1
|
Manosalva C, Bahamonde C, Soto F, Leal V, Ojeda C, Cortés C, Alarcón P, Burgos RA. Linoleic Acid Induces Metabolic Reprogramming and Inhibits Oxidative and Inflammatory Effects in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2024; 25:10385. [PMID: 39408715 PMCID: PMC11476445 DOI: 10.3390/ijms251910385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Linoleic acid (LA), the primary ω-6 polyunsaturated fatty acid (PUFA) found in the epidermis, plays a crucial role in preserving the integrity of the skin's water permeability barrier. Additionally, vegetable oils rich in LA have been shown to notably mitigate ultraviolet (UV) radiation-induced effects, including the production of reactive oxygen species (ROS), cellular damage, and skin photoaging. These beneficial effects are primarily ascribed to the LA in these oils. Nonetheless, the precise mechanisms through which LA confers protection against damage induced by exposure to UVB radiation remain unclear. This study aimed to examine whether LA can restore redox and metabolic equilibria and to assess its influence on the inflammatory response triggered by UVB radiation in keratinocytes. Flow cytometry analysis unveiled the capacity of LA to diminish UVB-induced ROS levels in HaCaT cells. GC/MS-based metabolomics highlighted significant metabolic changes, especially in carbohydrate, amino acid, and glutathione (GSH) metabolism, with LA restoring depleted GSH levels post-UVB exposure. LA also upregulated PI3K/Akt-dependent GCLC and GSS expression while downregulating COX-2 expression. These results suggest that LA induces metabolic reprogramming, protecting against UVB-induced oxidative damage by enhancing GSH biosynthesis via PI3K/Akt signaling. Moreover, it suppresses UVB-induced COX-2 expression in HaCaT cells, making LA treatment a promising strategy against UVB-induced oxidative and inflammatory damage.
Collapse
Affiliation(s)
- Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Claudio Bahamonde
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Franco Soto
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Vicente Leal
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - César Ojeda
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carmen Cortés
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| | - Rafael A. Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| |
Collapse
|
2
|
Kim K, Chen P, Li C, Li B. Novel Inhibitor of Glutamate-Cysteine Ligase Catalytic Subunit against Tribolium castaneum: High-Throughout Virtual Screening, Molecular Docking and Dynamics Simulation, and Bioassay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17813-17823. [PMID: 39080857 DOI: 10.1021/acs.jafc.4c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The enzyme glutamate-cysteine ligase catalytic subunit (Gclc) is a rate-limiting enzyme in the biosynthesis of glutathione that is involved in antioxidant defense, detoxification of xenobiotics, and/or its metabolites and regulates the cell cycle and immune function. Therefore, Gclc presents an appealing target for the development of novel insecticides. In this study, we conducted high-throughput virtual screening from the ZINC20 database and identified three compounds with high binding affinity to the Tribolium castaneum Gclc (TcGclc). Ultimately, we selected ZINC000032992384 due to its superior stability and lowest binding energy, as determined through molecular dynamics simulations. Bioassay results revealed that the IC50 value of ZINC000032992384 was 19.70 μM lower than that of BSO (49.67 μM). Furthermore, the larval mortality in the ZINC000032992384 treated group was 63.8%, significantly higher than that of the controls (29.1% in the dichlorvos group and 6.4% in the acetone group). This study provides novel insights for the development of a Gclc-targeted inhibitor as a potent insecticide based on the interaction between receptors and ligands.
Collapse
Affiliation(s)
- KumChol Kim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
- Department of Life-Science, University of Science, Pyongyang 999093, Democratic People's Republic of Korea
| | - Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
3
|
Kim K, Gao H, Li C, Li B. The glutathione biosynthesis is involved in metamorphosis, antioxidant function, and insecticide resistance in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2024; 80:2698-2709. [PMID: 38308415 DOI: 10.1002/ps.7976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Reduced glutathione (GSH) synthesis is vital for redox homeostasis, cell-cycle regulation and apoptosis, and immune function. The glutamate-cysteine ligase catalytic subunit (Gclc) is the first and rate-limiting enzyme in GSH synthesis, suggesting the potential use of Gclc as a pesticide target. However, the functional characterization of Gclc, especially its contribution in metamorphosis, antioxidant status and insecticide resistance, is unclear in Tribolium castaneum. RESULTS In this study, we identified and cloned Gclc from T. castaneum (TcGclc) and found that its expression began to increase significantly from the late larvae (LL) stage (3.491 ± 0.490-fold). Furthermore, RNA interference-mediated knockdown of TcGclc resulted in three types of aberration (100% total aberration rate) caused by the downregulation of genes related to the 20-hydroxyecdysone (20E) pathway. This deficiency was partially rescued by exogenous 20E treatment (53.1% ± 3.2%), but not by antioxidant. Moreover, in the TcGclc knockdown group, GSH content was decreased to 62.3%, and total antioxidant capacity, glutathione peroxidase and total superoxide dismutase activities were reduced by 14.6%, 83.6%, and 82.3%, respectively. In addition, treatment with different insecticides upregulated expression of TcGclc significantly compared with a control group during the late larval stage (P < 0.01). CONCLUSION Our results indicate that TcGclc has an extensive role in metamorphosis, antioxidant function and insecticide resistance in T. castaneum, thereby expanding our understanding of GSH functions and providing a scientific basis for pest control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- KumChol Kim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Life-Science, University of Science, Pyongyang, Democratic People's Republic of Korea
