1
|
Jores T, Tonnies J, Mueth NA, Romanowski A, Fields S, Cuperus JT, Queitsch C. Plant enhancers exhibit both cooperative and additive interactions among their functional elements. THE PLANT CELL 2024; 36:2570-2586. [PMID: 38513612 PMCID: PMC11218779 DOI: 10.1093/plcell/koae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Enhancers are cis-regulatory elements that shape gene expression in response to numerous developmental and environmental cues. In animals, several models have been proposed to explain how enhancers integrate the activity of multiple transcription factors. However, it remains largely unclear how plant enhancers integrate transcription factor activity. Here, we use Plant STARR-seq to characterize 3 light-responsive plant enhancers-AB80, Cab-1, and rbcS-E9-derived from genes associated with photosynthesis. Saturation mutagenesis revealed mutations, many of which clustered in short regions, that strongly reduced enhancer activity in the light, in the dark, or in both conditions. When tested in the light, these mutation-sensitive regions did not function on their own; rather, cooperative interactions with other such regions were required for full activity. Epistatic interactions occurred between mutations in adjacent mutation-sensitive regions, and the spacing and order of mutation-sensitive regions in synthetic enhancers affected enhancer activity. In contrast, when tested in the dark, mutation-sensitive regions acted independently and additively in conferring enhancer activity. Taken together, this work demonstrates that plant enhancers show evidence for both cooperative and additive interactions among their functional elements. This knowledge can be harnessed to design strong, condition-specific synthetic enhancers.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Biology, University of Washington, Seattle, WA 98195, USA
| | - Nicholas A Mueth
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andrés Romanowski
- Molecular Biology Group, Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Deans NC, Talbot JERB, Li M, Sáez-González C, Hövel I, Heavens D, Stam M, Hollick JB. Paramutation at the maize pl1 locus is associated with RdDM activity at distal tandem repeats. PLoS Genet 2024; 20:e1011296. [PMID: 38814980 PMCID: PMC11166354 DOI: 10.1371/journal.pgen.1011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/11/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Exceptions to Mendelian inheritance often highlight novel chromosomal behaviors. The maize Pl1-Rhoades allele conferring plant pigmentation can display inheritance patterns deviating from Mendelian expectations in a behavior known as paramutation. However, the chromosome features mediating such exceptions remain unknown. Here we show that small RNA production reflecting RNA polymerase IV function within a distal downstream set of five tandem repeats is coincident with meiotically-heritable repression of the Pl1-Rhoades transcription unit. A related pl1 haplotype with three, but not one with two, repeat units also displays the trans-homolog silencing typifying paramutations. 4C interactions, CHD3a-dependent small RNA profiles, nuclease sensitivity, and polyadenylated RNA levels highlight a repeat subregion having regulatory potential. Our comparative and mutant analyses show that transcriptional repression of Pl1-Rhoades correlates with 24-nucleotide RNA production and cytosine methylation at this subregion indicating the action of a specific DNA-dependent RNA polymerase complex. These findings support a working model in which pl1 paramutation depends on trans-chromosomal RNA-directed DNA methylation operating at a discrete cis-linked and copy-number-dependent transcriptional regulatory element.
Collapse
Affiliation(s)
- Natalie C. Deans
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Joy-El R. B. Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Mowei Li
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Cristian Sáez-González
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Iris Hövel
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | | | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Jay B. Hollick
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
3
|
Paterson AH, Queitsch C. Genome organization and botanical diversity. THE PLANT CELL 2024; 36:1186-1204. [PMID: 38382084 PMCID: PMC11062460 DOI: 10.1093/plcell/koae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The rich diversity of angiosperms, both the planet's dominant flora and the cornerstone of agriculture, is integrally intertwined with a distinctive evolutionary history. Here, we explore the interplay between angiosperm genome organization and botanical diversity, empowered by genomic approaches ranging from genetic linkage mapping to analysis of gene regulation. Commonality in the genetic hardware of plants has enabled robust comparative genomics that has provided a broad picture of angiosperm evolution and implicated both general processes and specific elements in contributing to botanical diversity. We argue that the hardware of plant genomes-both in content and in dynamics-has been shaped by selection for rather substantial differences in gene regulation between plants and animals such as maize and human, organisms of comparable genome size and gene number. Their distinctive genome content and dynamics may reflect in part the indeterminate development of plants that puts strikingly different demands on gene regulation than in animals. Repeated polyploidization of plant genomes and multiplication of individual genes together with extensive rearrangement and differential retention provide rich raw material for selection of morphological and/or physiological variations conferring fitness in specific niches, whether natural or artificial. These findings exemplify the burgeoning information available to employ in increasing knowledge of plant biology and in modifying selected plants to better meet human needs.
Collapse
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Silver BD, Willett CG, Maher KA, Wang D, Deal RB. Differences in transcription initiation directionality underlie distinctions between plants and animals in chromatin modification patterns at genes and cis-regulatory elements. G3 (BETHESDA, MD.) 2024; 14:jkae016. [PMID: 38253712 PMCID: PMC10917500 DOI: 10.1093/g3journal/jkae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Transcriptional initiation is among the first regulated steps controlling eukaryotic gene expression. High-throughput profiling of fungal and animal genomes has revealed that RNA Polymerase II often initiates transcription in both directions at the promoter transcription start site, but generally only elongates productively into the gene body. Additionally, Pol II can initiate transcription in both directions at cis-regulatory elements such as enhancers. These bidirectional RNA Polymerase II initiation events can be observed directly with methods that capture nascent transcripts, and they are also revealed indirectly by the presence of transcription-associated histone modifications on both sides of the transcription start site or cis-regulatory elements. Previous studies have shown that nascent RNAs and transcription-associated histone modifications in the model plant Arabidopsis thaliana accumulate mainly in the gene body, suggesting that transcription does not initiate widely in the upstream direction from genes in this plant. We compared transcription-associated histone modifications and nascent transcripts at both transcription start sites and cis-regulatory elements in A. thaliana, Drosophila melanogaster, and Homo sapiens. Our results provide evidence for mostly unidirectional RNA Polymerase II initiation at both promoters and gene-proximal cis-regulatory elements of A. thaliana, whereas bidirectional transcription initiation is observed widely at promoters in both D. melanogaster and H. sapiens, as well as cis-regulatory elements in Drosophila. Furthermore, the distribution of transcription-associated histone modifications around transcription start sites in the Oryza sativa (rice) and Glycine max (soybean) genomes suggests that unidirectional transcription initiation is the norm in these genomes as well. These results suggest that there are fundamental differences in transcriptional initiation directionality between flowering plant and metazoan genomes, which are manifested as distinct patterns of chromatin modifications around RNA polymerase initiation sites.
Collapse
Affiliation(s)
- Brianna D Silver
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Courtney G Willett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322, USA
| | - Kelsey A Maher
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dongxue Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Xu G, Law JA. Loops, crosstalk, and compartmentalization: it takes many layers to regulate DNA methylation. Curr Opin Genet Dev 2024; 84:102147. [PMID: 38176333 PMCID: PMC10922829 DOI: 10.1016/j.gde.2023.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
DNA methylation is a conserved epigenetic modification associated with transposon silencing and gene regulation. The stability of this modification relies on intimate connections between DNA and histone modifications that generate self-reinforcing loops wherein the presence of one mark promotes the other. However, it is becoming increasingly clear that the efficiency of these loops is affected by cross-talk between pathways and by chromatin accessibility, which is heavily influenced by histone variants. Focusing primarily on plants, this review provides an update on the aforementioned self-reinforcing loops, highlights recent advances in understanding how DNA methylation pathways are restricted to prevent encroachment on genes, and discusses the roles of histone variants in compartmentalizing epigenetic pathways within the genome. This multilayered approach facilitates two essential, yet opposing functions, the ability to maintain heritable DNA methylation patterns while retaining the flexibility to modify these patterns during development.
Collapse
Affiliation(s)
- Guanghui Xu
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA. https://twitter.com/@GuanghuiXu1
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Liu M, Zhu J, Huang H, Chen Y, Dong Z. Comparative analysis of nascent RNA sequencing methods and their applications in studies of cotranscriptional splicing dynamics. THE PLANT CELL 2023; 35:4304-4324. [PMID: 37708036 PMCID: PMC10689179 DOI: 10.1093/plcell/koad237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
High-throughput detection of nascent RNA is critical for studies of transcription and much more challenging than that of mRNA. Recently, several massively parallel nascent RNA sequencing methods were established in eukaryotic cells. Here, we systematically compared 3 classes of methods on the same pure or crude nuclei preparations: GRO-seq for sequence nuclear run-on RNAs, pNET-seq for sequence RNA polymerase II-associated RNAs, and CB RNA-seq for sequence chromatin-bound (CB) RNAs in Arabidopsis (Arabidopsis thaliana). To improve the resolution of CB RNAs, 3'CB RNA-seq was established to sequence the 3' ends of CB RNAs. In addition, we modified pNET-seq to establish the Chromatin Native Elongation Transcript sequencing (ChrNET) method using chromatin as the starting material for RNA immunoprecipitation. Reproducibility, sensitivity and accuracy in detecting nascent transcripts, experimental procedures, and costs were analyzed, which revealed the strengths and weaknesses of each method. We found that pNET and GRO methods best detected active RNA polymerase II. CB RNA-seq is a simple and cost-effective alternative for nascent RNA studies, due to its high correlation with pNET-seq and GRO-seq. Compared with pNET, ChrNET has higher specificity for nascent RNA capture and lower sequencing cost. 3'CB is sensitive to transcription-coupled splicing. Using these methods, we identified 1,404 unknown transcripts, 4,482 unannotated splicing events, and 60 potential recursive splicing events. This comprehensive comparison of different nascent/chromatin RNA sequencing methods highlights the strengths of each method and serves as a guide for researchers aiming to select a method that best meets their study goals.
