1
|
Tian M, Lu Z, Luo J, Han H, Wen D, Zhao M, Zhu Z, Hua H. Analysis of the roles of MAD proteins in the wing dimorphism of Nilaparvata lugens. INSECT SCIENCE 2024. [PMID: 38961475 DOI: 10.1111/1744-7917.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
Wing dimorphism in Nilaparvata lugens is controlled by the insulin-like growth factor 1 (IGF-1) signaling - Forkhead transcription factors (IIS-FoxO) pathway. However, the role of this signal in the wing development program remains largely unclear. Here, we identified 2 R-SMAD proteins, NlMAD1 and NlMAD2, in the brown planthopper (BPH) transcriptome, derived from the intrinsic transforming growth factor-β pathway of insect wing development. Both proteins share high sequence similarity and conserved domains. Phylogenetic analysis placed them in the R-SMAD group and revealed related insect orthologs. The expression of Nlmad1 was elevated in the late instar stages of the macropterous BPH strain. Nlmad1 knockdown in nymphs results in malformed wings and reduced wing size in adults, which affects the forewing membrane. By contrast, Nlmad2 expression was relatively consistent across BPH strains and different developmental stages. Nlmad2 knockdown had a milder effect on wing morphology and mainly affected forewing veins and cuticle thickness in the brachypterous strain. NlMAD1 functions downstream of the IIS-FoxO pathway by mediating the FoxO-regulated vestigial transcription and wing morph switching. Inhibiting Nlmad1 partially reversed the long-winged phenotype caused by NlFoxO knockdown. These findings indicate that NlMAD1 and NlMAD2 play distinct roles in regulating wing development and morph differentiation in BPH. Generally, NlMAD1 is a key mediator of the IIS-FoxO pathway in wing morph switching.
Collapse
Affiliation(s)
- Miaomiao Tian
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zeiwei Lu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiguang Luo
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agro-Products), Hainan Academy of Agricultural Sciences, Hainan, China
| | - Huilin Han
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dong Wen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhua Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Yang M, Zinkgraf M, Fitzgerald-Cook C, Harrison BR, Putzier A, Promislow DEL, Wang AM. Using Drosophila to identify naturally occurring genetic modifiers of amyloid beta 42- and tau-induced toxicity. G3 (BETHESDA, MD.) 2023; 13:jkad132. [PMID: 37311212 PMCID: PMC10468303 DOI: 10.1093/g3journal/jkad132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease is characterized by 2 pathological proteins, amyloid beta 42 and tau. The majority of Alzheimer's disease cases in the population are sporadic and late-onset Alzheimer's disease, which exhibits high levels of heritability. While several genetic risk factors for late-onset Alzheimer's disease have been identified and replicated in independent studies, including the ApoE ε4 allele, the great majority of the heritability of late-onset Alzheimer's disease remains unexplained, likely due to the aggregate effects of a very large number of genes with small effect size, as well as to biases in sample collection and statistical approaches. Here, we present an unbiased forward genetic screen in Drosophila looking for naturally occurring modifiers of amyloid beta 42- and tau-induced ommatidial degeneration. Our results identify 14 significant SNPs, which map to 12 potential genes in 8 unique genomic regions. Our hits that are significant after genome-wide correction identify genes involved in neuronal development, signal transduction, and organismal development. Looking more broadly at suggestive hits (P < 10-5), we see significant enrichment in genes associated with neurogenesis, development, and growth as well as significant enrichment in genes whose orthologs have been identified as significantly or suggestively associated with Alzheimer's disease in human GWAS studies. These latter genes include ones whose orthologs are in close proximity to regions in the human genome that are associated with Alzheimer's disease, but where a causal gene has not been identified. Together, our results illustrate the potential for complementary and convergent evidence provided through multitrait GWAS in Drosophila to supplement and inform human studies, helping to identify the remaining heritability and novel modifiers of complex diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Matthew Zinkgraf
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Cecilia Fitzgerald-Cook
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Benjamin R Harrison
