have not been adequately addressed yet. To this end, we analyzed the levels of seven ARGs (sul1, blaTEM, blaCTX-M-32, mecA, qnrS1, tetM, blaOXA-58), plus the integrase gene intl1, in soils, roots, leaves, and fruits from two commercial tomato fields irrigated with either unpolluted groundwater or from a channel impacted by treated wastewater, using culture-independent, quantitative real-time PCR methods. ARGs and intl1 sequences were found in leaves and fruits at levels representing from 1 to 10% of those found in roots or soil. The relative abundance of intl1 sequences correlated with tetM, blaTEM, and sul1 levels, suggesting a high horizontal mobility potential for these ARGs. High-throughput 16S rDNA sequencing revealed microbiome differences both between sample types (soil plus roots versus leaves plus fruits) and sampling zones, and a correlation between the prevalence of Pseudomonadaceae and the levels of different ARGs, particularly in fruits and leaves. We concluded that both microbiome composition and ARGs levels in plants parts, including fruits, were likely influenced by agricultural practices.
Collapse
Affiliation(s)
- Francisco Cerqueira
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Josep Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
13
|
Chen QL, An XL, Zheng BX, Ma YB, Su JQ. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1230-1237. [PMID: 30248848 DOI: 10.1016/j.scitotenv.2018.07.260] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Phyllosphere contains various microorganisms that may harbor diverse antibiotic resistance genes (ARGs). However, we know little about the composition of antibiotic resistome and the factors influencing the diversity and abundance of ARGs in the phyllosphere. In this study, 16S rRNA gene amplicon sequencing and high-throughput quantitative PCR approaches were employed to investigate the effects of long-term (over 10 years) organic fertilization on the phyllosphere bacterial communities and antibiotic resistome. Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes dominated in the phyllosphere bacterial communities. Long-term application of sewage sludge and chicken manure altered the phyllosphere bacterial community composition, with a remarkable decrease in bacterial alpha-diversity. A total of 124 unique ARGs were detected in the phyllosphere. The application of sewage sludge and chicken manure significantly increased the abundance of ARGs, with a maximum 2638-fold enrichment. Variation partitioning analysis (VPA) together with network analysis indicated that the profile of ARGs is strongly correlated with bacterial community compositions. These results improve the knowledge about the diversity of plant-associated antibiotic resistome and factors influencing the profile of ARGs in the phyllosphere.
Collapse
Affiliation(s)
- Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bang-Xiao Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Bing Ma
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Nutrient Cycling, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
14
|
Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts. ISME JOURNAL 2016; 11:715-726. [PMID: 27983719 PMCID: PMC5322300 DOI: 10.1038/ismej.2016.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 01/16/2023]
Abstract
Mealybugs (Insecta: Hemiptera: Pseudococcidae) maintain obligatory relationships with bacterial symbionts, which provide essential nutrients to their insect hosts. Most pseudococcinae mealybugs harbor a unique symbiosis setup with enlarged betaproteobacterial symbionts (‘Candidatus Tremblaya princeps'), which themselves contain gammaproteobacterial symbionts. Here we investigated the symbiosis of the manna mealybug, Trabutina mannipara, using a metagenomic approach. Phylogenetic analyses revealed that the intrabacterial symbiont of T. mannipara represents a novel lineage within the Gammaproteobacteria, for which we propose the tentative name ‘Candidatus Trabutinella endobia'. Combining our results with previous data available for the nested symbiosis of the citrus mealybug Planococcus citri, we show that synthesis of essential amino acids and vitamins and translation-related functions partition between the symbiotic partners in a highly similar manner in the two systems, despite the distinct evolutionary origin of the intrabacterial symbionts. Bacterial genes found in both mealybug genomes and complementing missing functions in both symbioses were likely integrated in ancestral mealybugs before T. mannipara and P. citri diversified. The high level of correspondence between the two mealybug systems and their highly intertwined metabolic pathways are unprecedented. Our work contributes to a better understanding of the only known intracellular symbiosis between two bacteria and suggests that the evolution of this unique symbiosis included the replacement of intrabacterial symbionts in ancestral mealybugs.