Collapse
Affiliation(s)
- Min Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiafu Zhu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huijuan Huang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
7
|
Silver BD, Willett CG, Maher KA, Wang D, Deal RB. Differences in transcription initiation directionality underlie distinctions between plants and animals in chromatin modification patterns at genes and cis-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565513. [PMID: 37961418 PMCID: PMC10635121 DOI: 10.1101/2023.11.03.565513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Transcriptional initiation is among the first regulated steps controlling eukaryotic gene expression. High-throughput profiling of fungal and animal genomes has revealed that RNA Polymerase II (Pol II) often initiates transcription in both directions at the promoter transcription start site (TSS), but generally only elongates productively into the gene body. Additionally, Pol II can initiate transcription in both directions at cis-regulatory elements (CREs) such as enhancers. These bidirectional Pol II initiation events can be observed directly with methods that capture nascent transcripts, and they are also revealed indirectly by the presence of transcription-associated histone modifications on both sides of the TSS or CRE. Previous studies have shown that nascent RNAs and transcription-associated histone modifications in the model plant Arabidopsis thaliana accumulate mainly in the gene body, suggesting that transcription does not initiate widely in the upstream direction from genes in this plant. We compared transcription-associated histone modifications and nascent transcripts at both TSSs and CREs in Arabidopsis thaliana, Drosophila melanogaster, and Homo sapiens. Our results provide evidence for mostly unidirectional Pol II initiation at both promoters and gene-proximal CREs of Arabidopsis thaliana, whereas bidirectional transcription initiation is observed widely at promoters in both Drosophila melanogaster and Homo sapiens, as well as CREs in Drosophila. Furthermore, the distribution of transcription-associated histone modifications around TSSs in the Oryza sativa (rice) and Glycine max (soybean) genomes suggests that unidirectional transcription initiation is the norm in these genomes as well. These results suggest that there are fundamental differences in transcriptional initiation directionality between flowering plant and metazoan genomes, which are manifested as distinct patterns of chromatin modifications around RNA polymerase initiation sites.
Collapse
Affiliation(s)
- Brianna D. Silver
- Department of Biology, Emory University, Atlanta, GA 30322 USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322 USA
| | - Courtney G. Willett
- Department of Biology, Emory University, Atlanta, GA 30322 USA
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA 30322 USA
| | - Kelsey A. Maher
- Department of Biology, Emory University, Atlanta, GA 30322 USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322 USA
| | - Dongxue Wang
- Department of Biology, Emory University, Atlanta, GA 30322 USA
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
8
|
Hari Sundar G V, Swetha C, Basu D, Pachamuthu K, Raju S, Chakraborty T, Mosher RA, Shivaprasad PV. Plant polymerase IV sensitizes chromatin through histone modifications to preclude spread of silencing into protein-coding domains. Genome Res 2023; 33:715-728. [PMID: 37277199 PMCID: PMC10317121 DOI: 10.1101/gr.277353.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/16/2023] [Indexed: 06/07/2023]
Abstract
Across eukaryotes, gene regulation is manifested via chromatin states roughly distinguished as heterochromatin and euchromatin. The establishment, maintenance, and modulation of the chromatin states is mediated using several factors including chromatin modifiers. However, factors that avoid the intrusion of silencing signals into protein-coding genes are poorly understood. Here we show that a plant specific paralog of RNA polymerase (Pol) II, named Pol IV, is involved in avoidance of facultative heterochromatic marks in protein-coding genes, in addition to its well-established functions in silencing repeats and transposons. In its absence, H3K27 trimethylation (me3) mark intruded the protein-coding genes, more profoundly in genes embedded with repeats. In a subset of genes, spurious transcriptional activity resulted in small(s) RNA production, leading to post-transcriptional gene silencing. We show that such effects are significantly pronounced in rice, a plant with a larger genome with distributed heterochromatin compared with Arabidopsis Our results indicate the division of labor among plant-specific polymerases, not just in establishing effective silencing via sRNAs and DNA methylation but also in influencing chromatin boundaries.
Collapse
Affiliation(s)
- Vivek Hari Sundar G
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Debjani Basu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Kannan Pachamuthu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Steffi Raju
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India
| | - Tania Chakraborty
- School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | - Rebecca A Mosher
- School of Plant Sciences, The University of Arizona, Tucson, Arizona 85721, USA
| | - P V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore 560065, India;
| |
Collapse
|
9
|
Zhang Q, Zhao F, Wu Z, Zhu D. A simple and robust method for isolating and analyzing chromatin-bound RNAs in Arabidopsis. PLANT METHODS 2022; 18:135. [PMID: 36510301 PMCID: PMC9743689 DOI: 10.1186/s13007-022-00967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chromatin-bound RNAs are the primary product of transcription that undergo on-chromatin processing such as capping, splicing, and polyadenylation. These processing steps then determine the fate of RNAs. Albeit its vital importance, a simple and robust method for isolating different fractions of chromatin-bound RNAs is missing in plants. RESULT Here, we describe our updated method and the associated step-by-step protocol for chromatin-bound RNAs isolation in A. thaliana. The chromatin-bound RNAs isolation is based on the 1 M UREA wash that removes the majority of non-chromatin-associated proteins from the nucleus, as previously developed in mammalian cells. On-demand, the isolated chromatin-bound RNAs can be either used directly for gene-specific analysis or subject to further rRNA removal and also the optional polyadenylated RNA removal, followed by high-throughput sequencing. Detailed protocols for these procedures are also provided. Comparison of sequencing results of chromatin-bound RNAs with and without polyadenylated RNA removal revealed that a small fraction of CB-RNAs is polyadenylated but not yet fully spliced, representing RNA-processing intermediate on-chromatin. CONCLUSION This optimized chromatin-bound RNAs purification method is simple and robust and can be used to study transcription and its-coupled RNA processing in plants.
Collapse
Affiliation(s)
- Qiqi Zhang
- Harbin Institute of Technology, Harbin, 150001, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Research, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fengli Zhao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Research, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Research, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Danling Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Research, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Zheng M, Lin Y, Wang W, Zhao Y, Bao X. Application of nucleoside or nucleotide analogues in RNA dynamics and RNA-binding protein analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1722. [PMID: 35218164 DOI: 10.1002/wrna.1722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cellular RNAs undergo dynamic changes during RNA biological processes, which are tightly orchestrated by RNA-binding proteins (RBPs). Yet, the investigation of RNA dynamics is hurdled by highly abundant steady-state RNAs, which make the signals of dynamic RNAs less detectable. Notably, the exert of nucleoside or nucleotide analogue-based RNA technologies has provided a remarkable platform for RNA dynamics research, revealing diverse unnoticed features in RNA metabolism. In this review, we focus on the application of two types of analogue-based RNA sequencing, antigen-/antibody- and click chemistry-based methodologies, and summarize the RNA dynamics features revealed. Moreover, we discuss emerging single-cell newly transcribed RNA sequencing methodologies based on nucleoside analogue labeling, which provides novel insights into RNA dynamics regulation at single-cell resolution. On the other hand, we also emphasize the identification of RBPs that interact with polyA, non-polyA RNAs, or newly transcribed RNAs and also their associated RNA-binding domains at genomewide level through ultraviolet crosslinking and mass spectrometry in different contexts. We anticipated that further modification and development of these analogue-based RNA and RBP capture technologies will aid in obtaining an unprecedented understanding of RNA biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Meifeng Zheng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Lin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangming Science City, Shenzhen, China
| | - Wei Wang
- Center for Biosafety, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xichen Bao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
12
|
Chen Y, Zhu J, Xie Y, Li Z, Zhang Y, Liu M, Dong Z. Protocol for affordable and efficient profiling of nascent RNAs in bread wheat using GRO-seq. STAR Protoc 2022; 3:101657. [PMID: 36097381 PMCID: PMC9463444 DOI: 10.1016/j.xpro.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Exorbitant sequencing cost is one of the main obstacles limiting the widespread application of Global Run-On sequencing (GRO-seq) to detect transcriptional activity. Here, we describe a more efficient and affordable protocol for GRO-seq that incorporates an rRNA removal step after nuclear RNA isolation and before nascent RNA immunoprecipitation. We have successfully applied this protocol to profile enhancer transcription in allohexaploid bread wheat and increased the proportion of valid data by 20 times. For complete details on the use and execution of this protocol, please refer to Xie et al. (2022). The detailed GRO-seq protocol integrates rRNA depletion Cost-efficient GRO-seq protocol for detection of eRNA in bread wheat Applicable for any large complex plant or animal genomes
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Corresponding author
| | - Jiafu Zhu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Corresponding author
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Min Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Corresponding author
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Corresponding author
| |
Collapse
|
13
|
Xie Y, Chen Y, Li Z, Zhu J, Liu M, Zhang Y, Dong Z. Enhancer transcription detected in the nascent transcriptomic landscape of bread wheat. Genome Biol 2022; 23:109. [PMID: 35501845 PMCID: PMC9063354 DOI: 10.1186/s13059-022-02675-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
The precise spatiotemporal gene expression is orchestrated by enhancers that lack general sequence features and thus are difficult to be computationally identified. By nascent RNA sequencing combined with epigenome profiling, we detect active transcription of enhancers from the complex bread wheat genome. We find that genes associated with transcriptional enhancers are expressed at significantly higher levels, and enhancer RNA is more precise and robust in predicting enhancer activity compared to chromatin features. We demonstrate that sub-genome-biased enhancer transcription could drive sub-genome-biased gene expression. This study highlights enhancer transcription as a hallmark in regulating gene expression in wheat.
