1
|
Metzger DCH, Porter I, Mobley B, Sandkam BA, Fong LJM, Anderson AP, Mank JE. Transposon wave remodeled the epigenomic landscape in the rapid evolution of X-Chromosome dosage compensation. Genome Res 2023; 33:1917-1931. [PMID: 37989601 PMCID: PMC10760456 DOI: 10.1101/gr.278127.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
Sex chromosome dosage compensation is a model to understand the coordinated evolution of transcription; however, the advanced age of the sex chromosomes in model systems makes it difficult to study how the complex regulatory mechanisms underlying chromosome-wide dosage compensation can evolve. The sex chromosomes of Poecilia picta have undergone recent and rapid divergence, resulting in widespread gene loss on the male Y, coupled with complete X Chromosome dosage compensation, the first case reported in a fish. The recent de novo origin of dosage compensation presents a unique opportunity to understand the genetic and evolutionary basis of coordinated chromosomal gene regulation. By combining a new chromosome-level assembly of P. picta with whole-genome bisulfite sequencing and RNA-seq data, we determine that the YY1 transcription factor (YY1) DNA binding motif is associated with male-specific hypomethylated regions on the X, but not the autosomes. These YY1 motifs are the result of a recent and rapid repetitive element expansion on the P. picta X Chromosome, which is absent in closely related species that lack dosage compensation. Taken together, our results present compelling support that a disruptive wave of repetitive element insertions carrying YY1 motifs resulted in the remodeling of the X Chromosome epigenomic landscape and the rapid de novo origin of a dosage compensation system.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada;
| | - Imogen Porter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Brendan Mobley
- Biology Department, Reed College, Portland, Oregon 97202, USA
| | - Benjamin A Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Lydia J M Fong
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
2
|
Darolti I, Almeida P, Wright AE, Mank JE. Comparison of methodological approaches to the study of young sex chromosomes: A case study in Poecilia. J Evol Biol 2022; 35:1646-1658. [PMID: 35506576 PMCID: PMC10084049 DOI: 10.1111/jeb.14013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Studies of sex chromosome systems at early stages of divergence are key to understanding the initial process and underlying causes of recombination suppression. However, identifying signatures of divergence in homomorphic sex chromosomes can be challenging due to high levels of sequence similarity between the X and the Y. Variations in methodological precision and underlying data can make all the difference between detecting subtle divergence patterns or missing them entirely. Recent efforts to test for X-Y sequence differentiation in the guppy have led to contradictory results. Here, we apply different analytical methodologies to the same data set to test for the accuracy of different approaches in identifying patterns of sex chromosome divergence in the guppy. Our comparative analysis reveals that the most substantial source of variation in the results of the different analyses lies in the reference genome used. Analyses using custom-made genome assemblies for the focal population or species successfully recover a signal of divergence across different methodological approaches. By contrast, using the distantly related Xiphophorus reference genome results in variable patterns, due to both sequence evolution and structural variations on the sex chromosomes between the guppy and Xiphophorus. Changes in mapping and filtering parameters can additionally introduce noise and obscure the signal. Our results illustrate how analytical differences can alter perceived results and we highlight best practices for the study of nascent sex chromosomes.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alison E Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall, UK
| |
Collapse
|
3
|
Qiu S, Yong L, Wilson A, Croft DP, Graham C, Charlesworth D. Partial sex linkage and linkage disequilibrium on the guppy sex chromosome. Mol Ecol 2022; 31:5524-5537. [PMID: 36005298 PMCID: PMC9826361 DOI: 10.1111/mec.16674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
The guppy Y chromosome has been considered a model system for the evolution of suppressed recombination between sex chromosomes, and it has been proposed that complete sex-linkage has evolved across about 3 Mb surrounding this fish's sex-determining locus, followed by recombination suppression across a further 7 Mb of the 23 Mb XY pair, forming younger "evolutionary strata". Sequences of the guppy genome show that Y is very similar to the X chromosome. Knowing which parts of the Y are completely nonrecombining, and whether there is indeed a large completely nonrecombining region, are important for understanding its evolution. Here, we describe analyses of PoolSeq data in samples from within multiple natural populations from Trinidad, yielding new results that support previous evidence for occasional recombination between the guppy Y and X. We detected recent demographic changes, notably that downstream populations have higher synonymous site diversity than upstream ones and other expected signals of bottlenecks. We detected evidence of associations between sequence variants and the sex-determining locus, rather than divergence under a complete lack of recombination. Although recombination is infrequent, it is frequent enough that associations with SNPs can suggest the region in which the sex-determining locus must be located. Diversity is elevated across a physically large region of the sex chromosome, conforming to predictions for a genome region with infrequent recombination that carries one or more sexually antagonistic polymorphisms. However, no consistently male-specific variants were found, supporting the suggestion that any completely sex-linked region may be very small.
Collapse
Affiliation(s)
- Suo Qiu
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Lengxob Yong
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK,Marine Resources Research InstituteSouth Carolina Department of Natural ResourcesCharlestonSouth CarolinaUSA
| | - Alastair Wilson
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Darren P. Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Chay Graham
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
Evolution of the Degenerated Y-Chromosome of the Swamp Guppy, Micropoecilia picta. Cells 2022; 11:cells11071118. [PMID: 35406682 PMCID: PMC8997885 DOI: 10.3390/cells11071118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler’s and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel.
Collapse
|
5
|
Fraser BA, Whiting JR, Paris JR, Weadick CJ, Parsons PJ, Charlesworth D, Bergero R, Bemm F, Hoffmann M, Kottler VA, Liu C, Dreyer C, Weigel D. Improved Reference Genome Uncovers Novel Sex-Linked Regions in the Guppy (Poecilia reticulata). Genome Biol Evol 2021; 12:1789-1805. [PMID: 32853348 PMCID: PMC7643365 DOI: 10.1093/gbe/evaa187] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Theory predicts that the sexes can achieve greater fitness if loci with sexually antagonistic polymorphisms become linked to the sex determining loci, and this can favor the spread of reduced recombination around sex determining regions. Given that sex-linked regions are frequently repetitive and highly heterozygous, few complete Y chromosome assemblies are available to test these ideas. The guppy system (Poecilia reticulata) has long been invoked as an example of sex chromosome formation resulting from sexual conflict. Early genetics studies revealed that male color patterning genes are mostly but not entirely Y-linked, and that X-linkage may be most common in low-predation populations. More recent population genomic studies of guppies have reached varying conclusions about the size and placement of the Y-linked region. However, this previous work used a reference genome assembled from short-read sequences from a female guppy. Here, we present a new guppy reference genome assembly from a male, using long-read PacBio single-molecule real-time sequencing and chromosome contact information. Our new assembly sequences across repeat- and GC-rich regions and thus closes gaps and corrects mis-assemblies found in the short-read female-derived guppy genome. Using this improved reference genome, we then employed broad population sampling to detect sex differences across the genome. We identified two small regions that showed consistent male-specific signals. Moreover, our results help reconcile the contradictory conclusions put forth by past population genomic studies of the guppy sex chromosome. Our results are consistent with a small Y-specific region and rare recombination in male guppies.