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alexandra Putzier
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Daniel E L Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Adrienne M Wang
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
3
|
Chen F, Zhang XQ, Wu JJ, Jin L, Li GQ. Requirement of Myoglianin for metamorphosis in the beetle Henosepilachna vigintioctopunctata. INSECT MOLECULAR BIOLOGY 2022; 31:671-685. [PMID: 35661293 DOI: 10.1111/imb.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Henosepilachna vigintioctopunctata is a serious defoliating beetle attacking Solanaceae and Cucurbitaceae plants in many Asian countries. In the present paper, we identified a putative myoglianin (myo) gene. Hvmyo was actively transcribed throughout development, from embryo to adult. RNA interference (RNAi)-aided knockdown of Hvmyo delayed larval development by more than 2 days, reduced larval body size, inhibited the growth of antennae, wings and legs and disturbed gut purge. Knockdown of Hvmyo impaired the larval-pupal transition. All the Hvmyo RNAi larvae arrested at the larval stage or formed misshapen pupae or adults. The deformed pupae and adults were partially wrapped with exuviae, bearing separated wings. Moreover, the expression levels of five ecdysteroidogenesis genes (Hvspo, Hvphm, Hvdib, Hvsad and Hvshd), a prothocicotropic hormone (PTTH)/Torso pathway gene (Hvtorso), two 20E receptor genes (HvEcR and HvUSP), and two 20E signalling genes (HvE93 and HvFTZ-F1) were as a result of HvMyo RNAi significantly lowered. Conversely, the expression of a JH biosynthesis gene (Hvjhamt), a JH receptor gene HvMet and a JH signalling gene HvKr-h1 was greatly enhanced. Although ingestion of 20E and Hal rescued the 20E signal, it could not alleviate larval performance and defective phenotypes. Our results suggest that Myo exerts four distinctive roles in ecdysteroidogenesis, JH production, organ growth and larva-pupa-adult transformation in H. vigintioctopunctata.
Collapse
Affiliation(s)
- Feng Chen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Qing Zhang
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jian-Jian Wu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Peterson AJ, Murphy SJ, Mundt MG, Shimell M, Leof EB, O’Connor MB. A juxtamembrane basolateral targeting motif regulates signaling through a TGF-β pathway receptor in Drosophila. PLoS Biol 2022; 20:e3001660. [PMID: 35594316 PMCID: PMC9162340 DOI: 10.1371/journal.pbio.3001660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/02/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
In polarized epithelial cells, receptor-ligand interactions can be restricted by different spatial distributions of the 2 interacting components, giving rise to an underappreciated layer of regulatory complexity. We explored whether such regulation occurs in the Drosophila wing disc, an epithelial tissue featuring the TGF-β family member Decapentaplegic (Dpp) as a morphogen controlling growth and patterning. Dpp protein has been observed in an extracellular gradient within the columnar cell layer of the disc, but also uniformly in the disc lumen, leading to the question of how graded signaling is achieved in the face of 2 distinctly localized ligand pools. We find the Dpp Type II receptor Punt, but not the Type I receptor Tkv, is enriched at the basolateral membrane and depleted at the junctions and apical surface. Wit, a second Type II receptor, shows a markedly different behavior, with the protein detected on all membrane regions but enriched at the apical side. Mutational studies identified a short juxtamembrane sequence required for basolateral restriction of Punt in both wing discs and mammalian Madin-Darby canine kidney (MDCK) cells. This basolateral targeting (BLT) determinant can dominantly confer basolateral localization on an otherwise apical receptor. Rescue of punt mutants with transgenes altered in the targeting motif showed that flies expressing apicalized Punt due to the lack of a functional BLT displayed developmental defects, female sterility, and significant lethality. We also show that apicalized Punt does not produce an ectopic signal, indicating that the apical pool of Dpp is not a significant signaling source even when presented with Punt. Instead, we find that basolateral presentation of Punt is required for optimal signaling. Finally, we present evidence that the BLT acts through polarized sorting machinery that differs between types of epithelia. This suggests a code whereby each epithelial cell type may differentially traffic common receptors to enable distinctive responses to spatially localized pools of extracellular ligands.
