1
|
Kuronen J, Horsfield ST, Pöntinen AK, Mallawaarachchi S, Arredondo-Alonso S, Thorpe H, Gladstone RA, Willems RJL, Bentley SD, Croucher NJ, Pensar J, Lees JA, Tonkin-Hill G, Corander J. Pangenome-spanning epistasis and coselection analysis via de Bruijn graphs. Genome Res 2024; 34:1081-1088. [PMID: 39134411 PMCID: PMC11368177 DOI: 10.1101/gr.278485.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Studies of bacterial adaptation and evolution are hampered by the difficulty of measuring traits such as virulence, drug resistance, and transmissibility in large populations. In contrast, it is now feasible to obtain high-quality complete assemblies of many bacterial genomes thanks to scalable high-accuracy long-read sequencing technologies. To exploit this opportunity, we introduce a phenotype- and alignment-free method for discovering coselected and epistatically interacting genomic variation from genome assemblies covering both core and accessory parts of genomes. Our approach uses a compact colored de Bruijn graph to approximate the intragenome distances between pairs of loci for a collection of bacterial genomes to account for the impacts of linkage disequilibrium (LD). We demonstrate the versatility of our approach to efficiently identify associations between loci linked with drug resistance and adaptation to the hospital niche in the major human bacterial pathogens Streptococcus pneumoniae and Enterococcus faecalis.
Collapse
Affiliation(s)
- Juri Kuronen
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
| | - Samuel T Horsfield
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Sudaraka Mallawaarachchi
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3052, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | | | - Harry Thorpe
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
| | | | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1RQ, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W12 0BZ, United Kingdom
| | - Johan Pensar
- Department of Mathematics, University of Oslo, 0372 Blindern, Norway
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom;
| | - Gerry Tonkin-Hill
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway;
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3052, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3052, Australia
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, 0372 Blindern, Norway
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, Netherlands
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
2
|
Taylor AJ, Yahara K, Pascoe B, Ko S, Mageiros L, Mourkas E, Calland JK, Puranen S, Hitchings MD, Jolley KA, Kobras CM, Bayliss S, Williams NJ, van Vliet AHM, Parkhill J, Maiden MCJ, Corander J, Hurst LD, Falush D, Keim P, Didelot X, Kelly DJ, Sheppard SK. Epistasis, core-genome disharmony, and adaptation in recombining bacteria. mBio 2024; 15:e0058124. [PMID: 38683013 PMCID: PMC11237541 DOI: 10.1128/mbio.00581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.
Collapse
Affiliation(s)
- Aidan J Taylor
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Seungwon Ko
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Leonardos Mageiros
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Santeri Puranen
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sion Bayliss
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Wirral, United Kingdom
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Laurence D Hurst
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Daniel Falush
- The Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
| | - Paul Keim
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Xavier Didelot
- Department of Statistics, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J Kelly
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
3
|
Mallawaarachchi S, Tonkin-Hill G, Pöntinen A, Calland J, Gladstone R, Arredondo-Alonso S, MacAlasdair N, Thorpe H, Top J, Sheppard S, Balding D, Croucher N, Corander J. Detecting co-selection through excess linkage disequilibrium in bacterial genomes. NAR Genom Bioinform 2024; 6:lqae061. [PMID: 38846349 PMCID: PMC11155488 DOI: 10.1093/nargab/lqae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Population genomics has revolutionized our ability to study bacterial evolution by enabling data-driven discovery of the genetic architecture of trait variation. Genome-wide association studies (GWAS) have more recently become accompanied by genome-wide epistasis and co-selection (GWES) analysis, which offers a phenotype-free approach to generating hypotheses about selective processes that simultaneously impact multiple loci across the genome. However, existing GWES methods only consider associations between distant pairs of loci within the genome due to the strong impact of linkage-disequilibrium (LD) over short distances. Based on the general functional organisation of genomes it is nevertheless expected that majority of co-selection and epistasis will act within relatively short genomic proximity, on co-variation occurring within genes and their promoter regions, and within operons. Here, we introduce LDWeaver, which enables an exhaustive GWES across both short- and long-range LD, to disentangle likely neutral co-variation from selection. We demonstrate the ability of LDWeaver to efficiently generate hypotheses about co-selection using large genomic surveys of multiple major human bacterial pathogen species and validate several findings using functional annotation and phenotypic measurements. Our approach will facilitate the study of bacterial evolution in the light of rapidly expanding population genomic data.
Collapse
Affiliation(s)
| | | | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Harry A Thorpe
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Janetta Top
- Department of Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
| | - Samuel K Sheppard
- Ineos Oxford Institute of Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - David Balding
- Melbourne Integrative Genomics, School of BioSciences and School of Mathematics & Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, United Kingdom
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Liu Z, Good BH. Dynamics of bacterial recombination in the human gut microbiome. PLoS Biol 2024; 22:e3002472. [PMID: 38329938 PMCID: PMC10852326 DOI: 10.1371/journal.pbio.3002472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/14/2023] [Indexed: 02/10/2024] Open
Abstract
Horizontal gene transfer (HGT) is a ubiquitous force in microbial evolution. Previous work has shown that the human gut is a hotspot for gene transfer between species, but the more subtle exchange of variation within species-also known as recombination-remains poorly characterized in this ecosystem. Here, we show that the genetic structure of the human gut microbiome provides an opportunity to measure recent recombination events from sequenced fecal samples, enabling quantitative comparisons across diverse commensal species that inhabit a common environment. By analyzing recent recombination events in the core genomes of 29 human gut bacteria, we observed widespread heterogeneities in the rates and lengths of transferred fragments, which are difficult to explain by existing models of ecological isolation or homology-dependent recombination rates. We also show that natural selection helps facilitate the spread of genetic variants across strain backgrounds, both within individual hosts and across the broader population. These results shed light on the dynamics of in situ recombination, which can strongly constrain the adaptability of gut microbial communities.
Collapse
Affiliation(s)
- Zhiru Liu
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
5
|
Williams N, Ojanperä A, Siebenhühner F, Toselli B, Palva S, Arnulfo G, Kaski S, Palva JM. The influence of inter-regional delays in generating large-scale brain networks of phase synchronization. Neuroimage 2023; 279:120318. [PMID: 37572765 DOI: 10.1016/j.neuroimage.2023.120318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023] Open
Abstract
Large-scale networks of phase synchronization are considered to regulate the communication between brain regions fundamental to cognitive function, but the mapping to their structural substrates, i.e., the structure-function relationship, remains poorly understood. Biophysical Network Models (BNMs) have demonstrated the influences of local oscillatory activity and inter-regional anatomical connections in generating alpha-band (8-12 Hz) networks of phase synchronization observed with Electroencephalography (EEG) and Magnetoencephalography (MEG). Yet, the influence of inter-regional conduction delays remains unknown. In this study, we compared a BNM with standard "distance-dependent delays", which assumes constant conduction velocity, to BNMs with delays specified by two alternative methods accounting for spatially varying conduction velocities, "isochronous delays" and "mixed delays". We followed the Approximate Bayesian Computation (ABC) workflow, i) specifying neurophysiologically informed prior distributions of BNM parameters, ii) verifying the suitability of the prior distributions with Prior Predictive Checks, iii) fitting each of the three BNMs to alpha-band MEG resting-state data (N = 75) with Bayesian optimization for Likelihood-Free Inference (BOLFI), and iv) choosing between the fitted BNMs with ABC model comparison on a separate MEG dataset (N = 30). Prior Predictive Checks revealed the range of dynamics generated by each of the BNMs to encompass those seen in the MEG data, suggesting the suitability of the prior distributions. Fitting the models to MEG data yielded reliable posterior distributions of the parameters of each of the BNMs. Finally, model comparison revealed the BNM with "distance-dependent delays", as the most probable to describe the generation of alpha-band networks of phase synchronization seen in MEG. These findings suggest that distance-dependent delays might contribute to the neocortical architecture of human alpha-band networks of phase synchronization. Hence, our study illuminates the role of inter-regional delays in generating the large-scale networks of phase synchronization that might subserve the communication between regions vital to cognition.