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Liu G, Shen X. Study on Soil Selenium-Induced Copper Deficiency in Yudong Black Goats. Animals (Basel) 2024; 14:1481. [PMID: 38791698 PMCID: PMC11117381 DOI: 10.3390/ani14101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Due to the degradation of pasture and strict restrictions on grazing ranges in recent years, copper (Cu) deficiency in Yudong black goats has been occurring, mainly manifested as emaciation, anemia, loss of appetite and lack of spirit. To explore the main causes of Cu deficiency in Yudong black goats, 40 black goats (1 year old, 25.11 ± 0.52 kg) were selected for this experiment; among them, 20 Yudong black goats with Cu deficiency from the experimental pasture were used as the experimental group, and 20 healthy Yudong black goats from the control pasture were used as the control group. In the pre-experiment, the mineral contents of the soil, forage, blood, and liver of black goats in both groups were determined, and in formal experiments, blood hematological, biochemical, antioxidant, and hemorheological parameters were analyzed. An experiment on the treatment of Cu deficiency in black goats was also conducted. This study showed that selenium (Se) levels in the soil, forage, blood, and liver from the experimental group were significantly lower than those from the control group (p < 0.01). The content of sulfur (S) in the forage was considerably higher than that of the control group (p < 0.01). The contents of Cu in the blood and liver from the experimental group were significantly lower than that from the control group (p < 0.01), and the content of S was considerably higher than that from the control group (p < 0.01). The blood hematology of the experimental group was affected, as evidenced by a decrease in hemoglobin, hematocrit value, mean corpuscular volume and mean corpuscular hemoglobin. The immunity and antioxidant capacity of black goats in the experiment group were impaired to varying degrees, with significant decreases in ceruloplasmin, immunoglobulin M, immunoglobulin G, glutathione peroxidase, and superoxide dismutase, and substantial increases in malondialdehyde. In addition, the experimental group showed a decrease in blood viscosity as evidenced by the rise in high shear viscosity, low shear viscosity, erythrocyte rigidity index, erythrocyte aggregation index, and erythrocyte deformation index, and a decrease in plasma viscosity. In the treatment experiment, oral administration of copper sulfate solution was carried out on 10 black goats with Cu deficiency. All the Cu deficiency goats were cured, and the Cu content in their bodies rebounded. In summary, low Se soil caused an increase in S content in the forage, and Yudong black goats feeding on high S forage resulted in a decrease in Cu absorption, which led to a secondary Cu deficiency.
Collapse
Affiliation(s)
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| |
Collapse
|
5
|
Musdal Y, Ismail A, Sjödin B, Mannervik B. Potent GST Ketosteroid Isomerase Activity Relevant to Ecdysteroidogenesis in the Malaria Vector Anopheles gambiae. Biomolecules 2023; 13:976. [PMID: 37371556 DOI: 10.3390/biom13060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Nobo is a glutathione transferase (GST) crucially contributing to ecdysteroid biosynthesis in insects of the orders Diptera and Lepidoptera. Ecdysone is a vital steroid hormone in insects, which governs larval molting and metamorphosis, and the suppression of its synthesis has potential as a novel approach to insect growth regulation and combatting vectors of disease. In general, GSTs catalyze detoxication, whereas the specific function of Nobo in ecdysteroidogenesis is unknown. We report that Nobo from the malaria-spreading mosquito Anopheles gambiae is a highly efficient ketosteroid isomerase catalyzing double-bond isomerization in the steroids 5-androsten-3,17-dione and 5-pregnen-3,20-dione. These mammalian ketosteroids are unknown in mosquitoes, but the discovered prominent catalytic activity of these compounds suggests that the unknown Nobo substrate in insects has a ketosteroid functionality. Aminoacid residue Asp111 in Nobo is essential for activity with the steroids, but not for conventional GST substrates. Further characterization of Nobo may guide the development of new insecticides to prevent malaria.
Collapse
Affiliation(s)
- Yaman Musdal
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Pediatric Genetics, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Aram Ismail
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Birgitta Sjödin
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bengt Mannervik
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Ebihara K, Niwa R. Compounds Inhibiting Noppera-bo, a Glutathione S-transferase Involved in Insect Ecdysteroid Biosynthesis: Novel Insect Growth Regulators. Biomolecules 2023; 13:biom13030461. [PMID: 36979396 PMCID: PMC10046418 DOI: 10.3390/biom13030461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glutathione S-transferases (GSTs) are conserved in a wide range of organisms, including insects. In 2014, an epsilon GST, known as Noppera-bo (Nobo), was shown to regulate the biosynthesis of ecdysteroid, the principal steroid hormone in insects. Studies on fruit flies, Drosophila melanogaster, and silkworms, Bombyx mori, demonstrated that loss-of-function mutants of nobo fail to synthesize ecdysteroid and die during development, consistent with the essential function of ecdysteroids in insect molting and metamorphosis. This genetic evidence suggests that chemical compounds that inhibit activity of Nobo could be insect growth regulators (IGRs) that kill insects by disrupting their molting and metamorphosis. In addition, because nobo is conserved only in Diptera and Lepidoptera, a Nobo inhibitor could be used to target IGRs in a narrow spectrum of insect taxa. Dipterans include mosquitoes, some of which are vectors of diseases such as malaria and dengue fever. Given that mosquito control is essential to reduce mosquito-borne diseases, new IGRs that specifically kill mosquito vectors are always in demand. We have addressed this issue by identifying and characterizing several chemical compounds that inhibit Nobo protein in both D. melanogaster and the yellow fever mosquito, Aedes aegypti. In this review, we summarize our findings from the search for Nobo inhibitors.
