1
|
Coig R, Harrison BR, Johnson RS, MacCoss MJ, Promislow DE. Tissue-specific metabolomic signatures for a doublesex model of reduced sexual dimorphism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612537. [PMID: 39345368 PMCID: PMC11429604 DOI: 10.1101/2024.09.11.612537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Sex has a major effect on the metabolome. However, we do not yet understand the degree to which these quantitative sex differences in metabolism are associated with anatomical dimorphism and modulated by sex-specific tissues. In the fruit fly, Drosophila melanogaster, knocking out the doublesex (dsx) gene gives rise to adults with intermediate sex characteristics. Here we sought to determine the degree to which this key node in sexual development leads to sex differences in the fly metabolome. We measured 91 metabolites across head, thorax and abdomen in Drosophila, comparing the differences between distinctly sex-dimorphic flies with those of reduced sexual dimorphism: dsx null flies. Notably, in the reduced dimorphism flies, we observed a sex difference in only 1 of 91 metabolites, kynurenate, whereas 51% of metabolites (46/91) were significantly different between wildtype XX and XY flies in at least one tissue, suggesting that dsx plays a major role in sex differences in fly metabolism. Kynurenate was consistently higher in XX flies in both the presence and absence of functioning dsx. We observed tissue-specific consequences of knocking out dsx. Metabolites affected by sex were significantly enriched in branched chain amino acid metabolism and the mTOR pathway. This highlights the importance of considering variation in genes that cause anatomical sexual dimorphism when analyzing sex differences in metabolic profiles and interpreting their biological significance.
Collapse
Affiliation(s)
- Rene Coig
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States
| | - Benjamin R. Harrison
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States
| | - Richard S. Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Daniel E.L. Promislow
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States
- Department of Biology, University of Washington, Seattle, WA, United States
- Current address: Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| |
Collapse
|
2
|
Wang Q, Zhang J, Liu C, Ru C, Qian Q, Yang M, Yan S, Liu W, Wang G. Identification of antennal alternative splicing by combining genome and full-length transcriptome analysis in Bactrocera dorsalis. Front Physiol 2024; 15:1384426. [PMID: 38952867 PMCID: PMC11215311 DOI: 10.3389/fphys.2024.1384426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Alternative splicing is an essential post-transcriptional regulatory mechanism that diversifies gene function by generating multiple protein isoforms from a single gene and act as a crucial role in insect environmental adaptation. Olfaction, a key sense for insect adaptation, relies heavily on the antennae, which are the primary olfactory organs expressing most of the olfactory genes. Despite the extensive annotation of olfactory genes within insect antennal tissues facilitated by high-throughput sequencing technology advancements, systematic analyses of alternative splicing are still relatively less. In this study, we focused on the oriental fruit fly (Bactrocera dorsalis), a significant pest of fruit crops. We performed a detailed analysis of alternative splicing in its antennae by utilizing the full-length transcriptome of its antennal tissue and the insect's genome. The results revealed 8600 non-redundant full-length transcripts identified in the oriental fruit fly antennal full-length transcriptome, spanning 4,145 gene loci. Over 40% of these loci exhibited multiple isoforms. Among these, 161 genes showed sex-biased isoform switching, involving seven different types of alternative splicing. Notably, events involving alternative transcription start sites (ATSS) and alternative transcription termination sites (ATTS) were the most common. Of all the genes undergoing ATSS and ATTS alternative splicing between male and female, 32 genes were alternatively spliced in protein coding regions, potentially affecting protein function. These genes were categorized based on the length of the sex-biased isoforms, with the highest difference in isoform fraction (dIF) associated with the ATSS type, including genes such as BdorABCA13, BdorCAT2, and BdorTSN3. Additionally, transcription factor binding sites for doublesex were identified upstream of both BdorABCA13 and BdorCAT2. Besides being expressed in the antennal tissues, BdorABCA13 and BdorCAT2 are also expressed in the mouthparts, legs, and genitalia of both female and male adults, suggesting their functional diversity. This study reveals alternative splicing events in the antennae of Bactrophora dorsalis from two aspects: odorant receptor genes and other types of genes expressed in the antennae. This study not only provides a research foundation for understanding the regulation of gene function by alternative splicing in the oriental fruit fly but also offers new insights for utilizing olfaction-based behavioral manipulation techniques to manage this pest.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jie Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Chuanjian Ru
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Qian Qian
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
Nanni A, Titus-McQuillan J, Bankole KS, Pardo-Palacios F, Signor S, Vlaho S, Moskalenko O, Morse A, Rogers RL, Conesa A, McIntyre LM. Nucleotide-level distance metrics to quantify alternative splicing implemented in TranD. Nucleic Acids Res 2024; 52:e28. [PMID: 38340337 PMCID: PMC10954468 DOI: 10.1093/nar/gkae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Advances in affordable transcriptome sequencing combined with better exon and gene prediction has motivated many to compare transcription across the tree of life. We develop a mathematical framework to calculate complexity and compare transcript models. Structural features, i.e. intron retention (IR), donor/acceptor site variation, alternative exon cassettes, alternative 5'/3' UTRs, are compared and the distance between transcript models is calculated with nucleotide level precision. All metrics are implemented in a PyPi package, TranD and output can be used to summarize splicing patterns for a transcriptome (1GTF) and between transcriptomes (2GTF). TranD output enables quantitative comparisons between: annotations augmented by empirical RNA-seq data and the original transcript models; transcript model prediction tools for longread RNA-seq (e.g. FLAIR versus Isoseq3); alternate annotations for a species (e.g. RefSeq vs Ensembl); and between closely related species. In C. elegans, Z. mays, D. melanogaster, D. simulans and H. sapiens, alternative exons were observed more frequently in combination with an alternative donor/acceptor than alone. Transcript models in RefSeq and Ensembl are linked and both have unique transcript models with empirical support. D. melanogaster and D. simulans, share many transcript models and long-read RNAseq data suggests that both species are under-annotated. We recommend combined references.
Collapse
Affiliation(s)
- Adalena Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - James Titus-McQuillan
- University of North Carolina at Charlotte Department of Bioinformatics and Genomics Charlotte, NC, USA
| | - Kinfeosioluwa S Bankole
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | | | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Srna Vlaho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Oleksandr Moskalenko
- University of Florida Research Computing, University of Florida, Gainesville, FL 32611, USA
| | - Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Rebekah L Rogers
- University of North Carolina at Charlotte Department of Bioinformatics and Genomics Charlotte, NC, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology. Spanish National Research Council, Paterna, Spain
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Newman JRB, Long SA, Speake C, Greenbaum CJ, Cerosaletti K, Rich SS, Onengut-Gumuscu S, McIntyre LM, Buckner JH, Concannon P. Shifts in isoform usage underlie transcriptional differences in regulatory T cells in type 1 diabetes. Commun Biol 2023; 6:988. [PMID: 37758901 PMCID: PMC10533491 DOI: 10.1038/s42003-023-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Genome-wide association studies have identified numerous loci with allelic associations to Type 1 Diabetes (T1D) risk. Most disease-associated variants are enriched in regulatory sequences active in lymphoid cell types, suggesting that lymphocyte gene expression is altered in T1D. Here we assay gene expression between T1D cases and healthy controls in two autoimmunity-relevant lymphocyte cell types, memory CD4+/CD25+ regulatory T cells (Treg) and memory CD4+/CD25- T cells, using a splicing event-based approach to characterize tissue-specific transcriptomes. Limited differences in isoform usage between T1D cases and controls are observed in memory CD4+/CD25- T-cells. In Tregs, 402 genes demonstrate differences in isoform usage between cases and controls, particularly RNA recognition and splicing factor genes. Many of these genes are regulated by the variable inclusion of exons that can trigger nonsense mediated decay. Our results suggest that dysregulation of gene expression, through shifts in alternative splicing in Tregs, contributes to T1D pathophysiology.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lauren M McIntyre
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA.
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
5
|
Ray M, Conard AM, Urban J, Mahableshwarkar P, Aguilera J, Huang A, Vaidyanathan S, Larschan E. Sex-specific splicing occurs genome-wide during early Drosophila embryogenesis. eLife 2023; 12:e87865. [PMID: 37466240 PMCID: PMC10400075 DOI: 10.7554/elife.87865] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Sex-specific splicing is an essential process that regulates sex determination and drives sexual dimorphism. Yet, how early in development widespread sex-specific transcript diversity occurs was unknown because it had yet to be studied at the genome-wide level. We use the powerful Drosophila model to show that widespread sex-specific transcript diversity occurs early in development, concurrent with zygotic genome activation. We also present a new pipeline called time2Splice to quantify changes in alternative splicing over time. Furthermore, we determine that one of the consequences of losing an essential maternally deposited pioneer factor called CLAMP (chromatin-linked adapter for MSL proteins) is altered sex-specific splicing of genes involved in diverse biological processes that drive development. Overall, we show that sex-specific differences in transcript diversity exist even at the earliest stages of development..