Collapse
Affiliation(s)
- Yilin Xie
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.,National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiafu Zhu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Min Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Jain M, Garg R. Enhancers as potential targets for engineering salinity stress tolerance in crop plants. PHYSIOLOGIA PLANTARUM 2021; 173:1382-1391. [PMID: 33837536 DOI: 10.1111/ppl.13421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Enhancers represent noncoding regulatory regions of the genome located distantly from their target genes. They regulate gene expression programs in a context-specific manner via interacting with promoters of one or more target genes and are generally associated with transcription factor binding sites and epi(genomic)/chromatin features, such as regions of chromatin accessibility and histone modifications. The enhancers are difficult to identify due to the modularity of their associated features. Although enhancers have been studied extensively in human and animals, only a handful of them has been identified in few plant species till date due to nonavailability of plant-specific experimental and computational approaches for their discovery. Being an important regulatory component of the genome, enhancers represent potential targets for engineering agronomic traits, including salinity stress tolerance in plants. Here, we provide a review of the available experimental and computational approaches along with the associated sequence and chromatin/epigenetic features for the discovery of enhancers in plants. In addition, we provide insights into the challenges and future prospects of enhancer research in plant biology with emphasis on potential applications in engineering salinity stress tolerance in crop plants.
Collapse
Affiliation(s)
- Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
15
|
Yu X, Martin PGP, Zhang Y, Trinidad JC, Xu F, Huang J, Thum KE, Li K, Zhao S, Gu Y, Wang X, Michaels SD. The BORDER family of negative transcription elongation factors regulates flowering time in Arabidopsis. Curr Biol 2021; 31:5377-5384.e5. [PMID: 34666004 DOI: 10.1016/j.cub.2021.09.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Transcription initiation has long been considered a primary regulatory step in gene expression. Recent work, however, shows that downstream events, such as transcription elongation, can also play important roles.1-3 A well-characterized example from animals is promoter-proximal pausing, where transcriptionally engaged Pol II accumulates 30-50 bp downstream of the transcription start site (TSS) and is thought to enable rapid gene activation.2 Plants do not make widespread use of promoter-proximal pausing; however, in a phenomenon known as 3' pausing, a significant increase in Pol II is observed near the transcript end site (TES) of many genes.4-6 Previous work has shown that 3' pausing is promoted by the BORDER (BDR) family of negative transcription elongation factors. Here we show that BDR proteins play key roles in gene repression. Consistent with BDR proteins acting to slow or pause elongating Pol II, BDR-repressed genes are characterized by high levels of Pol II occupancy, yet low levels of mRNA. The BDR proteins physically interact with FPA,7 one of approximately two dozen genes collectively referred to as the autonomous floral-promotion pathway,8 which are necessary for the repression of the flowering time gene FLOWERING LOCUS C (FLC).9-11 In early-flowering strains, FLC expression is repressed by repressive histone modifications, such as histone H3 lysine 27 trimethylation (H3K27me3), thereby allowing the plants to flower early. These results suggest that the repression of transcription elongation by BDR proteins may allow for the temporary pausing of transcription or facilitate the long-term repression of genes by repressive histone modifications.
Collapse
Affiliation(s)
- Xuhong Yu
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA.
| | - Pascal G P Martin
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Yixiang Zhang
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA; Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - Feifei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jie Huang
- Center for Genomics and Bioinformatics, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Karen E Thum
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Ke Li
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - ShuZhen Zhao
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Scott D Michaels
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
16
|
Kudo H, Matsuo M, Satoh S, Hata T, Hachisu R, Nakamura M, Yamamoto YY, Kimura H, Matsui M, Obokata J. Cryptic promoter activation occurs by at least two different mechanisms in the Arabidopsis genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:29-39. [PMID: 34252235 DOI: 10.1111/tpj.15420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In gene-trap screening of plant genomes, promoterless reporter constructs are often expressed without trapping of annotated gene promoters. The molecular basis of this phenomenon, which has been interpreted as the trapping of cryptic promoters, is poorly understood. Here, we found that cryptic promoter activation occurs by at least two different mechanisms using Arabidopsis gene-trap lines in which a firefly luciferase (LUC) open reading frame (ORF) without an apparent promoter sequence was expressed from intergenic regions: one mechanism is 'cryptic promoter capturing', in which the LUC ORF captured pre-existing promoter-like chromatin marked by H3K4me3 and H2A.Z, and the other is 'promoter de novo origination', in which the promoter chromatin was newly formed near the 5' end of the inserted LUC ORF. The latter finding raises a question as to how the inserted LUC ORF sequence is involved in this phenomenon. To examine this, we performed a model experiment with chimeric LUC genes in transgenic plants. Using Arabidopsis psaH1 promoter-LUC constructs, we found that the functional core promoter region, where transcription start sites (TSSs) occur, cannot simply be determined by the upstream nor core promoter sequences; rather, its positioning proximal to the inserted LUC ORF sequence was more critical. This result suggests that the insertion of the coding sequence alters the local distribution of TSSs in the plant genome. The possible impact of the two types of cryptic promoter activation mechanisms on plant genome evolution and endosymbiotic gene transfer is discussed.
Collapse
Affiliation(s)
- Hisayuki Kudo
- Center for G Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Mitsuhiro Matsuo
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Takayuki Hata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Rei Hachisu
- Center for G Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masayuki Nakamura
- Center for G Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagito, Gihu-shi, Gifu, 501-1193, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Kanagawa, 226-8501, Japan
| | - Minami Matsui
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto, 606-8522, Japan
| |
Collapse
|
17
|
Lozano R, Booth GT, Omar BY, Li B, Buckler ES, Lis JT, Del Carpio DP, Jannink JL. RNA polymerase mapping in plants identifies intergenic regulatory elements enriched in causal variants. G3-GENES GENOMES GENETICS 2021; 11:6364897. [PMID: 34499719 PMCID: PMC8527479 DOI: 10.1093/g3journal/jkab273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022]
Abstract
Control of gene expression is fundamental at every level of cell function. Promoter-proximal pausing and divergent transcription at promoters and enhancers, which are prominent features in animals, have only been studied in a handful of research experiments in plants. PRO-Seq analysis in cassava (Manihot esculenta) identified peaks of transcriptionally engaged RNA polymerase at both the 5' and 3' end of genes, consistent with paused or slowly moving Polymerase. In addition, we identified divergent transcription at intergenic sites. A full genome search for bi-directional transcription using an algorithm for enhancer detection developed in mammals (dREG) identified many intergenic regulatory element (IRE) candidates. These sites showed distinct patterns of methylation and nucleotide conservation based on genomic evolutionary rate profiling (GERP). SNPs within these IRE candidates explained significantly more variation in fitness and root composition than SNPs in chromosomal segments randomly ascertained from the same intergenic distribution, strongly suggesting a functional importance of these sites. Maize GRO-Seq data showed RNA polymerase occupancy at IREs consistent with patterns in cassava. Furthermore, these IREs in maize significantly overlapped with sites previously identified on the basis of open chromatin, histone marks, and methylation, and were enriched for reported eQTL. Our results suggest that bidirectional transcription can identify intergenic genomic regions in plants that play an important role in transcription regulation and whose identification has the potential to aid crop improvement.
Collapse
Affiliation(s)
- Roberto Lozano
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | - Bo Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Edward S Buckler
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.,United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Dunia Pino Del Carpio
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jean-Luc Jannink
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Kumar S, Mohapatra T. Dynamics of DNA Methylation and Its Functions in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:596236. [PMID: 34093600 PMCID: PMC8175986 DOI: 10.3389/fpls.2021.596236] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/19/2021] [Indexed: 05/20/2023]
Abstract
Epigenetic modifications in DNA bases and histone proteins play important roles in the regulation of gene expression and genome stability. Chemical modification of DNA base (e.g., addition of a methyl group at the fifth carbon of cytosine residue) switches on/off the gene expression during developmental process and environmental stresses. The dynamics of DNA base methylation depends mainly on the activities of the writer/eraser guided by non-coding RNA (ncRNA) and regulated by the developmental/environmental cues. De novo DNA methylation and active demethylation activities control the methylation level and regulate the gene expression. Identification of ncRNA involved in de novo DNA methylation, increased DNA methylation proteins guiding DNA demethylase, and methylation monitoring sequence that helps maintaining a balance between DNA methylation and demethylation is the recent developments that may resolve some of the enigmas. Such discoveries provide a better understanding of the dynamics/functions of DNA base methylation and epigenetic regulation of growth, development, and stress tolerance in crop plants. Identification of epigenetic pathways in animals, their existence/orthologs in plants, and functional validation might improve future strategies for epigenome editing toward climate-resilient, sustainable agriculture in this era of global climate change. The present review discusses the dynamics of DNA methylation (cytosine/adenine) in plants, its functions in regulating gene expression under abiotic/biotic stresses, developmental processes, and genome stability.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | |
Collapse
|
19
|
Zhu J, Zhao H, Kong F, Liu B, Liu M, Dong Z. Cotranscriptional and Posttranscriptional Features of the Transcriptome in Soybean Shoot Apex and Leaf. FRONTIERS IN PLANT SCIENCE 2021; 12:649634. [PMID: 33897737 PMCID: PMC8063115 DOI: 10.3389/fpls.2021.649634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 05/13/2023]
Abstract
Transcription is the first step of central dogma, in which the genetic information stored in DNA is copied into RNA. In addition to mature RNA sequencing (RNA-seq), high-throughput nascent RNA assays have been established and applied to provide detailed transcriptional information. Here, we present the profiling of nascent RNA from trifoliate leaves and shoot apices of soybean. In combination with nascent RNA (chromatin-bound RNA, CB RNA) and RNA-seq, we found that introns were largely spliced cotranscriptionally. Although alternative splicing (AS) was mainly determined at nascent RNA biogenesis, differential AS between the leaf and shoot apex at the mature RNA level did not correlate well with cotranscriptional differential AS. Overall, RNA abundance was moderately correlated between nascent RNA and mature RNA within each tissue, but the fold changes between the leaf and shoot apex were highly correlated. Thousands of novel transcripts (mainly non-coding RNA) were detected by CB RNA-seq, including the overlap of natural antisense RNA with two important genes controlling soybean reproductive development, FT2a and Dt1. Taken together, we demonstrated the adoption of CB RNA-seq in soybean, which may shed light on gene expression regulation of important agronomic traits in leguminous crops.