Collapse
Affiliation(s)
- N Williams
- Helsinki Institute of Information Technology, Department of Computer Science, Aalto University, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, Finland.
| | - A Ojanperä
- Department of Computer Science, Aalto University, Finland
| | - F Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; BioMag laboratory, HUS Medical Imaging Center, Helsinki, Finland
| | - B Toselli
- Department of Informatics, Bioengineering, Robotics & Systems Engineering, University of Genoa, Italy
| | - S Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Centre for Cognitive Neuroimaging, School of Neuroscience & Psychology, University of Glasgow, United Kingdom
| | - G Arnulfo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Department of Informatics, Bioengineering, Robotics & Systems Engineering, University of Genoa, Italy
| | - S Kaski
- Helsinki Institute of Information Technology, Department of Computer Science, Aalto University, Finland; Department of Computer Science, Aalto University, Finland; Department of Computer Science, University of Manchester, United Kingdom
| | - J M Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland; Centre for Cognitive Neuroimaging, School of Neuroscience & Psychology, University of Glasgow, United Kingdom
| |
Collapse
|
6
|
Mehta RS, Petit RA, Read TD, Weissman DB. Detecting patterns of accessory genome coevolution in Staphylococcus aureus using data from thousands of genomes. BMC Bioinformatics 2023; 24:243. [PMID: 37296404 PMCID: PMC10251594 DOI: 10.1186/s12859-023-05363-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Bacterial genomes exhibit widespread horizontal gene transfer, resulting in highly variable genome content that complicates the inference of genetic interactions. In this study, we develop a method for detecting coevolving genes from large datasets of bacterial genomes based on pairwise comparisons of closely related individuals, analogous to a pedigree study in eukaryotic populations. We apply our method to pairs of genes from the Staphylococcus aureus accessory genome of over 75,000 annotated gene families using a database of over 40,000 whole genomes. We find many pairs of genes that appear to be gained or lost in a coordinated manner, as well as pairs where the gain of one gene is associated with the loss of the other. These pairs form networks of rapidly coevolving genes, primarily consisting of genes involved in virulence, mechanisms of horizontal gene transfer, and antibiotic resistance, particularly the SCCmec complex. While we focus on gene gain and loss, our method can also detect genes that tend to acquire substitutions in tandem, or genotype-phenotype or phenotype-phenotype coevolution. Finally, we present the R package DeCoTUR that allows for the computation of our method.
Collapse
Affiliation(s)
- Rohan S Mehta
- Department of Physics, Emory University, Atlanta, GA, USA.
| | - Robert A Petit
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Wyoming Public Health Laboratory, Cheyenne, WY, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Zarras C, Karampatakis T, Pappa S, Iosifidis E, Vagdatli E, Roilides E, Papa A. Genetic Characterization of Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates in a Tertiary Hospital in Greece, 2018-2022. Antibiotics (Basel) 2023; 12:976. [PMID: 37370295 DOI: 10.3390/antibiotics12060976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a serious public health issue. The study aimed to identify the antimicrobial resistance and accessory genes, the clonal relatedness, and the evolutionary dynamics of selected CRKP isolates recovered in an adult and pediatric intensive care unit of a tertiary hospital in Greece. METHODS Twenty-four CRKP isolates recovered during 2018-2022 were included in the study. Next-generation sequencing was performed using the Ion Torrent PGM Platform. The identification of the plasmid content, MLST, and antimicrobial resistance genes, as well as the comparison of multiple genome alignments and the identification of core genome single-nucleotide polymorphism sites, were performed using various bioinformatics software. RESULTS The isolates belonged to eight sequence types: 11, 15, 30, 35, 39, 307, 323, and 512. A variety of carbapenemases (KPC, VIM, NDM, and OXA-48) and resistance genes were detected. CRKP strains shared visually common genomic regions with the reference strain (NTUH-K2044). ST15, ST323, ST39, and ST11 CRKP isolates presented on average 17, 6, 16, and 866 recombined SNPs, respectively. All isolates belonging to ST15, ST323, and ST39 were classified into distinct phylogenetic branches, while ST11 isolates were assigned to a two-subclade branch. For large CRKP sets, the phylogeny seems to change approximately every seven SNPs. CONCLUSIONS The current study provides insight into the genetic characterization of CRKP isolates in the ICUs of a tertiary hospital. Our results indicate clonal dispersion of ST15, ST323, and ST39 and highly diverged ST11 isolates.
Collapse
Affiliation(s)
- Charalampos Zarras
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Microbiology Department, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Theodoros Karampatakis
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Styliani Pappa
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Elias Iosifidis
- Infectious Disease Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Eleni Vagdatli
- Microbiology Department, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, Medical Faculty, School of Health Sciences, Hippokration General Hospital, 546 42 Thessaloniki, Greece
| | - Anna Papa
- Department of Microbiology, Medical Faculty, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
8
|
Gibson PS, Veening JW. Gaps in the wall: understanding cell wall biology to tackle amoxicillin resistance in Streptococcus pneumoniae. Curr Opin Microbiol 2023; 72:102261. [PMID: 36638546 DOI: 10.1016/j.mib.2022.102261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, and one of the main pathogens responsible for otitis media infections in children. Amoxicillin (AMX) is a broad-spectrum β-lactam antibiotic, used frequently for the treatment of bacterial respiratory tract infections. Here, we discuss the pneumococcal response to AMX, including the mode of action of AMX, the effects on autolysin regulation, and the evolution of resistance through natural transformation. We discuss current knowledge gaps in the synthesis and translocation of peptidoglycan and teichoic acids, major constituents of the pneumococcal cell wall and critical to AMX activity. Furthermore, an outlook of AMX resistance research is presented, including the development of natural competence inhibitors to block evolution via horizontal gene transfer, and the use of high-throughput essentiality screens for the discovery of novel cotherapeutics.
