1
|
Galland LM, Faske TM, Osuna-Mascaró C, Bisbing SM, Parchman TL. Geography and Environment Shape Spatial Genetic Variation and Predict Climate Maladaptation Across Isolated and Disjunct Populations of Pinus muricata. Mol Ecol 2025:e17638. [PMID: 39911095 DOI: 10.1111/mec.17638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025]
Abstract
Assessing the evolutionary potential of rare species with limited migration amidst ongoing climate change requires an understanding of patterns of genetic variation and local adaptation. In contrast to the large distributions and population sizes of most pines, Pinus muricata (bishop pine) occurs in a few isolated populations along coastal western North America and is listed as threatened by the IUCN. To quantify how current genetic variation is influenced by distribution and environment, we generated reduced representation DNA sequencing data for most extant populations of P. muricata (12 locations, 7828 loci). We assessed geographic variation in differentiation and diversity and used genetic-environment association (GEA) analyses to characterise the contribution of environmental variables to local adaptation and genetic structure. Based on these inferences, we quantified genomic offset as a relative estimate of potential maladaptation under mild (SSP1-2.6) and severe (SSP5-8.5) climate change scenarios across 2041-2060 and 2081-2100. Despite occurring in small, isolated populations, genetic diversity was not low in P. muricata. Population differentiation was, however, defined across a hierarchy of spatial scales, with stands generally forming genetically identifiable groups across latitude and environments. GEA analyses implicated temperature- and soil-related variables as most strongly contributing to local adaptation. Estimates of maladaptation to future climate varied non-linearly with latitude, increased with severity of projections and over time, and were predicted by increases in annual temperature. Our results suggest that isolation and local adaptation have shaped genetic variation among disjunct populations and that these factors may shape maladaptation risk under projected climate change.
Collapse
Affiliation(s)
- Lanie M Galland
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Trevor M Faske
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
| | - Carolina Osuna-Mascaró
- Department of Biology, University of Nevada, Reno, Nevada, USA
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Gdansk, Poland
| | - Sarah M Bisbing
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Natural Resources and Environmental Science, University of Nevada, Nevada, USA
| | - Thomas L Parchman
- Graduate Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, Nevada, USA
- Department of Biology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
2
|
Peck LD, Sork VL. Can DNA methylation shape climate response in trees? TRENDS IN PLANT SCIENCE 2024; 29:1089-1102. [PMID: 38853096 DOI: 10.1016/j.tplants.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Woody plants create the ecosystems they occupy and shape their biodiversity. Today's rapidly warming climate threatens these long-lived species by creating new environments in which existing populations become maladapted. Plants show enormous phenotypic diversity in response to environmental change, which can be caused by genotype or epigenetic mechanisms that influence the expression of the underlying DNA sequence. Whether epigenetics can affect ecologically important traits in trees is an important and controversial question. We explore the evidence that DNA methylation can affect gene expression, both directly and indirectly via its interaction with transposable elements (TEs), and subsequently shapes phenotypic variation in natural tree populations. Furthermore, we consider the potential of epigenetic approaches to assist in their conservation management strategies.
Collapse
Affiliation(s)
- Lily D Peck
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Meger J, Ulaszewski B, Chmura DJ, Burczyk J. Signatures of local adaptation to current and future climate in phenology-related genes in natural populations of Quercus robur. BMC Genomics 2024; 25:78. [PMID: 38243199 PMCID: PMC10797717 DOI: 10.1186/s12864-023-09897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Local adaptation is a key evolutionary process that enhances the growth of plants in their native habitat compared to non-native habitats, resulting in patterns of adaptive genetic variation across the entire geographic range of the species. The study of population adaptation to local environments and predicting their response to future climate change is important because of climate change. RESULTS Here, we explored the genetic diversity of candidate genes associated with bud burst in pedunculate oak individuals sampled from 6 populations in Poland. Single nucleotide polymorphism (SNP) diversity was assessed in 720 candidate genes using the sequence capture technique, yielding 18,799 SNPs. Using landscape genomic approaches, we identified 8 FST outliers and 781 unique SNPs in 389 genes associated with geography, climate, and phenotypic variables (individual/family spring and autumn phenology, family diameter at breast height (DBH), height, and survival) that are potentially involved in local adaptation. Then, using a nonlinear multivariate model, Gradient Forests, we identified vulnerable areas of the pedunculate oak distribution in Poland that are at risk from climate change. CONCLUSIONS The model revealed that pedunculate oak populations in the eastern part of the analyzed geographical region are the most sensitive to climate change. Our results might offer an initial evaluation of a potential management strategy for preserving the genetic diversity of pedunculate oak.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Daniel J Chmura
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| |
Collapse
|
4
|
Alía R, Climent J, Santos-Del-Blanco L, Gonzalez-Arrojo A, Feito I, Grivet D, Majada J. Adaptive potential of maritime pine under contrasting environments. BMC PLANT BIOLOGY 2024; 24:37. [PMID: 38191282 PMCID: PMC10775667 DOI: 10.1186/s12870-023-04687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Predicting the adaptability of forest tree populations under future climates requires a better knowledge of both the adaptive significance and evolvability of measurable key traits. Phenotypic plasticity, standing genetic variation and degree of phenotypic integration shape the actual and future population genetic structure, but empirical estimations in forest tree species are still extremely scarce. We analysed 11 maritime pine populations covering the distribution range of the species (119 families and 8 trees/family, ca. 1300 trees) in a common garden experiment planted at two sites with contrasting productivity. We used plant height as a surrogate of fitness and measured five traits (mean and plasticity of carbon isotope discrimination, specific leaf area, needle biomass, Phenology growth index) related to four different strategies (acquisitive economics, photosynthetic organ size, growth allocation and avoidance of water stress). RESULTS Estimated values of additive genetic variation would allow adaptation of the populations to future environmental conditions. Overall phenotypic integration and selection gradients were higher at the high productivity site, while phenotypic integration within populations was higher at the low productivity site. Response to selection was related mainly to photosynthetic organ size and drought-avoidance mechanisms rather than to water use efficiency. Phenotypic plasticity of water use efficiency could be maladaptive, resulting from selection for height growth. CONCLUSIONS Contrary to the expectations in a drought tolerant species, our study suggests that variation in traits related to photosynthetic organ size and acquisitive investment of resources drive phenotypic selection across and within maritime pine populations. Both genetic variation and evolvability of key adaptive traits were considerably high, including plasticity of water use efficiency. These characteristics would enable a relatively fast micro-evolution of populations in response to the ongoing climate changes. Moreover, differentiation among populations in the studied traits would increase under the expected more productive future Atlantic conditions.
Collapse
Affiliation(s)
- Ricardo Alía
- Instituto de Ciencias Forestales, ICIFOR-INIA, CSIC, Madrid, 28040, Spain.
| | - Jose Climent
- Instituto de Ciencias Forestales, ICIFOR-INIA, CSIC, Madrid, 28040, Spain
| | | | | | | | - Delphine Grivet
- Instituto de Ciencias Forestales, ICIFOR-INIA, CSIC, Madrid, 28040, Spain
| | - Juan Majada
- Forest and Wood Technology Research Centre (CETEMAS), Carbayin, 33936, Spain
| |
Collapse
|
5
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
6
|
Shu M, Moran EV. Identifying genetic variation associated with environmental gradients and drought-tolerance phenotypes in ponderosa pine. Ecol Evol 2023; 13:e10620. [PMID: 37841219 PMCID: PMC10576020 DOI: 10.1002/ece3.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
As climate changes, understanding the genetic basis of local adaptation in plants becomes an ever more pressing issue. Combining genotype-environment association (GEA) with genotype-phenotype association (GPA) analysis has an exciting potential to uncover the genetic basis of environmental responses. We use these approaches to identify genetic variants linked to local adaptation to drought in Pinus ponderosa. Over 4 million Single Nucleotide Polymorphisms (SNPs) were identified using 223 individuals from across the Sierra Nevada of California. 927,740 (22.3%) SNPs were retained after filtering for proximity to genes and used in our association analyses. We found 1374 associated with five major climate variables, with the largest number (1151) associated with April 1st snowpack. We also conducted a greenhouse study with various drought-tolerance traits measured in first-year seedlings of a subset of the genotyped trees grown in the greenhouse. 796 SNPs were associated with control-condition trait values, while 1149 were associated with responsiveness of these traits to drought. While no individual SNPs were associated with both the environmental variables and the measured traits, several annotated genes were associated with both, particularly those involved in cell wall formation, biotic and abiotic stress responses, and ubiquitination. However, the functions of many of the associated genes have not yet been determined due to the lack of gene annotation information for conifers. Future studies are needed to assess the developmental roles and ecological significance of these unknown genes.
Collapse
Affiliation(s)
- Mengjun Shu
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| | - Emily V. Moran
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
7
|
Archambeau J, Benito Garzón M, de Miguel M, Brachi B, Barraquand F, González-Martínez SC. Reduced within-population quantitative genetic variation is associated with climate harshness in maritime pine. Heredity (Edinb) 2023; 131:68-78. [PMID: 37221230 PMCID: PMC10313832 DOI: 10.1038/s41437-023-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
How evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments. We aimed to empirically test three hypotheses: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e., experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from heterogeneous environments. Using growth, phenological and functional trait data from three clonal common gardens and 33 populations (522 clones) of maritime pine (Pinus pinaster Aiton), we estimated the association between the population-specific total genetic variances (i.e., among-clone variances) for these traits and ten population-specific indices related to admixture levels (estimated based on 5165 SNPs), environmental temporal and spatial heterogeneity and climate harshness. Populations experiencing colder winters showed consistently lower genetic variation for early height growth (a fitness-related trait in forest trees) in the three common gardens. Within-population quantitative genetic variation was not associated with environmental heterogeneity or population admixture for any trait. Our results provide empirical support for the potential role of natural selection in reducing genetic variation for early height growth within populations, which indirectly gives insight into the adaptive potential of populations to changing environments.
Collapse
Affiliation(s)
- Juliette Archambeau
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
| | | | - Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | | | | | | |
Collapse
|
8
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
9
|
Lombardi E, Shestakova TA, Santini F, Resco de Dios V, Voltas J. Harnessing tree-ring phenotypes to disentangle gene by environment interactions and their climate dependencies in a circum-Mediterranean pine. ANNALS OF BOTANY 2022; 130:509-523. [PMID: 35797146 PMCID: PMC9510947 DOI: 10.1093/aob/mcac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Understanding the genetic basis of adaptation and plasticity in trees constitutes a knowledge gap. We linked dendrochronology and genomics [single nucleotide polymorphisms (SNPs)] for a widespread conifer (Pinus halepensis Mill.) to characterize intraspecific growth differences elicited by climate. METHODS The analysis comprised 20-year tree-ring series of 130 trees structured in 23 populations evaluated in a common garden. We tested for genotype by environment interactions (G × E) of indexed ring width (RWI) and early- to latewood ratios (ELI) using factorial regression, which describes G × E as differential gene sensitivity to climate. KEY RESULTS The species' annual growth was positively influenced by winter temperature and spring moisture and negatively influenced by previous autumn precipitation and warm springs. Four and five climate factors explained 10 % (RWI) and 16 % (ELI) of population-specific interannual variability, respectively, with populations from drought-prone areas and with uneven precipitation experiencing larger growth reductions during dry vegetative periods. Furthermore, four and two SNPs explained 14 % (RWI) and 10 % (ELI) of interannual variability among trees, respectively. Two SNPs played a putative role in adaptation to climate: one identified from transcriptome sequencing of P. halepensis and another involved in response regulation to environmental stressors. CONCLUSIONS We highlight how tree-ring phenotypes, obtained from a common garden experiment, combined with a candidate-gene approach allow the quantification of genetic and environmental effects determining adaptation for a conifer with a large and complex genome.