Collapse
Affiliation(s)
| | | | | | | | | | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Margarete Hoffmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Verena A Kottler
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Chang Liu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Christine Dreyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
6
|
Charlesworth D, Bergero R, Graham C, Gardner J, Keegan K. How did the guppy Y chromosome evolve? PLoS Genet 2021; 17:e1009704. [PMID: 34370728 PMCID: PMC8376059 DOI: 10.1371/journal.pgen.1009704] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/19/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
The sex chromosome pairs of many species do not undergo genetic recombination, unlike the autosomes. It has been proposed that the suppressed recombination results from natural selection favouring close linkage between sex-determining genes and mutations on this chromosome with advantages in one sex, but disadvantages in the other (these are called sexually antagonistic mutations). No example of such selection leading to suppressed recombination has been described, but populations of the guppy display sexually antagonistic mutations (affecting male coloration), and would be expected to evolve suppressed recombination. In extant close relatives of the guppy, the Y chromosomes have suppressed recombination, and have lost all the genes present on the X (this is called genetic degeneration). However, the guppy Y occasionally recombines with its X, despite carrying sexually antagonistic mutations. We describe evidence that a new Y evolved recently in the guppy, from an X chromosome like that in these relatives, replacing the old, degenerated Y, and explaining why the guppy pair still recombine. The male coloration factors probably arose after the new Y evolved, and have already evolved expression that is confined to males, a different way to avoid the conflict between the sexes. We report new findings concerning the long-studied the guppy XY pair, which has remained somewhat mystifying. We show that it can be understood as a case of a recent sex chromosome turnover event in which an older, highly degenerated Y chromosome was lost, and creation of a new sex chromosome from the ancestral X. This chromosome acquired a male-determining factor, possibly by a mutation in (or a duplication of) a previously X-linked gene, or (less likely) by movement of an ancestral Y-linked maleness factor onto the X. We relate the findings to theoretical models of such events, and argue that the proposed change was free from factors thought to impede such turnovers. The change resulted in the intriguing situation where the X chromosome is old and the Y is much younger, and we discuss some other species where a similar change seems likely to have occurred.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Chay Graham
- University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Court Road, Cambridge, United Kingdom
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Keegan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Lisachov A, Andreyushkova D, Davletshina G, Prokopov D, Romanenko S, Galkina S, Saifitdinova A, Simonov E, Borodin P, Trifonov V. Amplified Fragments of an Autosome-Borne Gene Constitute a Significant Component of the W Sex Chromosome of Eremias velox (Reptilia, Lacertidae). Genes (Basel) 2021; 12:779. [PMID: 34065205 PMCID: PMC8160951 DOI: 10.3390/genes12050779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023] Open
Abstract
Heteromorphic W and Y sex chromosomes often experience gene loss and heterochromatinization, which is frequently viewed as their "degeneration". However, the evolutionary trajectories of the heterochromosomes are in fact more complex since they may not only lose but also acquire new sequences. Previously, we found that the heterochromatic W chromosome of a lizard Eremias velox (Lacertidae) is decondensed and thus transcriptionally active during the lampbrush stage. To determine possible sources of this transcription, we sequenced DNA from a microdissected W chromosome sample and a total female DNA sample and analyzed the results of reference-based and de novo assembly. We found a new repetitive sequence, consisting of fragments of an autosomal protein-coding gene ATF7IP2, several SINE elements, and sequences of unknown origin. This repetitive element is distributed across the whole length of the W chromosome, except the centromeric region. Since it retained only 3 out of 10 original ATF7IP2 exons, it remains unclear whether it is able to produce a protein product. Subsequent studies are required to test the presence of this element in other species of Lacertidae and possible functionality. Our results provide further evidence for the view of W and Y chromosomes as not just "degraded" copies of Z and X chromosomes but independent genomic segments in which novel genetic elements may arise.
Collapse
Affiliation(s)
- Artem Lisachov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia;
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
| | - Daria Andreyushkova
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Guzel Davletshina
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Dmitry Prokopov
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Svetlana Galkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7–9, 199034 Saint Petersburg, Russia;
| | - Alsu Saifitdinova
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University of Russia, Moyka Emb. 48, 191186 Saint Petersburg, Russia;
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia;
| | - Pavel Borodin
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
- Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
- Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Almeida P, Sandkam BA, Morris J, Darolti I, Breden F, Mank JE. Divergence and Remarkable Diversity of the Y Chromosome in Guppies. Mol Biol Evol 2021; 38:619-633. [PMID: 33022040 PMCID: PMC7826173 DOI: 10.1093/molbev/msaa257] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared with their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female preference for rare Y-linked color variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.
Collapse
Affiliation(s)
- Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Benjamin A Sandkam
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Charlesworth D, Bergero R, Graham C, Gardner J, Yong L. Locating the Sex Determining Region of Linkage Group 12 of Guppy ( Poecilia reticulata). G3 (BETHESDA, MD.) 2020; 10:3639-3649. [PMID: 32753367 PMCID: PMC7534449 DOI: 10.1534/g3.120.401573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023]
Abstract
Despite over 100 years of study, the location of the fully sex-linked region of the guppy (Poecilia reticulata) carrying the male-determining locus, and the regions where the XY pair recombine, remain unclear. Previous population genomics studies to determine these regions used small samples from recently bottlenecked captive populations, which increase the false positive rate of associations between individuals' sexes and SNPs. Using new data from multiple natural populations, we show that a recently proposed candidate for this species' male-determining gene is probably not completely sex-linked, leaving the maleness factor still unidentified. Variants in the chromosome 12 region carrying the candidate gene sometimes show linkage disequilibrium with the sex-determining factor, but no consistently male-specific variant has yet been found. Our genetic mapping with molecular markers spread across chromosome 12 confirms that this is the guppy XY pair. We describe two families with recombinants between the X and Y chromosomes, which confirm that the male-determining locus is in the region identified by all previous studies, near the terminal pseudo-autosomal region (PAR), which crosses over at a very high rate in males. We correct the PAR marker order, and assign two unplaced scaffolds to the PAR. We also detect a duplication, with one copy in the male-determining region, explaining signals of sex linkage in a more proximal region.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Chay Graham
- University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Ct Rd, Cambridge CB2 1GA, UK
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, University of Exeter, Penryn, Falmouth, Cornwall, TR10 9FE, UK
| |
Collapse
|
10
|
Gomes-Silva G, Cyubahiro E, Wronski T, Riesch R, Apio A, Plath M. Water pollution affects fish community structure and alters evolutionary trajectories of invasive guppies (Poecilia reticulata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138912. [PMID: 32402962 DOI: 10.1016/j.scitotenv.2020.138912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic habitat alterations have the potential to affect both, ecological dynamics of communities and populations, as well as evolutionary processes within populations. Invasive species may benefit from anthropogenic disturbance, such as water pollution, to which they sometimes seem more resistant than native ones. They also allow investigating evolutionary divergence among populations occurring along pollution gradients. We assessed fish communities at 55 sampling sites in the degraded and heavily overstocked Mutara Rangelands of north-eastern Rwanda (upper Nile drainage), which receive pollution from domestic wastewater and cattle dung. Diverse fish communities became apparent that included invasive guppies (Poecilia reticulata, Poeciliidae), and canonical correspondence analyses found significant differentiation of community structures along several environmental parameters (condensed into principal components), including pollution-effects. As predicted, generalized linear models found guppies to have a higher likelihood of occurrence at polluted sites. Local abundances of guppies, however, decreased at polluted sites. Since guppies are color-polymorphic, and color patterns have a heritable basis, they allow inferences regarding both pollution-induced suppression of male ornamentation (e.g., through xenestrogens) and evolutionary population divergence. We thus quantified different ornament types (numbers and percent body surface cover). ANCOVAs uncovered several weak (based on effect strengths), but statistically significant pollution-effects and interactions with other environmental parameters. The direction of several interaction effects was similar for blue/black and red/orange ornaments, while white/iridescent ornaments responded dissimilarly. As responses differed between ornament types, they likely reflect evolutionary divergence due to site-specific alterations of selective regimes rather than developmental inhibition of male secondary sexual characters. We propose that pollution affects local fitness landscapes resulting, e.g., from predation and mate competition (as a function of local abundances), altogether driving evolutionary divergence of sexually selected traits. This study highlights how human activities not only impact ecological dynamics, but-mediated by altered Eco-Evo dynamics-might change the evolutionary trajectories of populations.