Collapse
Affiliation(s)
- Mukulika Ray
- MCB department, Brown UniversityProvidenceUnited States
| | | | - Jennifer Urban
- Biology department, Johns Hopkins UniversityBaltimoreUnited States
| | - Pranav Mahableshwarkar
- MCB department, Brown UniversityProvidenceUnited States
- CCMB department, Brown UniversityProvidenceUnited States
| | | | - Annie Huang
- MCB department, Brown UniversityProvidenceUnited States
| | - Smriti Vaidyanathan
- MCB department, Brown UniversityProvidenceUnited States
- CCMB department, Brown UniversityProvidenceUnited States
| | | |
Collapse
|
6
|
Chen W, Zhou W, Li Q, Mao X. Sex differences in gene expression and alternative splicing in the Chinese horseshoe bat. PeerJ 2023; 11:e15231. [PMID: 37123006 PMCID: PMC10135408 DOI: 10.7717/peerj.15231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Sexually dimorphic traits are common in sexually reproducing organisms and can be encoded by differential gene regulation between males and females. Although alternative splicing is common mechanism in generating transcriptional diversity, its role in generating sex differences relative to differential gene expression is less clear. Here, we investigate the relative roles of differential gene expression and alternative splicing between male and female the horseshoe bat species, Rhinolophus sinicus. Horseshoe bats are an excellent model to study acoustic differences between sexes. Using RNA-seq analyses of two somatic tissues (brain and liver) from males and females of the same population, we identified 3,471 and 2,208 differentially expressed genes between the sexes (DEGs) in the brain and liver, respectively. DEGs were enriched with functional categories associated with physiological difference of the sexes (e.g.,gamete generation and energy production for reproduction in females). In addition, we also detected many differentially spliced genes between the sexes (DSGs, 2,231 and 1,027 in the brain and liver, respectively) which were mainly involved in regulation of RNA splicing and mRNA metabolic process. Interestingly, we found a significant enrichment of DEGs on the X chromosome, but not for DSGs. As for the extent of overlap between the two sets of genes, more than expected overlap of DEGs and DSGs was observed in the brain but not in the liver. This suggests that more complex tissues, such as the brain, may require the intricate and simultaneous interplay of both differential gene expression and splicing of genes to govern sex-specific functions. Overall, our results support that variation in gene expression and alternative splicing are important and complementary mechanisms governing sex differences.
Collapse
Affiliation(s)
- Wenli Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Weiwei Zhou
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Qianqian Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Xu R, Martelossi J, Smits M, Iannello M, Peruzza L, Babbucci M, Milan M, Dunham JP, Breton S, Milani L, Nuzhdin SV, Bargelloni L, Passamonti M, Ghiselli F. Multi-tissue RNA-Seq Analysis and Long-read-based Genome Assembly Reveal Complex Sex-specific Gene Regulation and Molecular Evolution in the Manila Clam. Genome Biol Evol 2022; 14:6889380. [PMID: 36508337 PMCID: PMC9803972 DOI: 10.1093/gbe/evac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.
Collapse
Affiliation(s)
- Ran Xu
- Corresponding authors: E-mail: (R.X.); E-mail: (F.G.)
| | | | | | | | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Joseph P Dunham
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA,SeqOnce Biosciences Inc., Pasadena, CA, USA
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | | |
Collapse
|
8
|
Naftaly AS, Pau S, White MA. Long-read RNA sequencing reveals widespread sex-specific alternative splicing in threespine stickleback fish. Genome Res 2021; 31:1486-1497. [PMID: 34131005 PMCID: PMC8327910 DOI: 10.1101/gr.274282.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Alternate isoforms are important contributors to phenotypic diversity across eukaryotes. Although short-read RNA-sequencing has increased our understanding of isoform diversity, it is challenging to accurately detect full-length transcripts, preventing the identification of many alternate isoforms. Long-read sequencing technologies have made it possible to sequence full-length alternative transcripts, accurately characterizing alternative splicing events, alternate transcription start and end sites, and differences in UTR regions. Here, we use Pacific Biosciences (PacBio) long-read RNA-sequencing (Iso-Seq) to examine the transcriptomes of five organs in threespine stickleback fish (Gasterosteus aculeatus), a widely used genetic model species. The threespine stickleback fish has a refined genome assembly in which gene annotations are based on short-read RNA sequencing and predictions from coding sequence of other species. This suggests some of the existing annotations may be inaccurate or alternative transcripts may not be fully characterized. Using Iso-Seq we detected thousands of novel isoforms, indicating many isoforms are absent in the current Ensembl gene annotations. In addition, we refined many of the existing annotations within the genome. We noted many improperly positioned transcription start sites that were refined with long-read sequencing. The Iso-Seq-predicted transcription start sites were more accurate and verified through ATAC-seq. We also detected many alternative splicing events between sexes and across organs. We found a substantial number of genes in both somatic and gonadal samples that had sex-specific isoforms. Our study highlights the power of long-read sequencing to study the complexity of transcriptomes, greatly improving genomic resources for the threespine stickleback fish.
Collapse
Affiliation(s)
- Alice S Naftaly
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Shana Pau
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Biology, University of Texas Arlington, Arlington, Texas 76019, USA
| | - Michael A White
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
9
|
Diaz F, Allan CW, Markow TA, Bono JM, Matzkin LM. Gene expression and alternative splicing dynamics are perturbed in female head transcriptomes following heterospecific copulation. BMC Genomics 2021; 22:359. [PMID: 34006224 PMCID: PMC8132402 DOI: 10.1186/s12864-021-07669-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the growing interest in the female side of copulatory interactions, the roles played by differential expression and alternative splicing mechanisms of pre-RNA on tissues outside of the reproductive tract have remained largely unknown. Here we addressed these questions in the context of con- vs heterospecific matings between Drosophila mojavensis and its sister species, D. arizonae. We analyzed transcriptional responses in female heads using an integrated investigation of genome-wide patterns of gene expression, including differential expression (DE), alternative splicing (AS) and intron retention (IR). RESULTS Our results indicated that early transcriptional responses were largely congruent between con- and heterospecific matings but are substantially perturbed over time. Conspecific matings induced functional pathways related to amino acid balance previously associated with the brain's physiology and female postmating behavior. Heterospecific matings often failed to activate regulation of some of these genes and induced expression of additional genes when compared with those of conspecifically-mated females. These mechanisms showed functional specializations with DE genes mostly linked to pathways of proteolysis and nutrient homeostasis, while AS genes were more related to photoreception and muscle assembly pathways. IR seems to play a more general role in DE regulation during the female postmating response. CONCLUSIONS We provide evidence showing that AS genes substantially perturbed by heterospecific matings in female heads evolve at slower evolutionary rates than the genome background. However, DE genes evolve at evolutionary rates similar, or even higher, than those of male reproductive genes, which highlights their potential role in sexual selection and the evolution of reproductive barriers.
Collapse
Affiliation(s)
- Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Therese Ann Markow
- Cinvestav UGA-Langebio, Irapuato, Guanajuato, Mexico
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, California, USA
| | - Jeremy M Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, USA.
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
- BIO5 Institute, University of Arizona, Tucson, AZ, USA.
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
10
|
Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:genes11080909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
|
11
|
Trostnikov MV, Veselkina ER, Krementsova AV, Boldyrev SV, Roshina NV, Pasyukova EG. Modulated Expression of the Protein Kinase GSK3 in Motor and Dopaminergic Neurons Increases Female Lifespan in Drosophila melanogaster. Front Genet 2020; 11:668. [PMID: 32695143 PMCID: PMC7339944 DOI: 10.3389/fgene.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Most eukaryotic genes express multiple transcripts and proteins, and a sophisticated gene expression strategy plays a crucial role in ensuring the cell-specificity of genetic information and the correctness of phenotypes. The Drosophila melanogaster gene shaggy encodes several isoforms of the conserved glycogen synthase kinase 3 (GSK3), which is vitally important for multiple biological processes. To characterize the phenotypic effects of differential shaggy expression, we explored how the multidirectional modulation of the expression of the main GSK3 isoform, Shaggy-PB, in different tissues and cells affects lifespan. To this end, we used lines with transgenic constructs that encode mutant variants of the protein. The effect of shaggy misexpression on lifespan depended on the direction of the presumed change in GSK3 activity and the type of tissue/cell. The modulation of GSK3 activity in motor and dopaminergic neurons improved female lifespan but caused seemingly negative changes in the structural (mitochondrial depletion; neuronal loss) and functional (perturbed locomotion) properties of the nervous system, indicating the importance of analyzing the relationship between lifespan and healthspan in invertebrate models. Our findings provide new insights into the molecular and cellular bases of lifespan extension, demonstrating that the fine-tuning of transcript-specific shaggy expression in individual groups of neurons is sufficient to provide a sex-specific increase in survival and slow aging.