Collapse
Affiliation(s)
- Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Newberry EA, Minsavage GV, Holland A, Jones JB, Potnis N. Genome-Wide Association to Study the Host-Specificity Determinants of Xanthomonas perforans. PHYTOPATHOLOGY 2023; 113:400-412. [PMID: 36318253 DOI: 10.1094/phyto-08-22-0294-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Xanthomonas perforans and X. euvesicatoria are the causal agents of bacterial spot disease of tomato and pepper, endemic to the Southeastern United States. Although very closely related, the two bacterial species differ in host specificity, where X. perforans is the dominant pathogen of tomato and X. euvesicatoria that of pepper. This is in part due to the activity of avirulence proteins that are secreted by X. perforans strains and elicit effector-triggered immunity in pepper leaves, thereby restricting pathogen growth. In recent years, the emergence of several pepper-pathogenic X. perforans lineages has revealed variability within the bacterial species to multiply and cause disease in pepper, even in the absence of avirulence gene activity. Here, we investigated the basal evolutionary processes underlying the host range of this species using multiple genome-wide association analyses. Surprisingly, we identified two novel gene candidates that were significantly associated with pepper-pathogenic X. perforans and X. euvesicatoria. Both candidates were predicted to be involved in the transport/acquisition of nutrients common to the plant cell wall or apoplast and included a TonB-dependent receptor, which was disrupted through independent mutations within the X. perforans lineage. The other included a symporter of protons/glutamate, gltP, enriched with pepper-associated mutations near the promoter and start codon of the gene. Functional analysis of these candidates revealed that only the TonB-dependent receptor had a minor effect on the symptom development and growth of X. perforans in pepper leaves, indicating that pathogenicity to this host might have evolved independently within the bacterial species and is likely a complex, multigenic trait.
Collapse
Affiliation(s)
- Eric A Newberry
- Department of Entomology and Plant Pathology, Auburn University, AL 36849
| | | | - Auston Holland
- Department of Entomology and Plant Pathology, Auburn University, AL 36849
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, AL 36849
| |
Collapse
|
10
|
Preska Steinberg A, Lin M, Kussell E. Core genes can have higher recombination rates than accessory genes within global microbial populations. eLife 2022; 11:78533. [PMID: 35801696 PMCID: PMC9444244 DOI: 10.7554/elife.78533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome.
Collapse
Affiliation(s)
| | - Mingzhi Lin
- Department of Biology, New York University, New York, United States
| | - Edo Kussell
- Department of Biology, New York University, New York, United States
| |
Collapse
|
11
|
Gibson PS, Bexkens E, Zuber S, Cowley LA, Veening JW. The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLoS Pathog 2022; 18:e1010727. [PMID: 35877768 PMCID: PMC9352194 DOI: 10.1371/journal.ppat.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how antimicrobial resistance spreads is critical for optimal application of new treatments. In the naturally competent human pathogen Streptococcus pneumoniae, resistance to β-lactam antibiotics is mediated by recombination events in genes encoding the target proteins, resulting in reduced drug binding affinity. However, for the front-line antibiotic amoxicillin, the exact mechanism of resistance still needs to be elucidated. Through successive rounds of transformation with genomic DNA from a clinically resistant isolate, we followed amoxicillin resistance development. Using whole genome sequencing, we showed that multiple recombination events occurred at different loci during one round of transformation. We found examples of non-contiguous recombination, and demonstrated that this could occur either through multiple D-loop formation from one donor DNA molecule, or by the integration of multiple DNA fragments. We also show that the final minimum inhibitory concentration (MIC) differs depending on recipient genome, explained by differences in the extent of recombination at key loci. Finally, through back transformations of mutant alleles and fluorescently labelled penicillin (bocillin-FL) binding assays, we confirm that pbp1a, pbp2b, pbp2x, and murM are the main resistance determinants for amoxicillin resistance, and that the order of allele uptake is important for successful resistance evolution. We conclude that recombination events are complex, and that this complexity contributes to the highly diverse genotypes of amoxicillin-resistant pneumococcal isolates.
Collapse
Affiliation(s)
- Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylvia Zuber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lauren A. Cowley
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Abstract
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.
Collapse
|
13
|
Chewapreecha C, Pensar J, Chattagul S, Pesonen M, Sangphukieo A, Boonklang P, Potisap C, Koosakulnirand S, Feil EJ, Dunachie S, Chantratita N, Limmathurotsakul D, Peacock SJ, Day NPJ, Parkhill J, Thomson NR, Sermswan RW, Corander J. Co-evolutionary Signals Identify Burkholderia pseudomallei Survival Strategies in a Hostile Environment. Mol Biol Evol 2022; 39:6400259. [PMID: 34662416 PMCID: PMC8760936 DOI: 10.1093/molbev/msab306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The soil bacterium Burkholderia pseudomallei is the causative agent of melioidosis and a significant cause of human morbidity and mortality in many tropical and subtropical countries. The species notoriously survives harsh environmental conditions but the genetic architecture for these adaptations remains unclear. Here we employed a powerful combination of genome-wide epistasis and co-selection studies (2,011 genomes), condition-wide transcriptome analyses (82 diverse conditions), and a gene knockout assay to uncover signals of "co-selection"-that is a combination of genetic markers that have been repeatedly selected together through B. pseudomallei evolution. These enabled us to identify 13,061 mutation pairs under co-selection in distinct genes and noncoding RNA. Genes under co-selection displayed marked expression correlation when B. pseudomallei was subjected to physical stress conditions, highlighting the conditions as one of the major evolutionary driving forces for this bacterium. We identified a putative adhesin (BPSL1661) as a hub of co-selection signals, experimentally confirmed a BPSL1661 role under nutrient deprivation, and explored the functional basis of co-selection gene network surrounding BPSL1661 in facilitating the bacterial survival under nutrient depletion. Our findings suggest that nutrient-limited conditions have been the common selection pressure acting on this species, and allelic variation of BPSL1661 may have promoted B. pseudomallei survival during harsh environmental conditions by facilitating bacterial adherence to different surfaces, cells, or living hosts.