Collapse
Affiliation(s)
- Guilherme Gomes-Silva
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, PR China
| | - Eric Cyubahiro
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, PR China; Department of Wildlife and Aquatic Resources Management, University of Rwanda, Nyagatare Campus, P.O. Box 57, Nyagatare, Rwanda
| | - Torsten Wronski
- Liverpool John Moores University, School of Biological and Environmental Sciences, Faculty of Science, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Rüdiger Riesch
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Ann Apio
- Department of Wildlife and Aquatic Resources Management, University of Rwanda, Nyagatare Campus, P.O. Box 57, Nyagatare, Rwanda
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, Yangling, PR China; Shaanxi Key Laboratory for Molecular Biology in Agriculture, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
11
|
Extreme heterogeneity in sex chromosome differentiation and dosage compensation in livebearers. Proc Natl Acad Sci U S A 2019; 116:19031-19036. [PMID: 31484763 PMCID: PMC6754558 DOI: 10.1073/pnas.1905298116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Once recombination is halted between the X and Y chromosomes, sex chromosomes begin to differentiate and transition to heteromorphism. While there is a remarkable variation across clades in the degree of sex chromosome divergence, far less is known about the variation in sex chromosome differentiation within clades. Here, we combined whole-genome and transcriptome sequencing data to characterize the structure and conservation of sex chromosome systems across Poeciliidae, the livebearing clade that includes guppies. We found that the Poecilia reticulata XY system is much older than previously thought, being shared not only with its sister species, Poecilia wingei, but also with Poecilia picta, which diverged roughly 20 million years ago. Despite the shared ancestry, we uncovered an extreme heterogeneity across these species in the proportion of the sex chromosome with suppressed recombination, and the degree of Y chromosome decay. The sex chromosomes in P. reticulata and P. wingei are largely homomorphic, with recombination in the former persisting over a substantial fraction. However, the sex chromosomes in P. picta are completely nonrecombining and strikingly heteromorphic. Remarkably, the profound degradation of the ancestral Y chromosome in P. picta is counterbalanced by the evolution of functional chromosome-wide dosage compensation in this species, which has not been previously observed in teleost fish. Our results offer important insight into the initial stages of sex chromosome evolution and dosage compensation.
Collapse
|
12
|
Tsurui-Sato K, Fujimoto S, Deki O, Suzuki T, Tatsuta H, Tsuji K. Reproductive interference in live-bearing fish: the male guppy is a potential biological agent for eradicating invasive mosquitofish. Sci Rep 2019; 9:5439. [PMID: 30931976 PMCID: PMC6443680 DOI: 10.1038/s41598-019-41858-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 11/27/2022] Open
Abstract
The eradication of invasive exotic species is desirable but often infeasible. Here, we show that male guppies are a potential biological agent for eradicating invasive mosquitofish through the mechanism of reproductive interference, which is defined as any sexual behavior erratically directed at a different species that damages female and/or male fitness. Together with decades of data on species distribution, our field surveys suggest that mosquitofish initially became established on Okinawa Island before being replaced by the more recently introduced guppies. More importantly, our laboratory experiments suggest that reproductive interference was one of the mechanisms underlying this species exclusion, and that in this case, the negative effects were asymmetric, i.e., they only impacted mosquitofish. Reproductive interference may offer a safer and more convenient method of biological control than the traditional sterile male release method because radiation is not necessary.
Collapse
Affiliation(s)
- K Tsurui-Sato
- Center for Strategic Research Project, University of the Ryukyus, Sembaru, Nishihara, Okinawa, 903-0213, Japan.
| | - S Fujimoto
- Center for Strategic Research Project, University of the Ryukyus, Sembaru, Nishihara, Okinawa, 903-0213, Japan
| | - O Deki
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Sembaru, Nishihara, Okinawa, 903-0213, Japan
| | - T Suzuki
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Sembaru, Nishihara, Okinawa, 903-0213, Japan
| | - H Tatsuta
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Sembaru, Nishihara, Okinawa, 903-0213, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-8580, Japan
| | - K Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Sembaru, Nishihara, Okinawa, 903-0213, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-8580, Japan
| |
Collapse
|
13
|
Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc Natl Acad Sci U S A 2019; 116:6924-6931. [PMID: 30894479 DOI: 10.1073/pnas.1818486116] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is often stated that polymorphisms for mutations affecting fitness of males and females in opposite directions [sexually antagonistic (SA) polymorphisms] are the main selective force for the evolution of recombination suppression between sex chromosomes. However, empirical evidence to discriminate between different hypotheses is difficult to obtain. We report genetic mapping results in laboratory-raised families of the guppy (Poecilia reticulata), a sexually dimorphic fish with SA polymorphisms for male coloration genes, mostly on the sex chromosomes. Comparison of the genetic and physical maps shows that crossovers are distributed very differently in the two sexes (heterochiasmy); in male meiosis, they are restricted to the termini of all four chromosomes studied, including chromosome 12, which carries the sex-determining locus. Genome resequencing of male and female guppies from a population also indicates sex linkage of variants across almost the entire chromosome 12. More than 90% of the chromosome carrying the male-determining locus is therefore transmitted largely through the male lineage. A lack of heterochiasmy in a related fish species suggests that it originated recently in the lineage leading to the guppy. Our findings do not support the hypothesis that suppressed recombination evolved in response to the presence of SA polymorphisms. Instead, a low frequency of recombination on a chromosome that carries a male-determining locus and has not undergone genetic degeneration has probably facilitated the establishment of male-beneficial coloration polymorphisms.
Collapse
|
14
|
Fernandino JI, Hattori RS. Sex determination in Neotropical fish: Implications ranging from aquaculture technology to ecological assessment. Gen Comp Endocrinol 2019; 273:172-183. [PMID: 29990492 DOI: 10.1016/j.ygcen.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
Abstract
The high biodiversity of fish in the Neotropical region contrasts with scarce or biased studies on the mechanisms involved in the sex determination in members of this fauna. In this review, we attempted to compile the information available on determination, differentiation, and manipulation of sex for Neotropical species, with special focus on silversides and other two speciose groups, known as characins (Characiformes) and catfishes (Siluriformes). Currently, there is plenty of information available on chromosomal sex determination systems, which includes both male and female heterogamety with many variations, and sex chromosomes evolution at the macro chromosomal level. However, there is hitherto a blank in information at micro, gene/molecule levels and in research related to the effects of environmental cues on sex determination; most of reported studies are limited to silversides and guppies. In view of such a high diversity, it is critically necessary to establish key model species for relevant Neotropical fish taxa and also multi-disciplinary research groups in order to uncover the main patterns and trends that dictate the mechanisms of sex determination and gonadal differentiation in this icthyofauna. By increasing our knowledge on sex determination/differentiation with the identification of sex chromosome-linked markers or sex-determining genes, characterization of the onset timing of morphological gonadal differentiation, and determination of the environmental-hormonal labile period of gonadal sex determination in reference species, it will be possible to use those information as guidelines for application in other related groups. Overall, the strategic advance in this research field will be crucial for the development of biotechnological tools for aquaculture industry and for conservation of fish fauna from the Neotropical Region.
Collapse
Affiliation(s)
- Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), Chascomús, Argentina.
| | - Ricardo Shohei Hattori
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, Brazil.
| |
Collapse
|
15
|
Charlesworth D. The Guppy Sex Chromosome System and the Sexually Antagonistic Polymorphism Hypothesis for Y Chromosome Recombination Suppression. Genes (Basel) 2018; 9:genes9050264. [PMID: 29783761 PMCID: PMC5977204 DOI: 10.3390/genes9050264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Sex chromosomes regularly evolve suppressed recombination, distinguishing them from other chromosomes, and the reason for this has been debated for many years. It is now clear that non-recombining sex-linked regions have arisen in different ways in different organisms. A major hypothesis is that a sex-determining gene arises on a chromosome and that sexually antagonistic (SA) selection (sometimes called intra-locus sexual conflict) acting at a linked gene has led to the evolution of recombination suppression in the region, to reduce the frequency of low fitness recombinant genotypes produced. The sex chromosome system of the guppy (Poecilia reticulata) is often cited as supporting this hypothesis because SA selection has been demonstrated to act on male coloration in natural populations of this fish, and probably contributes to maintaining polymorphisms for the genetic factors involved. I review classical genetic and new molecular genetic results from the guppy, and other fish, including approaches for identifying the genome regions carrying sex-determining loci, and suggest that the guppy may exemplify a recently proposed route to sex chromosome evolution.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK.
| |
Collapse
|
16
|
The Colorful Sex Chromosomes of Teleost Fish. Genes (Basel) 2018; 9:genes9050233. [PMID: 29751562 PMCID: PMC5977173 DOI: 10.3390/genes9050233] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Teleost fish provide some of the most intriguing examples of sexually dimorphic coloration, which is often advantageous for only one of the sexes. Mapping studies demonstrated that the genetic loci underlying such color patterns are frequently in tight linkage to the sex-determining locus of a species, ensuring sex-specific expression of the corresponding trait. Several genes affecting color synthesis and pigment cell development have been previously described, but the color loci on the sex chromosomes have mostly remained elusive as yet. Here, we summarize the current knowledge about the genetics of such color loci in teleosts, mainly from studies on poeciliids and cichlids. Further studies on these color loci will certainly provide important insights into the evolution of sex chromosomes.