Collapse
Affiliation(s)
| | | | - Filippo Santini
- Joint Research Unit CTFC – AGROTECNIO – CERCA, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
- Departament of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
| | - Víctor Resco de Dios
- Joint Research Unit CTFC – AGROTECNIO – CERCA, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
- Departament of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
| | - Jordi Voltas
- Joint Research Unit CTFC – AGROTECNIO – CERCA, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
- Departament of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida E-25198, Spain
| |
Collapse
|
10
|
Archambeau J, Garzón MB, Barraquand F, Miguel MD, Plomion C, González-Martínez SC. Combining climatic and genomic data improves range-wide tree height growth prediction in a forest tree. Am Nat 2022; 200:E141-E159. [DOI: 10.1086/720619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
de Miguel M, Rodríguez-Quilón I, Heuertz M, Hurel A, Grivet D, Jaramillo-Correa JP, Vendramin GG, Plomion C, Majada J, Alía R, Eckert AJ, González-Martínez SC. Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait., Pinaceae). Mol Ecol 2022; 31:2089-2105. [PMID: 35075727 DOI: 10.1111/mec.16367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
A decade of genetic association studies in multiple organisms suggests that most complex traits are polygenic, i.e., they have a genetic architecture determined by numerous loci each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and time is crucial to understand the genetic basis of phenotypic variation. We applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait., maritime pine) and to analyze this variation across environments and years. We evaluated five categories of fitness-related traits (survival, height, phenology, functional, and biotic-stress response traits) in a clonal common-garden network, planted in contrasted environments (over 12,500 trees). Most of the analyzed traits showed evidence of local adaptation based on Qst -Fst comparisons. We further observed a remarkably stable degree of polygenicity, averaging 6% (range of 0-27%), across traits, environments and years. We detected evidence of negative selection, which could explain, at least partially, the high degree of polygenicity. Because polygenic adaptation can occur rapidly, our results suggest that current predictions on the capacity of natural forest tree populations to adapt to new environments should be revised, especially in the current context of climate change.
Collapse
Affiliation(s)
- Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.,EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Isabel Rodríguez-Quilón
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | | | - Agathe Hurel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| | - Juan-Pablo Jaramillo-Correa
- Department of Evolutionary Ecology, Institute of Ecology, Universidad Nacional Autónoma de México, AP 70-275, México City, CDMX 04510, Mexico
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, Division of Florence, National Research Council, 50019, Sesto Fiorentino (FI), Italy
| | | | - Juan Majada
- Sección Forestal, SERIDA, Finca Experimental ''La Mata'', 33820, Grado, Principado de Asturias, Spain
| | - Ricardo Alía
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | | |
Collapse
|
12
|
Hurel A, de Miguel M, Dutech C, Desprez‐Loustau M, Plomion C, Rodríguez‐Quilón I, Cyrille A, Guzman T, Alía R, González‐Martínez SC, Budde KB. Genetic basis of growth, spring phenology, and susceptibility to biotic stressors in maritime pine. Evol Appl 2021; 14:2750-2772. [PMID: 34950227 PMCID: PMC8674897 DOI: 10.1111/eva.13309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/03/2021] [Indexed: 11/30/2022] Open
Abstract
Forest ecosystems are increasingly challenged by extreme events, for example, drought, storms, pest attacks, and fungal pathogen outbreaks, causing severe ecological and economic losses. Understanding the genetic basis of adaptive traits in tree species is of key importance to preserve forest ecosystems, as genetic variation in a trait (i.e., heritability) determines its potential for human-mediated or evolutionary change. Maritime pine (Pinus pinaster Aiton), a conifer widely distributed in southwestern Europe and northwestern Africa, grows under contrasted environmental conditions promoting local adaptation. Genetic variation at adaptive phenotypes, including height, spring phenology, and susceptibility to two fungal pathogens (Diplodia sapinea and Armillaria ostoyae) and an insect pest (Thaumetopoea pityocampa), was assessed in a range-wide clonal common garden of maritime pine. Broad-sense heritability was significant for height (0.219), spring phenology (0.165-0.310), and pathogen susceptibility (necrosis length caused by D. sapinea, 0.152; and by A. ostoyae, 0.021, measured on inoculated, excised branches under controlled conditions), but not for pine processionary moth incidence in the common garden. The correlations of trait variation among populations revealed contrasting trends for pathogen susceptibility to D. sapinea and A. ostoyae with respect to height. Taller trees showed longer necrosis length caused by D. sapinea while shorter trees were more affected by A. ostoyae. Moreover, maritime pine populations from areas with high summer temperatures and frequent droughts were less susceptible to D. sapinea but more susceptible to A. ostoyae. Finally, an association study using 4227 genome-wide SNPs revealed several loci significantly associated with each trait (range of 3-26), including a possibly disease-induced translation initiation factor, eIF-5, associated with needle discoloration caused by D. sapinea. This study provides important insights to develop genetic conservation and breeding strategies integrating species responses to biotic stressors.
Collapse
Affiliation(s)
- Agathe Hurel
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
| | - Marina de Miguel
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
- EGFV, INRAEUniversity of BordeauxVillenave‐d'OrnonFrance
| | - Cyril Dutech
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
| | | | | | | | | | | | | | | | - Katharina B. Budde
- BIOGECO, INRAEUniversity of BordeauxCestasFrance
- Büsgen‐InstituteGeorg‐August University GöttingenGöttingenGermany
| |
Collapse
|
13
|
Genome-wide shifts in climate-related variation underpin responses to selective breeding in a widespread conifer. Proc Natl Acad Sci U S A 2021; 118:2016900118. [PMID: 33649218 PMCID: PMC7958292 DOI: 10.1073/pnas.2016900118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Temperate trees originating from warmer localities usually grow faster and acclimate to winter later than trees of the same species from colder localities. However, when trees are selected for faster growth, are climatically adaptive genes and traits affected? Our research demonstrates a simple, sensitive, broadly applicable, and elusive approach to integrating complex polygenic variation into applied environmental management. We show that selective breeding increases allele frequencies of many trait-associated genes, and that alleles that increase most display strong genetic linkage and potential trade-offs among traits. Increasing tree growth while maintaining adaptation is essential to reforestation in a changing climate, but this may be challenging because trait-associated genetic variation that underpins climate adaptation is responsive to selection for tree growth. Locally adapted temperate tree populations exhibit genetic trade-offs among climate-related traits that can be exacerbated by selective breeding and are challenging to manage under climate change. To inform climatically adaptive forest management, we investigated the genetic architecture and impacts of selective breeding on four climate-related traits in 105 natural and 20 selectively bred lodgepole pine populations from western Canada. Growth, cold injury, growth initiation, and growth cessation phenotypes were tested for associations with 18,600 single-nucleotide polymorphisms (SNPs) in natural populations to identify “positive effect alleles” (PEAs). The effects of artificial selection for faster growth on the frequency of PEAs associated with each trait were quantified in breeding populations from different climates. Substantial shifts in PEA proportions and frequencies were observed across many loci after two generations of selective breeding for height, and responses of phenology-associated PEAs differed strongly among climatic regions. Extensive genetic overlap was evident among traits. Alleles most strongly associated with greater height were often associated with greater cold injury and delayed phenology, although it is unclear whether potential trade-offs arose directly from pleiotropy or indirectly via genetic linkage. Modest variation in multilocus PEA frequencies among populations was associated with large phenotypic differences and strong climatic gradients, providing support for assisted gene flow polices. Relationships among genotypes, phenotypes, and climate in natural populations were maintained or strengthened by selective breeding. However, future adaptive phenotypes and assisted gene flow may be compromised if selective breeding further increases the PEA frequencies of SNPs involved in adaptive trade-offs among climate-related traits.
Collapse
|
14
|
Rajora OP, Zinck JWR. Genetic Diversity, Structure and Effective Population Size of Old-Growth vs. Second-Growth Populations of Keystone and Long-Lived Conifer, Eastern White Pine ( Pinus strobus): Conservation Value and Climate Adaptation Potential. Front Genet 2021; 12:650299. [PMID: 34456961 PMCID: PMC8388927 DOI: 10.3389/fgene.2021.650299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Whether old-growth (OG) forests have higher genetic diversity and effective population size, consequently higher conservation value and climate adaptive potential than second-growth (SG) forests, remain an unresolved issue. We have tested the hypothesis that old-growth forest tree populations have higher genetic diversity, effective population size (NE ), climate adaptive potential and conservation value and lower genetic differentiation than second-growth forest tree populations, employing a keystone and long-lived conifer, eastern white pine (EWP; Pinus strobus). Genetic diversity and population structure of old-growth and second-growth populations of eastern white pine (EWP) were examined using microsatellites of the nuclear and chloroplast genomes and single nucleotide polymorphisms (SNPs) in candidate nuclear genes putatively involved in adaptive responses to climate and underlying multilocus genetic architecture of local adaptation to climate in EWP. Old-growth and second-growth EWP populations had statistically similar genetic diversity, inbreeding coefficient and inter-population genetic differentiation based on nuclear microsatellites (nSSRs) and SNPs. However, old-growth populations had significantly higher chloroplast microsatellites (cpSSRs) haploid diversity than second-growth populations. Old-growth EWP populations had significantly higher coalescence-based historical long-term NE than second-growth EWP populations, but the linkage disequilibrium (LD)-based contemporary NE estimates were statistically similar between the old-growth and second-growth EWP populations. Analyses of population genetic structure and inter-population genetic relationships revealed some genetic constitution differences between the old-growth and second-growth EWP populations. Overall, our results suggest that old-growth and second-growth EWP populations have similar genetic resource conservation value. Because old-growth and second-growth EWP populations have similar levels of genetic diversity in genes putatively involved in adaptive responses to climate, old-growth, and second-growth populations may have similar adaptive potential under climate change. Our results could potentially be generalized across most of the boreal and temperate conifer forest trees. Our study contributes to address a long-standing issue, advances research field and knowledge about conservation and ecological and climate adaptation of forest trees.
Collapse
Affiliation(s)
- Om P Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - John W R Zinck
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
15
|
Kelemen EP, Rehan SM. Conservation insights from wild bee genetic studies: Geographic differences, susceptibility to inbreeding, and signs of local adaptation. Evol Appl 2021; 14:1485-1496. [PMID: 34178099 PMCID: PMC8210791 DOI: 10.1111/eva.13221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
Conserving bees are critical both ecologically and economically. Genetic tools are valuable for monitoring these vital pollinators since tracking these small, fast-flying insects by traditional means is difficult. By surveying the current state of the literature, this review discusses how recent advances in landscape genetic and genomic research are elucidating how wild bees respond to anthropogenic threats. Current literature suggests that there may be geographic differences in the vulnerability of bee species to landscape changes. Populations of temperate bee species are becoming more isolated and more genetically depauperate as their landscape becomes more fragmented, but tropical bee species appear unaffected. These differences may be an artifact of historical differences in land-use, or it suggests that different management plans are needed for temperate and tropical bee species. Encouragingly, genetic studies on invasive bee species indicate that low levels of genetic diversity may not lead to rapid extinction in bees as once predicted. Additionally, next-generation sequencing has given researchers the power to identify potential genes under selection, which are likely critical to species' survival in their rapidly changing environment. While genetic studies provide insights into wild bee biology, more studies focusing on a greater phylogenetic and life-history breadth of species are needed. Therefore, caution should be taken when making broad conservation decisions based on the currently few species examined.