Collapse
Affiliation(s)
- Kana Ebihara
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Ibaraki, Japan
- Correspondence:
| |
Collapse
|
7
|
Kim K, Song X, Yu R, Zhang Y, Gao H, Wang S, Li B. A novel GSTe2 involved in metamorphosis by regulating 20E signal pathway in Tribolium castaneum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21989. [PMID: 36588284 DOI: 10.1002/arch.21989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Insect-specific epsilon glutathion S-transferases (GSTs) are a class of multifunctional GST superfamily, which play important roles in detoxification of xenobiotic substances. Most research on GSTs has focused on insecticide detoxification and resistance, with little research on other physiological functions. Here, we identified and cloned the novel GSTe2 from Tribolium castaneum (TcGSTe2). Recombinant TcGSTe2 protein was successfully overexpressed in Escherichia coli and purified with affinity purification, which had high ability to catalyze the conjugation of reduced glutathione with 1-chloro-2,4-dinitrobenzene (CDNB). The expression level of TcGSTe2 was significantly decreased after exposure with four insecticides, phoxim, λ-cyhalothrin, dichlorvos, and carbofuran, in larval stage. Interestingly, RNA interference knockdown of TcGSTe2 caused metamorphosis deficiency in larval and pupal stages by inhibiting the 20E signal pathway. Furthermore, exogenous 20E injection partially rescued this metamorphosis deficiency and also increased the expression levels of 20E downstream response genes. This study illustrated TcGSTe2 plays an important role at metamorphosis beside the insecticide detoxification and resistance in T. castaneum.
Collapse
Affiliation(s)
- KumChol Kim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Life-Science, University of Science, Pyongyang, Democratic People's Republic of Korea
| | - XiaoWen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - RunNan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - YongLei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - SuiSui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Cheng S, Dai P, Li R, Chen Z, Liang P, Xie X, Zhen C, Gao X. The sulfoximine insecticide sulfoxaflor exposure reduces the survival status and disrupts the intestinal metabolism of the honeybee Apis mellifera. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130109. [PMID: 36303336 DOI: 10.1016/j.jhazmat.2022.130109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Honeybees (Apis mellifera) are indispensable pollinators in agricultural production, biodiversity conservation, and nutrients provision. The abundance and diversity of honeybees have been rapidly diminishing, possibly related to the extensive use of insecticides in ecosystems. Sulfoxaflor is a novel sulfoximine insecticide that, like neonicotinoids, acts as a competitive modulator of nicotinic acetylcholine receptors (nAChR) in insects. However, few studies have addressed the negative effects of sulfoxaflor on honeybees at environmentally relevant concentrations. In the present study, adult workers were fed a 50% (w/v) of sugar solution containing different concentrations (0, 0.05, 0.5 and 2.0 mg/L) of sulfoxaflor for two weeks consecutively. The survival rates, food intake, and body weight of the honeybees significantly decreased after continuous exposure at higher doses (0.5 and 2.0 mg/L) of sulfoxaflor when compared with the control. The change in the metabolites in the honeybee gut was determined using high-throughput non-targeted metabolomics on day 14 after sulfoxaflor treatment. The results revealed that 24 and 105 metabolites changed after exposure to 0.5 and 2.0 mg/L sulfoxaflor, respectively, compared with that of the control groups. A total of 12 changed compounds including pregenolone and glutathione were detected as potential biomarkers, which were eventually found to be enriched in pathways of the steroid hormone biosynthesis (p = 0.0001) and glutathione metabolism (p = 0.021). These findings provide a new perspective on the physiological influence of sulfoxaflor stress in honeybees.
Collapse
Affiliation(s)
- Shenhang Cheng
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Pingli Dai
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Zhibin Chen
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xiaoping Xie
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
9
|
Abouleila Y, Ali A, Masuda K, Mashaghi A, Shimizu Y. Capillary microsampling-based single-cell metabolomics by mass spectrometry and its applications in medicine and drug discovery. Cancer Biomark 2022; 33:437-447. [DOI: 10.3233/cbm-210184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Characterization of cellular metabolic states is a technical challenge in biomedicine. Cellular heterogeneity caused by inherent diversity in expression of metabolic enzymes or due to sensitivity of metabolic reactions to perturbations, necessitates single cell analysis of metabolism. Heterogeneity is typically seen in cancer and thus, single-cell metabolomics is expectedly useful in studying cancer progression, metastasis, and variations in cancer drug response. However, low sample volumes and analyte concentrations limit detection of critically important metabolites. Capillary microsampling-based mass spectrometry approaches are emerging as a promising solution for achieving single-cell omics. Herein, we focus on the recent advances in capillary microsampling-based mass spectrometry techniques for single-cell metabolomics. We discuss recent technical developments and applications to cancer medicine and drug discovery.
Collapse
Affiliation(s)
- Yasmine Abouleila
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Research Center, Misr International University, Cairo, Egypt
| | - Ahmed Ali
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Research Center, Misr International University, Cairo, Egypt
| | - Keiko Masuda
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Alireza Mashaghi
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
10
|
Kamiyama T, Niwa R. Transcriptional Regulators of Ecdysteroid Biosynthetic Enzymes and Their Roles in Insect Development. Front Physiol 2022; 13:823418. [PMID: 35211033 PMCID: PMC8863297 DOI: 10.3389/fphys.2022.823418] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are responsible for coordinating many aspects of biological processes in most multicellular organisms, including insects. Ecdysteroid, the principal insect steroid hormone, is biosynthesized from dietary cholesterol or plant sterols. In the last 20 years, a number of ecdysteroidogenic enzymes, including Noppera-bo, Neverland, Shroud, Spook/Spookier, Cyp6t3, Phantom, Disembodied, Shadow, and Shade, have been identified and characterized in molecular genetic studies using the fruit fly Drosophila melanogaster. These enzymes are encoded by genes collectively called the Halloween genes. The transcriptional regulatory network, governed by multiple regulators of transcription, chromatin remodeling, and endoreplication, has been shown to be essential for the spatiotemporal expression control of Halloween genes in D. melanogaster. In this review, we summarize the latest information on transcriptional regulators that are crucial for controlling the expression of ecdysteroid biosynthetic enzymes and their roles in insect development.