Collapse
|
17
|
Morris J, Darolti I, Bloch NI, Wright AE, Mank JE. Shared and Species-Specific Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. Genes (Basel) 2018; 9:E238. [PMID: 29751570 PMCID: PMC5977178 DOI: 10.3390/genes9050238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022] Open
Abstract
Sex chromosomes form once recombination is halted around the sex-determining locus between a homologous pair of chromosomes, resulting in a male-limited Y chromosome. We recently characterized the nascent sex chromosome system in the Trinidadian guppy (Poeciliareticulata). The guppy Y is one of the youngest animal sex chromosomes yet identified, and therefore offers a unique window into the early evolutionary forces shaping sex chromosome formation, particularly the rate of accumulation of repetitive elements and Y-specific sequence. We used comparisons between male and female genomes in P. reticulata and its sister species, Endler’s guppy (P. wingei), which share an ancestral sex chromosome, to identify male-specific sequences and to characterize the degree of differentiation between the X and Y chromosomes. We identified male-specific sequence shared between P. reticulata and P. wingei consistent with a small ancestral non-recombining region. Our assembly of this Y-specific sequence shows substantial homology to the X chromosome, and appears to be significantly enriched for genes implicated in pigmentation. We also found two plausible candidates that may be involved in sex determination. Furthermore, we found that the P. wingei Y chromosome exhibits a greater signature of repetitive element accumulation than the P. reticulata Y chromosome. This suggests that Y chromosome divergence does not necessarily correlate with the time since recombination suppression. Overall, our results reveal the early stages of Y chromosome divergence in the guppy.
Collapse
Affiliation(s)
- Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Natasha I Bloch
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden.
| |
Collapse
|
18
|
Grunst AS, Grunst ML, Rathbun NA, Hubbard JK, Safran RJ, Gonser RA, Tuttle EM. Disruptive selection on plumage coloration across genetically determined morphs. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Wright AE, Darolti I, Bloch NI, Oostra V, Sandkam B, Buechel SD, Kolm N, Breden F, Vicoso B, Mank JE. Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation. Nat Commun 2017; 8:14251. [PMID: 28139647 PMCID: PMC5290318 DOI: 10.1038/ncomms14251] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/13/2016] [Indexed: 01/19/2023] Open
Abstract
Sex chromosomes evolve once recombination is halted between a homologous pair of chromosomes. The dominant model of sex chromosome evolution posits that recombination is suppressed between emerging X and Y chromosomes in order to resolve sexual conflict. Here we test this model using whole genome and transcriptome resequencing data in the guppy, a model for sexual selection with many Y-linked colour traits. We show that although the nascent Y chromosome encompasses nearly half of the linkage group, there has been no perceptible degradation of Y chromosome gene content or activity. Using replicate wild populations with differing levels of sexually antagonistic selection for colour, we also show that sexual selection leads to greater expansion of the non-recombining region and increased Y chromosome divergence. These results provide empirical support for longstanding models of sex chromosome catalysis, and suggest an important role for sexual selection and sexual conflict in genome evolution.
Collapse
Affiliation(s)
- Alison E. Wright
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Natasha I. Bloch
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Vicencio Oostra
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Ben Sandkam
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Severine D. Buechel
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Beatriz Vicoso
- Institute of Science and Technology, Am Campus 1A, Klosterneuburg 3400, Austria
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
20
|
Künstner A, Hoffmann M, Fraser BA, Kottler VA, Sharma E, Weigel D, Dreyer C. The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population. PLoS One 2016; 11:e0169087. [PMID: 28033408 PMCID: PMC5199103 DOI: 10.1371/journal.pone.0169087] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π) of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish.
Collapse
Affiliation(s)
- Axel Künstner
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Margarete Hoffmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bonnie A. Fraser
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Verena A. Kottler
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eshita Sharma
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christine Dreyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
21
|
Chalopin D, Volff JN, Galiana D, Anderson JL, Schartl M. Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res 2016; 23:545-60. [PMID: 26429387 DOI: 10.1007/s10577-015-9490-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In many organisms, the sex chromosome pair can be recognized due to heteromorphy; the Y and W chromosomes have often lost many genes due to the absence of recombination during meiosis and are frequently heterochromatic. Repetitive sequences are found at a high proportion on such heterochromatic sex chromosomes and the evolution and emergence of sex chromosomes has been connected to the dynamics of repeats and transposable elements. With an amazing plasticity of sex determination mechanisms and numerous instances of independent emergence of novel sex chromosomes, fish represent an excellent lineage to investigate the early stages of sex chromosome differentiation, where sex chromosomes often are homomorphic and not heterochromatic. We have analyzed the composition, distribution, and relative age of TEs from available sex chromosome sequences of seven teleost fish. We observed recent bursts of TEs and simple repeat accumulations around young sex determination loci. More strikingly, we detected transposable element (TE) amplifications not only on the sex determination regions of the Y and W sex chromosomes, but also on the corresponding regions of the X and Z chromosomes. In one species, we also clearly demonstrated that the observed TE-rich sex determination locus originated from a TE-poor genomic region, strengthening the link between TE accumulation and emergence of the sex determination locus. Altogether, our results highlight the role of TEs in the initial steps of differentiation and evolution of sex chromosomes.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jennifer L Anderson
- INRA, Fish Physiology and Genomics (UR1037), Campus de Beaulieu, Rennes, France.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Manfred Schartl
- Department Physiological Chemistry, Biozentrum, University of Wuerzburg, and Comprehensive Cancer Center Mainfranken, University Clinic Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
22
|
Herdegen M, Radwan J. Effect of induced mutations on sexually selected traits in the guppy, Poecilia reticulata. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Safronova LD, Krysanov EJ. Synaptonemal complex of two fish species of the genus Nothobranchius (Cyprinodontidae). RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Lisachov AP, Zadesenets KS, Rubtsov NB, Borodin PM. Sex Chromosome Synapsis and Recombination in Male Guppies. Zebrafish 2015; 12:174-80. [DOI: 10.1089/zeb.2014.1000] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Artem P. Lisachov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Kira S. Zadesenets
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay B. Rubtsov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia
| | - Pavel M. Borodin
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
25
|
A transcriptome derived female-specific marker from the invasive Western mosquitofish (Gambusia affinis). PLoS One 2015; 10:e0118214. [PMID: 25707007 PMCID: PMC4338254 DOI: 10.1371/journal.pone.0118214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 01/09/2015] [Indexed: 12/19/2022] Open
Abstract
Sex-specific markers are a prerequisite for understanding reproductive biology, genetic factors involved in sex differences, mechanisms of sex determination, and ultimately the evolution of sex chromosomes. The Western mosquitofish, Gambusia affinis, may be considered a model species for sex-chromosome evolution, as it displays female heterogamety (ZW/ZZ), and is also ecologically interesting as a worldwide invasive species. Here, de novo RNA-sequencing on the gonads of sexually mature G. affinis was used to identify contigs that were highly transcribed in females but not in males (i.e., transcripts with ovary-specific expression). Subsequently, 129 primer pairs spanning 79 contigs were tested by PCR to identify sex-specific transcripts. Of those primer pairs, one female-specific DNA marker was identified, Sanger sequenced and subsequently validated in 115 fish. Sequence analyses revealed a high similarity between the identified sex-specific marker and the 3´ UTR of the aminomethyl transferase (amt) gene of the closely related platyfish (Xiphophorus maculatus). This is the first time that RNA-seq has been used to successfully characterize a sex-specific marker in a fish species in the absence of a genome map. Additionally, the identified sex-specific marker represents one of only a handful of such markers in fishes.