Collapse
Affiliation(s)
- Aidan J. Peterson
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen J. Murphy
- Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Melinda G. Mundt
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - MaryJane Shimell
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Edward B. Leof
- Thoracic Diseases Research Unit, Department of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology & Development and the Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
5
|
Zhou J, Dabiri Y, Gama-Brambila RA, Ghafoory S, Altinbay M, Mehrabi A, Golriz M, Blagojevic B, Reuter S, Han K, Seidel A, Đikić I, Wölfl S, Cheng X. pVHL-mediated SMAD3 degradation suppresses TGF-β signaling. J Cell Biol 2022; 221:212891. [PMID: 34860252 PMCID: PMC8650352 DOI: 10.1083/jcb.202012097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/07/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling plays a fundamental role in metazoan development and tissue homeostasis. However, the molecular mechanisms concerning the ubiquitin-related dynamic regulation of TGF-β signaling are not thoroughly understood. Using a combination of proteomics and an siRNA screen, we identify pVHL as an E3 ligase for SMAD3 ubiquitination. We show that pVHL directly interacts with conserved lysine and proline residues in the MH2 domain of SMAD3, triggering degradation. As a result, the level of pVHL expression negatively correlates with the expression and activity of SMAD3 in cells, Drosophila wing, and patient tissues. In Drosophila, loss of pVHL leads to the up-regulation of TGF-β targets visible in a downward wing blade phenotype, which is rescued by inhibition of SMAD activity. Drosophila pVHL expression exhibited ectopic veinlets and reduced wing growth in a similar manner as upon loss of TGF-β/SMAD signaling. Thus, our study demonstrates a conserved role of pVHL in the regulation of TGF-β/SMAD3 signaling in human cells and Drosophila wing development.
Collapse
Affiliation(s)
- Jun Zhou
- School of Biomedical Sciences, Hunan University, Changsha, China.,Division of Signaling and Functional Genomics, Department of Cell and Molecular Biology, Medical Faculty Mannheim, German Cancer Research Center and Heidelberg University, Heidelberg, Germany
| | - Yasamin Dabiri
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Rodrigo A Gama-Brambila
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Shahrouz Ghafoory
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Mukaddes Altinbay
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Mohammad Golriz
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Heidelberg, Germany
| | - Biljana Blagojevic
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Stefanie Reuter
- Universitätsklinikum Jena, Klinik für Innere Medizin III, Jena, Germany
| | - Kang Han
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Anna Seidel
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Ivan Đikić
- Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.,Buchmann Institute for Molecular Life Sciences, Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
6
|
López-Varea A, Vega-Cuesta P, Ruiz-Gómez A, Ostalé CM, Molnar C, Hevia CF, Martín M, Organista MF, de Celis J, Culí J, Esteban N, de Celis JF. Genome-wide phenotypic RNAi screen in the Drosophila wing: phenotypic description of functional classes. G3 (BETHESDA, MD.) 2021; 11:6380434. [PMID: 34599810 PMCID: PMC8664486 DOI: 10.1093/g3journal/jkab349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023]
Abstract
The Drosophila genome contains approximately 14,000 protein-coding genes encoding all the necessary information to sustain cellular physiology, tissue organization, organism development, and behavior. In this manuscript, we describe in some detail the phenotypes in the adult fly wing generated after knockdown of approximately 80% of Drosophila genes. We combined this phenotypic description with a comprehensive molecular classification of the Drosophila proteins into classes that summarize the main expected or known biochemical/functional aspect of each protein. This information, combined with mRNA expression levels and in situ expression patterns, provides a simplified atlas of the Drosophila genome, from housekeeping proteins to the components of the signaling pathways directing wing development, that might help to further understand the contribution of each gene group to wing formation.
Collapse
Affiliation(s)
- Ana López-Varea
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Patricia Vega-Cuesta
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana Ruiz-Gómez
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Cristina M Ostalé
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Cristina Molnar
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain.,IRB Barcelona, Barcelona 08028, Spain
| | - Covadonga F Hevia
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mercedes Martín
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Maria F Organista
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jesus de Celis
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Joaquín Culí
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Nuria Esteban
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular "Severo Ochoa," CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
7
|
From spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control. PLoS Comput Biol 2021; 17:e1009543. [PMID: 34723960 PMCID: PMC8601605 DOI: 10.1371/journal.pcbi.1009543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Information flow within and between cells depends significantly on calcium (Ca2+) signaling dynamics. However, the biophysical mechanisms that govern emergent patterns of Ca2+ signaling dynamics at the organ level remain elusive. Recent experimental studies in developing Drosophila wing imaginal discs demonstrate the emergence of four distinct patterns of Ca2+ activity: Ca2+ spikes, intercellular Ca2+ transients, tissue-level Ca2+ waves, and a global “fluttering” state. Here, we used a combination of computational modeling and experimental approaches to identify two different populations of cells within tissues that are connected by gap junction proteins. We term these two subpopulations “initiator cells,” defined by elevated levels of Phospholipase C (PLC) activity, and “standby cells,” which exhibit baseline activity. We found that the type and strength of hormonal stimulation and extent of gap junctional communication jointly determine the predominate class of Ca2+ signaling activity. Further, single-cell Ca2+ spikes are stimulated by insulin, while intercellular Ca2+ waves depend on Gαq activity. Our computational model successfully reproduces how the dynamics of Ca2+ transients varies during organ growth. Phenotypic analysis of perturbations to Gαq and insulin signaling support an integrated model of cytoplasmic Ca2+ as a dynamic reporter of overall tissue growth. Further, we show that perturbations to Ca2+ signaling tune the final size of organs. This work provides a platform to further study how organ size regulation emerges from the crosstalk between biochemical growth signals and heterogeneous cell signaling states. Calcium (Ca2+) is a universal second messenger that regulates a myriad of cellular processes such as cell division, cell proliferation and apoptosis. Multiple patterns of Ca2+ signaling including single-cell spikes, multicellular Ca2+ transients, large-scale Ca2+ waves, and global “fluttering” have been observed in epithelial systems during organ development. Key molecular players and biophysical mechanisms involved in formation of these patterns during organ development are not well understood. In this work, we developed a generalized multicellular model of Ca2+ that captures all the key categories of Ca2+ activity as a function of key hormonal signals. Integration of model predictions and experiments reveals two subclasses of cell populations and demonstrates that Ca2+ signaling activity at the organ scale is defined by a general decrease in gap junction communication as an organ grows. Our experiments also reveal that a “goldilocks zone” of optimal Ca2+ activity is required to achieve optimal growth at the organ level.
Collapse
|
8
|
López-Varea A, Ostalé CM, Vega-Cuesta P, Ruiz-Gómez A, Organista MF, Martín M, Hevia CF, Molnar C, de Celis J, Culi J, Esteban N, de Celis JF. Genome-wide Phenotypic RNAi Screen in the Drosophila Wing: Global Parameters. G3-GENES GENOMES GENETICS 2021; 11:6380435. [PMID: 34599819 PMCID: PMC8962446 DOI: 10.1093/g3journal/jkab351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
We have screened a collection of UAS-RNAi lines targeting 10,920 Drosophila protein-coding genes for phenotypes in the adult wing. We identified 3653 genes (33%) whose knockdown causes either larval/pupal lethality or a mutant phenotype affecting the formation of a normal wing. The most frequent phenotypes consist of changes in wing size, vein differentiation, and patterning, defects in the wing margin and in the apposition of the dorsal and ventral wing surfaces. We also defined 16 functional categories encompassing the most relevant aspect of each protein function and assigned each Drosophila gene to one of these functional groups. This allowed us to identify which mutant phenotypes are enriched within each functional group. Finally, we used previously published gene expression datasets to determine which genes are or are not expressed in the wing disc. Integrating expression, phenotypic and molecular information offers considerable precision to identify the relevant genes affecting wing formation and the biological processes regulated by them.
Collapse
Affiliation(s)
- Ana López-Varea
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Cristina M Ostalé
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Patricia Vega-Cuesta
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana Ruiz-Gómez
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - María F Organista
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mercedes Martín
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Covadonga F Hevia
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Cristina Molnar
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jesús de Celis
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Joaquim Culi
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Nuria Esteban
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular "Severo Ochoa", CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
9
|
Spierer AN, Mossman JA, Smith SP, Crawford L, Ramachandran S, Rand DM. Natural variation in the regulation of neurodevelopmental genes modifies flight performance in Drosophila. PLoS Genet 2021; 17:e1008887. [PMID: 33735180 PMCID: PMC7971549 DOI: 10.1371/journal.pgen.1008887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
The winged insects of the order Diptera are colloquially named for their most recognizable phenotype: flight. These insects rely on flight for a number of important life history traits, such as dispersal, foraging, and courtship. Despite the importance of flight, relatively little is known about the genetic architecture of flight performance. Accordingly, we sought to uncover the genetic modifiers of flight using a measure of flies’ reaction and response to an abrupt drop in a vertical flight column. We conducted a genome wide association study (GWAS) using 197 of the Drosophila Genetic Reference Panel (DGRP) lines, and identified a combination of additive and marginal variants, epistatic interactions, whole genes, and enrichment across interaction networks. Egfr, a highly pleiotropic developmental gene, was among the most significant additive variants identified. We functionally validated 13 of the additive