Collapse
Affiliation(s)
- Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Toyofuku M, Fujinaga D, Inaba K, Funahashi T, Fujikawa Y, Inoue H, Kataoka H, Niwa R, Ono H. The plant-derived triterpenoid, cucurbitacin B, but not cucurbitacin E, inhibits the developmental transition associated with ecdysone biosynthesis in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104294. [PMID: 34389412 DOI: 10.1016/j.jinsphys.2021.104294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
In insects, some sterols are essential not only for cell membrane homeostasis, but for biosynthesis of the steroid hormone ecdysone. Dietary sterols are required for insect development because insects cannot synthesize sterols de novo. Therefore, sterol-like compounds that can compete with essential sterols are good candidates for insect growth regulators. In this study, we investigated the effects of the plant-derived triterpenoids, cucurbitacin B and E (CucB and CucE) on the development of the fruit fly, Drosophila melanogaster. To reduce the effects of supply with an excess of sterols contained in food, we reared D. melanogaster larvae on low sterol food (LSF) with or without cucurbitacins. Most larvae raised on LSF without supplementation or with CucE died at the second or third larval instar (L2 or L3) stages, whereas CucB-administered larvae mostly died without molting. The developmental arrest caused by CucB was partially rescued by ecdysone supplementation. Furthermore, we examined the effects of CucB on larval-prepupal transition by transferring larvae from LSF supplemented with cholesterol to that with CucB just after the L2/L3 molt. L3 larvae raised on LSF with CucB failed to pupariate, with a remarkable developmental delay. Ecdysone supplementation rescued the developmental delay but did not rescue the pupariation defect. Furthermore, we cultured the steroidogenic organ, the prothoracic gland (PG) of the silkworm Bombyx mori, with or without cucurbitacin. Ecdysone production in the PG was reduced by incubation with CucB, but not with CucE. These results suggest that CucB acts not only as an antagonist of the ecdysone receptor as previously reported, but also acts as an inhibitor of ecdysone biosynthesis.
Collapse
Affiliation(s)
- Miwako Toyofuku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Daiki Fujinaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kazue Inaba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tomoki Funahashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideshi Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
12
|
Vitorović J, Joković N, Radulović N, Mihajilov-Krstev T, Cvetković VJ, Jovanović N, Mitrović T, Aleksić A, Stanković N, Bernstein N. Antioxidant Activity of Hemp ( Cannabis sativa L.) Seed Oil in Drosophila melanogaster Larvae under Non-Stress and H 2O 2-Induced Oxidative Stress Conditions. Antioxidants (Basel) 2021; 10:antiox10060830. [PMID: 34067432 PMCID: PMC8224776 DOI: 10.3390/antiox10060830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
The oil extracted from hemp seeds has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. The potential of this oil for the prevention of oxidative stress and for the treatment of oxidative-stress-induced ailments is of increasing interest. Most studies of hemp seed oil were conducted in-vitro, meaning we lack information about effects and activity in vivo. In the present study, we evaluated the hypothesis that hemp seed oil at different concentrations improves the oxidative state of D. melanogaster, under non-stress as well as hydrogen-peroxide-induced stress. We analyzed the effects of hemp seed oil on oxidative stress markers and on the life cycle of D.melanogaster under non-stress and hydrogen-peroxide-induced stress conditions. D.melanogaster larvae were exposed to hemp seed oil concentrations ranging from 12.5 to 125 μL/mL. The results revealed that under non-stress conditions, oil concentrations up to 62.5 µL/mL did not induce negative effects on the life cycle of D. melanogaster and maintained the redox status of the larval cells at similar levels to the control level. Under oxidative stress conditions, biochemical parameters were significantly affected and only two oil concentrations, 18.7 and 31.2 µL/mL, provided protection against hydrogen peroxide stress effects. A higher oil concentration (125 μL/mL) exerted negative effects on the oxidative status and increased larval mortality. The tested oil was characterized chemically by NMR, transesterification, and silylation, followed by GC-MS analyses, and was shown to contain polyunsaturated fatty acid triglycerides and low levels of tocopherols. The high levels of linoleic and linolenic acids in the oil are suggested to be responsible for the observed in vivo antioxidant effects. Taken together, the results show that hemp seed oil is effective for reducing oxidative stress at the cellular level, thus supporting the hypothesis. The obtained results point to the potential of hemp seed oil for the prevention and treatment of conditions caused by the action of reactive oxygen species.