Collapse
Affiliation(s)
- Mikhail V Trostnikov
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina R Veselkina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Krementsova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Kinetics and Mechanisms of Enzymatic and Catalytic Reactions, N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Boldyrev
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Roshina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena G Pasyukova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Lang AS, Austin SH, Harris RM, Calisi RM, MacManes MD. Stress-mediated convergence of splicing landscapes in male and female rock doves. BMC Genomics 2020; 21:251. [PMID: 32293250 PMCID: PMC7092514 DOI: 10.1186/s12864-020-6600-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The process of alternative splicing provides a unique mechanism by which eukaryotes are able to produce numerous protein products from the same gene. Heightened variability in the proteome has been thought to potentiate increased behavioral complexity and response flexibility to environmental stimuli, thus contributing to more refined traits on which natural and sexual selection can act. While it has been long known that various forms of environmental stress can negatively affect sexual behavior and reproduction, we know little of how stress can affect the alternative splicing associated with these events, and less still about how splicing may differ between sexes. Using the model of the rock dove (Columba livia), our team previously uncovered sexual dimorphism in the basal and stress-responsive gene transcription of a biological system necessary for facilitating sexual behavior and reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we delve further into understanding the mechanistic underpinnings of how changes in the environment can affect reproduction by testing the alternative splicing response of the HPG axis to an external stressor in both sexes. RESULTS This study reveals dramatic baseline differences in HPG alternative splicing between males and females. However, after subjecting subjects to a restraint stress paradigm, we found a significant reduction in these differences between the sexes. In both stress and control treatments, we identified a higher incidence of splicing activity in the pituitary in both sexes as compared to other tissues. Of these splicing events, the core exon event is the most abundant form of splicing and more frequently occurs in the coding regions of the gene. Overall, we observed less splicing activity in the 3'UTR (untranslated region) end of transcripts than the 5'UTR or coding regions. CONCLUSIONS Our results provide vital new insight into sex-specific aspects of the stress response on the HPG axis at an unprecedented proximate level. Males and females uniquely respond to stress, yet exhibit splicing patterns suggesting a convergent, optimal splicing landscape for stress response. This information has the potential to inform evolutionary theory as well as the development of highly-specific drug targets for stress-induced reproductive dysfunction.
Collapse
Affiliation(s)
- Andrew S Lang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA.
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rayna M Harris
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, USA
| |
Collapse
|
13
|
Hsu SK, Jakšić AM, Nolte V, Lirakis M, Kofler R, Barghi N, Versace E, Schlötterer C. Rapid sex-specific adaptation to high temperature in Drosophila. eLife 2020; 9:e53237. [PMID: 32083552 PMCID: PMC7034977 DOI: 10.7554/elife.53237] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
The pervasive occurrence of sexual dimorphism demonstrates different adaptive strategies of males and females. While different reproductive strategies of the two sexes are well-characterized, very little is known about differential functional requirements of males and females in their natural habitats. Here, we study the impact environmental change on the selection response in both sexes. Exposing replicated Drosophila populations to a novel temperature regime, we demonstrate sex-specific changes in gene expression, metabolic and behavioral phenotypes in less than 100 generations. This indicates not only different functional requirements of both sexes in the new environment but also rapid sex-specific adaptation. Supported by computer simulations we propose that altered sex-biased gene regulation from standing genetic variation, rather than new mutations, is the driver of rapid sex-specific adaptation. Our discovery of environmentally driven divergent functional requirements of males and females has important implications-possibly even for gender aware medical treatments.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
| | - Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
| | - Neda Barghi
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
| | - Elisabetta Versace
- Department of Biological and Experimental Psychology, Queen Mary University of LondonLondonUnited Kingdom
| | | |
Collapse
|
14
|
Rago A, Werren JH, Colbourne JK. Sex biased expression and co-expression networks in development, using the hymenopteran Nasonia vitripennis. PLoS Genet 2020; 16:e1008518. [PMID: 31986136 PMCID: PMC7004391 DOI: 10.1371/journal.pgen.1008518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/06/2020] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
Sexual dimorphism requires regulation of gene expression in developing organisms. These developmental differences are caused by differential expression of genes and isoforms. The effect of expressing a gene is also influenced by which other genes are simultaneously expressed (functional interactions). However, few studies have described how these processes change across development. We compare the dynamics of differential expression, isoform switching and functional interactions in the sexual development of the model parasitoid wasp Nasonia vitripennis, a system that permits genome wide analysis of sex bias from early embryos to adults. We find relatively little sex-bias in embryos and larvae at the gene level, but several sub-networks show sex-biased functional interactions in early developmental stages. These networks provide new candidates for hymenopteran sex determination, including histone modification. In contrast, sex-bias in pupae and adults is driven by the differential expression of genes. We observe sex-biased isoform switching consistently across development, but mostly in genes that are already differentially expressed. Finally, we discover that sex-biased networks are enriched by genes specific to the Nasonia clade, and that those genes possess the topological properties of key regulators. These findings suggest that regulators in sex-biased networks evolve more rapidly than regulators of other developmental networks.
Collapse
Affiliation(s)
- Alfredo Rago
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY, United States of America
| | - John K. Colbourne
- School of Biosciences, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Vizán-Rico HI, Mayer C, Petersen M, McKenna DD, Zhou X, Gómez-Zurita J. Patterns and Constraints in the Evolution of Sperm Individualization Genes in Insects, with an Emphasis on Beetles. Genes (Basel) 2019; 10:E776. [PMID: 31590243 PMCID: PMC6826512 DOI: 10.3390/genes10100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
Gene expression profiles can change dramatically between sexes and sex bias may contribute specific macroevolutionary dynamics for sex-biased genes. However, these dynamics are poorly understood at large evolutionary scales due to the paucity of studies that have assessed orthology and functional homology for sex-biased genes and the pleiotropic effects possibly constraining their evolutionary potential. Here, we explore the correlation of sex-biased expression with macroevolutionary processes that are associated with sex-biased genes, including duplications and accelerated evolutionary rates. Specifically, we examined these traits in a group of 44 genes that orchestrate sperm individualization during spermatogenesis, with both unbiased and sex-biased expression. We studied these genes in the broad evolutionary framework of the Insecta, with a particular focus on beetles (order Coleoptera). We studied data mined from 119 insect genomes, including 6 beetle models, and from 19 additional beetle transcriptomes. For the subset of physically and/or genetically interacting proteins, we also analyzed how their network structure may condition the mode of gene evolution. The collection of genes was highly heterogeneous in duplication status, evolutionary rates, and rate stability, but there was statistical evidence for sex bias correlated with faster evolutionary rates, consistent with theoretical predictions. Faster rates were also correlated with clocklike (insect amino acids) and non-clocklike (beetle nucleotides) substitution patterns in these genes. Statistical associations (higher rates for central nodes) or lack thereof (centrality of duplicated genes) were in contrast to some current evolutionary hypotheses, highlighting the need for more research on these topics.
Collapse
Affiliation(s)
- Helena I. Vizán-Rico
- Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain;
| | - Christoph Mayer
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; (C.M.); (M.P.)
| | - Malte Petersen
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; (C.M.); (M.P.)
| | - Duane D. McKenna
- Center for Biodiversity Research, Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Jesús Gómez-Zurita
- Animal Biodiversity and Evolution, Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain;
| |
Collapse
|
16
|
Pennell TM, Holman L, Morrow EH, Field J. Building a new research framework for social evolution: intralocus caste antagonism. Biol Rev Camb Philos Soc 2018; 93:1251-1268. [PMID: 29341390 PMCID: PMC5896731 DOI: 10.1111/brv.12394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023]
Abstract
The breeding and non‐breeding ‘castes’ of eusocial insects provide a striking example of role‐specific selection, where each caste maximises fitness through different morphological, behavioural and physiological trait values. Typically, queens are long‐lived egg‐layers, while workers are short‐lived, largely sterile foragers. Remarkably, the two castes are nevertheless produced by the same genome. The existence of inter‐caste genetic correlations is a neglected consequence of this shared genome, potentially hindering the evolution of caste dimorphism: alleles that increase the productivity of queens may decrease the productivity of workers and vice versa, such that each caste is prevented from reaching optimal trait values. A likely consequence of this ‘intralocus caste antagonism’ should be the maintenance of genetic variation for fitness and maladaptation within castes (termed ‘caste load’), analogous to the result of intralocus sexual antagonism. The aim of this review is to create a research framework for understanding caste antagonism, drawing in part upon conceptual similarities with sexual antagonism. By reviewing both the social insect and sexual antagonism literature, we highlight the current empirical evidence for caste antagonism, discuss social systems of interest, how antagonism might be resolved, and challenges for future research. We also introduce the idea that sexual and caste antagonism could interact, creating a three‐way antagonism over gene expression. This includes unpacking the implications of haplodiploidy for the outcome of this complex interaction.