Collapse
|
15
|
Martirosyan V, Unc A, Miller G, Doniger T, Wachtel C, Steinberger Y. Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space. MICROBIAL ECOLOGY 2016; 72:659-668. [PMID: 27450478 DOI: 10.1007/s00248-016-0822-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Microbial function, composition, and distribution play a fundamental role in ecosystem ecology. The interaction between desert plants and their associated microbes is expected to greatly affect their response to changes in this harsh environment. Using comparative analyses, we studied the impact of three desert shrubs, Atriplex halimus (A), Artemisia herba-alba (AHA), and Hammada scoparia (HS), on soil- and leaf-associated microbial communities. DNA extracted from the leaf surface and soil samples collected beneath the shrubs were used to study associated microbial diversity using a sequencing survey of variable regions of bacterial 16S rRNA and fungal ribosomal internal transcribed spacer (ITS1). We found that the composition of bacterial and fungal orders is plant-type-specific, indicating that each plant type provides a suitable and unique microenvironment. The different adaptive ecophysiological properties of the three plant species and the differential effect on their associated microbial composition point to the role of adaptation in the shaping of microbial diversity. Overall, our findings suggest a link between plant ecophysiological adaptation as a "temporary host" and the biotic-community parameters in extreme xeric environments.
Collapse
Affiliation(s)
- Varsik Martirosyan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Life Sciences International Postgraduate Educational Center, Acharyan 31 Str., Yerevan, 0040, Armenia
| | - Adrian Unc
- Boreal Ecosystems Research Initiative, Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 6P9, Canada
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Chaim Wachtel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yosef Steinberger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
16
|
Metagenomic Signatures of Bacterial Adaptation to Life in the Phyllosphere of a Salt-Secreting Desert Tree. Appl Environ Microbiol 2016; 82:2854-2861. [PMID: 26944845 DOI: 10.1128/aem.00483-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The leaves of Tamarix aphylla, a globally distributed, salt-secreting desert tree, are dotted with alkaline droplets of high salinity. To successfully inhabit these organic carbon-rich droplets, bacteria need to be adapted to multiple stress factors, including high salinity, high alkalinity, high UV radiation, and periodic desiccation. To identify genes that are important for survival in this harsh habitat, microbial community DNA was extracted from the leaf surfaces of 10 Tamarix aphylla trees along a 350-km longitudinal gradient. Shotgun metagenomic sequencing, contig assembly, and binning yielded 17 genome bins, six of which were >80% complete. These genomic bins, representing three phyla (Proteobacteria,Bacteroidetes, and Firmicutes), were closely related to halophilic and alkaliphilic taxa isolated from aquatic and soil environments. Comparison of these genomic bins to the genomes of their closest relatives revealed functional traits characteristic of bacterial populations inhabiting the Tamarix phyllosphere, independent of their taxonomic affiliation. These functions, most notably light-sensing genes, are postulated to represent important adaptations toward colonization of this habitat. IMPORTANCE Plant leaves are an extensive and diverse microbial habitat, forming the main interface between solar energy and the terrestrial biosphere. There are hundreds of thousands of plant species in the world, exhibiting a wide range of morphologies, leaf surface chemistries, and ecological ranges. In order to understand the core adaptations of microorganisms to this habitat, it is important to diversify the type of leaves that are studied. This study provides an analysis of the genomic content of the most abundant bacterial inhabitants of the globally distributed, salt-secreting desert tree Tamarix aphylla Draft genomes of these bacteria were assembled, using the culture-independent technique of assembly and binning of metagenomic data. Analysis of the genomes reveals traits that are important for survival in this habitat, most notably, light-sensing and light utilization genes.