Collapse
Affiliation(s)
- Jelena Vitorović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Nataša Joković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Tatjana Mihajilov-Krstev
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Vladimir J. Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Nikola Jovanović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Tatjana Mitrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | | | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, Rishon LeZion 15159, Israel
- Correspondence:
| |
Collapse
|
13
|
Koiwai K, Morohashi K, Inaba K, Ebihara K, Kojima H, Okabe T, Yoshino R, Hirokawa T, Nampo T, Fujikawa Y, Inoue H, Yumoto F, Senda T, Niwa R. Non-steroidal inhibitors of Drosophila melanogaster steroidogenic glutathione S-transferase Noppera-bo. JOURNAL OF PESTICIDE SCIENCE 2021; 46:75-87. [PMID: 33746549 PMCID: PMC7953034 DOI: 10.1584/jpestics.d20-072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Insect growth regulators (IGRs) can be developed by elucidating the molecular mechanisms of insect-specific biological events. Because insect molting, and metamorphosis are controlled by ecdysteroids, their biosynthetic pathways can serve as targets for IGR development. The glutathione S-transferase Noppera-bo (Nobo), which is conserved in dipteran and lepidopteran species, plays an essential role in ecdysteroid biosynthesis. Our previous study using 17β-estradiol as a molecular probe revealed that Asp113 of Drosophila melanogaster Nobo (DmNobo) is essential for its biological function. However, to develop IGRs with a greater Nobo inhibitory activity than 17β-estradiol, further structural information is warranted. Here, we report five novel non-steroidal DmNobo inhibitors. Analysis of crystal structures of complexes revealed that DmNobo binds these inhibitors in an Asp113-independent manner. Among amino acid residues at the substrate-recognition site, conformation of conserved Phe39 was dynamically altered upon inhibitor binding. Therefore, these inhibitors can serve as seed compounds for IGR development.
Collapse
Affiliation(s)
- Kotaro Koiwai
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1–1 Oho, Tsukuba, Ibaraki 305–0801, Japan
| | - Kana Morohashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan
| | - Kazue Inaba
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1–1 Oho, Tsukuba, Ibaraki 305–0801, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan
| | - Kana Ebihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Ryunosuke Yoshino
- Graduate School of Comprehensive Human Sciences Majors of Medical Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2–4–7 Aomi, Koto-ku, Tokyo 135–0064, Japan
| | - Taiki Nampo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan
| | - Hideshi Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo 192–0392, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1–1 Oho, Tsukuba, Ibaraki 305–0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1–1 Oho, Tsukuba, Ibaraki 305–0801, Japan
- School of High Energy Accelerator Science, SOKENDAI University, 1–1 Oho, Tsukuba, Ibaraki 305–0801, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1–1–1 Tennodai, Ibaraki 305–8571, Japan
| | - Ryusuke Niwa
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1–1 Oho, Tsukuba, Ibaraki 305–0801, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| |
Collapse
|
14
|
Girón-Calva PS, Lopez C, Albacete A, Albajes R, Christou P, Eizaguirre M. β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis). PLoS One 2021; 16:e0246696. [PMID: 33591990 PMCID: PMC7886157 DOI: 10.1371/journal.pone.0246696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/23/2021] [Indexed: 11/18/2022] Open
Abstract
Maize with enhanced β-carotene production was engineered to counteract pervasive vitamin A deficiency in developing countries. Second-generation biofortified crops are being developed with additional traits that confer pest resistance. These include crops that can produce Bacillus thuringiensis Berliner (Bt) insecticidal proteins. Currently, it is unknown whether β-carotene can confer fitness benefits through to insect pests, specifically through altering Ostrinia nubilalis foraging behaviour or development in the presence of Bt insecticidal toxin. Therefore the effects of dietary β-carotene plus Bt insecticidal protein on feeding behaviour, mortality, and physiology in early and late instars of O. nubilalis larvae were investigated. The results of two-choice experiments showed that irrespective of β-carotene presence, at day five 68%-90% of neonates and 69%-77% of fifth-instar larvae avoided diets with Cry1A protein. Over 65% of neonate larvae preferred to feed on diets with β-carotene alone compared to 39% of fifth-instar larvae. Higher mortality (65%-97%) in neonates fed diets supplemented with β-carotene alone and in combination with Bt protein was found, whereas <36% mortality was observed when fed diets without supplemented β-carotene or Bt protein. Diets with both β-carotene and Bt protein extended 25 days the larval developmental duration from neonate to fifth instar (compared to Bt diets) but did not impair larval or pupal weight. Juvenile hormone and 20-hydroxyecdysone regulate insect development and their levels were at least 3-fold higher in larvae fed diets with β-carotene for 3 days. Overall, these results suggest that the effects of β-carotene and Bt protein on O. nubilalis is dependent on larval developmental stage. This study is one of the first that provides insight on how the interaction of novel traits may modulate crop susceptibility to insect pests. This understanding will in turn inform the development of crop protection strategies with greater efficacy.
Collapse
Affiliation(s)
- Patricia Sarai Girón-Calva
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Carmen Lopez
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Alfonso Albacete
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - Ramon Albajes
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Matilde Eizaguirre
- Department of Plant Production and Forestry Sciences, University of Lleida-Agrotecnio Center, Lleida, Spain
- * E-mail:
| |
Collapse
|
15
|
Pan X, Connacher RP, O'Connor MB. Control of the insect metamorphic transition by ecdysteroid production and secretion. CURRENT OPINION IN INSECT SCIENCE 2021; 43:11-20. [PMID: 32950745 PMCID: PMC7965781 DOI: 10.1016/j.cois.2020.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
Ecdysteroids are a class of steroid hormones that controls molting and metamorphic transitions in Ecdysozoan species including insects, in which ecdysteroid biosynthesis and its regulation have been extensively studied. Insect ecdysteroids are produced from dietary sterols by a series of reduction-oxidation reactions in the prothoracic gland and in Drosophila they are released into the hemolymph via vesicle-mediated secretion at the time of metamorphosis. To initiate precisely controlled ecdysteroid pulses, the prothoracic gland functions as a central node integrating both intrinsic and extrinsic signals to control ecdysteroid biosynthesis and secretion. In this review, we outline recent progress in the characterization of ecdysone biosynthesis and steroid trafficking pathways and the discoveries of novel factors regulating prothoracic gland function.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Genetics, Cell Biology and Development, University of Minnesota, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Robert P Connacher
- Department Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, USA.