Collapse
Affiliation(s)
- Tanya M Pennell
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Luke Holman
- School of Biosciences, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Edward H Morrow
- Evolution Behaviour and Environment Group, School of Life Sciences, University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| | - Jeremy Field
- College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
17
|
The Y Chromosome Modulates Splicing and Sex-Biased Intron Retention Rates in Drosophila. Genetics 2017; 208:1057-1067. [PMID: 29263027 DOI: 10.1534/genetics.117.300637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
The Drosophila Y chromosome is a 40-Mb segment of mostly repetitive DNA; it harbors a handful of protein-coding genes and a disproportionate amount of satellite repeats, transposable elements, and multicopy DNA arrays. Intron retention (IR) is a type of alternative splicing (AS) event by which one or more introns remain within the mature transcript. IR recently emerged as a deliberate cellular mechanism to modulate gene expression levels and has been implicated in multiple biological processes. However, the extent of sex differences in IR and the contribution of the Y chromosome to the modulation of AS and IR rates has not been addressed. Here we showed pervasive IR in the fruit fly Drosophila melanogaster with thousands of novel IR events, hundreds of which displayed extensive sex bias. The data also revealed an unsuspected role for the Y chromosome in the modulation of AS and IR. The majority of sex-biased IR events introduced premature termination codons and the magnitude of sex bias was associated with gene expression differences between the sexes. Surprisingly, an extra Y chromosome in males (X^YY genotype) or the presence of a Y chromosome in females (X^XY genotype) significantly modulated IR and recapitulated natural differences in IR between the sexes. Our results highlight the significance of sex-biased IR in tuning sex differences and the role of the Y chromosome as a source of variable IR rates between the sexes. Modulation of splicing and IR rates across the genome represent new and unexpected outcomes of the Drosophila Y chromosome.
Collapse
|
18
|
Immonen E, Sayadi A, Bayram H, Arnqvist G. Mating Changes Sexually Dimorphic Gene Expression in the Seed Beetle Callosobruchus maculatus. Genome Biol Evol 2017; 9:677-699. [PMID: 28391318 PMCID: PMC5381559 DOI: 10.1093/gbe/evx029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Sexually dimorphic phenotypes arise largely from sex-specific gene expression, which has mainly been characterized in sexually naïve adults. However, we expect sexual dimorphism in transcription to be dynamic and dependent on factors such as reproductive status. Mating induces many behavioral and physiological changes distinct to each sex and is therefore expected to activate regulatory changes in many sex-biased genes. Here, we first characterized sexual dimorphism in gene expression in Callosobruchus maculatus seed beetles. We then examined how females and males respond to mating and how it affects sex-biased expression, both in sex-limited (abdomen) and sex-shared (head and thorax) tissues. Mating responses were largely sex-specific and, as expected, females showed more genes responding compared with males (∼2,000 vs. ∼300 genes in the abdomen, ∼500 vs. ∼400 in the head and thorax, respectively). Of the sex-biased genes present in virgins, 16% (1,041 genes) in the abdomen and 17% (243 genes) in the head and thorax altered their relative expression between the sexes as a result of mating. Sex-bias status changed in 2% of the genes in the abdomen and 4% in the head and thorax following mating. Mating responses involved de-feminization of females and, to a lesser extent, de-masculinization of males relative to their virgin state: mating decreased rather than increased dimorphic expression of sex-biased genes. The fact that regulatory changes of both types of sex-biased genes occurred in both sexes suggests that male- and female-specific selection is not restricted to male- and female-biased genes, respectively, as is sometimes assumed.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| | - Helen Bayram
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| | - Göran Arnqvist
- Department of Ecology and Genetics, Evolutionary Biology Centre (Animal Ecology), Uppsala University, Uppsala
| |
Collapse
|
19
|
Gubala AM, Schmitz JF, Kearns MJ, Vinh TT, Bornberg-Bauer E, Wolfner MF, Findlay GD. The Goddard and Saturn Genes Are Essential for Drosophila Male Fertility and May Have Arisen De Novo. Mol Biol Evol 2017; 34:1066-1082. [PMID: 28104747 DOI: 10.1093/molbev/msx057] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction.
Collapse
Affiliation(s)
- Anna M Gubala
- Department of Biology, College of the Holy Cross, Worcester, MA
| | - Jonathan F Schmitz
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Tery T Vinh
- Department of Biology, College of the Holy Cross, Worcester, MA
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Geoffrey D Findlay
- Department of Biology, College of the Holy Cross, Worcester, MA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| |
Collapse
|
20
|
Li P, Liu Y, Luo D, Song C, Cui Z. Two spliced isoforms of the sex-determination gene fruitless in the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:75-83. [PMID: 28438684 DOI: 10.1016/j.cbpb.2017.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 01/06/2023]
Abstract
The fruitless (fru) gene plays an important role in the sex determination pathway and courtship behavior of Drosophila melanogaster. In the present study, two fru isoforms (Esfru1 and Esfru2) were identified from the Chinese mitten crab Eriocheir sinensis. Sequence analysis showed that Esfru1 and Esfru2 were encoded by the same genomic locus and generated by alternative splicing of pre-mRNA. Esfru1 had all introns completely spliced out, while Esfru2 had a longer exon1 with an additional 78bp sequence. They both contained a conserved BTB domain which was also found in D. melanogaster Fru isoforms. Analysis on temporal expression profiles of Esfru1-2 (a common region of Esfru1 and Esfru2) and Esfru2 (a specific region of Esfru2) showed that they expressed in similar patterns during embryonic development but in different patterns during larval development. The expression of Esfru1-2 decreased gradually from zoea III stage, however, Esfru2 increased from zoea IV stage and reached the peak at megalopa stage. Expression distribution in tissues and in situ hybridization analysis revealed that they showed sexually dimorphic expression in gonads, hepatopancreas and brains. Esfru1-2 showed significantly higher expression in female gonads and hepatopancreas than in males, but highly expressed in male brains than that in females. Interestingly, Esfru2 was displayed in a male-specific manner in each tissue, especially in gonads and hepatopancreas. Our results indicate that Esfru1 might be involved in both sexual brain neuronal structure development and related to female-specific character development. Esfru2 may participate in male-specific character development. This is the first report that characterizes two spliced variants of fru in crustaceans and provides basic information for further functional studies of the crab sex-determination mechanism.
Collapse
Affiliation(s)
- Peiyao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Danli Luo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chengwen Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoxia Cui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
21
|
Gibilisco L, Zhou Q, Mahajan S, Bachtrog D. Alternative Splicing within and between Drosophila Species, Sexes, Tissues, and Developmental Stages. PLoS Genet 2016; 12:e1006464. [PMID: 27935948 PMCID: PMC5147784 DOI: 10.1371/journal.pgen.1006464] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022] Open
Abstract
Alternative pre-mRNA splicing ("AS") greatly expands proteome diversity, but little is known about the evolutionary landscape of AS in Drosophila and how it differs between embryonic and adult stages or males and females. Here we study the transcriptomes from several tissues and developmental stages in males and females from four species across the Drosophila genus. We find that 20-37% of multi-exon genes are alternatively spliced. While males generally express a larger number of genes, AS is more prevalent in females, suggesting that the sexes adopt different expression strategies for their specialized function. While the number of total genes expressed increases during early embryonic development, the proportion of expressed genes that are alternatively spliced is highest in the very early embryo, before the onset of zygotic transcription. This indicates that females deposit a diversity of isoforms into the egg, consistent with abundant AS found in ovary. Cluster analysis by gene expression ("GE") levels shows mostly stage-specific clustering in embryonic samples, and tissue-specific clustering in adult tissues. Clustering embryonic stages and adult tissues based on AS profiles results in stronger species-specific clustering, suggesting that diversification of splicing contributes to lineage-specific evolution in Drosophila. Most sex-biased AS found in flies is due to AS in gonads, with little sex-specific splicing in somatic tissues.
Collapse
Affiliation(s)
- Lauren Gibilisco
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Qi Zhou
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Shivani Mahajan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons. G3-GENES GENOMES GENETICS 2016; 6:2455-65. [PMID: 27247289 PMCID: PMC4978899 DOI: 10.1534/g3.115.019265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2-5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.
Collapse
|
23
|
Buffering of Genetic Regulatory Networks in Drosophila melanogaster. Genetics 2016; 203:1177-90. [PMID: 27194752 DOI: 10.1534/genetics.116.188797] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023] Open
Abstract
Regulatory variation in gene expression can be described by cis- and trans-genetic components. Here we used RNA-seq data from a population panel of Drosophila melanogaster test crosses to compare allelic imbalance (AI) in female head tissue between mated and virgin flies, an environmental change known to affect transcription. Indeed, 3048 exons (1610 genes) are differentially expressed in this study. A Bayesian model for AI, with an intersection test, controls type I error. There are ∼200 genes with AI exclusively in mated or virgin flies, indicating an environmental component of expression regulation. On average 34% of genes within a cross and 54% of all genes show evidence for genetic regulation of transcription. Nearly all differentially regulated genes are affected in cis, with an average of 63% of expression variation explained by the cis-effects. Trans-effects explain 8% of the variance in AI on average and the interaction between cis and trans explains an average of 11% of the total variance in AI. In both environments cis- and trans-effects are compensatory in their overall effect, with a negative association between cis- and trans-effects in 85% of the exons examined. We hypothesize that the gene expression level perturbed by cis-regulatory mutations is compensated through trans-regulatory mechanisms, e.g., trans and cis by trans-factors buffering cis-mutations. In addition, when AI is detected in both environments, cis-mated, cis-virgin, and trans-mated-trans-virgin estimates are highly concordant with 99% of all exons positively correlated with a median correlation of 0.83 for cis and 0.95 for trans We conclude that the gene regulatory networks (GRNs) are robust and that trans-buffering explains robustness.