Collapse
|
16
|
Garot E, Dussert S, Domergue F, Jo�t T, Fock-Bastide I, Combes MC, Lashermes P. Multi-Approach Analysis Reveals Local Adaptation in a Widespread Forest Tree of Reunion Island. PLANT & CELL PHYSIOLOGY 2021; 62:280-292. [PMID: 33377945 PMCID: PMC8112841 DOI: 10.1093/pcp/pcaa160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/04/2020] [Indexed: 05/15/2023]
Abstract
Detecting processes of local adaptation in forest trees and identifying environmental selective drivers are of primary importance for forest management and conservation. Transplant experiments, functional genomics and population genomics are complementary tools to efficiently characterize heritable phenotypic traits and to decipher the genetic bases of adaptive traits. Using an integrative approach combining phenotypic assessment in common garden, transcriptomics and landscape genomics, we investigated leaf adaptive traits in Coffea mauritiana, a forest tree endemic to Reunion Island. Eight populations of C. mauritiana originating from sites with contrasted environmental conditions were sampled in common garden to assess several leaf morphological traits, to analyze the leaf transcriptome and leaf cuticular wax composition. The relative alkane content of cuticular waxes was significantly correlated with major climatic gradients, paving the way for further transcriptome-based analyses. The expression pattern of cuticle biosynthetic genes was consistent with a modulation of alkane accumulation across the population studied, supporting the hypothesis that the composition of cuticular wax is involved in the local adaptation of C. mauritiana. Association tests in landscape genomics performed using RNA-seq-derived single-nucleotide polymorphisms revealed that genes associated with cell wall remodeling also likely play an adaptive role. By combining these different approaches, this study efficiently identified local adaptation processes in a non-model species. Our results provide the first evidence for local adaptation in trees endemic to Reunion Island and highlight the importance of cuticle composition for the adaptation of trees to the high evaporative demand in warm climates.
Collapse
Affiliation(s)
- Edith Garot
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
- Universit� de La R�union, UMR PVBMT, La R�union, Saint-Pierre 97410, France
| | - Stephane Dussert
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
| | | | - Thierry Jo�t
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
| | | | | | - Philippe Lashermes
- DIADE, IRD, University of Montpellier, Montpellier 34394, France
- Corresponding author: E-mail, ; Fax, +33 4 67 41 61 81
| |
Collapse
|
17
|
Jaramillo-Correa JP, Bagnoli F, Grivet D, Fady B, Aravanopoulos FA, Vendramin GG, González-Martínez SC. Evolutionary rate and genetic load in an emblematic Mediterranean tree following an ancient and prolonged population collapse. Mol Ecol 2020; 29:4797-4811. [PMID: 33063352 DOI: 10.1111/mec.15684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Severe bottlenecks significantly diminish the amount of genetic diversity and the speed at which it accumulates (i.e., evolutionary rate). They further compromise the efficiency of natural selection to eliminate deleterious variants, which may reach fixation in the surviving populations. Consequently, expanding and adapting to new environments may pose a significant challenge when strong bottlenecks result in genetic pauperization. Herein, we surveyed the patterns of nucleotide diversity, molecular adaptation and genetic load across 177 gene-loci in a circum-Mediterranean conifer (Pinus pinea L.) that represents one of the most extreme cases of genetic pauperization in widespread outbreeding taxa. We found very little genetic variation in both hypervariable nuclear microsatellites (SSRs) and gene-loci, which translated into genetic diversity estimates one order of magnitude lower than those previously reported for pines. Such values were consistent with a strong population decline that began some ~1 Ma. Comparisons with the related and parapatric maritime pine (Pinus pinaster Ait.) revealed reduced rates of adaptive evolution (α and ωa ) and a significant accumulation of genetic load. It is unlikely that these are the result from differences in mutation rate or linkage disequilibrium between the two species; instead they are the presumable outcome of contrasting demographic histories affecting both the speed at which these taxa accumulate genetic diversity, and the global efficacy of selection. Future studies, and programs for conservation and management, should thus start testing for the effects of genetic load on fitness, and integrating such effects into predictive models.
Collapse
Affiliation(s)
- Juan P Jaramillo-Correa
- Department of Evolutionary Ecology, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Francesca Bagnoli
- Division of Florence, Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino, Italy
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain
| | - Bruno Fady
- INRAE, Unité de Recherche Écologie des Forêts Méditerranéennes (URFM), Avignon, France
| | - Filippos A Aravanopoulos
- Laboratory of Forest Genetics and Tree Breeding, Department of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giovanni G Vendramin
- Division of Florence, Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino, Italy
| | | |
Collapse
|
18
|
Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR. Genomic Prediction of (Mal)Adaptation Across Current and Future Climatic Landscapes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-020720-042553] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signals of local adaptation have been found in many plants and animals, highlighting the heterogeneity in the distribution of adaptive genetic variation throughout species ranges. In the coming decades, global climate change is expected to induce shifts in the selective pressures that shape this adaptive variation. These changes in selective pressures will likely result in varying degrees of local climate maladaptation and spatial reshuffling of the underlying distributions of adaptive alleles. There is a growing interest in using population genomic data to help predict future disruptions to locally adaptive gene-environment associations. One motivation behind such work is to better understand how the effects of changing climate on populations’ short-term fitness could vary spatially across species ranges. Here we review the current use of genomic data to predict the disruption of local adaptation across current and future climates. After assessing goals and motivationsunderlying the approach, we review the main steps and associated statistical methods currently in use and explore our current understanding of the limits and future potential of using genomics to predict climate change (mal)adaptation.
Collapse
Affiliation(s)
- Thibaut Capblancq
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| | - Matthew C. Fitzpatrick
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland 21532, USA
| | - Rachael A. Bay
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Stephen R. Keller
- Department of Plant Biology, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
19
|
Climate drives intraspecific differentiation in the expression of growth-defence trade-offs in a long-lived pine species. Sci Rep 2020; 10:10584. [PMID: 32601428 PMCID: PMC7324371 DOI: 10.1038/s41598-020-67158-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023] Open
Abstract
Intraspecific variation in plant defences is expected to be the result of adaptive and plastic responses to environmental conditions, where trade-offs between growth and defences are thought to play a key role shaping phenotypic patterns in defensive investment. Axial resin ducts are costly defensive structures that remain imprinted in the tree rings of conifers, therefore being a valuable proxy of defensive investment along the trees' lifespan. We aimed to disentangle climate-driven adaptive clines and plastic responses to both spatial and temporal environmental variation in resin duct production, and to explore growth-defence trade-offs. To that aim, we applied dendrochronological procedures to quantify annual growth and resin duct production during a 31-year-period in a Mediterranean pine species, including trees from nine populations planted in two common gardens. Both genetic factors and plastic responses modulated annual resin duct production. However, we found no evidence of adaptive clines with climate gradients driving population differentiation. Our results revealed a marked physiological trade-off between growth and defences, where the slope of the trade-off was genetically variable and associated with climatic gradients. Our results help to enlighten the evolutionary patterns and genetic basis of defensive allocation within species, particularly revealing a key role of growth-defence trade-offs.
Collapse
|
20
|
López‐Goldar X, Zas R, Sampedro L. Resource availability drives microevolutionary patterns of plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xosé López‐Goldar
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| | - Rafael Zas
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| | - Luis Sampedro
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas Pontevedra Spain
| |
Collapse
|
21
|
Knowledge status and sampling strategies to maximize cost-benefit ratio of studies in landscape genomics of wild plants. Sci Rep 2020; 10:3706. [PMID: 32111897 PMCID: PMC7048820 DOI: 10.1038/s41598-020-60788-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/11/2020] [Indexed: 11/27/2022] Open
Abstract
To avoid local extinction due to the changes in their natural ecosystems, introduced by anthropogenic activities, species undergo local adaptation. Landscape genomics approach, through genome–environment association studies, has helped evaluate the local adaptation in natural populations. Landscape genomics, is still a developing discipline, requiring refinement of guidelines in sampling design, especially for studies conducted in the backdrop of stark socioeconomic realities of the rainforest ecologies, which are global biodiversity hotspots. In this study we aimed to devise strategies to improve the cost-benefit ratio of landscape genomics studies by surveying sampling designs and genome sequencing strategies used in existing studies. We conducted meta-analyses to evaluate the importance of sampling designs, in terms of (i) number of populations sampled, (ii) number of individuals sampled per population, (iii) total number of individuals sampled, and (iv) number of SNPs used in different studies, in discerning the molecular mechanisms underlying local adaptation of wild plant species. Using the linear mixed effects model, we demonstrated that the total number of individuals sampled and the number of SNPs used, significantly influenced the detection of loci underlying the local adaptation. Thus, based on our findings, in order to optimize the cost-benefit ratio of landscape genomics studies, we suggest focusing on increasing the total number of individuals sampled and using a targeted (e.g. sequencing capture) Pool-Seq approach and/or a random (e.g. RAD-Seq) Pool-Seq approach to detect SNPs and identify SNPs under selection for a given environmental cline. We also found that the existing molecular evidences are inadequate in predicting the local adaptations to climate change in tropical forest ecosystems.
Collapse
|
22
|
Waldvogel A, Feldmeyer B, Rolshausen G, Exposito‐Alonso M, Rellstab C, Kofler R, Mock T, Schmid K, Schmitt I, Bataillon T, Savolainen O, Bergland A, Flatt T, Guillaume F, Pfenninger M. Evolutionary genomics can improve prediction of species' responses to climate change. Evol Lett 2020; 4:4-18. [PMID: 32055407 PMCID: PMC7006467 DOI: 10.1002/evl3.154] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
Global climate change (GCC) increasingly threatens biodiversity through the loss of species, and the transformation of entire ecosystems. Many species are challenged by the pace of GCC because they might not be able to respond fast enough to changing biotic and abiotic conditions. Species can respond either by shifting their range, or by persisting in their local habitat. If populations persist, they can tolerate climatic changes through phenotypic plasticity, or genetically adapt to changing conditions depending on their genetic variability and census population size to allow for de novo mutations. Otherwise, populations will experience demographic collapses and species may go extinct. Current approaches to predicting species responses to GCC begin to combine ecological and evolutionary information for species distribution modelling. Including an evolutionary dimension will substantially improve species distribution projections which have not accounted for key processes such as dispersal, adaptive genetic change, demography, or species interactions. However, eco-evolutionary models require new data and methods for the estimation of a species' adaptive potential, which have so far only been available for a small number of model species. To represent global biodiversity, we need to devise large-scale data collection strategies to define the ecology and evolutionary potential of a broad range of species, especially of keystone species of ecosystems. We also need standardized and replicable modelling approaches that integrate these new data to account for eco-evolutionary processes when predicting the impact of GCC on species' survival. Here, we discuss different genomic approaches that can be used to investigate and predict species responses to GCC. This can serve as guidance for researchers looking for the appropriate experimental setup for their particular system. We furthermore highlight future directions for moving forward in the field and allocating available resources more effectively, to implement mitigation measures before species go extinct and ecosystems lose important functions.