Collapse
Affiliation(s)
- Jiafu Zhu
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fanjiang Kong
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
| | - Min Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
- *Correspondence: Min Liu,
| | - Zhicheng Dong
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou Higher Education Mega Center, Guangzhou University, Guangzhou, China
- Zhicheng Dong,
| |
Collapse
|
20
|
Locus-specific paramutation in Zea mays is maintained by a PICKLE-like chromodomain helicase DNA-binding 3 protein controlling development and male gametophyte function. PLoS Genet 2020; 16:e1009243. [PMID: 33320854 PMCID: PMC7837471 DOI: 10.1371/journal.pgen.1009243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 01/26/2021] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Paramutations represent directed and meiotically-heritable changes in gene regulation leading to apparent violations of Mendelian inheritance. Although the mechanism and evolutionary importance of paramutation behaviors remain largely unknown, genetic screens in maize (Zea mays) identify five components affecting 24 nucleotide RNA biogenesis as required to maintain repression of a paramutant purple plant1 (pl1) allele. Currently, the RNA polymerase IV largest subunit represents the only component also specifying proper development. Here we identify a chromodomain helicase DNA-binding 3 (CHD3) protein orthologous to Arabidopsis (Arabidopsis thaliana) PICKLE as another component maintaining both pl1 paramutation and normal somatic development but without affecting overall small RNA biogenesis. In addition, genetic tests show this protein contributes to proper male gametophyte function. The similar mutant phenotypes documented in Arabidopsis and maize implicate some evolutionarily-conserved gene regulation while developmental defects associated with the two paramutation mutants are largely distinct. Our results show that a CHD3 protein responsible for normal plant ontogeny and sperm transmission also helps maintain meiotically-heritable epigenetic regulatory variation for specific alleles. This finding implicates an intersection of RNA polymerase IV function and nucleosome positioning in the paramutation process. Genes are switched “on” and “off” during normal development by regulating DNA accessibility within the chromosomes. How certain gene variants permanently maintain “off” states from one generation to the next remains unclear, but studies in multiple eukaryotes implicate roles for specific types of small RNAs, some of which define cytosine methylation patterns. In corn, these RNAs come from at least two RNA polymerase II-derived complexes sharing a common catalytic subunit (RPD1). Although RPD1 both controls the normal developmental switching of many genes and permanently maintains some of these “off” states across generations, how RPD1 function defines heritable DNA accessibility is unknown. We discovered that a protein (CHD3a) belonging to a group known to alter nucleosome positioning is also required to help maintain a heritable “off” state for one particular corn gene variant controlling both plant and flower color. We also found CHD3a necessary for normal plant development and sperm transmission consistent with the idea that proper nucleosome positioning defines evolutionarily-important gene expression patterns. Because both CHD3a and RPD1 maintain the heritable “off” state of a specific gene variant, their functions appear to be mechanistically linked.
Collapse
|
21
|
Maß L, Holtmannspötter M, Zachgo S. Dual-color 3D-dSTORM colocalization and quantification of ROXY1 and RNAPII variants throughout the transcription cycle in root meristem nuclei. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1423-1436. [PMID: 32896918 DOI: 10.1111/tpj.14986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
To unravel the function of a protein of interest, it is crucial to asses to what extent it associates via direct interactions or by overlapping expression with other proteins. ROXY1, a land plant-specific glutaredoxin, exerts a function in Arabidopsis flower development and interacts with TGA transcription factors in the nucleus. We detected a novel ROXY1 function in the root meristem. Root cells that lack chlorophyll reducing plant-specific background problems that can hamper colocalization 3D microscopy. Thus far, a super-resolution three-dimensional stochastic optical reconstruction microscopy (3D-dSTORM) approach has mainly been applied in animal studies. We established 3D-dSTORM using the roxy1 mutant complemented with green fluorescence protein-ROXY1 and investigated its colocalization with three distinct RNAPII isoforms. To quantify the colocalization results, 3D-dSTORM was coupled with the coordinate-based colocalization method. Interestingly, ROXY1 proteins colocalize with different RNA polymerase II (RNAPII) isoforms that are active at distinct transcription cycle steps. Our colocalization data provide new insights on nuclear glutaredoxin activities suggesting that ROXY1 is not only required in early transcription initiation events via interaction with transcription factors but likely also participates throughout further transcription processes until late termination steps. Furthermore, we showed the applicability of the combined approaches to detect and quantify responses to altered growth conditions, exemplified by analysis of H2 O2 treatment, causing a dissociation of ROXY1 and RNAPII isoforms. We envisage that the powerful dual-color 3D-dSTORM/coordinate-based colocalization combination offers plant cell biologists the opportunity to colocalize and quantify root meristem proteins at an increased, unprecedented resolution level <50 nm, which will enable the detection of novel subcellular protein associations and functions.
Collapse
Affiliation(s)
- Lucia Maß
- Botany Department, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
| | - Michael Holtmannspötter
- Integrated Bioimaging Facility iBiOs, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
- Center of Cellular Nanoanalytics Osnabrück, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
| | - Sabine Zachgo
- Botany Department, School of Biology and Chemistry, Osnabrück University, Osnabrück, 49076, Germany
| |
Collapse
|
22
|
Jarad M, Antoniou-Kourounioti R, Hepworth J, Qüesta JI. Unique and contrasting effects of light and temperature cues on plant transcriptional programs. Transcription 2020; 11:134-159. [PMID: 33016207 PMCID: PMC7714439 DOI: 10.1080/21541264.2020.1820299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Plants have adapted to tolerate and survive constantly changing environmental conditions by reprogramming gene expression in response to stress or to drive developmental transitions. Among the many signals that plants perceive, light and temperature are of particular interest due to their intensely fluctuating nature which is combined with a long-term seasonal trend. Whereas specific receptors are key in the light-sensing mechanism, the identity of plant thermosensors for high and low temperatures remains far from fully addressed. This review aims at discussing common as well as divergent characteristics of gene expression regulation in plants, controlled by light and temperature. Light and temperature signaling control the abundance of specific transcription factors, as well as the dynamics of co-transcriptional processes such as RNA polymerase elongation rate and alternative splicing patterns. Additionally, sensing both types of cues modulates gene expression by altering the chromatin landscape and through the induction of long non-coding RNAs (lncRNAs). However, while light sensing is channeled through dedicated receptors, temperature can broadly affect chemical reactions inside plant cells. Thus, direct thermal modifications of the transcriptional machinery add another level of complexity to plant transcriptional regulation. Besides the rapid transcriptome changes that follow perception of environmental signals, plant developmental transitions and acquisition of stress tolerance depend on long-term maintenance of transcriptional states (active or silenced genes). Thus, the rapid transcriptional response to the signal (Phase I) can be distinguished from the long-term memory of the acquired transcriptional state (Phase II - remembering the signal). In this review we discuss recent advances in light and temperature signal perception, integration and memory in Arabidopsis thaliana, focusing on transcriptional regulation and highlighting the contrasting and unique features of each type of cue in the process.
Collapse
Affiliation(s)
- Mai Jarad
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | | | - Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Julia I. Qüesta
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
23
|
Thieffry A, Vigh ML, Bornholdt J, Ivanov M, Brodersen P, Sandelin A. Characterization of Arabidopsis thaliana Promoter Bidirectionality and Antisense RNAs by Inactivation of Nuclear RNA Decay Pathways. THE PLANT CELL 2020; 32:1845-1867. [PMID: 32213639 PMCID: PMC7268790 DOI: 10.1105/tpc.19.00815] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 05/20/2023]
Abstract
In animals, RNA polymerase II initiates transcription bidirectionally from gene promoters to produce pre-mRNAs on the forward strand and promoter upstream transcripts (PROMPTs) on the reverse strand. PROMPTs are degraded by the nuclear exosome. Previous studies based on nascent RNA approaches concluded that Arabidopsis (Arabidopsis thaliana) does not produce PROMPTs. Here, we used steady-state RNA sequencing in mutants defective in nuclear RNA decay including the exosome to reassess the existence of Arabidopsis PROMPTs. While they are rare, we identified ∼100 cases of exosome-sensitive PROMPTs in Arabidopsis. Such PROMPTs are sources of small interfering RNAs in exosome-deficient mutants, perhaps explaining why plants have evolved mechanisms to suppress PROMPTs. In addition, we found ∼200 long, unspliced and exosome-sensitive antisense RNAs that arise from transcription start sites within parts of the genome encoding 3'-untranslated regions on the sense strand. The previously characterized noncoding RNA that regulates expression of the key seed dormancy regulator, DELAY OF GERMINATION1, is a typical representative of this class of RNAs. Transcription factor genes are overrepresented among loci with exosome-sensitive antisense RNAs, suggesting a potential for widespread control of gene expression via this class of noncoding RNAs. Lastly, we assess the use of alternative promoters in Arabidopsis and compare the accuracy of existing TSS annotations.