Collapse
|
24
|
Liu Y, Xie W, Yang X, Guo L, Wang S, Wu Q, Yang Z, Zhou X, Zhang Y. Molecular cloning of the sex-related gene PSI in Bemisia tabaci and its alternative splicing properties. Gene 2016; 580:104-110. [PMID: 26773355 DOI: 10.1016/j.gene.2016.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/15/2015] [Accepted: 01/05/2016] [Indexed: 01/26/2023]
Abstract
The P-element somatic inhibitor (PSI) is gene known to regulate the transcription of doublesex (dsx) when transformer (tra) is absent in Bombyx mori. In this study, we identified and characterized a PSI homolog in Bemisia tabaci (BtPSI). BtPSI cDNA had a total length of 5700 bp and contained a predicted open reading frame (ORF) of 2208 nucleotides encoding for 735 amino acids. Multiple sequence alignments of the common regions of PSI proteins from B. tabaci and five other insect species revealed a high degree of sequence conservation. BtPSI is expressed in all stages of B. tabaci development, and expression did not significantly differ between female and male adult. A total of 92 BtPSI isoforms (78 in female and 22 in male) were identified, and a marker indicating the female-specific form was found. These results increase the understanding of genes that may determine sex in B. tabaci and provide a foundation for research on the sex determination mechanism in this insect.
Collapse
Affiliation(s)
- Yating Liu
- College of Plant Protection of Hunan Agricultural University, Changsha 410128, PR China; Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Litao Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
25
|
Sxl-Dependent, tra/tra2-Independent Alternative Splicing of the Drosophila melanogaster X-Linked Gene found in neurons. G3-GENES GENOMES GENETICS 2015; 5:2865-74. [PMID: 26511498 PMCID: PMC4683657 DOI: 10.1534/g3.115.023721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Somatic sexual determination and behavior in Drosophila melanogaster are under the control of a genetic cascade initiated by Sex lethal (Sxl). In the female soma, SXL RNA-binding protein regulates the splicing of transformer (tra) transcripts into a female-specific form. The RNA-binding protein TRA and its cofactor TRA2 function in concert in females, whereas SXL, TRA, and TRA2 are thought to not function in males. To better understand sex-specific regulation of gene expression, we analyzed male and female head transcriptome datasets for expression levels and splicing, quantifying sex-biased gene expression via RNA-Seq and qPCR. Our data uncouple the effects of Sxl and tra/tra2 in females in the-sex-biased alternative splicing of head transcripts from the X-linked locus found in neurons (fne), encoding a pan-neuronal RNA-binding protein of the ELAV family. We show that FNE protein levels are downregulated by Sxl in female heads, also independently of tra/tra2. We argue that this regulation may have important sexually dimorphic consequences for the regulation of nervous system development or function.
Collapse
|
26
|
Rigby N, Kulathinal RJ. Genetic Architecture of Sexual Dimorphism in Humans. J Cell Physiol 2015; 230:2304-10. [PMID: 25740260 DOI: 10.1002/jcp.24979] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 11/06/2022]
Abstract
Males and females differ across a broad spectrum of morphological, physiological, and behavioral characters. In fact, sexually dimorphic traits typically contribute the largest component of phenotypic variance in most taxa that use sex to reproduce. However, we know very little about the mechanisms that maintain these dimorphic states and how these sexually dimorphic traits evolve. Here, we review our current knowledge of the underlying genetic basis of sexual dimorphism in humans. First, we briefly review the etiology of sex differences starting from sex determination's initial switch early in embryogenesis. We then survey recent sex-biased transcriptomic expression literature in order to provide additional insight into the landscape of sex-biased gene expression in both gonadal and non-gonadal tissues: from overall prevalence to tissue specificity to conservation across species. Finally, we discuss implications of sex-biased genetic architecture to human health and disease in light of the National Institute of Health's recently proposed initiative to promote study samples from both sexes.
Collapse
Affiliation(s)
- Nichole Rigby
- Department of Biology, Temple University, Philadelphia, 19122, PA
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, 19122, PA
| |
Collapse
|
27
|
An LH, Zheng BH, Liu RZ, Fan Q, Wang QK, Luo YF. Transcriptomic response to estrogen exposure in the male Zhikong scallop, Chlamys farreri. MARINE POLLUTION BULLETIN 2014; 89:59-66. [PMID: 25455372 DOI: 10.1016/j.marpolbul.2014.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
The transcriptomes of Zhikong scallop exposed to 17β-estradiol were determined using the Roche/454. A total of 51,997 unigenes, representing 45,030 contigs and 6967 singlets were obtained. And 14,028, 19,798 and 14,981 of these unigenes were annotated from the non-redundant nucleic acid database, non-redundant protein database and Swiss protein database, respectively. A total of 10,699 unigenes were further annotated to biological processes (9080), molecular functions (8692) and cellular components (7829) using the GO, and 8945 unigenes were mapped to biological pathways including the metabolism (2862) and genetic information processing (2263). Most importantly, 16,692 unigenes and 18,686 unigenes in testis, and 10,492 unigenes and 13,186 unigenes in digestive gland were up-regulated significantly after exposure to 50 and 500 ng E2/L; while 10,212 unigenes and 9409 unigenes in testis and 10,629 unigenes and 9463 unigenes in digestive gland were down-regulated. These valuable information provides insights into the mechanisms in invertebrate exposure to EDCs.
Collapse
Affiliation(s)
- Li-Hui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bing-Hui Zheng
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Rui-Zhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiang Fan
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Tianjin Agricultural College, Tianjin 300384, China
| | | | - Ying-Feng Luo
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
28
|
Lye CM, Naylor HW, Sanson B. Subcellular localisations of the CPTI collection of YFP-tagged proteins in Drosophila embryos. Development 2014; 141:4006-17. [PMID: 25294944 PMCID: PMC4197698 DOI: 10.1242/dev.111310] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A key challenge in the post-genomic area is to identify the function of the genes discovered, with many still uncharacterised in all metazoans. A first step is transcription pattern characterisation, for which we now have near whole-genome coverage in Drosophila. However, we have much more limited information about the expression and subcellular localisation of the corresponding proteins. The Cambridge Protein Trap Consortium generated, via piggyBac transposition, over 600 novel YFP-trap proteins tagging just under 400 Drosophila loci. Here, we characterise the subcellular localisations and expression patterns of these insertions, called the CPTI lines, in Drosophila embryos. We have systematically analysed subcellular localisations at cellularisation (stage 5) and recorded expression patterns at stage 5, at mid-embryogenesis (stage 11) and at late embryogenesis (stages 15-17). At stage 5, 31% of the nuclear lines (41) and 26% of the cytoplasmic lines (67) show discrete localisations that provide clues on the function of the protein and markers for organelles or regions, including nucleoli, the nuclear envelope, nuclear speckles, centrosomes, mitochondria, the endoplasmic reticulum, Golgi, lysosomes and peroxisomes. We characterised the membranous/cortical lines (102) throughout stage 5 to 10 during epithelial morphogenesis, documenting their apico-basal position and identifying those secreted in the extracellular space. We identified the tricellular vertices as a specialized membrane domain marked by the integral membrane protein Sidekick. Finally, we categorised the localisation of the membranous/cortical proteins during cytokinesis.
Collapse
Affiliation(s)
- Claire M Lye
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Huw W Naylor
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- The Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
29
|
Male-specific phosphorylated SR proteins in adult flies of the Mediterranean fruitfly Ceratitis capitata. BMC Genet 2014; 15 Suppl 2:S6. [PMID: 25472723 PMCID: PMC4255826 DOI: 10.1186/1471-2156-15-s2-s6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing is a widely used mechanism of gene regulation in sex determination pathways of Insects. In species from orders as distant as Diptera, Hymenoptera and Coleoptera, female differentiation relies on the activities of conserved splicing regulators, TRA and TRA-2, promoting female-specific expression of the global effector doublesex (dsx). Less understood is to what extent post-translational modifications of splicing regulators plays a role in this pathway. In Drosophila melanogaster phosphorylation of TRA, TRA-2 and the general RBP1 factor by the LAMMER kinase doa (darkener of apricot) is required for proper female sex determination. To explore whether this is a general feature of the pathway we examined sex-specific differences in phosphorylation levels of SR splicing factors in the dipteran species D. melanogaster, Ceratitis capitata (Medfly) and Musca domestica (Housefly). We found a distinct and reproducible pattern of male-specific phosphorylation on protein extracts enriched for SR proteins in C. capitata suggesting that differential phosphorylation may also contribute to the regulation of sex-specific splicing in the Medfly.
Collapse
|
30
|
Wang SJH, Tsai A, Wang M, Yoo S, Kim HY, Yoo B, Chui V, Kisiel M, Stewart B, Parkhouse W, Harden N, Krieger C. Phospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction. Biol Open 2014; 3:1196-206. [PMID: 25416060 PMCID: PMC4265757 DOI: 10.1242/bio.20148342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 10/15/2014] [Indexed: 12/12/2022] Open
Abstract
Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS)-homology domain by protein kinase C (PKC). We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts), plays a role in larval neuromuscular junction (NMJ) growth. Here, we find that the predominant isoforms of Hts at the NMJ contain the MARCKS-homology domain, which is important for interactions with Discs large (Dlg) and phosphatidylinositol 4,5-bisphosphate (PIP2). Through the use of Proximity Ligation Assay (PLA), we show that the adducin-like Hts isoforms are in complexes with Dlg and PIP2 at the NMJ. We provide evidence that Hts promotes the phosphorylation and delocalization of Dlg at the NMJ through regulation of the transcript distribution of the PAR-1 and CaMKII kinases in the muscle. We also show that Hts interactions with Dlg and PIP2 are impeded through phosphorylation of the MARCKS-homology domain. These results are further evidence that Hts is a signaling-responsive regulator of synaptic plasticity in Drosophila.