Collapse
|
17
|
Oliveira Alvarenga D, Rigonato J, Henrique Zanini Branco L, Soares Melo I, Fatima Fiore M. Phyllonema aviceniicola gen. nov., sp. nov. and Foliisarcina bertiogensis gen. nov., sp. nov., epiphyllic cyanobacteria associated with Avicennia schaueriana leaves. Int J Syst Evol Microbiol 2016; 66:689-700. [DOI: 10.1099/ijsem.0.000774] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Danillo Oliveira Alvarenga
- University of São Paulo, Center for Nuclear Energy in Agriculture, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Janaina Rigonato
- University of São Paulo, Center for Nuclear Energy in Agriculture, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Luis Henrique Zanini Branco
- São Paulo State University, Institute of Bioscience, Languages and Exact Sciences, 15054-000 São José do Rio Preto, SP, Brazil
| | - Itamar Soares Melo
- Embrapa Environment, Laboratory of Environmental Microbiology, 13820-000 Jaguariúna, SP, Brazil
| | - Marli Fatima Fiore
- University of São Paulo, Center for Nuclear Energy in Agriculture, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil
| |
Collapse
|
18
|
Oren A. Life in Hypersaline Environments. THEIR WORLD: A DIVERSITY OF MICROBIAL ENVIRONMENTS 2016. [DOI: 10.1007/978-3-319-28071-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Burkhardt J, Pariyar S. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles? PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18 Suppl 1:91-100. [PMID: 26417842 DOI: 10.1111/plb.12402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Atmospheric vapour pressure deficit (VPD) is the driving force for plant transpiration. Plants have different strategies to respond to this 'atmospheric drought'. Deposited aerosols on leaf surfaces can interact with plant water relations and may influence VPD response. We studied transpiration and water use efficiency of pine, beech and sunflower by measuring sap flow, gas exchange and carbon isotopes, thereby addressing different time scales of plant/atmosphere interaction. Plants were grown (i) outdoors under rainfall exclusion (OD) and in ventilated greenhouses with (ii) ambient air (AA) or (iii) filtered air (FA), the latter containing <1% ambient aerosol concentrations. In addition, some AA plants were sprayed once with 25 mM salt solution of (NH4 )2 SO4 or NaNO3 . Carbon isotope values (δ(13) C) became more negative in the presence of more particles; more negative for AA compared to FA sunflower and more negative for OD Scots pine compared to other growth environments. FA beech had less negative δ(13) C than AA, OD and NaNO3 -treated beech. Anisohydric beech showed linearly increasing sap flow with increasing VPD. The slopes doubled for (NH4 )2 SO4 - and tripled for NaNO3 -sprayed beech compared to control seedlings, indicating decreased ability to resist atmospheric demand. In contrast, isohydric pine showed constant transpiration rates with increasing VPD, independent of growth environment and spray, likely caused by decreasing gs with increasing VPD. Generally, NaNO3 spray had stronger effects on water relations than (NH4 )2 SO4 spray. The results strongly support the role of leaf surface particles as an environmental factor affecting plant water use. Hygroscopic and chaotropic properties of leaf surface particles determine their ability to form wicks across stomata. Such wicks enhance unproductive water loss of anisohydric plant species and decrease CO2 uptake of isohydric plants. They become more relevant with increasing number of fine particles and increasing VPD and are thus related to air pollution and climate change. Wicks cause a deviation from the analogy between CO2 and water pathways through stomata, bringing some principal assumptions of gas exchange theory into question.
Collapse
Affiliation(s)
- J Burkhardt
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - S Pariyar
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Sousa JAB, Sorokin DY, Bijmans MFM, Plugge CM, Stams AJM. Ecology and application of haloalkaliphilic anaerobic microbial communities. Appl Microbiol Biotechnol 2015; 99:9331-6. [PMID: 26359181 PMCID: PMC4628080 DOI: 10.1007/s00253-015-6937-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
Abstract
Haloalkaliphilic microorganisms that grow optimally at high-pH and high-salinity conditions can be found in natural environments such as soda lakes. These globally spread lakes harbour interesting anaerobic microorganisms that have the potential of being applied in existing technologies or create new opportunities. In this review, we discuss the potential application of haloalkaliphilic anaerobic microbial communities in the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-treatment, methane production and sulfur removal technology. Also, the general advantages of operation at haloalkaline conditions, such as low volatile fatty acid and sulfide toxicity, are addressed. Finally, an outlook into the main challenges like ammonia toxicity and lack of aggregation is provided.
Collapse
Affiliation(s)
- João A B Sousa
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands.