Collapse
|
26
|
Martínez P, Viñas AM, Sánchez L, Díaz N, Ribas L, Piferrer F. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. Front Genet 2014; 5:340. [PMID: 25324858 PMCID: PMC4179683 DOI: 10.3389/fgene.2014.00340] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023] Open
Abstract
Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of the European aquaculture, and salmonids and tilapia, representing the fish for which there are well established breeding programs.
Collapse
Affiliation(s)
- Paulino Martínez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de CompostelaLugo, Spain
| | - Ana M. Viñas
- Departamento de Genética, Facultad de Biología, Universidad de Santiago de CompostelaSantiago de Compostela, Spain
| | - Laura Sánchez
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de CompostelaLugo, Spain
| | - Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| | | | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
| |
Collapse
|
27
|
Fine mapping and evolution of the major sex determining region in turbot (Scophthalmus maximus). G3-GENES GENOMES GENETICS 2014; 4:1871-80. [PMID: 25106948 PMCID: PMC4199694 DOI: 10.1534/g3.114.012328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fish sex determination (SD) systems are varied, suggesting evolutionary changes including either multiple evolution origins of genetic SD from nongenetic systems (such as environmental SD) and/or turnover events replacing one genetic system by another. When genetic SD is found, cytological differentiation between the two members of the sex chromosome pair is often minor or undetectable. The turbot (Scophthalmus maximus), a valuable commercial flatfish, has a ZZ/ZW system and a major SD region on linkage group 5 (LG5), but there are also other minor genetic and environmental influences. We here report refined mapping of the turbot SD region, supported by comparative mapping with model fish species, to identify the turbot master SD gene. Six genes were located to the SD region, two of them associated with gonad development (sox2 and dnajc19). All showed a high association with sex within families (P = 0), but not at the population level, so they are probably partially sex-linked genes, but not SD gene itself. Analysis of crossovers in LG5 using two families confirmed a ZZ/ZW system in turbot and suggested a revised map position for the master gene. Genetic diversity and differentiation for 25 LG5 genetic markers showed no differences between males and females sampled from a wild population, suggesting a recent origin of the SD region in turbot. We also analyzed associations with markers of the most relevant sex-related linkage groups in brill (S. rhombus), a closely related species to turbot; the data suggest that an ancient XX/XY system in brill changed to a ZZ/ZW mechanism in turbot.
Collapse
|
28
|
Arezo MJ, Papa N, Guttierrez V, García G, Berois N. Sex determination in annual fishes: Searching for the master sex-determining gene in Austrolebias charrua (Cyprinodontiformes, Rivulidae). Genet Mol Biol 2014; 37:364-74. [PMID: 25071401 PMCID: PMC4094610 DOI: 10.1590/s1415-47572014005000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/09/2014] [Indexed: 11/22/2022] Open
Abstract
Evolution of sex determination and differentiation in fishes involves a broad range of sex strategies (hermaphroditism, gonochorism, unisexuality, environmental and genetic sex determination). Annual fishes inhabit temporary ponds that dry out during the dry season when adults die. The embryos exhibit an atypical developmental pattern and remain buried in the bottom mud until the next rainy season. To elucidate genomic factors involved in the sex determination in annual fish, we explored the presence of a candidate sex-specific gene related to the cascade network in Austrolebias charrua. All phylogenetic analyses showed a high posterior probability of occurrence for a clade integrated by nuclear sequences (aprox. 900 bp) from both adults (male and female), with partial cDNA fragments of A. charrua from juveniles (male) and the dsx D. melanogaster gene. The expressed fragment was detected from blastula to adulthood stages showing a sexually dimorphic expression pattern. The isolated cDNA sequence is clearly related to dsx D. melanogaster gene and might be located near the top of the sex determination cascade in this species.
Collapse
Affiliation(s)
- María José Arezo
- Sección Biología Celular,
Facultad de Ciencias, Universidad de la República,
Montevideo,
Uruguay
| | - Nicolás Papa
- Sección Biología Celular,
Facultad de Ciencias, Universidad de la República,
Montevideo,
Uruguay
| | - Verónica Guttierrez
- Sección Genética Evolutiva,
Facultad de Ciencias,
Universidad de la República,
Montevideo,
Uruguay
| | - Graciela García
- Sección Genética Evolutiva,
Facultad de Ciencias,
Universidad de la República,
Montevideo,
Uruguay
| | - Nibia Berois
- Sección Biología Celular,
Facultad de Ciencias, Universidad de la República,
Montevideo,
Uruguay
| |
Collapse
|
29
|
Sharma E, Künstner A, Fraser BA, Zipprich G, Kottler VA, Henz SR, Weigel D, Dreyer C. Transcriptome assemblies for studying sex-biased gene expression in the guppy, Poecilia reticulata. BMC Genomics 2014; 15:400. [PMID: 24886435 PMCID: PMC4059875 DOI: 10.1186/1471-2164-15-400] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/09/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Sexually dimorphic phenotypes are generally associated with differential gene expression between the sexes. The study of molecular evolution and genomic location of these differentially expressed, or sex-biased, genes is important for understanding inter-sexual divergence under sex-specific selection pressures. Teleost fish provide a unique opportunity to examine this divergence in the presence of variable sex-determination mechanisms of recent origin. The guppy, Poecilia reticulata, displays sexual dimorphism in size, ornaments, and behavior, traits shaped by natural and sexual selection in the wild. RESULTS To gain insight into molecular mechanisms underlying the guppy's sexual dimorphism, we assembled a reference transcriptome combining genome-independent as well as genome-guided assemblies and analyzed sex-biased gene expression between different tissues of adult male and female guppies. We found tissue-associated sex-biased expression of genes related to pigmentation, signal transduction, and spermatogenesis in males; and growth, cell-division, extra-cellular matrix organization, nutrient transport, and folliculogenesis in females. While most sex-biased genes were randomly distributed across linkage groups, we observed accumulation of ovary-biased genes on the sex linkage group, LG12. Both testis-biased and ovary-biased genes showed a significantly higher rate of non-synonymous to synonymous substitutions (dN/dS) compared to unbiased genes. However, in somatic tissues only female-biased genes, including those co-expressed in multiple tissues, showed elevated ratios of non-synonymous substitutions. CONCLUSIONS Our work identifies a set of annotated gene products that are candidate factors affecting sexual dimorphism in guppies. The differential genomic distribution of gonad-biased genes provides evidence for sex-specific selection pressures acting on the nascent sex chromosomes of the guppy. The elevated rates of evolution of testis-biased and female-biased genes indicate differing evolution under distinct selection pressures on the reproductive versus non-reproductive tissues.
Collapse
Affiliation(s)
| | - Axel Künstner
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sex chromosome polymorphism in guppies. Chromosoma 2014; 123:373-83. [PMID: 24676866 DOI: 10.1007/s00412-014-0455-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/24/2014] [Accepted: 03/03/2014] [Indexed: 12/18/2022]
Abstract
Sex chromosomes differ from autosomes by dissimilar gene content and, at a more advanced stage of their evolution, also in structure and size. This is driven by the divergence of the Y or W from their counterparts, X and Z, due to reduced recombination and the resulting degeneration as well as the accumulation of sex-specific and sexually antagonistic genes. A paradigmatic example for Y-chromosome evolution is found in guppies. In these fishes, conflicting data exist for a morphological and molecular differentiation of sex chromosomes. Using molecular probes and the previously established linkage map, we performed a cytogenetic analysis of sex chromosomes. We show that the Y chromosome has a very large pseudoautosomal region, which is followed by a heterochromatin block (HCY) separating the subtelomeric male-specific region from the rest of the chromosome. Interestingly, the size of the HCY is highly variable between individuals from different population. The largest HCY was found in one population of Poecilia wingei, making the Y almost double the size of the X and the largest chromosome of the complement. Comparative analysis revealed that the Y chromosomes of different guppy species are homologous and share the same structure and organization. The observed size differences are explained by an expansion of the HCY, which is due to increased amounts of repetitive DNA. In one population, we observed also a polymorphism of the X chromosome. We suggest that sex chromosome-linked color patterns and other sexually selected genes are important for maintaining the observed structural polymorphism of sex chromosomes.