Collapse
Affiliation(s)
- Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Parasites and Microbes Programme, Wellcome Sanger Insitute, Hinxton, United Kingdom
- Bioinformatics & Systems Biology Program, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Corresponding authors: E-mails: ; ;
| | - Johan Pensar
- Department of Mathematics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Supaksorn Chattagul
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Maiju Pesonen
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Apiwat Sangphukieo
- Bioinformatics & Systems Biology Program, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Phumrapee Boonklang
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chotima Potisap
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Sirikamon Koosakulnirand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Edward J Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Susanna Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nick P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas R Thomson
- Parasites and Microbes Programme, Wellcome Sanger Insitute, Hinxton, United Kingdom
| | - Rasana W Sermswan
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Corresponding authors: E-mails: ; ;
| | - Jukka Corander
- Parasites and Microbes Programme, Wellcome Sanger Insitute, Hinxton, United Kingdom
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
14
|
Cavassim MIA, Andersen SU, Bataillon T, Schierup MH. Recombination facilitates adaptive evolution in rhizobial soil bacteria. Mol Biol Evol 2021; 38:5480-5490. [PMID: 34410427 PMCID: PMC8662638 DOI: 10.1093/molbev/msab247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Homologous recombination is expected to increase natural selection efficacy by decoupling the fate of beneficial and deleterious mutations and by readily creating new combinations of beneficial alleles. Here, we investigate how the proportion of amino acid substitutions fixed by adaptive evolution (α) depends on the recombination rate in bacteria. We analyze 3,086 core protein-coding sequences from 196 genomes belonging to five closely related species of the genus Rhizobium. These genes are found in all species and do not display any signs of introgression between species. We estimate α using the site frequency spectrum (SFS) and divergence data for all pairs of species. We evaluate the impact of recombination within each species by dividing genes into three equally sized recombination classes based on their average level of intragenic linkage disequilibrium. We find that α varies from 0.07 to 0.39 across species and is positively correlated with the level of recombination. This is both due to a higher estimated rate of adaptive evolution and a lower estimated rate of nonadaptive evolution, suggesting that recombination both increases the fixation probability of advantageous variants and decreases the probability of fixation of deleterious variants. Our results demonstrate that homologous recombination facilitates adaptive evolution measured by α in the core genome of prokaryote species in agreement with studies in eukaryotes.
Collapse
Affiliation(s)
- Maria Izabel A Cavassim
- Bioinformatics Research Centre, Aarhus University, Aarhus, 8000, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, 8000, Denmark
| | | |
Collapse
|
15
|
Manoharan-Basil SS, Laumen JGE, Van Dijck C, De Block T, De Baetselier I, Kenyon C. Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol 2021; 12:683901. [PMID: 34177869 PMCID: PMC8222677 DOI: 10.3389/fmicb.2021.683901] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Horizontal gene transfer (HGT) in the penA and multidrug efflux pump genes has been shown to play a key role in the genesis of antimicrobial resistance in Neisseria gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes coding for the ribosomal proteins in the Neisseria genus. We did this in a collection of 11,659 isolates of Neisseria, including N. gonorrhoeae and commensal Neisseria species (N. cinerea, N. elongata, N. flavescens, N. mucosa, N. polysaccharea, and N. subflava). Comparative genomic analyses identified HGT events in three genes: rplB, rplD, and rplY coding for ribosomal proteins L2, L4 and L25, respectively. Recombination events were predicted in N. gonorrhoeae and N. cinerea, N. subflava, and N. lactamica were identified as likely progenitors. In total, 2,337, 2,355, and 1,127 isolates possessed L2, L4, and L25 HGT events. Strong associations were found between HGT in L2/L4 and the C2597T 23S rRNA mutation that confers reduced susceptibility to macrolides. Whilst previous studies have found evidence of HGT of entire genes coding for ribosomal proteins in other bacterial species, this is the first study to find evidence of HGT-mediated chimerization of ribosomal proteins.
Collapse
Affiliation(s)
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tessa De Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Kobras CM, Fenton AK, Sheppard SK. Next-generation microbiology: from comparative genomics to gene function. Genome Biol 2021; 22:123. [PMID: 33926534 PMCID: PMC8082670 DOI: 10.1186/s13059-021-02344-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
Microbiology is at a turning point in its 120-year history. Widespread next-generation sequencing has revealed genetic complexity among bacteria that could hardly have been imagined by pioneers such as Pasteur, Escherich and Koch. This data cascade brings enormous potential to improve our understanding of individual bacterial cells and the genetic basis of phenotype variation. However, this revolution in data science cannot replace established microbiology practices, presenting the challenge of how to integrate these new techniques. Contrasting comparative and functional genomic approaches, we evoke molecular microbiology theory and established practice to present a conceptual framework and practical roadmap for next-generation microbiology.
Collapse
Affiliation(s)
- Carolin M Kobras
- Department of Molecular Biology & Biotechnology, University of Sheffield, The Florey Institute for Host-Pathogen Interactions, Sheffield, UK
| | - Andrew K Fenton
- Department of Molecular Biology & Biotechnology, University of Sheffield, The Florey Institute for Host-Pathogen Interactions, Sheffield, UK.
| | - Samuel K Sheppard
- Department of Biology & Biochemistry, University of Bath, Milner Centre for Evolution, Bath, UK.
| |
Collapse
|
17
|
Yahara K, Ma KC, Mortimer TD, Shimuta K, Nakayama SI, Hirabayashi A, Suzuki M, Jinnai M, Ohya H, Kuroki T, Watanabe Y, Yasuda M, Deguchi T, Eldholm V, Harrison OB, Maiden MCJ, Grad YH, Ohnishi M. Emergence and evolution of antimicrobial resistance genes and mutations in Neisseria gonorrhoeae. Genome Med 2021; 13:51. [PMID: 33785063 PMCID: PMC8008663 DOI: 10.1186/s13073-021-00860-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Antimicrobial resistance in Neisseria gonorrhoeae is a global health concern. Strains from two internationally circulating sequence types, ST-7363 and ST-1901, have acquired resistance to third-generation cephalosporins, mainly due to mosaic penA alleles. These two STs were first detected in Japan; however, the timeline, mechanism, and process of emergence and spread of these mosaic penA alleles to other countries remain unknown. METHODS We studied the evolution of penA alleles by obtaining the complete genomes from three Japanese ST-1901 clinical isolates harboring mosaic penA allele 34 (penA-34) dating from 2005 and generating a phylogenetic representation of 1075 strains sampled from 35 countries. We also sequenced the genomes of 103 Japanese ST-7363 N. gonorrhoeae isolates from 1996 to 2005 and reconstructed a phylogeny including 88 previously sequenced genomes. RESULTS Based on an estimate of the time-of-emergence of ST-1901 (harboring mosaic penA-34) and ST-7363 (harboring mosaic penA-10), and > 300 additional genome sequences of Japanese strains representing multiple STs isolated in 1996-2015, we suggest that penA-34 in ST-1901 was generated from penA-10 via recombination with another Neisseria species, followed by recombination with a gonococcal strain harboring wildtype penA-1. Following the acquisition of penA-10 in ST-7363, a dominant sub-lineage rapidly acquired fluoroquinolone resistance mutations at GyrA 95 and ParC 87-88, by independent mutations rather than horizontal gene transfer. Data in the literature suggest that the emergence of these resistance determinants may reflect selection from the standard treatment regimens in Japan at that time. CONCLUSIONS Our findings highlight how antibiotic use and recombination across and within Neisseria species intersect in driving the emergence and spread of drug-resistant gonorrhea.