Collapse
Affiliation(s)
- Axel Thieffry
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Maria Louisa Vigh
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jette Bornholdt
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Maxim Ivanov
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
24
|
Abstract
Plants are subjected to extreme environmental conditions and must adapt rapidly. The phytohormone abscisic acid (ABA) accumulates during abiotic stress, signaling transcriptional changes that trigger physiological responses. Epigenetic modifications often facilitate transcription, particularly at genes exhibiting temporal, tissue-specific and environmentally-induced expression. In maize (Zea mays), MEDIATOR OF PARAMUTATION 1 (MOP1) is required for progression of an RNA-dependent epigenetic pathway that regulates transcriptional silencing of loci genomewide. MOP1 function has been previously correlated with genomic regions adjoining particular types of transposable elements and genic regions, suggesting that this regulatory pathway functions to maintain distinct transcriptional activities within genomic spaces, and that loss of MOP1 may modify the responsiveness of some loci to other regulatory pathways. As critical regulators of gene expression, MOP1 and ABA pathways each regulate specific genes. To determine whether loss of MOP1 impacts ABA-responsive gene expression in maize, mop1-1 and Mop1 homozygous seedlings were subjected to exogenous ABA and RNA-sequencing. A total of 3,242 differentially expressed genes (DEGs) were identified in four pairwise comparisons. Overall, ABA-induced changes in gene expression were enhanced in mop1-1 homozygous plants. The highest number of DEGs were identified in ABA-induced mop1-1 mutants, including many transcription factors; this suggests combinatorial regulatory scenarios including direct and indirect transcriptional responses to genetic disruption (mop1-1) and/or stimulus-induction of a hierarchical, cascading network of responsive genes. Additionally, a modest increase in CHH methylation at putative MOP1-RdDM loci in response to ABA was observed in some genotypes, suggesting that epigenetic variation might influence environmentally-induced transcriptional responses in maize.
Collapse
|
25
|
Szabo EX, Reichert P, Lehniger MK, Ohmer M, de Francisco Amorim M, Gowik U, Schmitz-Linneweber C, Laubinger S. Metabolic Labeling of RNAs Uncovers Hidden Features and Dynamics of the Arabidopsis Transcriptome. THE PLANT CELL 2020; 32:871-887. [PMID: 32060173 PMCID: PMC7145469 DOI: 10.1105/tpc.19.00214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/14/2020] [Accepted: 02/11/2020] [Indexed: 05/05/2023]
Abstract
Transcriptome analysis by RNA sequencing (RNA-seq) has become an indispensable research tool in modern plant biology. Virtually all RNA-seq studies provide a snapshot of the steady state transcriptome, which contains valuable information about RNA populations at a given time but lacks information about the dynamics of RNA synthesis and degradation. Only a few specialized sequencing techniques, such as global run-on sequencing, have been used to provide information about RNA synthesis rates in plants. Here, we demonstrate that RNA labeling with the modified, nontoxic uridine analog 5-ethynyl uridine (5-EU) in Arabidopsis (Arabidopsis thaliana) seedlings provides insight into plant transcriptome dynamics. Pulse labeling with 5-EU revealed nascent and unstable RNAs, RNA processing intermediates generated by splicing, and chloroplast RNAs. Pulse-chase experiments with 5-EU allowed us to determine RNA stabilities without the need for chemical transcription inhibitors such as actinomycin and cordycepin. Inhibitor-free, genome-wide analysis of polyadenylated RNA stability via 5-EU pulse-chase experiments revealed RNAs with shorter half-lives than those reported after chemical inhibition of transcription. In summary, our results indicate that the Arabidopsis nascent transcriptome contains unstable RNAs and RNA processing intermediates and suggest that polyadenylated RNAs have low stability in plants. Our technique lays the foundation for easy, affordable, nascent transcriptome analysis and inhibitor-free analysis of RNA stability in plants.
Collapse
Affiliation(s)
- Emese Xochitl Szabo
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | - Philipp Reichert
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | | | - Marilena Ohmer
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
| | | | - Udo Gowik
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
| | | | - Sascha Laubinger
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S, Coruh C, Axtell MJ. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res 2020; 30:497-513. [PMID: 32179590 PMCID: PMC7111516 DOI: 10.1101/gr.256750.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Plant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but compose only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large data set of published and newly generated sRNA sequencing data (1333 sRNA-seq libraries containing more than 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding more than 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24- and 21-nucleotide (nt) siRNAs, respectively. Most often, 24-nt-dominated siRNA loci occurred in intergenic regions, especially at the 5′-flanking regions of protein-coding genes. In contrast, 21-nt-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21-nt-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, whereas mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nathan R Johnson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily Hagerott
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Tamia Phifer
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Seth Polydore
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ceyda Coruh
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
27
|
Yu X, Martin PGP, Michaels SD. BORDER proteins protect expression of neighboring genes by promoting 3' Pol II pausing in plants. Nat Commun 2019; 10:4359. [PMID: 31554790 PMCID: PMC6761125 DOI: 10.1038/s41467-019-12328-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Ensuring that one gene's transcription does not inappropriately affect the expression of its neighbors is a fundamental challenge to gene regulation in a genomic context. In plants, which lack homologs of animal insulator proteins, the mechanisms that prevent transcriptional interference are not well understood. Here we show that BORDER proteins are enriched in intergenic regions and prevent interference between closely spaced genes on the same strand by promoting the 3' pausing of RNA polymerase II at the upstream gene. In the absence of BORDER proteins, 3' pausing associated with the upstream gene is reduced and shifts into the promoter region of the downstream gene. This is consistent with a model in which BORDER proteins inhibit transcriptional interference by preventing RNA polymerase from intruding into the promoters of downstream genes.
Collapse
Affiliation(s)
- Xuhong Yu
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA
| | - Pascal G P Martin
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA.,Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Scott D Michaels
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN, 47405, USA.
| |
Collapse
|
28
|
Ding S, Zhang Y, Hu Z, Huang X, Zhang B, Lu Q, Wen X, Wang Y, Lu C. mTERF5 Acts as a Transcriptional Pausing Factor to Positively Regulate Transcription of Chloroplast psbEFLJ. MOLECULAR PLANT 2019; 12:1259-1277. [PMID: 31128276 DOI: 10.1016/j.molp.2019.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/22/2019] [Accepted: 05/16/2019] [Indexed: 05/21/2023]
Abstract
RNA polymerase transcriptional pausing represents a major checkpoint in transcription in bacteria and metazoans, but it is unknown whether this phenomenon occurs in plant organelles. Here, we report that transcriptional pausing occurs in chloroplasts. We found that mTERF5 specifically and positively regulates the transcription of chloroplast psbEFLJ in Arabidopsis thaliana that encodes four key subunits of photosystem II. We found that mTERF5 causes the plastid-encoded RNA polymerase (PEP) complex to pause at psbEFLJ by binding to the +30 to +51 region of double-stranded DNA. Moreover, we revealed that mTERF5 interacts with pTAC6, an essential subunit of the PEP complex, although pTAC6 is not involved in the transcriptional pausing at psbEFLJ. We showed that mTERF5 recruits additional pTAC6 to the transcriptionally paused region of psbEFLJ, and the recruited pTAC6 proteins could be assembled into the PEP complex to regulate psbEFLJ transcription. Taken together, our findings shed light on the role of transcriptional pausing in chloroplast transcription in plants.
Collapse
Affiliation(s)
- Shunhua Ding
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Hu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bohan Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtao Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingchun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
29
|
Abstract
DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so-called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions.
Collapse
|
30
|
A model for the aberrant DNA methylomes in aging cells and cancer cells. Biochem Soc Trans 2019; 47:997-1003. [PMID: 31320500 DOI: 10.1042/bst20180218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/25/2022]
Abstract
Abstract
DNA methylation at the fifth position of cytosine is a major epigenetic mark conserved in plants and mammals. Genome-wide DNA methylation patterns are dynamically controlled by integrated activities of establishment, maintenance, and removal. In both plants and mammals, a pattern of global DNA hypomethylation coupled with increased methylation levels at some specific genomic regions arises at specific developmental stages and in certain abnormal cells, such as mammalian aging cells and cancer cells as well as some plant epigenetic mutants. Here we provide an overview of this distinct DNA methylation pattern in mammals and plants, and propose that a methylstat, which is a cis-element responsive to both DNA methylation and active demethylation activities and controlling the transcriptional activity of a key DNA methylation regulator, can help to explain the enigmatic DNA methylation patterns in aging cells and cancer cells.