Collapse
|
31
|
Supergenes and their role in evolution. Heredity (Edinb) 2014; 113:1-8. [PMID: 24642887 DOI: 10.1038/hdy.2014.20] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/08/2013] [Accepted: 01/23/2014] [Indexed: 02/03/2023] Open
Abstract
Adaptation is commonly a multidimensional problem, with changes in multiple traits required to match a complex environment. This is epitomized by balanced polymorphisms in which multiple phenotypes co-exist and are maintained in a population by a balance of selective forces. Consideration of such polymorphisms led to the concept of the supergene, where alternative phenotypes in a balanced polymorphism segregate as if controlled by a single genetic locus, resulting from tight genetic linkage between multiple functional loci. Recently, the molecular basis for several supergenes has been resolved. Thus, major chromosomal inversions have been shown to be associated with polymorphisms in butterflies, ants and birds, offering a mechanism for localised reduction in recombination. In several examples of plant self-incompatibility, the functional role of multiple elements within the supergene architecture has been demonstrated, conclusively showing that balanced polymorphism can be maintained at multiple coadapted and tightly linked elements. Despite recent criticism, we argue that the supergene concept remains relevant and is more testable than ever with modern molecular methods.
Collapse
|
32
|
Gamble T, Zarkower D. Identification of sex-specific molecular markers using restriction site-associated DNA sequencing. Mol Ecol Resour 2014; 14:902-13. [DOI: 10.1111/1755-0998.12237] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Tony Gamble
- Department of Genetics, Cell Biology, and Development; University of Minnesota; Minneapolis MN USA
- Bell Museum of Natural History; University of Minnesota; Minneapolis MN USA
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development; University of Minnesota; Minneapolis MN USA
| |
Collapse
|
33
|
Kottler VA, Koch I, Flötenmeyer M, Hashimoto H, Weigel D, Dreyer C. Multiple pigment cell types contribute to the black, blue, and orange ornaments of male guppies (Poecilia reticulata). PLoS One 2014; 9:e85647. [PMID: 24465632 PMCID: PMC3899072 DOI: 10.1371/journal.pone.0085647] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/27/2013] [Indexed: 01/06/2023] Open
Abstract
The fitness of male guppies (Poecilia reticulata) highly depends on the size and number of their black, blue, and orange ornaments. Recently, progress has been made regarding the genetic mechanisms underlying male guppy pigment pattern formation, but we still know little about the pigment cell organization within these ornaments. Here, we investigate the pigment cell distribution within the black, blue, and orange trunk spots and selected fin color patterns of guppy males from three genetically divergent strains using transmission electron microscopy. We identified three types of pigment cells and found that at least two of these contribute to each color trait. Further, two pigment cell layers, one in the dermis and the other in the hypodermis, contribute to each trunk spot. The pigment cell organization within the black and orange trunk spots was similar between strains. The presence of iridophores in each of the investigated color traits is consistent with a key role for this pigment cell type in guppy color pattern formation.
Collapse
Affiliation(s)
- Verena A. Kottler
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Iris Koch
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Hisashi Hashimoto
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christine Dreyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
34
|
Slancarova V, Zdanska J, Janousek B, Talianova M, Zschach C, Zluvova J, Siroky J, Kovacova V, Blavet H, Danihelka J, Oxelman B, Widmer A, Vyskot B. Evolution of sex determination systems with heterogametic males and females in silene. Evolution 2013; 67:3669-77. [PMID: 24299418 DOI: 10.1111/evo.12223] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 07/29/2013] [Indexed: 02/03/2023]
Abstract
The plant genus Silene has become a model for evolutionary studies of sex chromosomes and sex-determining mechanisms. A recent study performed in Silene colpophylla showed that dioecy and the sex chromosomes in this species evolved independently from those in Silene latifolia, the most widely studied dioecious Silene species. The results of this study show that the sex-determining system in Silene otites, a species related to S. colpophylla, is based on female heterogamety, a sex determination system that is unique among the Silene species studied to date. Our phylogenetic data support the placing of S. otites and S. colpophylla in the subsection Otites and the analysis of ancestral states suggests that the most recent common ancestor of S. otites and S. colpophylla was most probably dioecious. These observations imply that a switch from XX/XY sex determination to a ZZ/ZW system (or vice versa) occurred in the subsection Otites. This is the first report of two different types of heterogamety within one plant genus of this mostly nondioecious plant family.
Collapse
Affiliation(s)
- Veronika Slancarova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Böhne A, Heule C, Boileau N, Salzburger W. Expression and sequence evolution of aromatase cyp19a1 and other sexual development genes in East African cichlid fishes. Mol Biol Evol 2013; 30:2268-85. [PMID: 23883521 PMCID: PMC3773371 DOI: 10.1093/molbev/mst124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sex determination mechanisms are highly variable across teleost fishes and sexual development is often plastic. Nevertheless, downstream factors establishing the two sexes are presumably conserved. Here, we study sequence evolution and gene expression of core genes of sexual development in a prime model system in evolutionary biology, the East African cichlid fishes. Using the available five cichlid genomes, we test for signs of positive selection in 28 genes including duplicates from the teleost whole-genome duplication, and examine the expression of these candidate genes in three cichlid species. We then focus on a particularly striking case, the A- and B-copies of the aromatase cyp19a1, and detect different evolutionary trajectories: cyp19a1A evolved under strong positive selection, whereas cyp19a1B remained conserved at the protein level, yet is subject to regulatory changes at its transcription start sites. Importantly, we find shifts in gene expression in both copies. Cyp19a1 is considered the most conserved ovary-factor in vertebrates, and in all teleosts investigated so far, cyp19a1A and cyp19a1B are expressed in ovaries and the brain, respectively. This is not the case in cichlids, where we find new expression patterns in two derived lineages: the A-copy gained a novel testis-function in the Ectodine lineage, whereas the B-copy is overexpressed in the testis of the speciest-richest cichlid group, the Haplochromini. This suggests that even key factors of sexual development, including the sex steroid pathway, are not conserved in fish, supporting the idea that flexibility in sexual determination and differentiation may be a driving force of speciation.
Collapse
Affiliation(s)
- Astrid Böhne
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
36
|
Sun F, Liu S, Gao X, Jiang Y, Perera D, Wang X, Li C, Sun L, Zhang J, Kaltenboeck L, Dunham R, Liu Z. Male-biased genes in catfish as revealed by RNA-Seq analysis of the testis transcriptome. PLoS One 2013; 8:e68452. [PMID: 23874634 PMCID: PMC3709890 DOI: 10.1371/journal.pone.0068452] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/29/2013] [Indexed: 11/29/2022] Open
Abstract
Background Catfish has a male-heterogametic (XY) sex determination system, but genes involved in gonadogenesis, spermatogenesis, testicular determination, and sex determination are poorly understood. As a first step of understanding the transcriptome of the testis, here, we conducted RNA-Seq analysis using high throughput Illumina sequencing. Methodology/Principal Findings A total of 269.6 million high quality reads were assembled into 193,462 contigs with a N50 length of 806 bp. Of these contigs, 67,923 contigs had hits to a set of 25,307 unigenes, including 167 unique genes that had not been previously identified in catfish. A meta-analysis of expressed genes in the testis and in the gynogen (double haploid female) allowed the identification of 5,450 genes that are preferentially expressed in the testis, providing a pool of putative male-biased genes. Gene ontology and annotation analysis suggested that many of these male-biased genes were involved in gonadogenesis, spermatogenesis, testicular determination, gametogenesis, gonad differentiation, and possibly sex determination. Conclusion/Significance We provide the first transcriptome-level analysis of the catfish testis. Our analysis would lay the basis for sequential follow-up studies of genes involved in sex determination and differentiation in catfish.