Collapse
Affiliation(s)
- Simon Ji Hau Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Amy Tsai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mannan Wang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - SooHyun Yoo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Hae-Yoon Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Byoungjoo Yoo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Vincent Chui
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Marta Kisiel
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
| | - Wade Parkhouse
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
31
|
Ingleby FC, Flis I, Morrow EH. Sex-biased gene expression and sexual conflict throughout development. Cold Spring Harb Perspect Biol 2014; 7:a017632. [PMID: 25376837 DOI: 10.1101/cshperspect.a017632] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sex-biased gene expression is likely to account for most sexually dimorphic traits because males and females share much of their genome. When fitness optima differ between sexes for a shared trait, sexual dimorphism can allow each sex to express their optimum trait phenotype, and in this way, the evolution of sex-biased gene expression is one mechanism that could help to resolve intralocus sexual conflict. Genome-wide patterns of sex-biased gene expression have been identified in a number of studies, which we review here. However, very little is known about how sex-biased gene expression relates to sex-specific fitness and about how sex-biased gene expression and conflict vary throughout development or across different genotypes, populations, and environments. We discuss the importance of these neglected areas of research and use data from a small-scale experiment on sex-specific expression of genes throughout development to highlight potentially interesting avenues for future research.
Collapse
Affiliation(s)
- Fiona C Ingleby
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, United Kingdom
| | - Ilona Flis
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, United Kingdom
| | - Edward H Morrow
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
32
|
Brown JB, Boley N, Eisman R, May GE, Stoiber MH, Duff MO, Booth BW, Wen J, Park S, Suzuki AM, Wan KH, Yu C, Zhang D, Carlson JW, Cherbas L, Eads BD, Miller D, Mockaitis K, Roberts J, Davis CA, Frise E, Hammonds AS, Olson S, Shenker S, Sturgill D, Samsonova AA, Weiszmann R, Robinson G, Hernandez J, Andrews J, Bickel PJ, Carninci P, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC, Lai EC, Oliver B, Perrimon N, Graveley BR, Celniker SE. Diversity and dynamics of the Drosophila transcriptome. Nature 2014; 512:393-9. [PMID: 24670639 PMCID: PMC4152413 DOI: 10.1038/nature12962] [Citation(s) in RCA: 498] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 12/18/2013] [Indexed: 01/10/2023]
Abstract
Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.
Collapse
|
33
|
Samson ML, Rabinow L. Transcriptomic analysis of sexual differentiation in somatic tissues of Drosophila melanogaster: successes and caveats. Sex Dev 2013; 8:113-26. [PMID: 24356334 DOI: 10.1159/000357262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The advent of high-throughput technologies to analyze RNA expression levels and transcript structure has brought renewed attention to the age-old question of what differentiates males from females. In Drosophila, the characterized somatic sex determination cascade includes proteins implicated in the regulation of pre-mRNA splicing as well as at least 2 transcription factors at its base. Both DNA microarrays and RNA-Seq have been applied in a number of studies to determine the identities, expression levels and structure of transcripts expressed differentially in the 2 sexes, with remarkably divergent results in the number, structure and identity of affected transcripts. We briefly summarize these reports and discuss the reasons for the apparent discrepancies based upon the different conditions used for sample preparation and data analysis.
Collapse
Affiliation(s)
- M-L Samson
- CNRS UMR 8195, Université Paris Sud, Orsay, France
| | | |
Collapse
|
34
|
Abstract
Reproductive skew theory seeks to explain how reproduction is divided among group members in animal societies. Existing theory is framed almost entirely in terms of selection, though nonadaptive processes must also play some role in the evolution of reproductive skew. Here I propose that a genetic correlation between helper fecundity and breeder fecundity may frequently constrain the evolution of reproductive skew. This constraint is part of a wider phenomenon that I term "caste load," which is defined as the decline in mean fitness caused by caste-specific selection pressures, that is, differential selection on breeding and nonbreeding individuals. I elaborate the caste load hypothesis using quantitative and population genetic arguments and individual-based simulations. Although selection can sometimes erode genetic correlations and resolve caste load, this may be constrained when mutations have similar pleiotropic effects on breeder and helper traits. I document evidence for caste load, identify putative genomic adaptations to it, and suggest future research directions. The models highlight the value of considering adaptation within the boundaries imposed by genetic architecture and incidentally reaffirm that monogamy promotes the evolutionary transition to eusociality.
Collapse
Affiliation(s)
- Luke Holman
- Centre of Excellence in Biological Interactions, Division of Ecology, Evolution and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
35
|
Llera-Herrera R, García-Gasca A, Abreu-Goodger C, Huvet A, Ibarra AM. Identification of male gametogenesis expressed genes from the scallop Nodipecten subnodosus by suppressive subtraction hybridization and pyrosequencing. PLoS One 2013; 8:e73176. [PMID: 24066034 PMCID: PMC3774672 DOI: 10.1371/journal.pone.0073176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/17/2013] [Indexed: 01/01/2023] Open
Abstract
Despite the great advances in sequencing technologies, genomic and transcriptomic information for marine non-model species with ecological, evolutionary, and economical interest is still scarce. In this work we aimed to identify genes expressed during spermatogenesis in the functional hermaphrodite scallop Nodipecten subnodosus (Mollusca: Bivalvia: Pectinidae), with the purpose of obtaining a panel of genes that would allow for the study of differentially transcribed genes between diploid and triploid scallops in the context of meiotic arrest and reproductive sterility. Because our aim was to isolate genes involved in meiosis and other testis maturation-related processes, we generated suppressive subtractive hybridization libraries of testis vs. inactive gonad. We obtained 352 and 177 ESTs by clone sequencing, and using pyrosequencing (454-Roche) we maximized the identified ESTs to 34,276 reads. A total of 1,153 genes from the testis library had a blastx hit and GO annotation, including genes specific for meiosis, spermatogenesis, sex-differentiation, and transposable elements. Some of the identified meiosis genes function in chromosome pairing (scp2, scp3), recombination and DNA repair (dmc1, rad51, ccnb1ip1/hei10), and meiotic checkpoints (rad1, hormad1, dtl/cdt2). Gene expression analyses in different gametogenic stages in both sexual regions of the gonad of meiosis genes confirmed that the expression was specific or increased towards the maturing testis. Spermatogenesis genes included known testis-specific ones (kelch-10, shippo1, adad1), with some of these known to be associated to sterility. Sex differentiation genes included one of the most conserved genes at the bottom of the sex-determination cascade (dmrt1). Transcript from transposable elements, reverse transcriptase, and transposases in this library evidenced that transposition is an active process during spermatogenesis in N. subnodosus. In relation to the inactive library, we identified 833 transcripts with functional annotation related to activation of the transcription and translation machinery, as well as to germline control and maintenance.
Collapse
Affiliation(s)
- Raúl Llera-Herrera
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, Mexico
| | | | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Arnaud Huvet
- Laboratoire des Sciences de l'Environnement Marin, Institut Français de Recherche pour l'Exploitation de la Mer, (IFREMER), Centre de Bretagne, Plouzané, France
| | - Ana M. Ibarra
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, Mexico
- * E-mail:
| |
Collapse
|
36
|
New levels of transcriptome complexity at upper thermal limits in wild Drosophila revealed by exon expression analysis. Genetics 2013; 195:809-30. [PMID: 24002645 DOI: 10.1534/genetics.113.156224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While the cellular heat-shock response has been a paradigm for studying the impact of thermal stress on RNA metabolism and gene expression, the genome-wide response to thermal stress and its connection to physiological stress resistance remain largely unexplored. Here, we address this issue using an array-based exon expression analysis to interrogate the transcriptome in recently established Drosophila melanogaster stocks during severe thermal stress and recovery. We first demonstrated the efficacy of exon-level analyses to reveal a level of thermally induced transcriptome complexity extending well beyond gene-level analyses. Next, we showed that the upper range of both the cellular and physiological thermal stress response profoundly affected message expression and processing in D. melanogaster, limiting expression to a small subset of transcripts, many that share features of known rapidly responding stress genes. As predicted from cellular heat-shock research, constitutive splicing was blocked in a set of novel genes; we did not detect changes to alternative splicing during heat stress, but rather induction of intronless isoforms of known heat-responsive genes. We observed transcriptome plasticity in the form of differential isoform expression during recovery from heat shock, mediated by multiple mechanisms including alternative transcription and alternative splicing. This affected genes involved in DNA regulation, immune response, and thermotolerance. These patterns highlight the complex nature of innate transcriptome responses under stress and potential for adaptive shifts through plasticity and evolved genetic responses at different hierarchical levels.