Collapse
|
31
|
Jordán-Pla A, Pérez-Martínez ME, Pérez-Ortín JE. Measuring RNA polymerase activity genome-wide with high-resolution run-on-based methods. Methods 2019; 159-160:177-182. [PMID: 30716396 DOI: 10.1016/j.ymeth.2019.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
The biogenesis of RNAs is a multi-layered and highly regulated process that involves a diverse set of players acting in an orchestrated manner throughout the transcription cycle. Transcription initiation, elongation and termination factors act on RNA polymerases to modulate their movement along the DNA template in a very precise manner, more complex than previously anticipated. Genome-scale run-on-based methodologies have been developed to study in detail the position of transcriptionally-engaged RNA polymerases. Genomic run-on (GRO), and its many variants and refinements made over the years, are helping the community to address an increasing amount of scientific questions, spanning an increasing range of organisms and systems. In this review, we aim to summarize the most relevant high throughput methodologies developed to study nascent RNA by run-on methods, compare their main features, advantages and limitations, while putting them in context with alternative ways of studying the transcriptional process.
Collapse
Affiliation(s)
- Antonio Jordán-Pla
- ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain.
| | - Maria E Pérez-Martínez
- ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| | - José E Pérez-Ortín
- ERI Biotecmed, Facultad de Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain
| |
Collapse
|
32
|
Wang HLV, Chekanova JA. An Overview of Methodologies in Studying lncRNAs in the High-Throughput Era: When Acronyms ATTACK! Methods Mol Biol 2019; 1933:1-30. [PMID: 30945176 PMCID: PMC6684206 DOI: 10.1007/978-1-4939-9045-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of pervasive transcription in eukaryotic genomes provided one of many surprising (and perhaps most surprising) findings of the genomic era and led to the uncovering of a large number of previously unstudied transcriptional events. This pervasive transcription leads to the production of large numbers of noncoding RNAs (ncRNAs) and thus opened the window to study these diverse, abundant transcripts of unclear relevance and unknown function. Since that discovery, recent advances in high-throughput sequencing technologies have identified a large collection of ncRNAs, from microRNAs to long noncoding RNAs (lncRNAs). Subsequent discoveries have shown that many lncRNAs play important roles in various eukaryotic processes; these discoveries have profoundly altered our understanding of the regulation of eukaryotic gene expression. Although the identification of ncRNAs has become a standard experimental approach, the functional characterization of these diverse ncRNAs remains a major challenge. In this chapter, we highlight recent progress in the methods to identify lncRNAs and the techniques to study the molecular function of these lncRNAs and the application of these techniques to the study of plant lncRNAs.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
- Present address: Department of Biology, Emory University, Atlanta, GA, USA
| | - Julia A Chekanova
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
33
|
Chaudhary S, Khokhar W, Jabre I, Reddy ASN, Byrne LJ, Wilson CM, Syed NH. Alternative Splicing and Protein Diversity: Plants Versus Animals. FRONTIERS IN PLANT SCIENCE 2019; 10:708. [PMID: 31244866 PMCID: PMC6581706 DOI: 10.3389/fpls.2019.00708] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 05/11/2023]
Abstract
Plants, unlike animals, exhibit a very high degree of plasticity in their growth and development and employ diverse strategies to cope with the variations during diurnal cycles and stressful conditions. Plants and animals, despite their remarkable morphological and physiological differences, share many basic cellular processes and regulatory mechanisms. Alternative splicing (AS) is one such gene regulatory mechanism that modulates gene expression in multiple ways. It is now well established that AS is prevalent in all multicellular eukaryotes including plants and humans. Emerging evidence indicates that in plants, as in animals, transcription and splicing are coupled. Here, we reviewed recent evidence in support of co-transcriptional splicing in plants and highlighted similarities and differences between plants and humans. An unsettled question in the field of AS is the extent to which splice isoforms contribute to protein diversity. To take a critical look at this question, we presented a comprehensive summary of the current status of research in this area in both plants and humans, discussed limitations with the currently used approaches and suggested improvements to current methods and alternative approaches. We end with a discussion on the potential role of epigenetic modifications and chromatin state in splicing memory in plants primed with stresses.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Waqas Khokhar
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Ibtissam Jabre
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Anireddy S. N. Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Lee J. Byrne
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Cornelia M. Wilson
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Naeem H. Syed
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
- *Correspondence: Naeem H. Syed,
| |
Collapse
|
34
|
Crisp PA, Smith AB, Ganguly DR, Murray KD, Eichten SR, Millar AA, Pogson BJ. RNA Polymerase II Read-Through Promotes Expression of Neighboring Genes in SAL1-PAP-XRN Retrograde Signaling. PLANT PHYSIOLOGY 2018; 178:1614-1630. [PMID: 30301775 PMCID: PMC6288732 DOI: 10.1104/pp.18.00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/25/2018] [Indexed: 05/07/2023]
Abstract
In plants, the molecular function(s) of the nucleus-localized 5'-3' EXORIBONUCLEASES (XRNs) are unclear; however, their activity is reported to have a significant effect on gene expression and SAL1-mediated retrograde signaling. Using parallel analysis of RNA ends, we documented a dramatic increase in uncapped RNA substrates of the XRNs in both sal1 and xrn2xrn3 mutants. We found that a major consequence of reducing SAL1 or XRN activity was RNA Polymerase II 3' read-through. This occurred at 72% of expressed genes, demonstrating a major genome-wide role for the XRN-torpedo model of transcription termination in Arabidopsis (Arabidopsis thaliana). Read-through is speculated to have a negative effect on transcript abundance; however, we did not observe this. Rather, we identified a strong association between read-through and increased transcript abundance of tandemly orientated downstream genes, strongly correlated with the proximity (less than 1,000 bp) and expression of the upstream gene. We observed read-through in the proximity of 903 genes up-regulated in the sal1-8 retrograde signaling mutant; thus, this phenomenon may account directly for up to 23% of genes up-regulated in sal1-8 Using APX2 and AT5G43770 as exemplars, we genetically uncoupled read-through loci from downstream genes to validate the principle of read-through-mediated mRNA regulation, providing one mechanism by which an ostensibly posttranscriptional exoribonuclease that targets uncapped RNAs could modulate gene expression.
Collapse
Affiliation(s)
- Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Aaron B Smith
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Kevin D Murray
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Anthony A Millar
- Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
| |
Collapse
|
35
|
Zhu J, Liu M, Liu X, Dong Z. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. NATURE PLANTS 2018; 4:1112-1123. [PMID: 30374093 DOI: 10.1038/s41477-018-0280-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 09/14/2018] [Indexed: 05/25/2023]
Abstract
RNA polymerase II (Pol II) plays an essential role in gene expression. We used plant native elongating transcript sequencing and global run-on sequencing to profile nascent RNAs genome wide in Arabidopsis. We found that Pol II tends to accumulate downstream of the transcription start site (TSS). Moreover, Pol II with an unphosphorylated carboxyl-terminal domain (CTD) mainly accumulates downstream of the TSS, while Pol II with a Ser 5P CTD associates with spliceosomes, and Pol II with a Ser 2P CTD presents a sharp peak within 250 base pairs downstream of the polyadenylation site (PAS). Pol II pausing both at promoter-proximal regions and after PAS affects the transcription rate. Interestingly, active genes can be classified into three clusters based on the different modes of transcription. We demonstrate that these two methods are suitable to study Pol II dynamics in planta. Although transcription is conserved overall within eukaryotes, there is plant-specific regulation.
Collapse
Affiliation(s)
- Jiafu Zhu
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaobin Liu
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhicheng Dong
- Plant Gene Engineering Centre, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China.
| |
Collapse
|
36
|
Anderson SN, Zynda GJ, Song J, Han Z, Vaughn MW, Li Q, Springer NM. Subtle Perturbations of the Maize Methylome Reveal Genes and Transposons Silenced by Chromomethylase or RNA-Directed DNA Methylation Pathways. G3 (BETHESDA, MD.) 2018; 8:1921-1932. [PMID: 29618467 PMCID: PMC5982821 DOI: 10.1534/g3.118.200284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/03/2018] [Indexed: 01/17/2023]
Abstract
DNA methylation is a chromatin modification that can provide epigenetic regulation of gene and transposon expression. Plants utilize several pathways to establish and maintain DNA methylation in specific sequence contexts. The chromomethylase (CMT) genes maintain CHG (where H = A, C or T) methylation. The RNA-directed DNA methylation (RdDM) pathway is important for CHH methylation. Transcriptome analysis was performed in a collection of Zea mays lines carrying mutant alleles for CMT or RdDM-associated genes. While the majority of the transcriptome was not affected, we identified sets of genes and transposon families sensitive to context-specific decreases in DNA methylation in mutant lines. Many of the genes that are up-regulated in CMT mutant lines have high levels of CHG methylation, while genes that are differentially expressed in RdDM mutants are enriched for having nearby mCHH islands, implicating context-specific DNA methylation in the regulation of expression for a small number of genes. Many genes regulated by CMTs exhibit natural variation for DNA methylation and transcript abundance in a panel of diverse inbred lines. Transposon families with differential expression in the mutant genotypes show few defining features, though several families up-regulated in RdDM mutants show enriched expression in endosperm tissue, highlighting the potential importance for this pathway during reproduction. Taken together, our findings suggest that while the number of genes and transposon families whose expression is reproducibly affected by mild perturbations in context-specific methylation is small, there are distinct patterns for loci impacted by RdDM and CMT mutants.