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia. .,Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, the Netherlands.
| | - Martijn F M Bijmans
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands.
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands.
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands. .,Department of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
21
|
Abstract
The study of microorganisms that reside on plant leaf surfaces, or phyllosphere microbiology, greatly benefits from the availability of artificial surfaces that mimic in one or more ways the complexity of foliage as a microbial habitat. These leaf surface proxies range from very simple, such as nutrient agars that can reveal the metabolic versatility or antagonistic properties of leaf-associated microorganisms, to the very complex, such as silicon-based casts that replicate leaf surface topography down to nanometer resolution. In this review, we summarize the various uses of artificial surfaces in experimental phyllosphere microbiology and discuss how these have advanced our understanding of the biology of leaf-associated microorganisms and the habitat they live in. We also provide an outlook into future uses of artificial leaf surfaces, foretelling a greater role for microfluidics to introduce biological and chemical gradients into artificial leaf environments, stressing the importance of artificial surfaces to generate quantitative data that support computational models of microbial life on real leaves, and rethinking the leaf surface ('phyllosphere') as a habitat that features two intimately connected but very different compartments, i.e., the leaf surface landscape ('phylloplane') and the leaf surface waterscape ('phyllotelma').
Collapse
Affiliation(s)
- Hung K Doan
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Johan H J Leveau
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
22
|
Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, Vetter MM, Vilhjálmsson BJ, Nordborg M, Gordon JI, Bergelson J. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun 2014; 5:5320. [PMID: 25382143 PMCID: PMC4232226 DOI: 10.1038/ncomms6320] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/18/2014] [Indexed: 02/04/2023] Open
Abstract
Identifying the factors that influence the outcome of host-microbial interactions is critical to protecting biodiversity, minimizing agricultural losses and improving human health. A few genes that determine symbiosis or resistance to infectious disease have been identified in model species, but a comprehensive examination of how a host genotype influences the structure of its microbial community is lacking. Here we report the results of a field experiment with the model plant Arabidopsis thaliana to identify the fungi and bacteria that colonize its leaves and the host loci that influence the microbe numbers. The composition of this community differs among accessions of A. thaliana. Genome-wide association studies (GWAS) suggest that plant loci responsible for defense and cell wall integrity affect variation in this community. Furthermore, species richness in the bacterial community is shaped by host genetic variation, notably at loci that also influence the reproduction of viruses, trichome branching and morphogenesis.
Collapse
Affiliation(s)
- Matthew W Horton
- 1] Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA [2] Gregor Mendel Institute, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Natacha Bodenhausen
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Kathleen Beilsmith
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Dazhe Meng
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Brian D Muegge
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Sathish Subramanian
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - M Madlen Vetter
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | | | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
23
|
Stevenson A, Burkhardt J, Cockell CS, Cray JA, Dijksterhuis J, Fox-Powell M, Kee TP, Kminek G, McGenity TJ, Timmis KN, Timson DJ, Voytek MA, Westall F, Yakimov MM, Hallsworth JE. Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environ Microbiol 2014; 17:257-77. [DOI: 10.1111/1462-2920.12598] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security; School of Biological Sciences; MBC; Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Jürgen Burkhardt
- Plant Nutrition Group; Institute of Crop Science and Resource Conservation; University of Bonn; Karlrobert-Kreiten-Str. 13 D-53115 Bonn Germany
| | - Charles S. Cockell
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh EH9 3JZ UK
| | - Jonathan A. Cray
- Institute for Global Food Security; School of Biological Sciences; MBC; Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Jan Dijksterhuis
- CBS Fungal Biodiversity Centre; Uppsalalaan 8 CT 3584 Utrecht The Netherlands
| | - Mark Fox-Powell
- UK Centre for Astrobiology; School of Physics and Astronomy; University of Edinburgh; Edinburgh EH9 3JZ UK
| | - Terence P. Kee
- School of Chemistry; University of Leeds; Leeds LS2 9JT West Yorkshire UK
| | | | - Terry J. McGenity
- School of Biological Sciences; University of Essex; Colchester CO4 3SQ Essex UK
| | - Kenneth N. Timmis
- Institute of Microbiology; Technical University Braunschweig; Spielmannstrasse 7 D-38106 Braunschweig Germany
| | - David J. Timson
- Institute for Global Food Security; School of Biological Sciences; MBC; Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | | | - Frances Westall
- Centre de Biophysique Moléculaire; CNRS; Rue Charles Sadron; Centre de Recherches sur les Matériaux à Haute Température; 1D, avenue de la recherché scientifique 45071 Orléans Cedex 2 France
| | | | - John E. Hallsworth
- Institute for Global Food Security; School of Biological Sciences; MBC; Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| |
Collapse
|
24
|
Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 2013; 8:e56329. [PMID: 23457551 PMCID: PMC3574144 DOI: 10.1371/journal.pone.0056329] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root) and habitat (epiphytes vs endophytes) structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024), while the reverse is true for the leaves (P = 0.032). Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001). The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.