Collapse
|
37
|
Wright AE, Mank JE. The scope and strength of sex-specific selection in genome evolution. J Evol Biol 2013; 26:1841-53. [PMID: 23848139 PMCID: PMC4352339 DOI: 10.1111/jeb.12201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/11/2022]
Abstract
Males and females share the vast majority of their genomes and yet are often subject to different, even conflicting, selection. Genomic and transcriptomic developments have made it possible to assess sex-specific selection at the molecular level, and it is clear that sex-specific selection shapes the evolutionary properties of several genomic characteristics, including transcription, post-transcriptional regulation, imprinting, genome structure and gene sequence. Sex-specific selection is strongly influenced by mating system, which also causes neutral evolutionary changes that affect different regions of the genome in different ways. Here, we synthesize theoretical and molecular work in order to provide a cohesive view of the role of sex-specific selection and mating system in genome evolution. We also highlight the need for a combined approach, incorporating both genomic data and experimental phenotypic studies, in order to understand precisely how sex-specific selection drives evolutionary change across the genome.
Collapse
Affiliation(s)
- A E Wright
- Department of Zoology, University of Oxford, Edward Grey Institute, Oxford, UK.
| | | |
Collapse
|
38
|
Griffin RM, Dean R, Grace JL, Rydén P, Friberg U. The shared genome is a pervasive constraint on the evolution of sex-biased gene expression. Mol Biol Evol 2013; 30:2168-76. [PMID: 23813981 DOI: 10.1093/molbev/mst121] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Males and females share most of their genomes, and differences between the sexes can therefore not evolve through sequence divergence in protein coding genes. Sexual dimorphism is instead restricted to occur through sex-specific expression and splicing of gene products. Evolution of sexual dimorphism through these mechanisms should, however, also be constrained when the sexes share the genetic architecture for regulation of gene expression. Despite these obstacles, sexual dimorphism is prevalent in the animal kingdom and commonly evolves rapidly. Here, we ask whether the genetic architecture of gene expression is plastic and easily molded by sex-specific selection, or if sexual dimorphism evolves rapidly despite pervasive genetic constraint. To address this question, we explore the relationship between the intersexual genetic correlation for gene expression (rMF), which captures how independently genes are regulated in the sexes, and the evolution of sex-biased gene expression. Using transcriptome data from Drosophila melanogaster, we find that most genes have a high rMF and that genes currently exposed to sexually antagonistic selection have a higher average rMF than other genes. We further show that genes with a high rMF have less pronounced sex-biased gene expression than genes with a low rMF within D. melanogaster and that the strength of the rMF in D. melanogaster predicts the degree to which the sex bias of a gene's expression has changed between D. melanogaster and six other species in the Drosophila genus. In sum, our results show that a shared genome constrains both short- and long-term evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Robert M Griffin
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Drosophilists have identified many, or perhaps most, of the key regulatory genes determining sex using classical genetics, however, regulatory genes must ultimately result in the deployment of the genome in a quantitative manner, replete with complex interactions with other regulatory pathways. In the last decade, genomics has provided a rich picture of the transcriptional profile of the sexes that underlies sexual dimorphism. The current challenge is linking transcriptional profiles with the regulatory genes. This will be a complex synthesis, but the prospects for progress are outstanding.
Collapse
Affiliation(s)
- Emily Clough
- Section of Developmental Genomics and Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD 20892-8028, USA.
| | | |
Collapse
|
40
|
|
41
|
Shao W, Zhao QY, Wang XY, Xu XY, Tang Q, Li M, Li X, Xu YZ. Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome. RNA (NEW YORK, N.Y.) 2012; 18:1395-1407. [PMID: 22627775 PMCID: PMC3383970 DOI: 10.1261/rna.029751.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 05/02/2012] [Indexed: 06/01/2023]
Abstract
Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. We identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is expressed sex-specifically in silkworm gonads. Trans-splicing of mod(mdg4) in silkworm was experimentally confirmed. We identified integrations from a common 5'-gene with 46 newly identified alternative 3'-exons that are located on both DNA strands over a 500-kb region. Other trans-splicing events in B. mori were predicted by bioinformatic analysis, in which 12 events were confirmed by RT-PCR, six events were further validated by chimeric SNPs, and two events were confirmed by allele-specific RT-PCR in F(1) hybrids from distinct silkworm lines of JS and L10, indicating that trans-splicing is more widespread in insects than previously thought. Analysis of the B. mori transcriptome by RNA-seq provides valuable information of regulatory alternative splicing events. The conservation of splicing events across species and newly identified trans-splicing events suggest that B. mori is a good model for future studies.
Collapse
Affiliation(s)
- Wei Shao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiong-Yi Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Ye Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin-Yan Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Muwang Li
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong-Zhen Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
42
|
Harrison PW, Wright AE, Mank JE. The evolution of gene expression and the transcriptome-phenotype relationship. Semin Cell Dev Biol 2011; 23:222-9. [PMID: 22210502 DOI: 10.1016/j.semcdb.2011.12.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 11/26/2022]
Abstract
Changes in gene expression underlie the adaptive evolution in many complex phenotypes, and the recent increase in the availability of multi-species comparative transcriptome data has made it possible to scan whole transcriptomes for loci that have experienced adaptive changes in expression. However, despite the increase in data availability, current models of gene expression evolution often do not account for the complexities and inherent noise associated with transcriptome data. Additionally, in contrast to current models of gene sequence evolution, models of transcriptome evolution often lack the sophistication to effectively determine whether transcriptional differences between species or within a clade are the result of neutral or adaptive processes. In this review, we discuss the tools, methods and models that define our current understanding of the relationship between gene expression and complex phenotype evolution. Our goal is to summarize what we know about the evolution of global gene expression patterns underlying complex traits, as well to identify some of the questions that remain to be answered.
Collapse
Affiliation(s)
- Peter W Harrison
- University of Oxford, Edward Grey institute, Department of Zoology, South Parks Road, Oxford OX1 3PS, United Kingdom
| | | | | |
Collapse
|
43
|
Yang Y, Graze RM, Walts BM, Lopez CM, Baker HV, Wayne ML, Nuzhdin SV, McIntyre LM. Partitioning transcript variation in Drosophila: abundance, isoforms, and alleles. G3 (BETHESDA, MD.) 2011; 1:427-36. [PMID: 22384353 PMCID: PMC3276160 DOI: 10.1534/g3.111.000596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/11/2011] [Indexed: 12/25/2022]
Abstract
Multilevel analysis of transcription is facilitated by a new array design that includes modules for assessment of differential expression, isoform usage, and allelic imbalance in Drosophila. The ∼2.5 million feature chip incorporates a large number of controls, and it contains 18,769 3' expression probe sets and 61,919 exon probe sets with probe sequences from Drosophila melanogaster and 60,118 SNP probe sets focused on Drosophila simulans. An experiment in D. simulans identified genes differentially expressed between males and females (34% in the 3' expression module; 32% in the exon module). These proportions are consistent with previous reports, and there was good agreement (κ = 0.63) between the modules. Alternative isoform usage between the sexes was identified for 164 genes. The SNP module was verified with resequencing data. Concordance between resequencing and the chip design was greater than 99%. The design also proved apt in separating alleles based upon hybridization intensity. Concordance between the highest hybridization signals and the expected alleles in the genotype was greater than 96%. Intriguingly, allelic imbalance was detected for 37% of 6579 probe sets examined that contained heterozygous SNP loci. The large number of probes and multiple probe sets per gene in the 3' expression and exon modules allows the array to be used in D. melanogaster and in closely related species. The SNP module can be used for allele specific expression and genotyping of D. simulans.
Collapse
Affiliation(s)
- Yajie Yang
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
| | - Rita M. Graze
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
| | - Brandon M. Walts
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
| | - Cecilia M. Lopez
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
| | - Henry V. Baker
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
| | - Marta L. Wayne
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Zoology, University of Florida, Gainesville, FL, 32611-8525
| | - Sergey V. Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089-2910
| | - Lauren M. McIntyre
- Genetics Institute, University of Florida, Gainesville, FL 32610-3610
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266
- Department of Statistics, University of Florida, Gainesville, FL 32611-8545
| |
Collapse
|
44
|
Gallach M, Domingues S, Betrán E. Gene duplication and the genome distribution of sex-biased genes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:989438. [PMID: 21904687 PMCID: PMC3167187 DOI: 10.4061/2011/989438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/26/2011] [Accepted: 06/05/2011] [Indexed: 12/04/2022]
Abstract
In species that have two sexes, a single genome encodes two morphs, as each sex can be thought of as a distinct morph. This means that the same set of genes are differentially expressed in the different sexes. Many questions emanate from this statement. What proportion of genes contributes to sexual dimorphism? How do they contribute to sexual dimorphism? How is sex-biased expression achieved? Which sex and what tissues contribute the most to sex-biased expression? Do sex-biased genes have the same evolutionary patterns as nonbiased genes? We review the current data on sex-biased expression in species with heteromorphic sex chromosomes and comment on the most important hypotheses suggested to explain the origin, evolution, and distribution patterns of sex-biased genes. In this perspective we emphasize how gene duplication serves as an important molecular mechanism to resolve genomic clashes and genetic conflicts by generating sex-biased genes, often sex-specific genes, and contributes greatly to the underlying genetic basis of sexual dimorphism.