Collapse
Affiliation(s)
- Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Kevin C Ma
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ken Shimuta
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shu-Ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michio Jinnai
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Hitomi Ohya
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Toshiro Kuroki
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
- Present address: Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Yuko Watanabe
- Department of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Mitsuru Yasuda
- Center for Nutrition Support and Infection Control, Gifu University Hospital, Gifu, Japan
| | - Takashi Deguchi
- Department of Urology, Kizawa Memorial Hospital, Gifu, Japan
| | - Vegard Eldholm
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
18
|
Sakoparnig T, Field C, van Nimwegen E. Whole genome phylogenies reflect the distributions of recombination rates for many bacterial species. eLife 2021; 10:e65366. [PMID: 33416498 PMCID: PMC7884076 DOI: 10.7554/elife.65366] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Although recombination is accepted to be common in bacteria, for many species robust phylogenies with well-resolved branches can be reconstructed from whole genome alignments of strains, and these are generally interpreted to reflect clonal relationships. Using new methods based on the statistics of single-nucleotide polymorphism (SNP) splits, we show that this interpretation is incorrect. For many species, each locus has recombined many times along its line of descent, and instead of many loci supporting a common phylogeny, the phylogeny changes many thousands of times along the genome alignment. Analysis of the patterns of allele sharing among strains shows that bacterial populations cannot be approximated as either clonal or freely recombining but are structured such that recombination rates between lineages vary over several orders of magnitude, with a unique pattern of rates for each lineage. Thus, rather than reflecting clonal ancestry, whole genome phylogenies reflect distributions of recombination rates.
Collapse
Affiliation(s)
- Thomas Sakoparnig
- Biozentrum, University of Basel, and Swiss Institute of BioinformaticsBaselSwitzerland
| | - Chris Field
- Biozentrum, University of Basel, and Swiss Institute of BioinformaticsBaselSwitzerland
| | - Erik van Nimwegen
- Biozentrum, University of Basel, and Swiss Institute of BioinformaticsBaselSwitzerland
| |
Collapse
|
19
|
Azarian T, Martinez PP, Arnold BJ, Qiu X, Grant LR, Corander J, Fraser C, Croucher NJ, Hammitt LL, Reid R, Santosham M, Weatherholtz RC, Bentley SD, O’Brien KL, Lipsitch M, Hanage WP. Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biol 2020; 18:e3000878. [PMID: 33091022 PMCID: PMC7580979 DOI: 10.1371/journal.pbio.3000878] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Predicting how pathogen populations will change over time is challenging. Such has been the case with Streptococcus pneumoniae, an important human pathogen, and the pneumococcal conjugate vaccines (PCVs), which target only a fraction of the strains in the population. Here, we use the frequencies of accessory genes to predict changes in the pneumococcal population after vaccination, hypothesizing that these frequencies reflect negative frequency-dependent selection (NFDS) on the gene products. We find that the standardized predicted fitness of a strain, estimated by an NFDS-based model at the time the vaccine is introduced, enables us to predict whether the strain increases or decreases in prevalence following vaccination. Further, we are able to forecast the equilibrium post-vaccine population composition and assess the invasion capacity of emerging lineages. Overall, we provide a method for predicting the impact of an intervention on pneumococcal populations with potential application to other bacterial pathogens in which NFDS is a driving force.
Collapse
Affiliation(s)
- Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Pamela P. Martinez
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Brian J. Arnold
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Xueting Qiu
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Lindsay R. Grant
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jukka Corander
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Infection Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Laura L. Hammitt
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mathuram Santosham
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Robert C. Weatherholtz
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Stephen D. Bentley
- Infection Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | | | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Cui Y, Yang C, Qiu H, Wang H, Yang R, Falush D. The landscape of coadaptation in Vibrio parahaemolyticus. eLife 2020; 9:54136. [PMID: 32195663 PMCID: PMC7101233 DOI: 10.7554/elife.54136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Investigating fitness interactions in natural populations remains a considerable challenge. We take advantage of the unique population structure of Vibrio parahaemolyticus, a bacterial pathogen of humans and shrimp, to perform a genome-wide screen for coadapted genetic elements. We identified 90 interaction groups (IGs) involving 1,560 coding genes. 82 IGs are between accessory genes, many of which have functions related to carbohydrate transport and metabolism. Only 8 involve both core and accessory genomes. The largest includes 1,540 SNPs in 82 genes and 338 accessory genome elements, many involved in lateral flagella and cell wall biogenesis. The interactions have a complex hierarchical structure encoding at least four distinct ecological strategies. One strategy involves a divergent profile in multiple genome regions, while the others involve fewer genes and are more plastic. Our results imply that most genetic alliances are ephemeral but that increasingly complex strategies can evolve and eventually cause speciation.
Collapse
Affiliation(s)
- Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Shenzhen Centre for Disease Control and Prevention, Shenzhen, China
| | - Hongling Qiu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Daniel Falush
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Arnold B, Sohail M, Wadsworth C, Corander J, Hanage WP, Sunyaev S, Grad YH. Fine-Scale Haplotype Structure Reveals Strong Signatures of Positive Selection in a Recombining Bacterial Pathogen. Mol Biol Evol 2020; 37:417-428. [PMID: 31589312 PMCID: PMC6993868 DOI: 10.1093/molbev/msz225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Identifying genetic variation in bacteria that has been shaped by ecological differences remains an important challenge. For recombining bacteria, the sign and strength of linkage provide a unique lens into ongoing selection. We show that derived alleles <300 bp apart in Neisseria gonorrhoeae exhibit more coupling linkage than repulsion linkage, a pattern that cannot be explained by limited recombination or neutrality as these couplings are significantly stronger for nonsynonymous alleles than synonymous alleles. This general pattern is driven by a small fraction of highly diverse genes, many of which exhibit evidence of interspecies horizontal gene transfer and an excess of intermediate frequency alleles. Extensive simulations show that two distinct forms of positive selection can create these patterns of genetic variation: directional selection on horizontally transferred alleles or balancing selection that maintains distinct haplotypes in the presence of recombination. Our results establish a framework for identifying patterns of selection in fine-scale haplotype structure that indicate specific ecological processes in species that recombine with distantly related lineages or possess coexisting adaptive haplotypes.
Collapse
Affiliation(s)
- Brian Arnold
- Division of Informatics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Mashaal Sohail
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Crista Wadsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Computer Science, Helsinki Institute for Information Technology HIIT, University of Helsinki, Helsinki, Finland
| | - William P Hanage
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Shamil Sunyaev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Cremers AJH, Mobegi FM, van der Gaast-de Jongh C, van Weert M, van Opzeeland FJ, Vehkala M, Knol MJ, Bootsma HJ, Välimäki N, Croucher NJ, Meis JF, Bentley S, van Hijum SAFT, Corander J, Zomer AL, Ferwerda G, de Jonge MI. The Contribution of Genetic Variation of Streptococcus pneumoniae to the Clinical Manifestation of Invasive Pneumococcal Disease. Clin Infect Dis 2020; 68:61-69. [PMID: 29788414 DOI: 10.1093/cid/ciy417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Background Different clinical manifestations of invasive pneumococcal disease (IPD) have thus far mainly been explained by patient characteristics. Here we studied the contribution of pneumococcal genetic variation to IPD phenotype. Methods The index cohort consisted of 349 patients admitted to 2 Dutch hospitals between 2000-2011 with pneumococcal bacteremia. We performed genome-wide association studies to identify pneumococcal lineages, genes, and allelic variants associated with 23 clinical IPD phenotypes. The identified associations were validated in a nationwide (n = 482) and a post-pneumococcal vaccination cohort (n = 121). The contribution of confirmed pneumococcal genotypes to the clinical IPD phenotype, relative to known clinical predictors, was tested by regression analysis. Results Among IPD patients, the presence of pneumococcal gene slaA was a nationwide confirmed independent predictor of meningitis (odds ratio [OR], 10.5; P = .001), as was sequence cluster 9 (serotype 7F: OR, 3.68; P = .057). A set of 4 pneumococcal genes co-located on a prophage was a confirmed independent predictor of 30-day mortality (OR, 3.4; P = .003). We could detect the pneumococcal variants of concern in these patients' blood samples. Conclusions In this study, knowledge of pneumococcal genotypic variants improved the clinical risk assessment for detrimental manifestations of IPD. This provides us with novel opportunities to target, anticipate, or avert the pathogenic effects related to particular pneumococcal variants, and indicates that information on pneumococcal genotype is important for the diagnostic and treatment strategy in IPD. Ongoing surveillance is warranted to monitor the clinical value of information on pneumococcal variants in dynamic microbial and susceptible host populations.