Collapse
Affiliation(s)
- Natacha Bodenhausen
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew W. Horton
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Diverse microhabitats experienced by Halomonas variabilis on salt-secreting leaves. Appl Environ Microbiol 2012; 79:845-52. [PMID: 23160133 DOI: 10.1128/aem.02791-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leaf surfaces of the salt-excreting tree Tamarix aphylla harbor a wide diversity of halophilic microorganisms, including Halomonas sp., but little is known of the factors that shape community composition in this extreme habitat. We isolated a strain of Halomonas variabilis from the leaf surface of T. aphylla and used it to determine the heterogeneity of salt concentrations experienced by bacteria in this environment. This halophilic strain was transformed with a proU::gfp reporter gene fusion, the fluorescence of which was responsive to NaCl concentrations up to 200 g liter(-1). These bioreporting cells were applied to T. aphylla leaves and were subsequently recovered from dew droplets adhering to the leaf surface. Although cells from within a given dew droplet exhibited similar green fluorescent protein fluorescence, the fluorescence intensity varied between droplets and was correlated with the salt concentration measured in each drop. Growth of H. variabilis was observed in all droplets, regardless of the salt concentration. However, cells found in desiccated microniches between dew drops were low in abundance and generally dead. Other bacteria recovered from T. aphylla displayed higher desiccation tolerance than H. variabilis, both in culture and on inoculated plants, despite having lower osmotic tolerance. Thus, the Tamarix leaf surface can be described as a salty desert with occasional oases where water droplets form under humid conditions. While halotolerant bacteria such as Halomonas grow in high concentrations of salt in such wet microniches, other organisms are better suited to survive desiccation in sites that are not wetted.
Collapse
|
26
|
Finkel OM, Burch AY, Elad T, Huse SM, Lindow SE, Post AF, Belkin S. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert [corrected]. Appl Environ Microbiol 2012; 78:6187-93. [PMID: 22752165 PMCID: PMC3416633 DOI: 10.1128/aem.00888-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/20/2012] [Indexed: 11/20/2022] Open
Abstract
Dispersal limitation in phyllosphere communities was measured on the leaf surfaces of salt-excreting Tamarix trees, which offer unique, discrete habitats for microbial assemblages. We employed 16S rRNA gene pyrosequencing to measure bacterial community dissimilarity on leaves of spatially dispersed Tamarix specimens in sites with uniform climatic conditions across the Sonoran Desert in the Southwestern United States. Our analyses revealed diverse bacterial communities with four dominant phyla that exhibited differential effects of environmental and geographic variables. Geographical distance was the most important parameter that affected community composition, particularly that of betaproteobacteria, which displayed a statistically significant, distance-decay relationship.