| |
Collapse
|
16
|
Song C, Gan S, He J, Shen X. Effects of Nano-Zinc on Immune Function in Qianbei-Pockmarked Goats. Biol Trace Elem Res 2021; 199:578-584. [PMID: 32394354 DOI: 10.1007/s12011-020-02182-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Qianbei-pockmarked goats are vital to the production system of western China. This study aimed to determine the influence of nano-zinc on immune function in zinc-deprived goats. We analyzed the mineral concentrations in soil, forage, and animal tissue. Blood parameters and immune indexes were also determined. Results showed that the zinc concentrations in soil and forage from affected area were significantly lower than those in control area (P < 0.01). Zinc contents in tissues (blood and hair) from affected Qianbei-pockmarked goats were also significantly lower than those in healthy animals (P < 0.01). Levels of hemoglobin, erythrocyte count, and packed cell volume from affected animals were markedly lower than those in healthy animals (P < 0.01). Levels of lactate dehydrogenase, alkaline phosphatase, superoxide dismutase, glutathione peroxide, catalase, and total antioxidant capacity in serum in affected animals were significantly lower, and aspartate aminotransferase, alanine transaminase, malondialdehyde in serum were significantly higher than those in healthy goats (P < 0.01). The contents of immunoglobulin A, immunoglobulin M, immunoglobulin G, interleukin-2, interleukin 6, and interleukin-1β from affected animals were significantly lower than those in healthy animals (P < 0.01). The affected Qianbei-pockmarked goats were treated orally with nano-zinc, the concentration of zinc in blood significantly increased, and serum immune indexes greatly returned to that within the healthy range. It was concluded that nano-zinc could not only markedly increase the zinc content in blood of zinc-deprived goats but also much improve the immune function.
Collapse
Affiliation(s)
- Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, 832000, China
| | - Jian He
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China.
| |
Collapse
|
17
|
Shen X, Min X, Zhang S, Song C, Xiong K. Effect of Heavy Metal Contamination in the Environment on Antioxidant Function in Wumeng Semi-fine Wool Sheep in Southwest China. Biol Trace Elem Res 2020; 198:505-514. [PMID: 32076954 DOI: 10.1007/s12011-020-02081-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
Many environmental accidents have led to worldwide heavy metal pollution, raising concern about heavy metal toxicity in Southwest China. To study the effects of Cd and Pb in the environment on antioxidant function in Wumeng semi-fine wool sheep, contents of Cu, Zn, Mn, Mo, Fe, Se, Cd, and Pb were measured in irrigation water, soil, herbage, and animal tissues. Hematological and biochemical parameters were also determined. The concentrations of Cu, Zn, Cd, and Pb in affected samples of irrigation water, soil, herbage, and tissues were significantly higher than those in the control (P < 0.01). There was no significant difference in other element contents between affected pastures and control areas. The occurrence of anemia affected Wumeng semi-fine wool sheep. The activities of SOD, CAT, and GSH-Px in affected animals were significantly decreased than those in the control (P < 0.01). Content of MDA in serum in affected animals was significantly increased than that in control (P < 0.01). Serum T-AOC in affected animal was significantly lower than that in control (P < 0.01). Consequently, it is suggested that heavy metal contamination in natural habitat caused serious harm to antioxidant function in Wumeng semi-fine wool sheep.
Collapse
Affiliation(s)
- Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
- World Bank Poverty Alleviation Project Office in Guizhou, Southwest China, Guiyang, 550004, China
| | - Xiaoying Min
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Shihao Zhang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China
| | - Chunjie Song
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, China.
| |
Collapse
|
18
|
Cen Y, Zou X, Li L, Chen S, Lin Y, Liu L, Zheng S. Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104632. [PMID: 32711766 DOI: 10.1016/j.pestbp.2020.104632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Phytochemicals are toxic to insects, but their insecticidal efficiencies are usually low compared to synthetic insecticides. Understanding the mechanism of insect adaptation to phytochemicals will provide guidance for increasing their efficacy. Reduced glutathione (GSH) is a scavenger of reactive oxygen species (ROS) induced by phytochemicals. However, in insects, the pathway of GSH biosynthesis in response to phytochemicals is unclear. We found that exposure to 0.5% indole-3-methanol (I3C), xanthotoxin, and rotenone (ROT) significantly retarded the growth of Spodoptera litura larvae. The oxidative stress in S. litura larvae exposed to phytochemicals was increased. The up-regulation of glutamate cysteine ligase but not glutathione reductase revealed that the de novo synthesis pathway is responsible for GSH synthesis in phytochemical-treated larvae. Treatment with the inhibitor (BSO) of γ-glutamylcysteine synthetase (gclc), a subunit of glutamate cysteine ligase, resulted in decreases of GSH levels and GST activities, increases of ROS levels in I3C-treated larvae, which finally caused midgut necrosis and larval death. Treatment with BSO or I3C alone did not cause larval death. The addition of GSH could partly reduce the influence of I3C and BSO on S. litura growth. Nilaparvata lugens gclc RNAi confirmed the result of BSO treatment in S. litura. N. lugens gclc RNAi significantly increased the mortality of ROT-sprayed N. lugens, in which ROS levels were significantly increased. All data indicate that gclc is involved in insect response to phytochemical treatment. Treatment with dsgclc will increase the insecticidal efficacy of plant-derived compounds.