Collapse
Affiliation(s)
- Amelieke J H Cremers
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands.,Department of Medical Microbiology, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Fredrick M Mobegi
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands.,Bacterial Genomics Group, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Christa van der Gaast-de Jongh
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Michelle van Weert
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Fred J van Opzeeland
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Minna Vehkala
- Department of Mathematics and Statistics, University of Helsinki, Finland
| | - Mirjam J Knol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hester J Bootsma
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Niko Välimäki
- Department of Mathematics and Statistics, University of Helsinki, Finland
| | - Nicholas J Croucher
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Stephen Bentley
- Wellcome Trust Sanger Institute, Pathogen Genomics Group, Hinxton, Cambridge, United Kingdom
| | - Sacha A F T van Hijum
- Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands.,Bacterial Genomics Group, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands.,NIZO, Ede, The Netherlands
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Finland.,Wellcome Trust Sanger Institute, Pathogen Genomics Group, Hinxton, Cambridge, United Kingdom.,Department of Biostatistics, University of Oslo, Norway
| | - Aldert L Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | - Gerben Ferwerda
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Kwun MJ, Oggioni MR, Bentley SD, Fraser C, Croucher NJ. Synergistic Activity of Mobile Genetic Element Defences in Streptococcus pneumoniae. Genes (Basel) 2019; 10:genes10090707. [PMID: 31540216 PMCID: PMC6771155 DOI: 10.3390/genes10090707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 01/02/2023] Open
Abstract
A diverse set of mobile genetic elements (MGEs) transmit between Streptococcus pneumoniae cells, but many isolates remain uninfected. The best-characterised defences against horizontal transmission of MGEs are restriction-modification systems (RMSs), of which there are two phase-variable examples in S. pneumoniae. Additionally, the transformation machinery has been proposed to limit vertical transmission of chromosomally integrated MGEs. This work describes how these mechanisms can act in concert. Experimental data demonstrate RMS phase variation occurs at a sub-maximal rate. Simulations suggest this may be optimal if MGEs are sometimes vertically inherited, as it reduces the probability that an infected cell will switch between RMS variants while the MGE is invading the population, and thereby undermine the restriction barrier. Such vertically inherited MGEs can be deleted by transformation. The lack of between-strain transformation hotspots at known prophage att sites suggests transformation cannot remove an MGE from a strain in which it is fixed. However, simulations confirmed that transformation was nevertheless effective at preventing the spread of MGEs into a previously uninfected cell population, if a recombination barrier existed between co-colonising strains. Further simulations combining these effects of phase variable RMSs and transformation found they synergistically inhibited MGEs spreading, through limiting both vertical and horizontal transmission.
Collapse
Affiliation(s)
- Min Jung Kwun
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London W2 1PG, UK.
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Stephen D Bentley
- Pathogens and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK.
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
24
|
Potnis N, Kandel PP, Merfa MV, Retchless AC, Parker JK, Stenger DC, Almeida RPP, Bergsma-Vlami M, Westenberg M, Cobine PA, De La Fuente L. Patterns of inter- and intrasubspecific homologous recombination inform eco-evolutionary dynamics of Xylella fastidiosa. THE ISME JOURNAL 2019; 13:2319-2333. [PMID: 31110262 PMCID: PMC6776109 DOI: 10.1038/s41396-019-0423-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/09/2022]
Abstract
High rates of homologous recombination (HR) in the bacterial plant pathogen Xylella fastidiosa have been previously detected. This study aimed to determine the extent and explore the ecological significance of HR in the genomes of recombinants experimentally generated by natural transformation and wild-type isolates. Both sets of strains displayed widespread HR and similar average size of recombined fragments consisting of random events (2-10 kb) of inter- and intrasubspecific recombination. A significantly higher proportion and greater lengths (>10 kb, maximum 31.5 kb) of recombined fragments were observed in subsp. morus and in strains isolated in Europe from intercepted coffee plants shipped from the Americas. Such highly recombinant strains pose a serious risk of emergence of novel variants, as genetically distinct and formerly geographically isolated genotypes are brought in close proximity by global trade. Recently recombined regions in wild-type strains included genes involved in regulation and signaling, host colonization, nutrient acquisition, and host evasion, all fundamental traits for X. fastidiosa ecology. Identification of four recombinant loci shared between wild-type and experimentally generated recombinants suggests potential hotspots of recombination in this naturally competent pathogen. These findings provide insights into evolutionary forces possibly affecting the adaptive potential to colonize the host environments of X. fastidiosa.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
| | - Prem P Kandel
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
| | - Adam C Retchless
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Maria Bergsma-Vlami
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, Wageningen, 6700 HC, The Netherlands
| | - Marcel Westenberg
- Dutch National Plant Protection Organization (NPPO-NL), P.O. Box. 9102, Wageningen, 6700 HC, The Netherlands
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Sciences Bldg, Auburn, AL, USA.
| |
Collapse
|
25
|
Vigué L, Eyre-Walker A. The comparative population genetics of Neisseria meningitidis and Neisseria gonorrhoeae. PeerJ 2019; 7:e7216. [PMID: 31293838 PMCID: PMC6599670 DOI: 10.7717/peerj.7216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/30/2019] [Indexed: 12/31/2022] Open
Abstract
Neisseria meningitidis and N. gonorrhoeae are closely related pathogenic bacteria. To compare their population genetics, we compiled a dataset of 1,145 genes found across 20 N. meningitidis and 15 N. gonorrhoeae genomes. We find that N. meningitidis is seven-times more diverse than N. gonorrhoeae in their combined core genome. Both species have acquired the majority of their diversity by recombination with divergent strains, however, we find that N. meningitidis has acquired more of its diversity by recombination than N. gonorrhoeae. We find that linkage disequilibrium (LD) declines rapidly across the genomes of both species. Several observations suggest that N. meningitidis has a higher effective population size than N. gonorrhoeae; it is more diverse, the ratio of non-synonymous to synonymous polymorphism is lower, and LD declines more rapidly to a lower asymptote in N. meningitidis. The two species share a modest amount of variation, half of which seems to have been acquired by lateral gene transfer and half from their common ancestor. We investigate whether diversity varies across the genome of each species and find that it does. Much of this variation is due to different levels of lateral gene transfer. However, we also find some evidence that the effective population size varies across the genome. We test for adaptive evolution in the core genome using a McDonald–Kreitman test and by considering the diversity around non-synonymous sites that are fixed for different alleles in the two species. We find some evidence for adaptive evolution using both approaches.