Collapse
Affiliation(s)
- Miguel Gallach
- Department of Biology, University of Texas at Arlington, P.O. Box 19498, Arlington, TX 76019, USA
| | | | | |
Collapse
|
45
|
Chang PL, Dunham JP, Nuzhdin SV, Arbeitman MN. Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing. BMC Genomics 2011; 12:364. [PMID: 21756339 PMCID: PMC3152543 DOI: 10.1186/1471-2164-12-364] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/14/2011] [Indexed: 12/01/2022] Open
Abstract
Background Understanding animal development and physiology at a molecular-biological level has been advanced by the ability to determine at high resolution the repertoire of mRNA molecules by whole transcriptome resequencing. This includes the ability to detect and quantify rare abundance transcripts and isoform-specific mRNA variants produced from a gene. The sex hierarchy consists of a pre-mRNA splicing cascade that directs the production of sex-specific transcription factors that specify nearly all sexual dimorphism. We have used deep RNA sequencing to gain insight into how the Drosophila sex hierarchy generates somatic sex differences, by examining gene and transcript isoform expression differences between the sexes in adult head tissues. Results Here we find 1,381 genes that differ in overall expression levels and 1,370 isoform-specific transcripts that differ between males and females. Additionally, we find 512 genes not regulated downstream of transformer that are significantly more highly expressed in males than females. These 512 genes are enriched on the × chromosome and reside adjacent to dosage compensation complex entry sites, which taken together suggests that their residence on the × chromosome might be sufficient to confer male-biased expression. There are no transcription unit structural features, from a set of features, that are robustly significantly different in the genes with significant sex differences in the ratio of isoform-specific transcripts, as compared to random isoform-specific transcripts, suggesting that there is no single molecular mechanism that generates isoform-specific transcript differences between the sexes, even though the sex hierarchy is known to include three pre-mRNA splicing factors. Conclusions We identify thousands of genes that show sex-specific differences in overall gene expression levels, and identify hundreds of additional genes that have differences in the abundance of isoform-specific transcripts. No transcription unit structural feature was robustly enriched in the sex-differentially expressed transcript isoforms. Additionally, we found that many genes with male-biased expression were enriched on the × chromosome and reside adjacent to dosage compensation entry sites, suggesting that differences in sex chromosome composition contributes to dimorphism in gene expression. Taken together, this study provides new insight into the molecular underpinnings of sexual differentiation.
Collapse
Affiliation(s)
- Peter L Chang
- Section of Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
46
|
Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol 2011; 9:34. [PMID: 21627854 PMCID: PMC3104486 DOI: 10.1186/1741-7007-9-34] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 05/31/2011] [Indexed: 12/11/2022] Open
Abstract
Microarrays first made the analysis of the transcriptome possible, and have produced much important information. Today, however, researchers are increasingly turning to direct high-throughput sequencing - RNA-Seq - which has considerable advantages for examining transcriptome fine structure - for example in the detection of allele-specific expression and splice junctions. In this article, we discuss the relative merits of the two techniques, the inherent biases in each, and whether all of the vast body of array work needs to be revisited using the newer technology. We conclude that microarrays remain useful and accurate tools for measuring expression levels, and RNA-Seq complements and extends microarray measurements.
Collapse
|
47
|
Ohler S, Hakeda-Suzuki S, Suzuki T. Hts, the Drosophila homologue of Adducin, physically interacts with the transmembrane receptor Golden goal to guide photoreceptor axons. Dev Dyn 2011; 240:135-48. [PMID: 21128303 DOI: 10.1002/dvdy.22515] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Neurons steer their axons towards their proper targets during development. Molecularly, a number of guidance receptors have been identified. The transmembrane protein Golden goal (Gogo) was reported previously to guide photoreceptor (R) axons in the Drosophila visual system. Here, we show that Hts, the Drosophila homologue of Adducin, physically interacts with Gogo's cytoplasmic domain via its head-neck domain. hts null mutants show similar defects in R axon guidance as do gogo mutants. Rescue experiments suggest that the C-terminal tail but not the MARCKS homology domain of Hts is required. Overexpression of either gogo or hts causes abnormally thick swellings of R8 axons in the medulla, but if both are co-overexpressed, R8 axons appear normal and the amount of excessive Hts is reduced. Our results fit with a model where Gogo both positively and negatively regulates Hts that affects the Actin-Spectrin cytoskeleton in growth cone filopodia, thereby guiding R axons.
Collapse
Affiliation(s)
- Stephan Ohler
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | | |
Collapse
|
48
|
Hartmann B, Castelo R, Miñana B, Peden E, Blanchette M, Rio DC, Singh R, Valcárcel J. Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2011; 17:453-468. [PMID: 21233220 PMCID: PMC3039145 DOI: 10.1261/rna.2460411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
In Drosophila melanogaster, female-specific expression of Sex-lethal (SXL) and Transformer (TRA) proteins controls sex-specific alternative splicing and/or translation of a handful of regulatory genes responsible for sexual differentiation and behavior. Recent findings in 2009 by Telonis-Scott et al. document widespread sex-biased alternative splicing in fruitflies, including instances of tissue-restricted sex-specific splicing. Here we report results arguing that some of these novel sex-specific splicing events are regulated by mechanisms distinct from those established by female-specific expression of SXL and TRA. Bioinformatic analysis of SXL/TRA binding sites, experimental analysis of sex-specific splicing in S2 and Kc cells lines and of the effects of SXL knockdown in Kc cells indicate that SXL-dependent and SXL-independent regulatory mechanisms coexist within the same cell. Additional determinants of sex-specific splicing can be provided by sex-specific differences in the expression of RNA binding proteins, including Hrp40/Squid. We report that sex-specific alternative splicing of the gene hrp40/squid leads to sex-specific differences in the levels of this hnRNP protein. The significant overlap between sex-regulated alternative splicing changes and those induced by knockdown of hrp40/squid and the presence of related sequence motifs enriched near subsets of Hrp40/Squid-regulated and sex-regulated splice sites indicate that this protein contributes to sex-specific splicing regulation. A significant fraction of sex-specific splicing differences are absent in germline-less tudor mutant flies. Intriguingly, these include alternative splicing events that are differentially spliced in tissues distant from the germline. Collectively, our results reveal that distinct genetic programs control widespread sex-specific splicing in Drosophila melanogaster.
Collapse
|
49
|
Chen W, Mempel M, Traidl-Hofmann C, Al Khusaei S, Ring J. Gender aspects in skin diseases. J Eur Acad Dermatol Venereol 2011; 24:1378-85. [PMID: 20384686 DOI: 10.1111/j.1468-3083.2010.03668.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gender differences in medicine have been recognized in anatomy, physiology, as well as in epidemiology and manifestations of various diseases. With respect to skin disorders, males are generally more commonly afflicted with infectious diseases while women are more susceptible to psychosomatic problems, pigmentary disorders, certain hair diseases, and particularly autoimmune as well as allergic diseases. Significantly, more female sex-associated dermatoses can be identified than the male sex-associated dermatoses. Dermatoses in the genital area differ between men and women. Gender differences also exist in the occurrence and prognosis of certain skin malignancies. The mechanisms underlying gender differences in skin diseases remain largely unknown. Differences in the skin structure and physiology, effect of sex hormones, ethnic background, sociocultural behaviour and environmental factors may interact to exert the influences. A better understanding of gender differences in human health and diseases will allow the development of novel concepts for prevention, diagnosis and therapy of skin diseases.
Collapse
Affiliation(s)
- W Chen
- Department of Dermatology and Allergy, Helmholtz Zentrum Munchen/TUM, ZAUM-Center for Allergy and Environment, Technische Universität München, Germany.
| | | | | | | | | |
Collapse
|
50
|
Composite effects of polymorphisms near multiple regulatory elements create a major-effect QTL. PLoS Genet 2011; 7:e1001275. [PMID: 21249179 PMCID: PMC3020931 DOI: 10.1371/journal.pgen.1001275] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/13/2010] [Indexed: 01/29/2023] Open
Abstract
Many agriculturally, evolutionarily, and medically important characters vary in a quantitative fashion. Unfortunately, the genes and sequence variants accounting for this variation remain largely unknown due to a variety of biological and technical challenges. Drosophila melanogaster contains high levels of sequence variation and low linkage disequilibrium, allowing us to dissect the effects of many causative variants within a single locus. Here, we take advantage of these features to identify and characterize the sequence polymorphisms that comprise major effect QTL alleles segregating at the bric-a-brac locus. We show that natural bric-a-brac alleles with large effects on cuticular pigmentation reflect a cumulative impact of polymorphisms that affect three functional regions: a promoter, a tissue-specific enhancer, and a Polycomb response element. Analysis of allele-specific expression at the bric-a-brac locus confirms that these polymorphisms modulate transcription at the cis-regulatory level. Our results establish that a single QTL can act through a confluence of multiple molecular mechanisms and that sequence variation in regions flanking experimentally validated functional elements can have significant quantitative effects on transcriptional activity and phenotype. These findings have important design and conceptual implications for basic and medical genomics.
Collapse
|