Collapse
Affiliation(s)
- Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| | - Gregory J Zynda
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
37
|
Forestan C, Farinati S, Rouster J, Lassagne H, Lauria M, Dal Ferro N, Varotto S. Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by HISTONE DEACETYLASE 108. Genetics 2018; 208:1443-1466. [PMID: 29382649 DOI: 10.1534/genetics.117.300625/-/dc1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 05/28/2023] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Silvia Farinati
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Jacques Rouster
- GM Trait Cereals, Biogemma, Centre de Research de Chappes, 63720 Chappes, France
| | - Hervé Lassagne
- GM Trait Cereals, Biogemma, Centre de Research de Chappes, 63720 Chappes, France
| | - Massimiliano Lauria
- The Institute of Agricultural Biology and Biotechnology (IBBA), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Nicola Dal Ferro
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE) Agripolis, University of Padova, 35020 Legnaro (PD), Italy
| |
Collapse
|
38
|
Lee TA, Bailey-Serres J. Lighting the shadows: methods that expose nuclear and cytoplasmic gene regulatory control. Curr Opin Biotechnol 2018; 49:29-34. [DOI: 10.1016/j.copbio.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
|
39
|
Control of Maize Vegetative and Reproductive Development, Fertility, and rRNAs Silencing by HISTONE DEACETYLASE 108. Genetics 2018; 208:1443-1466. [PMID: 29382649 PMCID: PMC5887141 DOI: 10.1534/genetics.117.300625] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/28/2018] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs) catalyze the removal of acetyl groups from acetylated histone tails that consequently interact more closely with DNA, leading to chromatin state refractory to transcription. Zea mays HDA108 belongs to the Rpd3/HDA1 HDAC family and is ubiquitously expressed during development. The newly isolated hda108/hda108 insertional mutant exhibited many developmental defects: significant reduction in plant height, alterations of shoot and leaf development, and alterations of inflorescence patterning and fertility. Western blot analyses and immunolocalization experiments revealed an evident increase in histone acetylation, accompanied by a marked reduction in H3K9 dimethylation, in mutant nuclei. The DNA methylation status, in the CHG sequence context, and the transcript level of ribosomal sequences were also affected in hda108 mutants, while enrichment in H3 and H4 acetylation characterizes both repetitive and nonrepetitive transcriptional up-regulated loci. RNA-Seq of both young leaf and anthers indicated that transcription factor expression is highly affected and that the pollen developmental program is disrupted in hda108 mutants. Crosses between hda108/hda108 and epiregulator mutants did not produce any double mutant progeny indicating possible genetic interactions of HDA108 with distinct epigenetic pathways. Our findings indicate that HDA108 is directly involved in regulation of maize development, fertility, and epigenetic regulation of genome activity.
Collapse
|
40
|
McKinlay A, Podicheti R, Wendte JM, Cocklin R, Rusch DB. RNA polymerases IV and V influence the 3' boundaries of Polymerase II transcription units in Arabidopsis. RNA Biol 2017; 15:269-279. [PMID: 29199514 DOI: 10.1080/15476286.2017.1409930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved in plants as specialized forms of Pol II. Their functions are best understood in the context of RNA-directed DNA methylation (RdDM), a process in which Pol IV-dependent 24 nt siRNAs direct the de novo cytosine methylation of regions transcribed by Pol V. Pol V has additional functions, independent of Pol IV and 24 nt siRNA biogenesis, in maintaining the repression of transposons and genomic repeats whose silencing depends on maintenance cytosine methylation. Here we report that Pol IV and Pol V play unexpected roles in defining the 3' boundaries of Pol II transcription units. Nuclear run-on assays reveal that in the absence of Pol IV or Pol V, Pol II occupancy downstream of poly A sites increases for approximately 12% of protein-coding genes. This effect is most pronounced for convergently transcribed gene pairs. Although Pols IV and V are detected near transcript ends of the affected Pol II - transcribed genes, their role in limiting Pol II read-through is independent of siRNA biogenesis or cytosine methylation for the majority of these genes. Interestingly, we observed that splicing was less efficient in pol IV or pol V mutant plants, compared to wild-type plants, suggesting that Pol IV or Pol V might affect pre-mRNA processing. We speculate that Pols IV and V (and/or their associated factors) play roles in Pol II transcription termination and pre-mRNA splicing by influencing polymerase elongation rates and/or release at collision sites for convergent genes.
Collapse
Affiliation(s)
- Anastasia McKinlay
- a Department of Biology , Indiana University , Bloomington , Indiana , USA
| | - Ram Podicheti
- b Center for Genomics and Bioinformatics, Indiana University , Bloomington , Indiana , USA.,c School of Informatics and Computing, Indiana University , Bloomington , IN , USA
| | - Jered M Wendte
- a Department of Biology , Indiana University , Bloomington , Indiana , USA
| | - Ross Cocklin
- a Department of Biology , Indiana University , Bloomington , Indiana , USA.,d Howard Hughes Medical Institute, Indiana University , Bloomington , Indiana
| | - Douglas B Rusch
- b Center for Genomics and Bioinformatics, Indiana University , Bloomington , Indiana , USA
| |
Collapse
|
41
|
Abstract
Dynamic reshuffling of the chromatin landscape is a recurrent theme orchestrated in many, if not all, plant developmental transitions and adaptive responses. Spatiotemporal variations of the chromatin properties on regulatory genes and on structural genomic elements trigger the establishment of distinct transcriptional contexts, which in some instances can epigenetically be inherited. Studies on plant cell plasticity during the differentiation of stem cells, including gametogenesis, or the specialization of vegetative cells in various organs, as well as the investigation of allele-specific gene regulation have long been impaired by technical challenges in generating specific chromatin profiles in complex or hardly accessible cell populations. Recent advances in increasing the sensitivity of genome-enabled technologies and in the isolation of specific cell types have allowed for overcoming such limitations. These developments hint at multilevel regulatory events ranging from nucleosome accessibility and composition to higher order chromatin organization and genome topology. Uncovering the large extent to which chromatin dynamics and epigenetic processes influence gene expression is therefore not surprisingly revolutionizing current views on plant molecular genetics and (epi)genomics as well as their perspectives in eco-evolutionary biology. Here, we introduce current methodologies to probe genome-wide chromatin variations for which protocols are detailed in this book chapter, with an emphasis on the plant model species Arabidopsis.
Collapse
|
42
|
Forestan C, Farinati S, Aiese Cigliano R, Lunardon A, Sanseverino W, Varotto S. Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription. BMC PLANT BIOLOGY 2017; 17:161. [PMID: 29025411 PMCID: PMC5639751 DOI: 10.1186/s12870-017-1108-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/04/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND RNA-directed DNA methylation (RdDM) is a plant-specific epigenetic process that relies on the RNA polymerase IV (Pol IV) for the production of 24 nucleotide small interfering RNAs (siRNA) that guide the cytosine methylation and silencing of genes and transposons. Zea mays RPD1/RMR6 gene encodes the largest subunit of Pol IV and is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs) and transcriptional regulation of specific alleles. RESULTS In this study we applied a total RNA-Seq approach to compare the B73 and rpd1/rmr6 leaf transcriptomes. Although previous studies indicated that loss of siRNAs production in RdDM mutants provokes a strong loss of CHH DNA methylation but not massive gene or TEs transcriptional activation in both Arabidopsis and maize, our total RNA-Seq analysis of rpd1/rmr6 transcriptome reveals that loss of Pol IV activity causes a global increase in the transcribed fraction of the maize genome. Our results point to the genes with nearby TE insertions as being the most strongly affected by Pol IV-mediated gene silencing. TEs modulation of nearby gene expression is linked to alternative methylation profiles on gene flanking regions, and these profiles are strictly dependent on specific characteristics of the TE member inserted. Although Pol IV is essential for the biogenesis of siRNAs, the genes with associated siRNA loci are less affected by the pol IV mutation. CONCLUSIONS This deep and integrated analysis of gene expression, TEs distribution, smallRNA targeting and DNA methylation levels, reveals that loss of Pol IV activity globally affects genome regulation, pointing at TEs as modulator of nearby gene expression and indicating the existence of multiple level epigenetic silencing mechanisms. Our results also suggest a predominant role of the Pol IV-mediated RdDM pathway in genome dominance regulation, and subgenome stability and evolution in maize.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Alice Lunardon
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
- Present Address: Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, PA 16802 USA
| | | | - Serena Varotto
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| |
Collapse
|
43
|
Crisp PA, Ganguly DR, Smith AB, Murray KD, Estavillo GM, Searle I, Ford E, Bogdanović O, Lister R, Borevitz JO, Eichten SR, Pogson BJ. Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis. THE PLANT CELL 2017; 29:1836-1863. [PMID: 28705956 PMCID: PMC5590493 DOI: 10.1105/tpc.16.00828] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 05/19/2023]
Abstract
Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory.
Collapse
Affiliation(s)
- Peter A Crisp
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Diep R Ganguly
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Aaron B Smith
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Kevin D Murray
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Gonzalo M Estavillo
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
- CSIRO Agriculture and Food, Black Mountain, Canberra ACT 2601, Australia
| | - Iain Searle
- School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
| | - Ozren Bogdanović
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth WA 6009, Australia
- Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Justin O Borevitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Steven R Eichten
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University Canberra, Acton ACT 0200, Australia
| |
Collapse
|
44
|
Wang L, Rinaldi FC, Singh P, Doyle EL, Dubrow ZE, Tran TT, Pérez-Quintero AL, Szurek B, Bogdanove AJ. TAL Effectors Drive Transcription Bidirectionally in Plants. MOLECULAR PLANT 2017; 10:285-296. [PMID: 27965000 DOI: 10.1016/j.molp.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcriptional activators of host susceptibility genes and sometimes resistance genes. The modularity of DNA recognition by TAL effectors makes them important also as tools for gene targeting and genome editing. Effector binding elements (EBEs) recognized by native TAL effectors in plants have been identified only on the forward strand of target promoters. Here, we demonstrate that TAL effectors can drive plant transcription from EBEs on either strand and in both directions. Furthermore, we show that a native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a target with an EBE on each strand of its promoter. By inserting that promoter and derivatives between two reporter genes oriented head to head, we show that the TAL effector drives expression from either EBE in the respective orientations, and that activity at the reverse-strand EBE also potentiates forward transcription driven by activity at the forward-strand EBE. Our results reveal new modes of action for TAL effectors, suggesting the possibility of yet unrecognized targets important in plant disease, expanding the search space for off-targets of custom TAL effectors, and highlighting the potential of TAL effectors for probing fundamental aspects of plant transcription.