Collapse
|
26
|
Rêgo A, Messina FJ, Gompert Z. Dynamics of genomic change during evolutionary rescue in the seed beetle
Callosobruchus maculatus. Mol Ecol 2019; 28:2136-2154. [DOI: 10.1111/mec.15085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandre Rêgo
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | - Frank J. Messina
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | - Zachariah Gompert
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| |
Collapse
|
27
|
Blanquart F. Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. Evol Appl 2019; 12:365-383. [PMID: 30828361 PMCID: PMC6383707 DOI: 10.1111/eva.12753] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
The evolution of resistance to antibiotics is a major public health problem and an example of rapid adaptation under natural selection by antibiotics. The dynamics of antibiotic resistance within and between hosts can be understood in the light of mathematical models that describe the epidemiology and evolution of the bacterial population. "Between-host" models describe the spread of resistance in the host community, and in more specific settings such as hospitalized hosts (treated by antibiotics at a high rate), or farm animals. These models make predictions on the best strategies to limit the spread of resistance, such as reducing transmission or adapting the prescription of several antibiotics. Models can be fitted to epidemiological data in the context of intensive care units or hospitals to predict the impact of interventions on resistance. It has proven harder to explain the dynamics of resistance in the community at large, in particular because models often do not reproduce the observed coexistence of drug-sensitive and drug-resistant strains. "Within-host" models describe the evolution of resistance within the treated host. They show that the risk of resistance emergence is maximal at an intermediate antibiotic dose, and some models successfully explain experimental data. New models that include the complex host population structure, the interaction between resistance-determining loci and other loci, or integrating the within- and between-host levels will allow better interpretation of epidemiological and genomic data from common pathogens and better prediction of the evolution of resistance.
Collapse
Affiliation(s)
- François Blanquart
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERMPSL Research UniversityParisFrance
- IAME, UMR 1137, INSERMUniversité Paris DiderotParisFrance
| |
Collapse
|
28
|
Inferring bacterial recombination rates from large-scale sequencing datasets. Nat Methods 2019; 16:199-204. [PMID: 30664775 DOI: 10.1038/s41592-018-0293-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/30/2018] [Indexed: 01/10/2023]
Abstract
We present a robust, computationally efficient method ( https://github.com/kussell-lab/mcorr ) for inferring the parameters of homologous recombination in bacteria, which can be applied in diverse datasets, from whole-genome sequencing to metagenomic shotgun sequencing data. Using correlation profiles of synonymous substitutions, we determine recombination rates and diversity levels of the shared gene pool that has contributed to a given sample. We validated the recombination parameters using data from laboratory experiments. We determined the recombination parameters for a wide range of bacterial species, and inferred the distribution of shared gene pools for global Helicobacter pylori isolates. Using metagenomics data of the infant gut microbiome, we measured the recombination parameters of multidrug-resistant Escherichia coli ST131. Lastly, we analyzed ancient samples of bacterial DNA from the Copper Age 'Iceman' mummy and from 14th century victims of the Black Death, obtaining measurements of bacterial recombination rates and gene pool diversity of earlier eras.
Collapse
|
29
|
Abstract
Genome-wide association studies (GWAS) can identify genetic variants responsible for naturally occurring and quantitative phenotypic variation. Association studies therefore provide a powerful complement to approaches that rely on de novo mutations for characterizing gene function. Although bacteria should be amenable to GWAS, few GWAS have been conducted on bacteria, and the extent to which nonindependence among genomic variants (e.g., linkage disequilibrium [LD]) and the genetic architecture of phenotypic traits will affect GWAS performance is unclear. We apply association analyses to identify candidate genes underlying variation in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of Ensifer meliloti For 11 traits, we find genotype-phenotype associations that are stronger than expected by chance, with the candidates in relatively small linkage groups, indicating that LD does not preclude resolving association candidates to relatively small genomic regions. The significant candidates show an enrichment for nucleotide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five traits, candidates are enriched in large linkage groups, a possible signature of epistasis. Many of the variants most strongly associated with symbiosis phenotypes were in genes previously identified as being involved in nitrogen fixation or nodulation. For other traits, apparently strong associations were not stronger than the range of associations detected in permuted data. In sum, our data show that GWAS in bacteria may be a powerful tool for characterizing genetic architecture and identifying genes responsible for phenotypic variation. However, careful evaluation of candidates is necessary to avoid false signals of association.IMPORTANCE Genome-wide association analyses are a powerful approach for identifying gene function. These analyses are becoming commonplace in studies of humans, domesticated animals, and crop plants but have rarely been conducted in bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti, an agriculturally and ecologically important bacterium because it fixes nitrogen when in symbiosis with leguminous plants. We identified candidate alleles and gene presence-absence variants underlying variation in symbiosis traits, antibiotic resistance, and use of various carbon sources; some of these candidates are in genes previously known to affect these traits whereas others were in genes that have not been well characterized. Our results point to the potential power of association analyses in bacteria, but also to the need to carefully evaluate the potential for false associations.
Collapse
|
30
|
Alfsnes K, Frye SA, Eriksson J, Eldholm V, Brynildsrud OB, Bohlin J, Harrison OB, Hood DW, Maiden MCJ, Tønjum T, Ambur OH. A genomic view of experimental intraspecies and interspecies transformation of a rifampicin-resistance allele into Neisseria meningitidis. Microb Genom 2018; 4. [PMID: 30251949 PMCID: PMC6321871 DOI: 10.1099/mgen.0.000222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The spread of antibiotic resistance within and between different bacterial populations is a major health problem on a global scale. The identification of genetic transformation in genomic data from Neisseria meningitidis, the meningococcus (Mc), and other bacteria is problematic, since similar or even identical alleles may be involved. A particular challenge in naturally transformable bacteria generally is to distinguish between common ancestry and true recombined sites in sampled genome sequences. Furthermore, the identification of recombination following experimental transformation of homologous alleles requires identifiable differences between donor and recipient, which in itself influences the propensity for homologous recombination (HR). This study identifies the distribution of HR events following intraspecies and interspecies Mc transformations of rpoB alleles encoding rifampicin resistance by whole-genome DNA sequencing and single nucleotide variant analysis. The HR events analysed were confined to the genomic region surrounding the single nucleotide genetic marker used for selection. An exponential length distribution of these recombined events was found, ranging from a few nucleotides to about 72 kb stretches. The lengths of imported sequences were on average found to be longer following experimental transformation of the recipient with genomic DNA from an intraspecies versus an interspecies donor (P<0.001). The recombination events were generally observed to be mosaic, with donor sequences interspersed with recipient sequence. Here, we present four models to explain these observations, by fragmentation of the transformed DNA, by interruptions of the recombination mechanism, by secondary recombination of endogenous self-DNA, or by repair/replication mechanisms.