Collapse
Affiliation(s)
- Fanyue Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Xiaoyu Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Yanliang Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Dayan Perera
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Xiuli Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Luyang Sun
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Ludmilla Kaltenboeck
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
37
|
Pigment pattern formation in the guppy, Poecilia reticulata, involves the Kita and Csf1ra receptor tyrosine kinases. Genetics 2013; 194:631-46. [PMID: 23666934 PMCID: PMC3697969 DOI: 10.1534/genetics.113.151738] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Males of the guppy (Poecilia reticulata) vary tremendously in their ornamental patterns, which are thought to have evolved in response to a complex interplay between natural and sexual selection. Although the selection pressures acting on the color patterns of the guppy have been extensively studied, little is known about the genes that control their ontogeny. Over 50 years ago, two autosomal color loci, blue and golden, were described, both of which play a decisive role in the formation of the guppy color pattern. Orange pigmentation is absent in the skin of guppies with a lesion in blue, suggesting a defect in xanthophore development. In golden mutants, the development of the melanophore pattern during embryogenesis and after birth is affected. Here, we show that blue and golden correspond to guppy orthologs of colony-stimulating factor 1 receptor a (csf1ra; previously called fms) and kita. Most excitingly, we found that both genes are required for the development of the black ornaments of guppy males, which in the case of csf1ra might be mediated by xanthophore–melanophore interactions. Furthermore, we provide evidence that two temporally and genetically distinct melanophore populations contribute to the adult camouflage pattern expressed in both sexes: one early appearing and kita-dependent and the other late-developing and kita-independent. The identification of csf1ra and kita mutants provides the first molecular insights into pigment pattern formation in this important model species for ecological and evolutionary genetics.
Collapse
|
38
|
Kikuchi K, Hamaguchi S. Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn 2013; 242:339-53. [PMID: 23335327 DOI: 10.1002/dvdy.23927] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 12/13/2022] Open
Abstract
Although the molecular mechanisms underlying many developmental events are conserved across vertebrate taxa, the lability at the top of the sex-determining (SD) cascade has been evident from the fact that four master SD genes have been identified: mammalian Sry; chicken DMRT1; medaka Dmy; and Xenopus laevis DM-W. This diversity is thought to be associated with the turnover of sex chromosomes, which is likely to be more frequent in fishes and other poikilotherms than in therian mammals and birds. Recently, four novel candidates for vertebrate SD genes were reported, all of them in fishes. These include amhy in the Patagonian pejerrey, Gsdf in Oryzias luzonensis, Amhr2 in fugu and sdY in rainbow trout. These studies provide a good opportunity to infer patterns from the seemingly chaotic picture of sex determination systems. Here, we review recent advances in our understanding of the master SD genes in fishes.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Fisheries Laboratory, University of Tokyo, Hamamatsu, Shizuoka, Japan.
| | | |
Collapse
|
39
|
Kobayashi Y, Nagahama Y, Nakamura M. Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev 2012; 7:115-25. [PMID: 22948719 DOI: 10.1159/000342009] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among vertebrates, fishes show an exceptional range of reproductive strategies regarding the expression of their sexuality. Fish sexualities were categorized into gonochorism, synchronous/sequential hermaphrodite, or unisexual reproduction. In gonochoristic fishes, sex is determined genetically or by environmental factors. After sex determination, the gonads are differentiated into ovary or testis, with the sex remaining fixed for the entire life cycle. In contrast, some sequential hermaphrodite fishes can change their sex from male to female (protandrous), female to male (protogynous), or serially (bi-directional sex change) in their life cycle. In many cases, sex change is cued by social factors such as the disappearance of a male or female from a group. This unique diversity in fishes provides an ideal animal model to investigate sex determination and differentiation in vertebrates. This review first discusses genetic-orientated sex determination mechanisms. Then, we address the gonadal sex differentiation process in a gonochoristic fish, using an example of the Nile tilapia. Finally, we discuss various types of sex change that occur in hermaphrodite fishes.
Collapse
Affiliation(s)
- Y Kobayashi
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Motobu, Japan.
| | | | | |
Collapse
|
40
|
Anderson JL, Rodríguez Marí A, Braasch I, Amores A, Hohenlohe P, Batzel P, Postlethwait JH. Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics. PLoS One 2012; 7:e40701. [PMID: 22792396 PMCID: PMC3392230 DOI: 10.1371/journal.pone.0040701] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/12/2012] [Indexed: 11/27/2022] Open
Abstract
Within vertebrates, major sex determining genes can differ among taxa and even within species. In zebrafish (Danio rerio), neither heteromorphic sex chromosomes nor single sex determination genes of large effect, like Sry in mammals, have yet been identified. Furthermore, environmental factors can influence zebrafish sex determination. Although progress has been made in understanding zebrafish gonad differentiation (e.g. the influence of germ cells on gonad fate), the primary genetic basis of zebrafish sex determination remains poorly understood. To identify genetic loci associated with sex, we analyzed F(2) offspring of reciprocal crosses between Oregon *AB and Nadia (NA) wild-type zebrafish stocks. Genome-wide linkage analysis, using more than 5,000 sequence-based polymorphic restriction site associated (RAD-tag) markers and population genomic analysis of more than 30,000 single nucleotide polymorphisms in our *ABxNA crosses revealed a sex-associated locus on the end of the long arm of chr-4 for both cross families, and an additional locus in the middle of chr-3 in one cross family. Additional sequencing showed that two SNPs in dmrt1 previously suggested to be functional candidates for sex determination in a cross of ABxIndia wild-type zebrafish, are not associated with sex in our AB fish. Our data show that sex determination in zebrafish is polygenic and that different genes may influence sex determination in different strains or that different genes become more important under different environmental conditions. The association of the end of chr-4 with sex is remarkable because, unique in the karyotype, this chromosome arm shares features with known sex chromosomes: it is highly heterochromatic, repetitive, late replicating, and has reduced recombination. Our results reveal that chr-4 has functional and structural properties expected of a sex chromosome.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Adriana Rodríguez Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Paul Hohenlohe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
41
|
Blaser O, Neuenschwander S, Perrin N. On the Maintenance of Sex Chromosome Polymorphism by Sex-Antagonistic Selection. Am Nat 2011; 178:515-24. [DOI: 10.1086/661895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome. BMC Genomics 2011; 12:202. [PMID: 21507250 PMCID: PMC3113783 DOI: 10.1186/1471-2164-12-202] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/20/2011] [Indexed: 12/03/2022] Open
Abstract
Background Next-generation sequencing is providing researchers with a relatively fast and affordable option for developing genomic resources for organisms that are not among the traditional genetic models. Here we present a de novo assembly of the guppy (Poecilia reticulata) transcriptome using 454 sequence reads, and we evaluate potential uses of this transcriptome, including detection of sex-specific transcripts and deployment as a reference for gene expression analysis in guppies and a related species. Guppies have been model organisms in ecology, evolutionary biology, and animal behaviour for over 100 years. An annotated transcriptome and other genomic tools will facilitate understanding the genetic and molecular bases of adaptation and variation in a vertebrate species with a uniquely well known natural history. Results We generated approximately 336 Mbp of mRNA sequence data from male brain, male body, female brain, and female body. The resulting 1,162,670 reads assembled into 54,921 contigs, creating a reference transcriptome for the guppy with an average read depth of 28×. We annotated nearly 40% of this reference transcriptome by searching protein and gene ontology databases. Using this annotated transcriptome database, we identified candidate genes of interest to the guppy research community, putative single nucleotide polymorphisms (SNPs), and male-specific expressed genes. We also showed that our reference transcriptome can be used for RNA-sequencing-based analysis of differential gene expression. We identified transcripts that, in juveniles, are regulated differently in the presence and absence of an important predator, Rivulus hartii, including two genes implicated in stress response. For each sample in the RNA-seq study, >50% of high-quality reads mapped to unique sequences in the reference database with high confidence. In addition, we evaluated the use of the guppy reference transcriptome for gene expression analyses in a congeneric species, the sailfin molly (Poecilia latipinna). Over 40% of reads from the sailfin molly sample aligned to the guppy transcriptome. Conclusions We show that next-generation sequencing provided a reliable and broad reference transcriptome. This resource allowed us to identify candidate gene variants, SNPs in coding regions, and sex-specific gene expression, and permitted quantitative analysis of differential gene expression.