Collapse
Affiliation(s)
- Ann‐Marie Waldvogel
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
| | | | | | - Robert Kofler
- Institute of Population GeneticsVetmeduni ViennaAustria
| | - Thomas Mock
- School of Environmental SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Karl Schmid
- Institute of Plant Breeding, Seed Science and Population GeneticsUniversity of HohenheimStuttgartGermany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- Institute of Ecology, Evolution and DiversityGoethe‐UniversityFrankfurt am MainGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
| | | | | | - Alan Bergland
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginia
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Frederic Guillaume
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZürichZürichSwitzerland
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research CentreFrankfurt am MainGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Institute for Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
23
|
Fréjaville T, Vizcaíno-Palomar N, Fady B, Kremer A, Benito Garzón M. Range margin populations show high climate adaptation lags in European trees. GLOBAL CHANGE BIOLOGY 2020; 26:484-495. [PMID: 31642570 DOI: 10.1111/gcb.14881] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
How populations of long-living species respond to climate change depends on phenotypic plasticity and local adaptation processes. Marginal populations are expected to have lags in adaptation (i.e. differences between the climatic optimum that maximizes population fitness and the local climate) because they receive pre-adapted alleles from core populations preventing them from reaching a local optimum in their climatically marginal habitat. Yet, whether adaptation lags in marginal populations are a common feature across phylogenetically and ecologically different species and how lags can change with climate change remain unexplored. To test for range-wide patterns of phenotypic variation and adaptation lags of populations to climate, we (a) built model ensembles of tree height accounting for the climate of population origin and the climate of the site for 706 populations monitored in 97 common garden experiments covering the range of six European forest tree species; (b) estimated populations' adaptation lags as the differences between the climatic optimum that maximizes tree height and the climate of the origin of each population; (c) identified adaptation lag patterns for populations coming from the warm/dry and cold/wet margins and from the distribution core of each species range. We found that (a) phenotypic variation is driven by either temperature or precipitation; (b) adaptation lags are consistently higher in climatic margin populations (cold/warm, dry/wet) than in core populations; (c) predictions for future warmer climates suggest adaptation lags would decrease in cold margin populations, slightly increasing tree height, while adaptation lags would increase in core and warm margin populations, sharply decreasing tree height. Our results suggest that warm margin populations are the most vulnerable to climate change, but understanding how these populations can cope with future climates depend on whether other fitness-related traits could show similar adaptation lag patterns.
Collapse
Affiliation(s)
| | | | - Bruno Fady
- INRA, UR629, Ecologie des Forêts Méditerranéennes (URFM), Avignon, France
| | - Antoine Kremer
- BIOGECO (UMR 1202), INRA, University of Bordeaux, Cestas, France
| | | |
Collapse
|
24
|
Ruiz-Benito P, Vacchiano G, Lines ER, Reyer CP, Ratcliffe S, Morin X, Hartig F, Mäkelä A, Yousefpour R, Chaves JE, Palacios-Orueta A, Benito-Garzón M, Morales-Molino C, Camarero JJ, Jump AS, Kattge J, Lehtonen A, Ibrom A, Owen HJ, Zavala MA. Available and missing data to model impact of climate change on European forests. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2019.108870] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Looking for Local Adaptation: Convergent Microevolution in Aleppo Pine ( Pinus halepensis). Genes (Basel) 2019; 10:genes10090673. [PMID: 31487909 PMCID: PMC6771008 DOI: 10.3390/genes10090673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 01/15/2023] Open
Abstract
Finding outlier loci underlying local adaptation is challenging and is best approached by suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci (single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (Pinus halepensis), a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model species. We used a nested sampling approach that considered replicated altitudinal gradients for three contrasting sites. We genotyped samples at 294 SNPs located in genomic regions selected to maximize outlier detection. We then applied three different statistical methodologies-Two Bayesian outlier methods and one latent factor principal component method-To identify outlier loci. No SNP was an outlier for all three methods, while eight SNPs were detected by at least two methods and 17 were detected only by one method. From the intersection of outlier SNPs, only one presented an allelic frequency pattern associated with the elevational gradient across the three sites. In a context of multiple populations under similar selective pressures, our results underline the need for careful examination of outliers detected in genomic scans before considering them as candidates for convergent adaptation.
Collapse
|
26
|
Derry AM, Fraser DJ, Brady SP, Astorg L, Lawrence ER, Martin GK, Matte J, Negrín Dastis JO, Paccard A, Barrett RDH, Chapman LJ, Lane JE, Ballas CG, Close M, Crispo E. Conservation through the lens of (mal)adaptation: Concepts and meta-analysis. Evol Appl 2019; 12:1287-1304. [PMID: 31417615 PMCID: PMC6691223 DOI: 10.1111/eva.12791] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
Evolutionary approaches are gaining popularity in conservation science, with diverse strategies applied in efforts to support adaptive population outcomes. Yet conservation strategies differ in the type of adaptive outcomes they promote as conservation goals. For instance, strategies based on genetic or demographic rescue implicitly target adaptive population states whereas strategies utilizing transgenerational plasticity or evolutionary rescue implicitly target adaptive processes. These two goals are somewhat polar: adaptive state strategies optimize current population fitness, which should reduce phenotypic and/or genetic variance, reducing adaptability in changing or uncertain environments; adaptive process strategies increase genetic variance, causing maladaptation in the short term, but increase adaptability over the long term. Maladaptation refers to suboptimal population fitness, adaptation refers to optimal population fitness, and (mal)adaptation refers to the continuum of fitness variation from maladaptation to adaptation. Here, we present a conceptual classification for conservation that implicitly considers (mal)adaptation in the short-term and long-term outcomes of conservation strategies. We describe cases of how (mal)adaptation is implicated in traditional conservation strategies, as well as strategies that have potential as a conservation tool but are relatively underutilized. We use a meta-analysis of a small number of available studies to evaluate whether the different conservation strategies employed are better suited toward increasing population fitness across multiple generations. We found weakly increasing adaptation over time for transgenerational plasticity, genetic rescue, and evolutionary rescue. Demographic rescue was generally maladaptive, both immediately after conservation intervention and after several generations. Interspecific hybridization was adaptive only in the F1 generation, but then rapidly leads to maladaptation. Management decisions that are made to support the process of adaptation must adequately account for (mal)adaptation as a potential outcome and even as a tool to bolster adaptive capacity to changing conditions.
Collapse
Affiliation(s)
- Alison Margaret Derry
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
| | - Dylan J. Fraser
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Biology DepartmentConcordia UniversityMontrealQuebecCanada
| | - Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenConnecticut
| | - Louis Astorg
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | - Gillian K. Martin
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | | | - Antoine Paccard
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rowan D. H. Barrett
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lauren J. Chapman
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Jeffrey E. Lane
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Marissa Close
- Department of BiologyPace UniversityNew YorkNew York
| | - Erika Crispo
- Department of BiologyPace UniversityNew YorkNew York
| |
Collapse
|
27
|
Robledo‐Arnuncio JJ, Unger GM. Measuring viability selection from prospective cohort mortality studies: A case study in maritime pine. Evol Appl 2019; 12:863-877. [PMID: 31080501 PMCID: PMC6503825 DOI: 10.1111/eva.12729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 11/27/2022] Open
Abstract
By changing the genetic background available for selection at subsequent life stages, stage-specific selection can define adaptive potential across the life cycle. We propose and evaluate here a neutrality test and a Bayesian method to infer stage-specific viability selection coefficients using sequential random genotypic samples drawn from a longitudinal cohort mortality study, within a generation. The approach is suitable for investigating selective mortality in large natural or experimental cohorts of any organism in which individual tagging and tracking are unfeasible. Numerical simulation results indicate that the method can discriminate loci under strong viability selection, and provided samples are large, yield accurate estimates of the corresponding selection coefficients. Genotypic frequency changes are largely driven by sampling noise under weak selection, however, compromising inference in that case. We apply the proposed methods to analyze viability selection operating at early recruitment stages in a natural maritime pine (Pinus pinaster Ait.) population. We measured temporal genotypic frequency changes at 384 candidate-gene SNP loci among seedlings sampled from the time of emergence in autumn until the summer of the following year, a period with high elimination rates. We detected five loci undergoing allele frequency changes larger than expected from stochastic mortality and sampling, with putative functions that could influence survival at early seedling stages. Our results illustrate how new statistical and sampling schemes can be used to conduct genomic scans of contemporary selection on specific life stages.
Collapse
Affiliation(s)
| | - Gregor M. Unger
- Department of Forest Ecology & GeneticsINIA‐CIFORMadridSpain
- Escuela Internacional de DoctoradoUniversidad Rey Juan CarlosMóstolesSpain
- Present address:
Department of Forest GeneticsFederal Research and Training Centre for ForestsNatural Hazards and LandscapeViennaAustria
| |
Collapse
|
28
|
Acosta JJ, Fahrenkrog AM, Neves LG, Resende MFR, Dervinis C, Davis JM, Holliday JA, Kirst M. Exome Resequencing Reveals Evolutionary History, Genomic Diversity, and Targets of Selection in the Conifers Pinus taeda and Pinus elliottii. Genome Biol Evol 2019; 11:508-520. [PMID: 30689841 PMCID: PMC6385631 DOI: 10.1093/gbe/evz016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/22/2022] Open
Abstract
Loblolly pine (Pinus taeda) and slash pine (Pinus elliottii) are ecologically and economically important pine species that dominate many forest ecosystems in the southern United States, but like all conifers, the study of their genetic diversity and demographic history has been hampered by their large genome size. A small number of studies mainly based on candidate-gene sequencing have been reported for P. taeda to date, whereas none are available for P. elliottii. Targeted exome resequencing has recently enabled population genomics studies for conifers, approach used here to assess genomic diversity, signatures of selection, population structure, and demographic history of P. elliottii and P. taeda. Extensive similarities were revealed between these species: both species feature rapid linkage disequilibrium decay and high levels of genetic diversity. Moreover, genome-wide positive correlations for measures of genetic diversity between the species were also observed, likely due to shared structural genomic constraints. Also, positive selection appears to be targeting a common set of genes in both pines. Demographic history differs between both species, with only P. taeda being affected by a dramatic bottleneck during the last glacial period. The ability of P. taeda to recover from a dramatic reduction in population size while still retaining high levels of genetic diversity shows promise for other pines facing environmental stressors associated with climate change, indicating that these too may be able to adapt successfully to new future conditions even after a drastic population size contraction.