Collapse
Affiliation(s)
| | - Stephan A Frye
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Jens Eriksson
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Vegard Eldholm
- 3Department of Molecular Biology, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ola Brønstad Brynildsrud
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Odile B Harrison
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Derek W Hood
- 6Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Martin C J Maiden
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Tone Tønjum
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,7Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ole Herman Ambur
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,8OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
31
|
Abstract
Some bacteria can transfer to new host species, and this poses a risk to human health. Indeed, an estimated 60% of all human pathogens have originated from other animal species. Similarly, human-to-animal transitions are recognized as a major threat to sustainable livestock production, and emerging pathogens impose an increasing burden on crop yield and global food security. Recent advances in high-throughput sequencing technologies have enabled comparative genomic analyses of bacterial populations from multiple hosts. Such studies are providing new insights into the evolutionary processes that underpin the establishment of bacteria in new host niches. A better understanding of the genetic and mechanistic basis for bacterial host adaptation may reveal novel targets for controlling infection or inform the design of approaches to limit the emergence of new pathogens.
Collapse
Affiliation(s)
- Samuel K Sheppard
- Milner Centre for Evolution, Department of Biology & Biotechnology, University of Bath, Claverton Down, Bath, UK
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, UK.
| |
Collapse
|
32
|
Cowley LA, Petersen FC, Junges R, Jimson D. Jimenez M, Morrison DA, Hanage WP. Evolution via recombination: Cell-to-cell contact facilitates larger recombination events in Streptococcus pneumoniae. PLoS Genet 2018; 14:e1007410. [PMID: 29897968 PMCID: PMC6016952 DOI: 10.1371/journal.pgen.1007410] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/25/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination in the genetic transformation model organism Streptococcus pneumoniae is thought to be important in the adaptation and evolution of this pathogen. While competent pneumococci are able to scavenge DNA added to laboratory cultures, large-scale transfers of multiple kb are rare under these conditions. We used whole genome sequencing (WGS) to map transfers in recombinants arising from contact of competent cells with non-competent ‘target’ cells, using strains with known genomes, distinguished by a total of ~16,000 SNPs. Experiments designed to explore the effect of environment on large scale recombination events used saturating purified donor DNA, short-term cell assemblages on Millipore filters, and mature biofilm mixed cultures. WGS of 22 recombinants for each environment mapped all SNPs that were identical between the recombinant and the donor but not the recipient. The mean recombination event size was found to be significantly larger in cell-to-cell contact cultures (4051 bp in filter assemblage and 3938 bp in biofilm co-culture versus 1815 bp with saturating DNA). Up to 5.8% of the genome was transferred, through 20 recombination events, to a single recipient, with the largest single event incorporating 29,971 bp. We also found that some recombination events are clustered, that these clusters are more likely to occur in cell-to-cell contact environments, and that they cause significantly increased linkage of genes as far apart as 60,000 bp. We conclude that pneumococcal evolution through homologous recombination is more likely to occur on a larger scale in environments that permit cell-to-cell contact. Bacteria shuffle their genes far less often than humans do and genes or traits are more directly linked with the singular bacterial parent cell rather than the two parents that are involved in sexual reproduction. However, bacteria do occasionally have sex in the form of homologous recombination by taking up external DNA and incorporating it into their genomes. This happens far less regularly than sexual reproduction happens in human generations but is a known way that bacteria undergo ‘Horizontal gene transfer’. This means that genes can be acquired without being inherited. In this study we show that this form of horizontal gene transfer is more likely to happen in certain environments over others in Streptococcus pneumoniae. In particular, we show that this is more likely to happen in environments that closely mirror the nasopharynx which is the natural habitat of S. pneumoniae.
Collapse
Affiliation(s)
- Lauren A. Cowley
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States of America
- * E-mail:
| | | | - Roger Junges
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Med Jimson D. Jimenez
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States of America
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States of America
| | - William P. Hanage
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States of America
| |
Collapse
|
33
|
Azarian T, Grant LR, Arnold BJ, Hammitt LL, Reid R, Santosham M, Weatherholtz R, Goklish N, Thompson CM, Bentley SD, O’Brien KL, Hanage WP, Lipsitch M. The impact of serotype-specific vaccination on phylodynamic parameters of Streptococcus pneumoniae and the pneumococcal pan-genome. PLoS Pathog 2018; 14:e1006966. [PMID: 29617440 PMCID: PMC5902063 DOI: 10.1371/journal.ppat.1006966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/16/2018] [Accepted: 03/09/2018] [Indexed: 11/18/2022] Open
Abstract
In the United States, the introduction of the heptavalent pneumococcal conjugate vaccine (PCV) largely eliminated vaccine serotypes (VT); non-vaccine serotypes (NVT) subsequently increased in carriage and disease. Vaccination also disrupts the composition of the pneumococcal pangenome, which includes mobile genetic elements and polymorphic non-capsular antigens important for virulence, transmission, and pneumococcal ecology. Antigenic proteins are of interest for future vaccines; yet, little is known about how the they are affected by PCV use. To investigate the evolutionary impact of vaccination, we assessed recombination, evolution, and pathogen demographic history of 937 pneumococci collected from 1998-2012 among Navajo and White Mountain Apache Native American communities. We analyzed changes in the pneumococcal pangenome, focusing on metabolic loci and 19 polymorphic protein antigens. We found the impact of PCV on the pneumococcal population could be observed in reduced diversity, a smaller pangenome, and changing frequencies of accessory clusters of orthologous groups (COGs). Post-PCV7, diversity rebounded through clonal expansion of NVT lineages and inferred in-migration of two previously unobserved lineages. Accessory COGs frequencies trended toward pre-PCV7 values with increasing time since vaccine introduction. Contemporary frequencies of protein antigen variants are better predicted by pre-PCV7 values (1998-2000) than the preceding period (2006-2008), suggesting balancing selection may have acted in maintaining variant frequencies in this population. Overall, we present the largest genomic analysis of pneumococcal carriage in the United States to date, which includes a snapshot of a true vaccine-naïve community prior to the introduction of PCV7. These data improve our understanding of pneumococcal evolution and emphasize the need to consider pangenome composition when inferring the impact of vaccination and developing future protein-based pneumococcal vaccines.
Collapse
Affiliation(s)
- Taj Azarian
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Lindsay R. Grant
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Brian J. Arnold
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
| | - Laura L. Hammitt
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Raymond Reid
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Mathuram Santosham
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Robert Weatherholtz
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Novalene Goklish
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - Claudette M. Thompson
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
| | | | - Katherine L. O’Brien
- Center for American Indian Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; United States of America
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, T.H. Chan School of Public Health, Harvard University; Cambridge, Massachusetts, United States of America
| |
Collapse
|