Collapse
|
43
|
Watson CT, Gray SM, Hoffmann M, Lubieniecki KP, Joy JB, Sandkam BA, Weigel D, Loew E, Dreyer C, Davidson WS, Breden F. Gene duplication and divergence of long wavelength-sensitive opsin genes in the guppy, Poecilia reticulata. J Mol Evol 2010; 72:240-52. [PMID: 21170644 DOI: 10.1007/s00239-010-9426-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 12/06/2010] [Indexed: 11/30/2022]
Abstract
Female preference for male orange coloration in the genus Poecilia suggests a role for duplicated long wavelength-sensitive (LWS) opsin genes in facilitating behaviors related to mate choice in these species. Previous work has shown that LWS gene duplication in this genus has resulted in expansion of long wavelength visual capacity as determined by microspectrophotometry (MSP). However, the relationship between LWS genomic repertoires and expression of LWS retinal cone classes within a given species is unclear. Our previous study in the related species, Xiphophorus helleri, was the first characterization of the complete LWS opsin genomic repertoire in conjunction with MSP expression data in the family Poeciliidae, and revealed the presence of four LWS loci and two distinct LWS cone classes. In this study we characterized the genomic organization of LWS opsin genes by BAC clone sequencing, and described the full range of cone cell types in the retina of the colorful Cumaná guppy, Poecilia reticulata. In contrast to X. helleri, MSP data from the Cumaná guppy revealed three LWS cone classes. Comparisons of LWS genomic organization described here for Cumaná to that of X. helleri indicate that gene divergence and not duplication was responsible for the evolution of a novel LWS haplotype in the Cumaná guppy. This lineage-specific divergence is likely responsible for a third additional retinal cone class not present in X. helleri, and may have facilitated the strong sexual selection driven by female preference for orange color patterns associated with the genus Poecilia.
Collapse
Affiliation(s)
- Corey T Watson
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Charlesworth D, Mank JE. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 2010; 186:9-31. [PMID: 20855574 PMCID: PMC2940314 DOI: 10.1534/genetics.110.117697] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ability to identify genetic markers in nonmodel systems has allowed geneticists to construct linkage maps for a diversity of species, and the sex-determining locus is often among the first to be mapped. Sex determination is an important area of study in developmental and evolutionary biology, as well as ecology. Its importance for organisms might suggest that sex determination is highly conserved. However, genetic studies have shown that sex determination mechanisms, and the genes involved, are surprisingly labile. We review studies using genetic mapping and phylogenetic inferences, which can help reveal evolutionary pattern within this lability and potentially identify the changes that have occurred among different sex determination systems. We define some of the terminology, particularly where confusion arises in writing about such a diverse range of organisms, and highlight some major differences between plants and animals, and some important similarities. We stress the importance of studying taxa suitable for testing hypotheses, and the need for phylogenetic studies directed to taxa where the patterns of changes can be most reliably inferred, if the ultimate goal of testing hypotheses regarding the selective forces that have led to changes in such an essential trait is to become feasible.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | |
Collapse
|
45
|
JANOUSEK BOHUSLAV, MRACKOVA MARTINA. Sex chromosomes and sex determination pathway dynamics in plant and animal models. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01470.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Arnheiter H. Sex-specific coloration for display and camouflage. Pigment Cell Melanoma Res 2010; 23:480-1. [PMID: 20444204 DOI: 10.1111/j.1755-148x.2010.00719.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Leder EH, Cano JM, Leinonen T, O'Hara RB, Nikinmaa M, Primmer CR, Merilä J. Female-biased expression on the X chromosome as a key step in sex chromosome evolution in threespine sticklebacks. Mol Biol Evol 2010; 27:1495-503. [PMID: 20142438 DOI: 10.1093/molbev/msq031] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Given that the genome of males and females are almost identical with the exception of genes on the Y (or W) chromosome or sex-determining alleles (in organisms without sex chromosomes), it is likely that many downstream processes resulting in sexual dimorphism are produced by changes in regulation. In early stages of sex chromosome evolution, as the Y-chromosome degenerates, gene expression should be significantly impacted for genes residing on the sex chromosome pair as regulatory mutations accumulate. However, this has rarely been examined because most model organisms have clearly diverged sex chromosomes. Fish provide a unique opportunity to examine the evolution of sex chromosomes because genetic sex determination has evolved quite recently in some groups of fish. We compared sex-specific transcription in threespine stickleback (Gasterosteus aculeatus) liver tissue using a long-oligo microarray. Of the 1,268 genes that were differentially expressed between sexes, a highly significant proportion (23%) was concentrated on chromosome 19, corresponding to the recently described nascent sex chromosomes. The sex-biased genes are enriched for different functional categories in males and females, although there is no specific functional enrichment on the sex chromosomes. Female-biased genes are concentrated at one end of the sex chromosome, corresponding to a deletion in the Y, suggesting a lack of global dosage compensation. Prior research on threespine sticklebacks has demonstrated various degrees of dissimilarity in upstream regions of genes on the Y providing a potential mechanism for the observed patterns of female-biased expression. We hypothesize that degeneration of the Y chromosome results in regulatory mutations that create a sex-specific expression pattern and that this physical concentration of sex-biased expression on the nascent sex chromosome may be a key feature characterizing intermediate phases of sex chromosome evolution.
Collapse
Affiliation(s)
- Erica H Leder
- Division of Genetics and Physiology, Department of Biology (Vesilinnantie 5), University of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Many animals and plants have sex chromosomes that recombine over much of their length. Here we develop coalescent models for neutral sites on these chromosomes. The emphasis is on expected coalescence times (proportional to the expected amount of neutral genetic polymorphism), but we also derive some results for linkage disequilibria between neutral sites. We analyze the standard neutral model, a model with polymorphic Y chromosomes under balancing selection, and the invasion of a neo-Y chromosome. The results may be useful for testing hypotheses regarding how new sex chromosomes originate and how selection acts upon them.
Collapse
|
49
|
Spigler RB, Lewers KS, Johnson AL, Ashman TL. Comparative Mapping Reveals Autosomal Origin of Sex Chromosome in Octoploid Fragaria virginiana. J Hered 2010; 101 Suppl 1:S107-17. [DOI: 10.1093/jhered/esq001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
50
|
Ser JR, Roberts RB, Kocher TD. Multiple interacting loci control sex determination in lake Malawi cichlid fish. Evolution 2009; 64:486-501. [PMID: 19863587 DOI: 10.1111/j.1558-5646.2009.00871.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Several models have been proposed to suggest how the evolution of sex-determining mechanisms might contribute to speciation. Here, we describe the inheritance of sex in 19 fish species from the rapidly evolving flock of cichlids in Lake Malawi, Africa. We found that many of these species have a male heterogametic (XY) system on linkage group 7. Some species also segregate for a female heterogametic (ZW) system on linkage group 5 that is coincident with a dominant orange-blotch (OB) color pattern in females. The ZW system is epistatically dominant to the XY system when both are segregating within a family. Several lines of evidence suggest that additional sex-determining loci are segregating in some species. These results are consistent with the idea that genetic conflicts play an important role in the evolution of these species flocks and suggest that evolution of sex-determining mechanisms has contributed to the radiation of cichlid fish in East Africa.
Collapse
Affiliation(s)
- Jennifer R Ser
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|