Collapse
Affiliation(s)
- Juan J Acosta
- School of Forest Resources and Conservation, University of Florida.,University of Florida Genetics Institute, University of Florida.,Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC
| | - Annette M Fahrenkrog
- School of Forest Resources and Conservation, University of Florida.,Plant Molecular and Cellular Biology Graduate Program, University of Florida
| | - Leandro G Neves
- School of Forest Resources and Conservation, University of Florida.,Plant Molecular and Cellular Biology Graduate Program, University of Florida.,RAPiD Genomics, Gainesville, FL
| | | | | | - John M Davis
- School of Forest Resources and Conservation, University of Florida
| | - Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida.,Plant Molecular and Cellular Biology Graduate Program, University of Florida.,University of Florida Genetics Institute, University of Florida
| |
Collapse
|
29
|
Vázquez-González C, López-Goldar X, Zas R, Sampedro L. Neutral and Climate-Driven Adaptive Processes Contribute to Explain Population Variation in Resin Duct Traits in a Mediterranean Pine Species. FRONTIERS IN PLANT SCIENCE 2019; 10:1613. [PMID: 31921257 PMCID: PMC6923275 DOI: 10.3389/fpls.2019.01613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Resin ducts are important anatomical defensive traits related to biotic resistance in conifers. Previous studies have reported intraspecific genetic variation in resin duct characteristics. However, little is currently known about the micro-evolutionary patterns and adaptive value of these defensive structures. Here, we quantified inter-population genetic variation in resin duct features and their inducibility in Pinus pinaster and assessed whether such variation was associated with climate gradients. To that end, we characterized the resin duct system of 2-year-old saplings from 10 populations across the species' distribution range. We measured axial resin duct features (density, mean size, and percentage conductive area of resin ducts) and their inducibility in response to methyl jasmonate. Genotyping of single nucleotide polymorphisms allowed to account for the population genetic structure in our models in order to avoid spurious correlations between resin duct characteristics and climate. We found large inter-population variation in resin duct density and conductive area, but not in their inducibility. Our results suggest that population variation in the percentage conductive area of resin ducts likely arise from adaptation to local climate conditions. This study highlights the adaptive relevance of resin ducts and helps to shed light on the micro-evolutionary patterns of resin-based defenses in conifers.
Collapse
|
30
|
Martins K, Gugger PF, Llanderal‐Mendoza J, González‐Rodríguez A, Fitz‐Gibbon ST, Zhao J, Rodríguez‐Correa H, Oyama K, Sork VL. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evol Appl 2018; 11:1842-1858. [PMID: 30459833 PMCID: PMC6231481 DOI: 10.1111/eva.12684] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 05/31/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022] Open
Abstract
Local adaptation is a critical evolutionary process that allows plants to grow better in their local compared to non-native habitat and results in species-wide geographic patterns of adaptive genetic variation. For forest tree species with a long generation time, this spatial genetic heterogeneity can shape the ability of trees to respond to rapid climate change. Here, we identify genomic variation that may confer local environmental adaptations and then predict the extent of adaptive mismatch under future climate as a tool for forest restoration or management of the widely distributed high-elevation oak species Quercus rugosa in Mexico. Using genotyping by sequencing, we identified 5,354 single nucleotide polymorphisms (SNPs) genotyped from 103 individuals across 17 sites in the Trans-Mexican Volcanic Belt, and, after controlling for neutral genetic structure, we detected 74 F ST outlier SNPs and 97 SNPs associated with climate variation. Then, we deployed a nonlinear multivariate model, Gradient Forests, to map turnover in allele frequencies along environmental gradients and predict areas most sensitive to climate change. We found that spatial patterns of genetic variation were most strongly associated with precipitation seasonality and geographic distance. We identified regions of contemporary genetic and climatic similarities and predicted regions where future populations of Q. rugosa might be at risk due to high expected rate of climate change. Our findings provide preliminary details for future management strategies of Q. rugosa in Mexico and also illustrate how a landscape genomic approach can provide a useful tool for conservation and resource management strategies.
Collapse
Affiliation(s)
- Karina Martins
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCalifornia
- Departamento de BiologiaUniversidade Federal de São CarlosSorocabaSPBrazil
| | - Paul F. Gugger
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCalifornia
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMaryland
| | - Jesus Llanderal‐Mendoza
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de México (UNAM)MoreliaMichoacánMéxico
- Escuela Nacional de Estudios Superiores Unidad MoreliaUniversidad Nacional Autónoma de México (UNAM)MoreliaMichoacánMéxico
| | - Antonio González‐Rodríguez
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de México (UNAM)MoreliaMichoacánMéxico
| | - Sorel T. Fitz‐Gibbon
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCalifornia
| | - Jian‐Li Zhao
- Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaYunnanChina
| | - Hernando Rodríguez‐Correa
- Escuela Nacional de Estudios Superiores Unidad MoreliaUniversidad Nacional Autónoma de México (UNAM)MoreliaMichoacánMéxico
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad MoreliaUniversidad Nacional Autónoma de México (UNAM)MoreliaMichoacánMéxico
| | - Victoria L. Sork
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCalifornia
- Institute of the Environment and SustainabilityUniversity of California, Los AngelesLos AngelesCalifornia
| |
Collapse
|
31
|
López-Goldar X, Villari C, Bonello P, Borg-Karlson AK, Grivet D, Zas R, Sampedro L. Inducibility of Plant Secondary Metabolites in the Stem Predicts Genetic Variation in Resistance Against a Key Insect Herbivore in Maritime Pine. FRONTIERS IN PLANT SCIENCE 2018; 9:1651. [PMID: 30519249 PMCID: PMC6258960 DOI: 10.3389/fpls.2018.01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/24/2018] [Indexed: 05/20/2023]
Abstract
Resistance to herbivores and pathogens is considered a key plant trait with strong adaptive value in trees, usually involving high concentrations of a diverse array of plant secondary metabolites (PSM). Intraspecific genetic variation and plasticity of PSM are widely known. However, their ecology and evolution are unclear, and even the implication of PSM as traits that provide direct effective resistance against herbivores is currently questioned. We used control and methyl jasmonate (MJ) induced clonal copies of genotypes within families from ten populations of the main distribution range of maritime pine to exhaustively characterize the constitutive and induced profile and concentration of PSM in the stem phloem, and to measure insect herbivory damage as a proxy of resistance. Then, we explored whether genetic variation in resistance to herbivory may be predicted by the constitutive concentration of PSM, and the role of its inducibility to predict the increase in resistance once the plant is induced. We found large and structured genetic variation among populations but not between families within populations in resistance to herbivory. The MJ-induction treatment strongly increased resistance to the weevil in the species, and the genetic variation in the inducibility of resistance was significantly structured among populations, with greater inducibility in the Atlantic populations. Genetic variation in resistance was largely explained by the multivariate concentration and profile of PSM at the genotypic level, rather than by bivariate correlations with individual PSM, after accounting for genetic relatedness among genotypes. While the constitutive concentration of the PSM blend did not show a clear pattern of resistance to herbivory, specific changes in the chemical profile and the increase in concentration of the PSM blend after MJ induction were related to increased resistance. To date, this is the first example of a comprehensive and rigorous approach in which inducibility of PSM in trees and its implication in resistance was analyzed excluding spurious associations due to genetic relatedness, often overlooked in intraspecific studies. Here we provide evidences that multivariate analyses of PSM, rather than bivariate correlations, provide more realistic information about the potentially causal relationships between PSM and resistance to herbivory in pine trees.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
- Ecological Chemistry Group, Department of Chemistry, Royal Institute of Technology, Stockholm, Sweden
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Madrid, Spain
| | - Caterina Villari
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Anna Karin Borg-Karlson
- Ecological Chemistry Group, Department of Chemistry, Royal Institute of Technology, Stockholm, Sweden
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Madrid, Spain
- Sustainable Forest Management Research Institute, INIA-University of Valladolid, Palencia, Spain
| | - Rafael Zas
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain
| | - Luís Sampedro
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, Pontevedra, Spain
| |
Collapse
|
32
|
de Lafontaine G, Napier JD, Petit RJ, Hu FS. Invoking adaptation to decipher the genetic legacy of past climate change. Ecology 2018; 99:1530-1546. [PMID: 29729183 DOI: 10.1002/ecy.2382] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Persistence of natural populations during periods of climate change is likely to depend on migration (range shifts) or adaptation. These responses were traditionally considered discrete processes and conceptually divided into the realms of ecology and evolution. In a milestone paper, Davis and Shaw (2001) Science 292:673 argued that the interplay of adaptation and migration was central to biotic responses to Quaternary climate, but since then there has been no synthesis of efforts made to set up this research program. Here we review some of the salient findings from molecular genetic studies assessing ecological and evolutionary responses to Quaternary climate change. These studies have revolutionized our understanding of population processes associated with past species migration. However, knowledge remains limited about the role of natural selection for local adaptation of populations to Quaternary environmental fluctuations and associated range shifts, and for the footprints this might have left on extant populations. Next-generation sequencing technologies, high-resolution paleoclimate analyses, and advances in population genetic theory offer an unprecedented opportunity to test hypotheses about adaptation through time. Recent population genomics studies have greatly improved our understanding of the role of contemporary adaptation to local environments in shaping spatial patterns of genetic diversity across modern-day landscapes. Advances in this burgeoning field provide important conceptual and methodological bases to decipher the historical role of natural selection and assess adaptation to past environmental variation. We suggest that a process called "temporal conditional neutrality" has taken place: some alleles favored in glacial environments become selectively neutral in modern-day conditions, whereas some alleles that had been neutral during glacial periods become under selection in modern environments. Building on this view, we present a new integrative framework for addressing the interplay of demographic and adaptive evolutionary responses to Quaternary climate dynamics, the research agenda initially envisioned by Davis and Shaw (2001) Science 292:673.
Collapse
Affiliation(s)
- Guillaume de Lafontaine
- Canada Research Chair in Integrative Biology of Northern Flora, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada.,Department of Plant Biology, University of Illinois, Urbana, Illinois, 61801, USA
| | - Joseph D Napier
- Department of Plant Biology, University of Illinois, Urbana, Illinois, 61801, USA
| | - Rémy J Petit
- Biogeco, INRA, Univ. Bordeaux, Cestas, 33610, France
| | - Feng Sheng Hu
- Department of Plant Biology, University of Illinois, Urbana, Illinois, 61801, USA.,Department of Geology, University of Illinois, Urbana, Illinois, 61801, USA
| |
Collapse
|
33
|
Drought Sensitivity of Norway Spruce at the Species' Warmest Fringe: Quantitative and Molecular Analysis Reveals High Genetic Variation Among and Within Provenances. G3-GENES GENOMES GENETICS 2018; 8:1225-1245. [PMID: 29440346 PMCID: PMC5873913 DOI: 10.1534/g3.117.300524] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Norway spruce (Picea abies) is by far the most important timber species in Europe, but its outstanding role in future forests is jeopardized by its high sensitivity to drought. We analyzed drought response of Norway spruce at the warmest fringe of its natural range. Based on a 35-year old provenance experiment we tested for genetic variation among and within seed provenances across consecutively occurring strong drought events using dendroclimatic time series. Moreover, we tested for associations between ≈1,700 variable SNPs and traits related to drought response, wood characteristics and climate-growth relationships. We found significant adaptive genetic variation among provenances originating from the species’ Alpine, Central and Southeastern European range. Genetic variation between individuals varied significantly among provenances explaining up to 44% of the phenotypic variation in drought response. Varying phenotypic correlations between drought response and wood traits confirmed differences in selection intensity among seed provenances. Significant associations were found between 29 SNPs and traits related to drought, climate-growth relationships and wood properties which explained between 11 and 43% of trait variation, though 12 of them were due to single individuals having extreme phenotypes of the respective trait. The majority of these SNPs are located within exons of genes and the most important ones are preferentially expressed in cambium and xylem expansion layers. Phenotype-genotype associations were stronger if only provenances with significant quantitative genetic variation in drought response were considered. The present study confirms the high adaptive variation of Norway spruce in Central and Southeastern Europe and demonstrates how quantitative genetic, dendroclimatic and genomic data can be linked to understand the genetic basis of adaptation to climate extremes in trees.