Collapse
Affiliation(s)
- Yongjie Cen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaopeng Zou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lanbin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuna Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yiguang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
19
|
Bernardy K, Farias JG, Pereira AS, Dorneles AOS, Bernardy D, Tabaldi LA, Neves VM, Dressler VL, Nicoloso FT. Plants' genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system in Pfaffia glomerata accessions. CHEMOSPHERE 2020; 253:126692. [PMID: 32283427 DOI: 10.1016/j.chemosphere.2020.126692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Zinc (Zn) is a micronutrient, but its excessive concentration can impair plant growth and development. Fertilizers, liming materials, pesticides and fungicides containing Zn have contributed to increase its concentration in agricultural soils. The aim of the present study is to evaluate the effect of Zn excess on the non-enzymatic (anthocyanin and β-ecdysone) and enzymatic (superoxide dismutase-SOD and guaiacol peroxidase-GPX) antioxidant system of two P. glomerata accessions (JB and GD) grown in hydroponic system and soil, under short- and long-term exposure times. Three Zn levels (2, 100 and 200 μM) and two short-term exposure times (7 and 14 d) were tested in the hydroponic experiment. Three Zn levels (2, 100 and 200 mg kg-1) and two long-term exposure times (34 and 74 d) were tested in the soil experiment. The effects of Zn excess on P. glomerata accessions depended on the growth system and exposure time. Zinc excess in both tested growth systems resulted in significant change in the tissue oxidative process (MDA concentration) in both accessions, as well as broadened the antioxidant system response, which was based on antioxidant enzymes (SOD and GPX) and secondary metabolites (anthocyanins and β-ecdysone). The highest anthocyanin concentration was observed in accession JB, which was grown in hydroponics, but tissue anthocyanin concentration increased in both accessions, regardless of growth medium and exposure time. The β-ecdysone concentration in the roots increased in both accessions, but accession GD was more responsive to Zn excess. There was significant physiological variation in P.glomerata accessions in response to Zn excess.
Collapse
Affiliation(s)
- Katieli Bernardy
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Aline Soares Pereira
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Athos Odin Severo Dorneles
- Universidade Federal de Pelotas, Plant Physiology Department, 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - Daniele Bernardy
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Luciane Almeri Tabaldi
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Vinicius Machado Neves
- Universidade Federal de Santa Maria, Chemistry Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Valderi Luiz Dressler
- Universidade Federal de Santa Maria, Chemistry Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Fernando Teixeira Nicoloso
- Universidade Federal de Santa Maria, Biology Department, 97105-900, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
20
|
Consuegra J, Grenier T, Akherraz H, Rahioui I, Gervais H, da Silva P, Leulier F. Metabolic Cooperation among Commensal Bacteria Supports Drosophila Juvenile Growth under Nutritional Stress. iScience 2020; 23:101232. [PMID: 32563155 PMCID: PMC7305377 DOI: 10.1016/j.isci.2020.101232] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota shapes animal growth trajectory in stressful nutritional environments, but the molecular mechanisms behind such physiological benefits remain poorly understood. The gut microbiota is mostly composed of bacteria, which construct metabolic networks among themselves and with the host. Until now, how the metabolic activities of the microbiota contribute to host juvenile growth remains unknown. Here, using Drosophila as a host model, we report that two of its major bacterial partners, Lactobacillus plantarum and Acetobacter pomorum, engage in a beneficial metabolic dialogue that boosts host juvenile growth despite nutritional stress. We pinpoint that lactate, produced by L. plantarum, is utilized by A. pomorum as an additional carbon source, and A. pomorum provides essential amino acids and vitamins to L. plantarum. Such bacterial cross-feeding provisions a set of anabolic metabolites to the host, which may foster host systemic growth despite poor nutrition. L. plantarum feeds lactate to A. pomorum A. pomorum supplies essential amino acids and vitamins to L. plantarum Microbiota metabolic dialogue boosts Drosophila's larval growth Lactate utilization by Acetobacter releases anabolic metabolites to larvae
Collapse
Affiliation(s)
- Jessika Consuegra
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France.
| | - Théodore Grenier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France
| | - Isabelle Rahioui
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, UMR0203, 69621 Villeurbanne, France
| | - Hugo Gervais
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France
| | - Pedro da Silva
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, UMR0203, 69621 Villeurbanne, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, 69364 Cedex 07, Lyon, France.
| |
Collapse
|
21
|
Li G, Liu XY, Han X, Niu JZ, Wang JJ. RNAi of the nuclear receptor HR3 suggests a role in the molting process of the spider mite Panonychus citri. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 81:75-83. [PMID: 32277324 DOI: 10.1007/s10493-020-00486-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Ecdysteroids regulate molting in arthropods by binding to heterodimers of the ecdysone receptor and retinoid-X-receptor, homologous to the ultraspiracle protein, to induce the expression of downstream signal response genes including the nuclear receptor HR3. However, the detailed expression dynamics of HR3 during molting in spider mites are not yet clear. In this study, the full length of PcHR3 was retrieved based on the genome of citrus red mite, Panonychus citri. The open reading frame is 1707 bp encoding 568 amino acids, which contains a DNA binding domain and a ligand binding domain. Then, the expression pattern of PcHR3 was analyzed throughout the development of the deutonymph by RT-qPCR. The result showed that PcHR3 was mainly transcribed in the late deutonymph stage, when the deutonymph was at least 24 h old and motionless, the critical point at which the mites started molting. Transcription reached the highest level in 32-h-old deutonymphs and decreased by 36 h, where the mites remained in a quiescent state. Further silencing of PcHR3 by leaf-disc-based delivery of dsRNA to 8-h-old deutonymph mites, resulted in retarded development and death of 58% of deutonymphs. In summary, we suggest that PcHR3 regulates the latter stages of molting in P. citri.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Science, State Cultivation Base of Crop Stress for Southern Mountainous Land, Southwest University, Chongqing, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Science, State Cultivation Base of Crop Stress for Southern Mountainous Land, Southwest University, Chongqing, China
| | - Xi Han
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Science, State Cultivation Base of Crop Stress for Southern Mountainous Land, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Science, State Cultivation Base of Crop Stress for Southern Mountainous Land, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.