candidate genes’ (Adgf-A/Adgf-A2/CG32181, bru1, CadN, flapper (CG11073), CG15236, flippy (CG9766), CREG, Dscam4, form3, fry, Lasp/CG9692, Pde6, Snoo), and introduce a novel approach to whole gene significance screens: PEGASUS_flies. Additionally, we identified ppk23, an Acid Sensing Ion Channel (ASIC) homolog, as an important hub for epistatic interactions. We propose a model that suggests genetic modifiers of wing and muscle morphology, nervous system development and function, BMP signaling, sexually dimorphic neural wiring, and gene regulation are all important for the observed differences flight performance in a natural population. Additionally, these results represent a snapshot of the genetic modifiers affecting drop-response flight performance in Drosophila, with implications for other insects. Insect flight is a widely recognizable phenotype of many winged insects, hence the name: flies. While fruit flies, or Drosophila melanogaster, are a genetically tractable model, flight performance is a highly integrative phenotype, and therefore challenging to identify comprehensively which genetic modifiers contribute to its genetic architecture. Accordingly, we screened 197 Drosophila Genetic Reference Panel lines for their ability to react and respond to an abrupt drop. Using several computational approaches, we identified additive, marginal, and epistatic variants, as well as whole genes and altered sub-networks of gene-gene and protein-protein interaction networks that contribute to variation in flight performance. More generally, we demonstrate the benefits of employing multiple methodologies to elucidate the genetic architecture of complex traits. Many variants and genes mapped to regions of the genome that affect neurodevelopment, wing and muscle development, and regulation of gene expression. We also introduce PEGASUS_flies, a Drosophila-adapted version of the PEGASUS platform first used in human studies, to infer gene-level significance of association based on the gene’s distribution of individual variant P-values. Our results contribute to the debate over the relative importance of individual, additive factors and epistatic, or higher order, interactions, in the mapping of genotype to phenotype.
Collapse
Affiliation(s)
- Adam N Spierer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Samuel Pattillo Smith
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Microsoft Research New England, Cambridge, Massachusetts, United States of America
| | - Sohini Ramachandran
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
10
|
GWAS reveal a role for the central nervous system in regulating weight and weight change in response to exercise. Sci Rep 2021; 11:5144. [PMID: 33664357 PMCID: PMC7933348 DOI: 10.1038/s41598-021-84534-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2021] [Indexed: 01/16/2023] Open
Abstract
Body size and weight show considerable variation both within and between species. This variation is controlled in part by genetics, but also strongly influenced by environmental factors including diet and the level of activity experienced by the individual. Due to the increasing obesity epidemic in much of the world, there is considerable interest in the genetic factors that control body weight and how weight changes in response to exercise treatments. Here, we address this question in the Drosophila model system, utilizing 38 strains of the Drosophila Genetics Reference Panel. We use GWAS to identify the molecular pathways that control weight and weight changes in response to exercise. We find that there is a complex set of molecular pathways controlling weight, with many genes linked to the central nervous system (CNS). The CNS also plays a role in the weight change with exercise, in particular, signaling from the CNS. Additional analyses revealed that weight in Drosophila is driven by two factors, animal size, and body composition, as the amount of fat mass versus lean mass impacts the density. Thus, while the CNS appears to be important for weight and exercise-induced weight change, signaling pathways are particularly important for determining how exercise impacts weight.
Collapse
|
11
|
Srivastava P, Kane A, Harrison C, Levin M. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity 2021; 3:42-67. [PMID: 34476377 DOI: 10.1089/bioe.2019.0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developmental bioelectricity is the study of the endogenous role of bioelectrical signaling in all cell types. Resting potentials and other aspects of ionic cell physiology are known to be important regulatory parameters in embryogenesis, regeneration, and cancer. However, relevant quantitative measurement and genetic phenotyping data are distributed throughout wide-ranging literature, hampering experimental design and hypothesis generation. Here, we analyze published studies on bioelectrics and transcriptomic and genomic/phenotypic databases to provide a novel synthesis of what is known in three important aspects of bioelectrics research. First, we provide a comprehensive list of channelopathies-ion channel and pump gene mutations-in a range of important model systems with developmental patterning phenotypes, illustrating the breadth of channel types, tissues, and phyla (including man) in which bioelectric signaling is a critical endogenous aspect of embryogenesis. Second, we perform a novel bioinformatic analysis of transcriptomic data during regeneration in diverse taxa that reveals an electrogenic protein to be the one common factor specifically expressed in regeneration blastemas across Kingdoms. Finally, we analyze data on distinct Vmem signatures in normal and cancer cells, revealing a specific bioelectrical signature corresponding to some types of malignancies. These analyses shed light on fundamental questions in developmental bioelectricity and suggest new avenues for research in this exciting field.