Collapse
|
34
|
Mosca E, Di Pierro EA, Budde KB, Neale DB, González-Martínez SC. Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species. Mol Ecol 2018; 27:647-658. [PMID: 29274175 DOI: 10.1111/mec.14469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Genetic responses to environmental changes take place at different spatial scales. While the effect of environment on the distribution of species' genetic diversity at large geographical scales has been the focus of several recent studies, its potential effects on genetic structure at local scales are understudied. Environmental effects on fine-scale spatial genetic structure (FSGS) were investigated in four Alpine conifer species (five to eight populations per species) from the eastern Italian Alps. Significant FSGS was found for 11 of 25 populations. Interestingly, we found no significant differences in FSGS across species but great variation among populations within species, highlighting the importance of local environmental factors. Interannual variability in spring temperature had a small but significant effect on FSGS of Larix decidua, probably related to species-specific life history traits. For Abies alba, Picea abies and Pinus cembra, linear models identified spring precipitation as a potentially relevant climate factor associated with differences in FSGS across populations; however, models had low explanatory power and were strongly influenced by a P. cembra outlier population from a very dry site. Overall, the direction of the identified effects is according to expectations, with drier and more variable environments increasing FSGS. Underlying mechanisms may include climate-related changes in the variance of reproductive success and/or environmental selection of specific families. This study provides new insights on potential changes in local genetic structure of four Alpine conifers in the face of environmental changes, suggesting that new climates, through altering FSGS, may also have relevant impacts on plant microevolution.
Collapse
Affiliation(s)
- Elena Mosca
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige, Italy.,Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Erica A Di Pierro
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), S. Michele all'Adige, Italy
| | | | - David B Neale
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA
| | | |
Collapse
|
35
|
Grivet D, Avia K, Vaattovaara A, Eckert AJ, Neale DB, Savolainen O, González-Martínez SC. High rate of adaptive evolution in two widespread European pines. Mol Ecol 2017; 26:6857-6870. [PMID: 29110402 DOI: 10.1111/mec.14402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022]
Abstract
Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa ), as estimated from the distribution of fitness effects, were similar across species and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa . Moreover, population contraction-expansion dynamics for each species did not affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations.
Collapse
Affiliation(s)
- Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain
| | - Komlan Avia
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Algal Genetics Group, UMR 8227, CNRS, Sorbonne Universités, UPMC, Station Biologique Roscoff, Roscoff, France.,UMI 3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Station Biologique Roscoff, Roscoff, France
| | - Aleksia Vaattovaara
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland.,Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - David B Neale
- Department of Plant Sciences, University of California at Davis, Davis, CA, USA
| | - Outi Savolainen
- Department of Ecology and Genetics and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Madrid, Spain.,Sustainable Forest Management Research Institute, INIA - University of Valladolid, Palencia, Spain.,BIOGECO, INRA, Univ. Bordeaux, Cestas, France
| |
Collapse
|
36
|
Moran E, Lauder J, Musser C, Stathos A, Shu M. The genetics of drought tolerance in conifers. THE NEW PHYTOLOGIST 2017; 216:1034-1048. [PMID: 28895167 DOI: 10.1111/nph.14774] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/27/2017] [Indexed: 05/20/2023]
Abstract
Contents 1034 I. 1034 II. 1035 III. 1037 IV. 1038 V. 1042 VI. 1043 VII. 1045 References 1045 SUMMARY: As temperatures warm and precipitation patterns shift as a result of climate change, interest in the identification of tree genotypes that will thrive under more arid conditions has grown. In this review, we discuss the multiple definitions of 'drought tolerance' and the biological processes involved in drought responses. We describe the three major approaches taken in the study of genetic variation in drought responses, the advantages and shortcomings of each, and what each of these approaches has revealed about the genetic basis of adaptation to drought in conifers. Finally, we discuss how a greater knowledge of the genetics of drought tolerance may aid forest management, and provide recommendations for how future studies may overcome the limitations of past approaches. In particular, we urge a more direct focus on survival, growth and the traits that directly predict them (rather than on proxies, such as water use efficiency), combining research approaches with complementary strengths and weaknesses, and the inclusion of a wider range of taxa and life stages.
Collapse
Affiliation(s)
- Emily Moran
- UC Merced, 5200 N Lake Rd, Merced, CA, 95343, USA
| | | | - Cameron Musser
- Yale School of Forestry & Environmental Studies, 195 Prospect Street, New Haven, CT, 06511, USA
| | | | - Mengjun Shu
- UC Merced, 5200 N Lake Rd, Merced, CA, 95343, USA
| |
Collapse
|
37
|
Dal Grande F, Sharma R, Meiser A, Rolshausen G, Büdel B, Mishra B, Thines M, Otte J, Pfenninger M, Schmitt I. Adaptive differentiation coincides with local bioclimatic conditions along an elevational cline in populations of a lichen-forming fungus. BMC Evol Biol 2017; 17:93. [PMID: 28359299 PMCID: PMC5374679 DOI: 10.1186/s12862-017-0929-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022] Open
Abstract
Background Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments. Results We detected two strongly differentiated genetic clusters linked to Mediterranean and temperate-oceanic climate, and an admixture zone, which coincided with the transition between the two bioclimates. High altitude individuals showed ecophysiological adaptations to wetter and more shaded conditions. Highly differentiated genome regions contained a number of genes associated with stress response, local environmental adaptation, and sexual reproduction. Conclusions Taken together our results provide evidence for a complex interplay between demographic history and spatially varying selection acting on a number of key biological processes, suggesting a scenario of ecological speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0929-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - Rahul Sharma
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Anjuli Meiser
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Department, University of Kaiserslautern, 67653, Kaiserslautern, Germany
| | - Bagdevi Mishra
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Serra-Varela MJ, Alía R, Daniels RR, Zimmermann NE, Gonzalo-Jiménez J, Grivet D. Assessing vulnerability of two Mediterranean conifers to support genetic conservation management in the face of climate change. DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12544] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- María Jesús Serra-Varela
- Department of Plant Production and Forest Resources; University of Valladolid; Palencia Spain
- Sustainable Forest Management Research Institute; INIA-University of Valladolid; Palencia Spain
- Department of Forest Ecology and Genetics; INIA, Forest Research Centre; Madrid Spain
| | - Ricardo Alía
- Sustainable Forest Management Research Institute; INIA-University of Valladolid; Palencia Spain
- Department of Forest Ecology and Genetics; INIA, Forest Research Centre; Madrid Spain
| | - Rose Ruiz Daniels
- Department of Forest Ecology and Genetics; INIA, Forest Research Centre; Madrid Spain
| | - Niklaus E. Zimmermann
- Landscape Dynamics; Swiss Federal Research Institute WSL; Birmensdorf Switzerland
- Department of Environmental Systems Science; Swiss Federal Institute of Technology ETH; Zürich Switzerland
| | - Julián Gonzalo-Jiménez
- Department of Plant Production and Forest Resources; University of Valladolid; Palencia Spain
- Sustainable Forest Management Research Institute; INIA-University of Valladolid; Palencia Spain
| | - Delphine Grivet
- Sustainable Forest Management Research Institute; INIA-University of Valladolid; Palencia Spain
- Department of Forest Ecology and Genetics; INIA, Forest Research Centre; Madrid Spain
| |
Collapse
|
39
|
Rodríguez-Quilón I, Santos-del-Blanco L, Grivet D, Jaramillo-Correa JP, Majada J, Vendramin GG, Alía R, González-Martínez SC. Local effects drive heterozygosity-fitness correlations in an outcrossing long-lived tree. Proc Biol Sci 2017; 282:20152230. [PMID: 26631567 DOI: 10.1098/rspb.2015.2230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heterozygosity-fitness correlations (HFCs) have been used to understand the complex interactions between inbreeding, genetic diversity and evolution. Although frequently reported for decades, evidence for HFCs was often based on underpowered studies or inappropriate methods, and hence their underlying mechanisms are still under debate. Here, we used 6100 genome-wide single nucleotide polymorphisms (SNPs) to test for general and local effect HFCs in maritime pine (Pinus pinaster Ait.), an iconic Mediterranean forest tree. Survival was used as a fitness proxy, and HFCs were assessed at a four-site common garden under contrasting environmental conditions (total of 16 288 trees). We found no significant correlations between genome-wide heterozygosity and fitness at any location, despite variation in inbreeding explaining a substantial proportion of the total variance for survival. However, four SNPs (including two non-synonymous mutations) were involved in significant associations with survival, in particular in the common gardens with higher environmental stress, as shown by a novel heterozygosity-fitness association test at the species-wide level. Fitness effects of SNPs involved in significant HFCs were stable across maritime pine gene pools naturally growing in distinct environments. These results led us to dismiss the general effect hypothesis and suggested a significant role of heterozygosity in specific candidate genes for increasing fitness in maritime pine. Our study highlights the importance of considering the species evolutionary and demographic history and different spatial scales and testing environments when assessing and interpreting HFCs.
Collapse
Affiliation(s)
- Isabel Rodríguez-Quilón
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain
| | - Luis Santos-del-Blanco
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain
| | - Juan Pablo Jaramillo-Correa
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain Department of Evolutionary Ecology, Institute of Ecology, Universidad Nacional Autónoma de México, AP 70-275, México D.F., Mexico
| | - Juan Majada
- CETEMAS-SERIDA, Sección Forestal, Finca Experimental La Mata, Grado 33820, Spain
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Florence) 50019, Italy
| | - Ricardo Alía
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia 34071, Spain
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain INRA, UMR 1202 Biodiversité Gènes Ecosystèmes (Biogeco), Cestas 33610, France Université de Bordeaux, UMR 1202 Biodiversité Gènes Ecosystèmes (Biogeco), Talence 33170, France
| |
Collapse
|
40
|
Nadeau S, Meirmans PG, Aitken SN, Ritland K, Isabel N. The challenge of separating signatures of local adaptation from those of isolation by distance and colonization history: The case of two white pines. Ecol Evol 2016; 6:8649-8664. [PMID: 28035257 PMCID: PMC5192886 DOI: 10.1002/ece3.2550] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023] Open
Abstract
Accurately detecting signatures of local adaptation using genetic‐environment associations (GEAs) requires controlling for neutral patterns of population structure to reduce the risk of false positives. However, a high degree of collinearity between climatic gradients and neutral population structure can greatly reduce power, and the performance of GEA methods in such case is rarely evaluated in empirical studies. In this study, we attempted to disentangle the effects of local adaptation and isolation by environment (IBE) from those of isolation by distance (IBD) and isolation by colonization from glacial refugia (IBC) using range‐wide samples in two white pine species. For this, SNPs from 168 genes, including 52 candidate genes for growth and phenology, were genotyped in 133 and 61 populations of Pinus strobus and P. monticola, respectively. For P. strobus and using all 153 SNPs, climate (IBE) did not significantly explained among‐population variation when controlling for IBD and IBC in redundancy analyses (RDAs). However, 26 SNPs were significantly associated with climate in single‐locus GEA analyses (Bayenv2 and LFMM), suggesting that local adaptation took place in the presence of high gene flow. For P. monticola, we found no evidence of IBE using RDAs and weaker signatures of local adaptation using GEA and FST outlier tests, consistent with adaptation via phenotypic plasticity. In both species, the majority of the explained among‐population variation (69 to 96%) could not be partitioned between the effects of IBE, IBD, and IBC. GEA methods can account differently for this confounded variation, and this could explain the small overlap of SNPs detected between Bayenv2 and LFMM. Our study illustrates the inherent difficulty of taking into account neutral structure in natural populations and the importance of sampling designs that maximize climatic variation, while minimizing collinearity between climatic gradients and neutral structure.