Collapse
Affiliation(s)
- Omri M. Finkel
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adrien Y. Burch
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Tal Elad
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Susan M. Huse
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biology Laboratory, Woods Hole, Massachusetts, USA
| | - Steven E. Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Anton F. Post
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biology Laboratory, Woods Hole, Massachusetts, USA
| | - Shimshon Belkin
- Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Atamna-Ismaeel N, Finkel O, Glaser F, von Mering C, Vorholt JA, Koblížek M, Belkin S, Béjà O. Bacterial anoxygenic photosynthesis on plant leaf surfaces. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:209-16. [PMID: 23757275 DOI: 10.1111/j.1758-2229.2011.00323.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aerial surface of plants, the phyllosphere, is colonized by numerous bacteria displaying diverse metabolic properties that enable their survival in this specific habitat. Recently, we reported on the presence of microbial rhodopsin harbouring bacteria on the top of leaf surfaces. Here, we report on the presence of additional bacterial populations capable of harvesting light as a means of supplementing their metabolic requirements. An analysis of six phyllosphere metagenomes revealed the presence of a diverse community of anoxygenic phototrophic bacteria, including the previously reported methylobacteria, as well as other known and unknown phototrophs. The presence of anoxygenic phototrophic bacteria was also confirmed in situ by infrared epifluorescence microscopy. The microscopic enumeration correlated with estimates based on metagenomic analyses, confirming both the presence and high abundance of these microorganisms in the phyllosphere. Our data suggest that the phyllosphere contains a phylogenetically diverse assemblage of phototrophic species, including some yet undescribed bacterial clades that appear to be phyllosphere-unique.
Collapse
Affiliation(s)
- Nof Atamna-Ismaeel
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel Bioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland Institute of Microbiology, Department of Phototrophic Microorganisms - ALGATECH, 379 81 Třeboň, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Qvit-Raz N, Finkel OM, Al-Deeb TM, Malkawi HI, Hindiyeh MY, Jurkevitch E, Belkin S. Biogeographical diversity of leaf-associated microbial communities from salt-secreting Tamarix trees of the Dead Sea region. Res Microbiol 2011; 163:142-50. [PMID: 22178498 DOI: 10.1016/j.resmic.2011.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
The leaves of Tamarix, a salt-secreting desert tree, form an extreme niche that harbors a unique microbial community. In view of the global distribution of this tree, its island-like phyllosphere is highly suitable for studying microbial diversity along geographical gradients. Here we present an analysis of microbial community diversity using leaf surface samples collected at six different sites, on both sides of the Dead Sea, over a period of one year. Biodiversity analysis of denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial 16S rRNA gene revealed a significant degree of bacterial community similarity within trees sampled at the same site, much higher than the similarity between trees from different geographical locations. Statistical analysis indicated that the degree of similarity was negatively correlated with the distance between sampling sites, and that a weak correlation existed between diversity and leaf pH.
Collapse
Affiliation(s)
- Noga Qvit-Raz
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Institute of Life Sciences, 91904 Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol 2011; 77:7647-55. [PMID: 21926212 DOI: 10.1128/aem.05565-11] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leaf surfaces of Tamarix, a salt-secreting desert tree, harbor a diverse community of microbial epiphytes. This ecosystem presents a unique combination of ecological characteristics and imposes a set of extreme stress conditions. The composition of the microbial community along ecological gradients was studied from analyses of microbial richness and diversity in the phyllosphere of three Tamarix species in the Mediterranean and Dead Sea regions in Israel and in two locations in the United States. Over 200,000 sequences of the 16S V6 and 18S V9 hypervariable regions revealed a diverse community, with 788 bacterial and 64 eukaryotic genera but only one archaeal genus. Both geographic location and tree species were determinants of microbial community structures, with the former being more dominant. Tree leaves of all three species in the Mediterranean region were dominated by Halomonas and Halobacteria, whereas trees from the Dead Sea area were dominated by Actinomycetales and Bacillales. Our findings demonstrate that microbial phyllosphere communities on different Tamarix species are highly similar in the same locale, whereas trees of the same species that grow in different climatic regions host distinct microbial communities.