Collapse
Affiliation(s)
- Li Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Fabio C Rinaldi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Pallavi Singh
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Erin L Doyle
- Department of Biology, Doane University, 1014 Boswell Avenue, Crete, NE 68333, USA
| | - Zoe E Dubrow
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Tuan Tu Tran
- UMR Interactions-Plantes-Microorganismes-Environnement, IRD-Cirad-Université Montpellier, Montpellier, France
| | - Alvaro L Pérez-Quintero
- UMR Interactions-Plantes-Microorganismes-Environnement, IRD-Cirad-Université Montpellier, Montpellier, France
| | - Boris Szurek
- UMR Interactions-Plantes-Microorganismes-Environnement, IRD-Cirad-Université Montpellier, Montpellier, France
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA.
| |
Collapse
|
45
|
|
46
|
Nascent RNA sequencing reveals distinct features in plant transcription. Proc Natl Acad Sci U S A 2016; 113:12316-12321. [PMID: 27729530 DOI: 10.1073/pnas.1603217113] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcriptional regulation of gene expression is a major mechanism used by plants to confer phenotypic plasticity, and yet compared with other eukaryotes or bacteria, little is known about the design principles. We generated an extensive catalog of nascent and steady-state transcripts in Arabidopsis thaliana seedlings using global nuclear run-on sequencing (GRO-seq), 5'GRO-seq, and RNA-seq and reanalyzed published maize data to capture characteristics of plant transcription. De novo annotation of nascent transcripts accurately mapped start sites and unstable transcripts. Examining the promoters of coding and noncoding transcripts identified comparable chromatin signatures, a conserved "TGT" core promoter motif and unreported transcription factor-binding sites. Mapping of engaged RNA polymerases showed a lack of enhancer RNAs, promoter-proximal pausing, and divergent transcription in Arabidopsis seedlings and maize, which are commonly present in yeast and humans. In contrast, Arabidopsis and maize genes accumulate RNA polymerases in proximity of the polyadenylation site, a trend that coincided with longer genes and CpG hypomethylation. Lack of promoter-proximal pausing and a higher correlation of nascent and steady-state transcripts indicate Arabidopsis may regulate transcription predominantly at the level of initiation. Our findings provide insight into plant transcription and eukaryotic gene expression as a whole.
Collapse
|
47
|
Swift J, Coruzzi GM. A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:75-83. [PMID: 27546191 DOI: 10.1016/j.bbagrm.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Dynamic reprogramming of transcriptional networks enables cells to adapt to a changing environment. Thus, it is crucial not only to understand what gene targets are regulated by a transcription factor (TF) but also when. This review explores the way TFs function with respect to time, paying particular attention to discoveries made in plants - where coordinated, genome-wide responses to environmental change is crucial to the survival of these sessile organisms. We investigate the molecular mechanisms that mediate transient TF-DNA binding, and assess how these rapid and dynamic interactions translate to long-term temporal regulation of genomes. We also discuss how current molecular techniques can catch, and sometimes miss, transient TF-target interactions that underlie dynamic cellular responses. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Joseph Swift
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA.
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA
| |
Collapse
|
48
|
Panda K, Ji L, Neumann DA, Daron J, Schmitz RJ, Slotkin RK. Full-length autonomous transposable elements are preferentially targeted by expression-dependent forms of RNA-directed DNA methylation. Genome Biol 2016; 17:170. [PMID: 27506905 PMCID: PMC4977677 DOI: 10.1186/s13059-016-1032-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023] Open
Abstract
Background Chromatin modifications such as DNA methylation are targeted to transposable elements by small RNAs in a process termed RNA-directed DNA methylation (RdDM). In plants, canonical RdDM functions through RNA polymerase IV to reinforce pre-existing transposable element silencing. Recent investigations have identified a “non-canonical” form of RdDM dependent on RNA polymerase II expression to initiate and re-establish silencing of active transposable elements. This expression-dependent RdDM mechanism functions through RNAi degradation of transposable element mRNAs into small RNAs guided by the RNA-dependent RNA polymerase 6 (RDR6) protein and is therefore referred to as RDR6-RdDM. Results We performed whole-genome MethylC-seq in 20 mutants that distinguish RdDM mechanisms when transposable elements are either transcriptionally silent or active. We identified a new mechanism of expression-dependent RdDM, which functions through DICER-LIKE3 (DCL3) but bypasses the requirement of both RNA polymerase IV and RDR6 (termed DCL3-RdDM). We found that RNA polymerase II expression-dependent forms of RdDM function on over 20 % of transcribed transposable elements, including the majority of full-length elements with all of the domains required for autonomous transposition. Lastly, we find that RDR6-RdDM preferentially targets long transposable elements due to the specificity of primary small RNAs to cleave full-length mRNAs. Conclusions Expression-dependent forms of RdDM function to critically target DNA methylation to full-length and transcriptionally active transposable elements, suggesting that these pathways are key to suppressing mobilization. This targeting specificity is initiated on the mRNA cleavage-level, yet manifested as chromatin-level silencing that in plants is epigenetically inherited from generation to generation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1032-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaushik Panda
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Lexiang Ji
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | - Josquin Daron
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | | - R Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
49
|
Forestan C, Aiese Cigliano R, Farinati S, Lunardon A, Sanseverino W, Varotto S. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Sci Rep 2016; 6:30446. [PMID: 27461139 PMCID: PMC4962059 DOI: 10.1038/srep30446] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022] Open
Abstract
Plant's response and adaptation to abiotic stresses involve sophisticated genetic and epigenetic regulatory systems. To obtain a global view of molecular response to osmotic stresses, including the non-coding portion of genome, we conducted a total leaf transcriptome analysis on maize plants subjected to prolonged drought and salt stresses. Stress application to both B73 wild type and the epiregulator mutant rpd1-1/rmr6 allowed dissection of the epigenetic component of stress response. Coupling total RNA-Seq and transcriptome re-assembly we annotated thousands of new maize transcripts, together with 13,387 lncRNAs that may play critical roles in regulating gene expression. Differential expression analysis revealed hundreds of genes modulated by long-term stress application, including also many lncRNAs and transposons specifically induced by stresses. The amplitude and dynamic of the stress-modulated gene sets are very different between B73 and rpd1-1/rmr6 mutant plants, as result of stress-like effect on genome regulation caused by the mutation itself, which activates many stress-related genes even in control condition. The analyzed extensive set of total RNA-Seq data, together with the improvement of the transcriptome and the identification of the non-coding portion of the transcriptome give a revealing insight into the genetic and epigenetic mechanism responsible for maize molecular response to abiotic stresses.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD)-Italy
| | | | - Silvia Farinati
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD)-Italy
| | - Alice Lunardon
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802 USA
| | | | - Serena Varotto
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Viale dell’Università 16, 35020 Legnaro (PD)-Italy
| |
Collapse
|
50
|
Lunardon A, Forestan C, Farinati S, Axtell MJ, Varotto S. Genome-Wide Characterization of Maize Small RNA Loci and Their Regulation in the required to maintain repression6-1 (rmr6-1) Mutant and Long-Term Abiotic Stresses. PLANT PHYSIOLOGY 2016; 170:1535-48. [PMID: 26747286 PMCID: PMC4775107 DOI: 10.1104/pp.15.01205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/04/2016] [Indexed: 05/03/2023]
Abstract
Endogenous small RNAs (sRNAs) contribute to gene regulation and genome homeostasis, but their activities and functions are incompletely known. The maize genome has a high number of transposable elements (TEs; almost 85%), some of which spawn abundant sRNAs. We performed sRNA and total RNA sequencing from control and abiotically stressed B73 wild-type plants and rmr6-1 mutants. RMR6 encodes the largest subunit of the RNA polymerase IV complex and is responsible for accumulation of most 24-nucleotide (nt) small interfering RNAs (siRNAs). We identified novel MIRNA loci and verified miR399 target conservation in maize. RMR6-dependent 23-24 nt siRNA loci were specifically enriched in the upstream region of the most highly expressed genes. Most genes misregulated in rmr6-1 did not show a significant correlation with loss of flanking siRNAs, but we identified one gene supporting existing models of direct gene regulation by TE-derived siRNAs. Long-term drought correlated with changes of miRNA and sRNA accumulation, in particular inducing down-regulation of a set of sRNA loci in the wild-typeleaf.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| | - Cristian Forestan
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| | - Silvia Farinati
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| | - Michael J Axtell
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| | - Serena Varotto
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, Agripolis Viale dell'Università 16, 35020 Legnaro PD Italy (A.L., C.F., S.F., S.V.); andDepartment of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802 (A.L., M.J.A.)
| |
Collapse
|