Collapse
Affiliation(s)
- Simon Nadeau
- Natural Resources Canada Canadian Forest Service Laurentian Forestry Centre Québec QC Canada; Department of Forest and Conservation Sciences The University of British Columbia Vancouver BC Canada
| | - Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Sally N Aitken
- Department of Forest and Conservation Sciences The University of British Columbia Vancouver BC Canada
| | - Kermit Ritland
- Department of Forest and Conservation Sciences The University of British Columbia Vancouver BC Canada
| | - Nathalie Isabel
- Natural Resources Canada Canadian Forest Service Laurentian Forestry Centre Québec QC Canada
| |
Collapse
|
41
|
Olsson S, Seoane-Zonjic P, Bautista R, Claros MG, González-Martínez SC, Scotti I, Scotti-Saintagne C, Hardy OJ, Heuertz M. Development of genomic tools in a widespread tropical tree, Symphonia globulifera L.f.: a new low-coverage draft genome, SNP and SSR markers. Mol Ecol Resour 2016; 17:614-630. [PMID: 27718316 DOI: 10.1111/1755-0998.12605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023]
Abstract
Population genetic studies in tropical plants are often challenging because of limited information on taxonomy, phylogenetic relationships and distribution ranges, scarce genomic information and logistic challenges in sampling. We describe a strategy to develop robust and widely applicable genetic markers based on a modest development of genomic resources in the ancient tropical tree species Symphonia globulifera L.f. (Clusiaceae), a keystone species in African and Neotropical rainforests. We provide the first low-coverage (11X) fragmented draft genome sequenced on an individual from Cameroon, covering 1.027 Gbp or 67.5% of the estimated genome size. Annotation of 565 scaffolds (7.57 Mbp) resulted in the prediction of 1046 putative genes (231 of them containing a complete open reading frame) and 1523 exact simple sequence repeats (SSRs, microsatellites). Aligning a published transcriptome of a French Guiana population against this draft genome produced 923 high-quality single nucleotide polymorphisms. We also preselected genic SSRs in silico that were conserved and polymorphic across a wide geographical range, thus reducing marker development tests on rare DNA samples. Of 23 SSRs tested, 19 amplified and 18 were successfully genotyped in four S. globulifera populations from South America (Brazil and French Guiana) and Africa (Cameroon and São Tomé island, FST = 0.34). Most loci showed only population-specific deviations from Hardy-Weinberg proportions, pointing to local population effects (e.g. null alleles). The described genomic resources are valuable for evolutionary studies in Symphonia and for comparative studies in plants. The methods are especially interesting for widespread tropical or endangered taxa with limited DNA availability.
Collapse
Affiliation(s)
- Sanna Olsson
- Department of Forest Ecology and Genetics, INIA Forest Research Centre (INIA-CIFOR), Carretera de A Coruña km 7.5, E-28040, Madrid, Spain
| | - Pedro Seoane-Zonjic
- Departamento de Biología Molecular y Bioquímica, and Plataforma Andaluza de Bioinformática, Universidad de Málaga, calle Severo Ochoa 34, E-29590, Campanillas, Málaga, Spain
| | - Rocío Bautista
- Departamento de Biología Molecular y Bioquímica, and Plataforma Andaluza de Bioinformática, Universidad de Málaga, calle Severo Ochoa 34, E-29590, Campanillas, Málaga, Spain
| | - M Gonzalo Claros
- Departamento de Biología Molecular y Bioquímica, and Plataforma Andaluza de Bioinformática, Universidad de Málaga, calle Severo Ochoa 34, E-29590, Campanillas, Málaga, Spain
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, INIA Forest Research Centre (INIA-CIFOR), Carretera de A Coruña km 7.5, E-28040, Madrid, Spain.,UMR1202 BioGeCo, INRA, Univ. Bordeaux, 69 route d'Arcachon, F-33610, Cestas, France
| | - Ivan Scotti
- INRA, UR629 URFM, Ecologie des Forêts Méditerranéennes, Site Agroparc, Domaine Saint Paul, F-84914, Avignon Cedex 9, France
| | - Caroline Scotti-Saintagne
- INRA, UR629 URFM, Ecologie des Forêts Méditerranéennes, Site Agroparc, Domaine Saint Paul, F-84914, Avignon Cedex 9, France
| | - Olivier J Hardy
- Faculté des Sciences, Evolutionary Biology and Ecology, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP 160/12, B-1050, Brussels, Belgium
| | - Myriam Heuertz
- Department of Forest Ecology and Genetics, INIA Forest Research Centre (INIA-CIFOR), Carretera de A Coruña km 7.5, E-28040, Madrid, Spain.,UMR1202 BioGeCo, INRA, Univ. Bordeaux, 69 route d'Arcachon, F-33610, Cestas, France.,Faculté des Sciences, Evolutionary Biology and Ecology, Université Libre de Bruxelles, Av. F.D. Roosevelt 50, CP 160/12, B-1050, Brussels, Belgium
| |
Collapse
|
42
|
Rodríguez-Quilón I, Santos-Del-Blanco L, Serra-Varela MJ, Koskela J, González-Martínez SC, Alía R. Capturing neutral and adaptive genetic diversity for conservation in a highly structured tree species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:2254-2266. [PMID: 27755736 DOI: 10.1002/eap.1361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/26/2016] [Accepted: 04/12/2016] [Indexed: 06/06/2023]
Abstract
Preserving intraspecific genetic diversity is essential for long-term forest sustainability in a climate change scenario. Despite that, genetic information is largely neglected in conservation planning, and how conservation units should be defined is still heatedly debated. Here, we use maritime pine (Pinus pinaster Ait.), an outcrossing long-lived tree with a highly fragmented distribution in the Mediterranean biodiversity hotspot, to prove the importance of accounting for genetic variation, of both neutral molecular markers and quantitative traits, to define useful conservation units. Six gene pools associated to distinct evolutionary histories were identified within the species using 12 microsatellites and 266 single nucleotide polymorphisms (SNPs). In addition, height and survival standing variation, their genetic control, and plasticity were assessed in a multisite clonal common garden experiment (16 544 trees). We found high levels of quantitative genetic differentiation within previously defined neutral gene pools. Subsequent cluster analysis and post hoc trait distribution comparisons allowed us to define 10 genetically homogeneous population groups with high evolutionary potential. They constitute the minimum number of units to be represented in a maritime pine dynamic conservation program. Our results uphold that the identification of conservation units below the species level should account for key neutral and adaptive components of genetic diversity, especially in species with strong population structure and complex evolutionary histories. The environmental zonation approach currently used by the pan-European genetic conservation strategy for forest trees would be largely improved by gradually integrating molecular and quantitative trait information, as data become available.
Collapse
Affiliation(s)
- Isabel Rodríguez-Quilón
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Carretera A Coruña km 7.5, Madrid, 28040, Spain.
| | - Luis Santos-Del-Blanco
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, 1015, Switzerland
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, 34071, Spain
| | - María Jesús Serra-Varela
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Carretera A Coruña km 7.5, Madrid, 28040, Spain
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, 34071, Spain
| | - Jarkko Koskela
- Bioversity International, Via dei Tre Denari 472/a, Maccarese, 00057, Italy
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Carretera A Coruña km 7.5, Madrid, 28040, Spain
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, 34071, Spain
- BIOGECO, INRA, University of Bordeaux, Cestas, 33610, France
| | - Ricardo Alía
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA-CIFOR, Carretera A Coruña km 7.5, Madrid, 28040, Spain
- Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia, 34071, Spain
| |
Collapse
|
43
|
Vizcaíno-Palomar N, Ibáñez I, González-Martínez SC, Zavala MA, Alía R. Adaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients. Ecol Evol 2016; 6:7561-7573. [PMID: 31110659 PMCID: PMC6512899 DOI: 10.1002/ece3.2153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/22/2016] [Accepted: 03/20/2016] [Indexed: 02/01/2023] Open
Abstract
Plant species aboveground allometry can be viewed as a functional trait that reflects the evolutionary trade-off between above- and belowground resources. In forest trees, allometry is related to productivity and resilience in different environments, and it is tightly connected with a compromise between efficiency-safety and competitive ability. A better understanding on how this trait varies within and across species is critical to determine the potential of a species/population to perform along environmental gradients. We followed a hierarchical framework to assess tree height-diameter allometry variation within and across four common European Pinus species. Tree height-diameter allometry variation was a function of solely genetic components -approximated by either population effects or clinal geographic responses of the population's site of origin- and differential genetic plastic responses -approximated by the interaction between populations and two climatic variables of the growing sites (temperature and precipitation)-. Our results suggest that, at the species level, climate of the growing sites set the tree height-diameter allometry of xeric and mesic species (Pinus halepensis, P. pinaster and P. nigra) apart from the boreal species (P. sylvestris), suggesting a weak signal of their phylogenies in the tree height-diameter allometry variation. Moreover, accounting for interpopulation variability within species for the four pine species aided to: (1) detect genetic differences among populations in allometry variation, which in P. nigra and P. pinaster were linked to gene pools -genetic diversity measurements-; (2) reveal the presence of differential genetic variation in plastic responses along two climatic gradients in tree allometry variation. In P. sylvestris and P. nigra, genetic variation was the result of adaptive patterns to climate, while in P. pinaster and P. halepensis, this signal was either weaker or absent, respectively; and (3) detect local adaptation in the exponent of the tree height-diameter allometry relationship in two of the four species (P. sylvestris and P. nigra), as it was a function of populations' latitude and altitude variables. Our findings suggest that the four species have been subjected to different historical and climatic constraints that might have driven their aboveground allometry and promoted different life strategies.