Collapse
|
30
|
Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF, Spudich JL, von Mering C, Vorholt JA, Iluz D, Béjà O, Belkin S. Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 2011; 14:140-6. [PMID: 21883799 DOI: 10.1111/j.1462-2920.2011.02554.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The above-ground surfaces of terrestrial plants, the phyllosphere, comprise the main interface between the terrestrial biosphere and solar radiation. It is estimated to host up to 10(26) microbial cells that may intercept part of the photon flux impinging on the leaves. Based on 454-pyrosequencing-generated metagenome data, we report on the existence of diverse microbial rhodopsins in five distinct phyllospheres from tamarisk (Tamarix nilotica), soybean (Glycine max), Arabidopsis (Arabidopsis thaliana), clover (Trifolium repens) and rice (Oryza sativa). Our findings, for the first time describing microbial rhodopsins from non-aquatic habitats, point towards the potential coexistence of microbial rhodopsin-based phototrophy and plant chlorophyll-based photosynthesis, with the different pigments absorbing non-overlapping fractions of the light spectrum.
Collapse
Affiliation(s)
- Nof Atamna-Ismaeel
- Faculty of Biology, Lorry I Lokey Interdisciplinary Center for Life Sciences and Engineering, Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pozo MI, Herrera CM, Bazaga P. Species richness of yeast communities in floral nectar of southern Spanish plants. MICROBIAL ECOLOGY 2011; 61:82-91. [PMID: 20449581 DOI: 10.1007/s00248-010-9682-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/25/2010] [Indexed: 05/09/2023]
Abstract
Floral nectar of insect-pollinated plants often contains dense yeast populations, yet little quantitative information exists on patterns and magnitude of species richness of nectar-dwelling yeasts in natural plant communities. This study evaluates yeast species richness at both the plant community and plant species levels in a montane forest area in southern Spain, and also explores possible correlations between the incidence of different yeast species in nectar and their reported tolerance to high sugar concentrations, and between yeast diversity and pollinator composition. Yeast species occurring in a total of 128 field-collected nectar samples from 24 plant species were identified by sequencing the D1/D2 domain of the large subunit rDNA, and rarefaction-based analyses were used to estimate yeast species richness at the plant community and plant species levels, using nectar drops as elemental sampling units. Individual nectar samples were generally characterized by very low species richness (1.2 yeast species/sample, on average), with the ascomycetous Metschnikowia reukaufii and Metschnikowia gruessii accounting altogether for 84.7% of the 216 isolates identified. Other yeasts recorded included species in the genera Aureobasidium, Rhodotorula, Cryptococcus, Sporobolomyces, and Lecythophora. The shapes and slopes of observed richness accumulation curves were quite similar for the nectar drop and plant species approaches, but the two approaches yielded different expected richness estimates. Expected richness was higher for plant species-based than for nectar drop-based analyses, showing that the coverage of nectar yeast species occurring in the region would be improved by sampling additional host plant species. A significant correlation was found between incidence of yeast species in nectar and their reported ability to grow in a medium containing 50% glucose. Neither diversity nor incidence of yeasts was correlated with pollinator composition across plant species.
Collapse
Affiliation(s)
- María I Pozo
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio s/n, Isla de La Cartuja, 41092, Seville, Spain.
| | | | | |
Collapse
|
32
|
Beattie GA. Water relations in the interaction of foliar bacterial pathogens with plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:533-55. [PMID: 21438680 DOI: 10.1146/annurev-phyto-073009-114436] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review examines the many ways in which water influences the relations between foliar bacterial pathogens and plants. As a limited resource in aerial plant tissues, water is subject to manipulation by both plants and pathogens. A model is emerging that suggests that plants actively promote localized desiccation at the infection site and thus restrict pathogen growth as one component of defense. Similarly, many foliar pathogens manipulate water relations as one component of pathogenesis. Nonvascular pathogens do this using effectors and other molecules to alter hormonal responses and enhance intercellular watersoaking, whereas vascular pathogens use many mechanisms to cause wilt. Because of water limitations on phyllosphere surfaces, bacterial colonists, including pathogens, benefit from the protective effects of cellular aggregation, synthesis of hygroscopic polymers, and uptake and production of osmoprotective compounds. Moreover, these bacteria employ tactics for scavenging and distributing water to overcome water-driven barriers to nutrient acquisition, movement, and signal exchange on plant surfaces.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011-3211, USA.
| |
Collapse
|
33
|
Belkin S, Qvit-Raz N. Life on a Leaf: Bacterial Epiphytes of a Salt-Excreting Desert Tree. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-9449-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
|
34
|
|
35
|
Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0394-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|