Collapse
Affiliation(s)
- Pranjal Srivastava
- Rye High School, Rye, New York, USA; Current Affiliation: College of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Anna Kane
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Christina Harrison
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
12
|
Upadhyay A, Peterson AJ, Kim MJ, O'Connor MB. Muscle-derived Myoglianin regulates Drosophila imaginal disc growth. eLife 2020; 9:e51710. [PMID: 32633716 PMCID: PMC7371420 DOI: 10.7554/elife.51710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 07/04/2020] [Indexed: 01/05/2023] Open
Abstract
Organ growth and size are finely tuned by intrinsic and extrinsic signaling molecules. In Drosophila, the BMP family member Dpp is produced in a limited set of imaginal disc cells and functions as a classic morphogen to regulate pattern and growth by diffusing throughout imaginal discs. However, the role of TGFβ/Activin-like ligands in disc growth control remains ill-defined. Here, we demonstrate that Myoglianin (Myo), an Activin family member, and a close homolog of mammalian Myostatin (Mstn), is a muscle-derived extrinsic factor that uses canonical dSmad2-mediated signaling to regulate wing size. We propose that Myo is a myokine that helps mediate an allometric relationship between muscles and their associated appendages.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| | - Aidan J Peterson
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development University of MinnesotaMinneapolisUnited States
| |
Collapse
|
13
|
Perry S, Goel P, Tran NL, Pinales C, Buser C, Miller DL, Ganetzky B, Dickman D. Developmental arrest of Drosophila larvae elicits presynaptic depression and enables prolonged studies of neurodegeneration. Development 2020; 147:dev.186312. [PMID: 32345746 DOI: 10.1242/dev.186312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Synapses exhibit an astonishing degree of adaptive plasticity in healthy and disease states. We have investigated whether synapses also adjust to life stages imposed by novel developmental programs for which they were never molded by evolution. Under conditions in which Drosophila larvae are terminally arrested, we have characterized synaptic growth, structure and function at the neuromuscular junction (NMJ). Although wild-type larvae transition to pupae after 5 days, arrested third instar (ATI) larvae persist for 35 days, during which time NMJs exhibit extensive overgrowth in muscle size, presynaptic release sites and postsynaptic glutamate receptors. Remarkably, despite this exuberant growth, stable neurotransmission is maintained throughout the ATI lifespan through a potent homeostatic reduction in presynaptic neurotransmitter release. Arrest of the larval stage in stathmin mutants also reveals a degree of progressive instability and neurodegeneration that was not apparent during the typical larval period. Hence, an adaptive form of presynaptic depression stabilizes neurotransmission during an extended developmental period of unconstrained synaptic growth. More generally, the ATI manipulation provides a powerful system for studying neurodegeneration and plasticity across prolonged developmental timescales.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nancy L Tran
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | - Daniel L Miller
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA.,National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD 20824, USA
| | - Barry Ganetzky
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Matsushita R, Nishimura T. Trehalose metabolism confers developmental robustness and stability in Drosophila by regulating glucose homeostasis. Commun Biol 2020; 3:170. [PMID: 32265497 PMCID: PMC7138798 DOI: 10.1038/s42003-020-0889-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
Organisms have evolved molecular mechanisms to ensure consistent and invariant phenotypes in the face of environmental fluctuations. Developmental homeostasis is determined by two factors: robustness, which buffers against environmental variations; and developmental stability, which buffers against intrinsic random variations. However, our understanding of these noise-buffering mechanisms remains incomplete. Here, we showed that appropriate glycemic control confers developmental homeostasis in the fruit fly Drosophila. We found that circulating glucose levels are buffered by trehalose metabolism, which acts as a glucose sink in circulation. Furthermore, mutations in trehalose synthesis enzyme (Tps1) increased the among-individual and within-individual variations in wing size. Whereas wild-type flies were largely resistant to changes in dietary carbohydrate and protein levels, Tps1 mutants experienced significant disruptions in developmental homeostasis in response to dietary stress. These results demonstrate that glucose homeostasis against dietary stress is crucial for developmental homeostasis.
Collapse
Affiliation(s)
- Ryota Matsushita
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan.
| |
Collapse
|