Collapse
Affiliation(s)
- Natalia Vizcaíno-Palomar
- Department of Forest Ecology and Genetics Forest Research Centre (INIA) Ctra. A Coruña, km 7.5 28040 Madrid Spain.,Forest Ecology and Restoration Group Department of Life Sciences Universidad de Alcalá Science Building Campus Universitario, 28871 Alcalá de Henares Madrid Spain
| | - Inés Ibáñez
- School of Natural Resources and Environment University of Michigan Ann Arbor Michigan 48109
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics Forest Research Centre (INIA) Ctra. A Coruña, km 7.5 28040 Madrid Spain.,Sustainable Forest Management Research Institute University of Valladolid-INIA Avd. Madrid s/n 34004 Palencia Spain.,BIOGECO, INRA University of Bordeaux 33610 Cestas France
| | - Miguel A Zavala
- Forest Ecology and Restoration Group Department of Life Sciences Universidad de Alcalá Science Building Campus Universitario, 28871 Alcalá de Henares Madrid Spain
| | - Ricardo Alía
- Department of Forest Ecology and Genetics Forest Research Centre (INIA) Ctra. A Coruña, km 7.5 28040 Madrid Spain.,Sustainable Forest Management Research Institute University of Valladolid-INIA Avd. Madrid s/n 34004 Palencia Spain
| |
Collapse
|
44
|
Dall'Ara I, Ghirotto S, Ingusci S, Bagarolo G, Bertolucci C, Barbujani G. Demographic history and adaptation account for clock gene diversity in humans. Heredity (Edinb) 2016; 117:165-72. [PMID: 27301334 DOI: 10.1038/hdy.2016.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
Circadian clocks give rise to daily oscillations in behavior and physiological functions that often anticipate upcoming environmental changes generated by the Earth rotation. In model organisms a relationship exists between several genes affecting the circadian rhythms and latitude. We investigated the allele distributions at 116 000 single-nucleotide polymorphisms (SNPs) of 25 human clock and clock-related genes from the 1000Genomes Project, and at a reference data set of putatively neutral polymorphisms. The global genetic structure at the clock genes did not differ from that observed at the reference data set. We then tested for evidence of local adaptation searching for FST outliers under both an island and a hierarchical model, and for significant association between allele frequencies and environmental variables by a Bayesian approach. A total of 230 SNPs in 23 genes, or 84 SNPs in 19 genes, depending on the significance thresholds chosen, showed signs of local adaptation, whereas a maximum of 190 SNPs in 23 genes had significant covariance with one or more environmental variables. Only two SNPs from two genes (NPAS2 and AANAT) exhibit both elevated population differentiation and covariance with at least one environmental variable. We then checked whether the SNPs emerging from these analyses fall within a set of candidate SNPs associated with different chronotypes or sleep disorders. Correlation of five such SNPs with environmental variables supports a selective role of latitude or photoperiod, but certainly not a major one.
Collapse
Affiliation(s)
- I Dall'Ara
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - S Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - S Ingusci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Bagarolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - C Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
45
|
Lamara M, Raherison E, Lenz P, Beaulieu J, Bousquet J, MacKay J. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce. THE NEW PHYTOLOGIST 2016; 210:240-55. [PMID: 26619072 PMCID: PMC5063130 DOI: 10.1111/nph.13762] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/13/2015] [Indexed: 05/02/2023]
Abstract
Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P < 0.05 to maximize discovery. Over-representation of genes associated for nearly all traits was found in a xylem preferential co-expression group developed in independent experiments. A xylem co-expression network was reconstructed with 180 wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits.
Collapse
Affiliation(s)
- Mebarek Lamara
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Elie Raherison
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
| | - Patrick Lenz
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Canadian Wood Fibre CentreCanadian Forest ServiceNatural Resources CanadaQuébecQCG1V 4C7Canada
| | - Jean Beaulieu
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Canadian Wood Fibre CentreCanadian Forest ServiceNatural Resources CanadaQuébecQCG1V 4C7Canada
- Canada Research Chair in Forest and Environmental GenomicsUniversité LavalQuébecQCG1V 0A6Canada
| | - Jean Bousquet
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Canada Research Chair in Forest and Environmental GenomicsUniversité LavalQuébecQCG1V 0A6Canada
| | - John MacKay
- Forest Research Centre, and Institute for System and Integrative BiologyUniversité LavalQuébecQCG1V 0A6Canada
- Department of Plant SciencesUniversity of OxfordOxford0X1 3RBUK
| |
Collapse
|
46
|
Bailey SF, Bataillon T. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature? Mol Ecol 2016; 25:203-18. [PMID: 26346808 PMCID: PMC5019151 DOI: 10.1111/mec.13378] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/26/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023]
Abstract
There have been a variety of approaches taken to try to characterize and identify the genetic basis of adaptation in nature, spanning theoretical models, experimental evolution studies and direct tests of natural populations. Theoretical models can provide formalized and detailed hypotheses regarding evolutionary processes and patterns, from which experimental evolution studies can then provide important proofs of concepts and characterize what is biologically reasonable. Genetic and genomic data from natural populations then allow for the identification of the particular factors that have and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions--that is simple environments, a small range of usually asexual species, relatively short timescales--the question remains as to how applicable these experimental results are to natural populations. In this review, we discuss important insights coming from experimental evolution, focusing on four key topics tied to the evolutionary genetics of adaptation, and within those topics, we discuss the extent to which the experimental work compliments and informs natural population studies. We finish by making suggestions for future work in particular a need for natural population genomic time series data, as well as the necessity for studies that combine both experimental evolution and natural population approaches.
Collapse
Affiliation(s)
- Susan F. Bailey
- Bioinformatics Research CentreAarhus UniversityC.F. Møllers Allé 8DK‐8000Aarhus CDenmark
| | - Thomas Bataillon
- Bioinformatics Research CentreAarhus UniversityC.F. Møllers Allé 8DK‐8000Aarhus CDenmark
| |
Collapse
|
47
|
Castellanos MC, González-Martínez SC, Pausas JG. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol Ecol 2015; 24:5633-42. [DOI: 10.1111/mec.13421] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Affiliation(s)
- M. C. Castellanos
- Consejo Superior de Investigaciones Científicas; Centro de Investigaciones sobre Desertificación (CIDE-CSIC-UV-GV); 46113 Moncada Valencia Spain
| | | | - J. G. Pausas
- Consejo Superior de Investigaciones Científicas; Centro de Investigaciones sobre Desertificación (CIDE-CSIC-UV-GV); 46113 Moncada Valencia Spain
| |
Collapse
|
48
|
Plomion C, Bartholomé J, Lesur I, Boury C, Rodríguez-Quilón I, Lagraulet H, Ehrenmann F, Bouffier L, Gion JM, Grivet D, de Miguel M, de María N, Cervera MT, Bagnoli F, Isik F, Vendramin GG, González-Martínez SC. High-density SNP assay development for genetic analysis in maritime pine (Pinus pinaster). Mol Ecol Resour 2015; 16:574-87. [PMID: 26358548 DOI: 10.1111/1755-0998.12464] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/18/2022]
Abstract
Maritime pine provides essential ecosystem services in the south-western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three-generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene-based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies.
Collapse
Affiliation(s)
- C Plomion
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - J Bartholomé
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - I Lesur
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,HelixVenture, F-33700, Mérignac, France
| | - C Boury
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | | | - H Lagraulet
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - F Ehrenmann
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - L Bouffier
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - J M Gion
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,UMR AGAP, CIRAD, F-33612, Cestas, France
| | - D Grivet
- Forest Research Centre, INIA, E-28040, Madrid, Spain
| | - M de Miguel
- BIOGECO, UMR 1202, INRA, F-33610, Cestas, France.,BIOGECO, UMR 1202, University of Bordeaux, F-33400, Talence, France
| | - N de María
- Forest Research Centre, INIA, E-28040, Madrid, Spain
| | - M T Cervera
- Forest Research Centre, INIA, E-28040, Madrid, Spain
| | - F Bagnoli
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (FI), Italy
| | - F Isik
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - G G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (FI), Italy
| | | |
Collapse
|
49
|
Cabezas JA, González-Martínez SC, Collada C, Guevara MA, Boury C, de María N, Eveno E, Aranda I, Garnier-Géré PH, Brach J, Alía R, Plomion C, Cervera MT. Nucleotide polymorphisms in a pine ortholog of the Arabidopsis degrading enzyme cellulase KORRIGAN are associated with early growth performance in Pinus pinaster. TREE PHYSIOLOGY 2015; 35:1000-1006. [PMID: 26093373 DOI: 10.1093/treephys/tpv050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
We have carried out a candidate-gene-based association genetic study in Pinus pinaster Aiton and evaluated the predictive performance for genetic merit gain of the most significantly associated genes and single nucleotide polymorphisms (SNPs). We used a second generation 384-SNP array enriched with candidate genes for growth and wood properties to genotype mother trees collected in 20 natural populations covering most of the European distribution of the species. Phenotypic data for total height, polycyclism, root-collar diameter and biomass were obtained from a replicated provenance-progeny trial located in two sites with contrasting environments (Atlantic vs Mediterranean climate). General linear models identified strong associations between growth traits (total height and polycyclism) and four SNPs from the korrigan candidate gene, after multiple testing corrections using false discovery rate. The combined genomic breeding value predictions assessed for the four associated korrigan SNPs by ridge regression-best linear unbiased prediction (RR-BLUP) and cross-validation accounted for up to 8 and 15% of the phenotypic variance for height and polycyclic growth, respectively, and did not improve adding SNPs from other growth-related candidate genes. For root-collar diameter and total biomass, they accounted for 1.6 and 1.1% of the phenotypic variance, respectively, but increased to 15 and 4.1% when other SNPs from lp3.1, lp3.3 and cad were included in RR-BLUP models. These results point towards a desirable integration of candidate-gene studies as a means to pre-select relevant markers, and aid genomic selection in maritime pine breeding programs.
Collapse
Affiliation(s)
- José Antonio Cabezas
- Department of Forest Ecology and Genetics, INIA-CIFOR, 28040 Madrid, Spain Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, 28040 Madrid, Spain
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, INIA-CIFOR, 28040 Madrid, Spain INRA, UMR1202 BIOGECO, F-33610 Cestas, France University of Bordeaux, UMR1202 BIOGECO, F-33170 Talence, France
| | - Carmen Collada
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, 28040 Madrid, Spain Departamento de Biotecnología, ETSIM, Ciudad Universitaria s/n 28040 Madrid, Spain
| | - María Angeles Guevara
- Department of Forest Ecology and Genetics, INIA-CIFOR, 28040 Madrid, Spain Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, 28040 Madrid, Spain
| | - Christophe Boury
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France University of Bordeaux, UMR1202 BIOGECO, F-33170 Talence, France
| | - Nuria de María
- Department of Forest Ecology and Genetics, INIA-CIFOR, 28040 Madrid, Spain Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, 28040 Madrid, Spain
| | - Emmanuelle Eveno
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France University of Bordeaux, UMR1202 BIOGECO, F-33170 Talence, France
| | - Ismael Aranda
- Department of Forest Ecology and Genetics, INIA-CIFOR, 28040 Madrid, Spain Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, 28040 Madrid, Spain
| | - Pauline H Garnier-Géré
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France University of Bordeaux, UMR1202 BIOGECO, F-33170 Talence, France
| | - Jean Brach
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France University of Bordeaux, UMR1202 BIOGECO, F-33170 Talence, France
| | - Ricardo Alía
- Department of Forest Ecology and Genetics, INIA-CIFOR, 28040 Madrid, Spain Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, 28040 Madrid, Spain
| | - Christophe Plomion
- INRA, UMR1202 BIOGECO, F-33610 Cestas, France University of Bordeaux, UMR1202 BIOGECO, F-33170 Talence, France
| | - María Teresa Cervera
- Department of Forest Ecology and Genetics, INIA-CIFOR, 28040 Madrid, Spain Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, 28040 Madrid, Spain
| |
Collapse
|