- Academy of Agricultural Science, State Cultivation Base of Crop Stress for Southern Mountainous Land, Southwest University, Chongqing, China.
| |
Collapse
|
22
|
Koiwai K, Inaba K, Morohashi K, Enya S, Arai R, Kojima H, Okabe T, Fujikawa Y, Inoue H, Yoshino R, Hirokawa T, Kato K, Fukuzawa K, Shimada-Niwa Y, Nakamura A, Yumoto F, Senda T, Niwa R. An integrated approach to unravel a crucial structural property required for the function of the insect steroidogenic Halloween protein Noppera-bo. J Biol Chem 2020; 295:7154-7167. [PMID: 32241910 PMCID: PMC7242711 DOI: 10.1074/jbc.ra119.011463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Ecdysteroids are the principal steroid hormones essential for insect development and physiology. In the last 18 years, several enzymes responsible for ecdysteroid biosynthesis encoded by Halloween genes were identified and genetically and biochemically characterized. However, the tertiary structures of these proteins have not yet been characterized. Here, we report the results of an integrated series of in silico, in vitro, and in vivo analyses of the Halloween GST protein Noppera-bo (Nobo). We determined crystal structures of Drosophila melanogaster Nobo (DmNobo) complexed with GSH and 17β-estradiol, a DmNobo inhibitor. 17β-Estradiol almost fully occupied the putative ligand-binding pocket and a prominent hydrogen bond formed between 17β-estradiol and Asp-113 of DmNobo. We found that Asp-113 is essential for 17β-estradiol–mediated inhibition of DmNobo enzymatic activity, as 17β-estradiol did not inhibit and physically interacted less with the D113A DmNobo variant. Asp-113 is highly conserved among Nobo proteins, but not among other GSTs, implying that this residue is important for endogenous Nobo function. Indeed, a homozygous nobo allele with the D113A substitution exhibited embryonic lethality and an undifferentiated cuticle structure, a phenocopy of complete loss-of-function nobo homozygotes. These results suggest that the nobo family of GST proteins has acquired a unique amino acid residue that appears to be essential for binding an endogenous sterol substrate to regulate ecdysteroid biosynthesis. To the best of our knowledge, ours is the first study describing the structural characteristics of insect steroidogenic Halloween proteins. Our findings provide insights relevant for applied entomology to develop insecticides that specifically inhibit ecdysteroid biosynthesis.
Collapse
Affiliation(s)
- Kotaro Koiwai
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kazue Inaba
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kana Morohashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Sora Enya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Reina Arai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayoshi Okabe
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideshi Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryunosuke Yoshino
- Graduate School of Comprehensive Human Sciences Majors of Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koichiro Kato
- Mizuho Information & Research Institute, Inc., 2-3 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101-8443, Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuko Shimada-Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Akira Nakamura
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.,School of High Energy Accelerator Science, Sokendai University, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8571, Japan
| | - Ryusuke Niwa
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan .,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
23
|
Lee MT, Lin WC, Lin LJ, Wang SY, Chang SC, Lee TT. Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1167-1179. [PMID: 31480133 PMCID: PMC7322654 DOI: 10.5713/ajas.19.0393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022]
Abstract
Objective This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- M T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - W C Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - L J Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 402, Taiwan
| | - S Y Wang
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - S C Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Kaohsiung 912, Taiwan
| | - T T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
24
|
Li G, Sun QZ, Liu XY, Zhang J, Dou W, Niu JZ, Wang JJ. Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:361-372. [PMID: 31254229 DOI: 10.1007/s10493-019-00396-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In insects, the ecdysteroid 20-hydroxyecdysone coordinates with juvenile hormone (JH) to regulate the process of molting, development and metamorphosis; however, this interaction is still unclear in the mites. In this study, we investigated the gene related to ecdysteroid and JH biosynthesis pathways, including four ecdysteroid and 11 JH biosynthesis genes. We examined their expression patterns during molting of different developmental stages of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), an important agricultural pest that feeds on more than 1100 plant species. The expression of ecdysteroid biosynthesis Halloween genes exhibited a positive zigzag-like pattern, with a peak after 8 h of molting and a drop 8 h after entering each quiescent stage. In contrast, JH biosynthesis genes expression displayed a negative zigzag-like pattern, with a peak at 8 h after entering each quiescent stage and a drop after 8 h of each molting. These opposite patterns imply that ecdysteroid and JH expression is coordinated during the developmental transition. Our data provide an initial perspective on the co-expression of ecdysteroid and JH biosynthesis genes to regulate this important developmental process in the two-spotted spider mite.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Qin-Zhe Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
25
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
26
|
Jeong Y, Kim T, Kim S, Hong YK, Cho KS, Lee IS. Overexpression of histone methyltransferase NSD in Drosophila induces apoptotic cell death via the Jun-N-terminal kinase pathway. Biochem Biophys Res Commun 2018; 496:1134-1140. [DOI: 10.1016/j.bbrc.2018.01.156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/25/2018] [Indexed: 12/29/2022]
|