1
|
Dorn C, Perrot A, Grunert M, Rickert-Sperling S. Human Genetics of Tetralogy of Fallot and Double-Outlet Right Ventricle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:629-644. [PMID: 38884738 DOI: 10.1007/978-3-031-44087-8_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Tetralogy of Fallot (TOF) and double-outlet right ventricle (DORV) are conotruncal defects resulting from disturbances of the second heart field and the neural crest, which can occur as isolated malformations or as part of multiorgan syndromes. Their etiology is multifactorial and characterized by overlapping genetic causes. In this chapter, we present the different genetic alterations underlying the two diseases, which range from chromosomal abnormalities like aneuploidies and structural mutations to rare single nucleotide variations affecting distinct genes. For example, mutations in the cardiac transcription factors NKX2-5, GATA4, and HAND2 have been identified in isolated TOF cases, while mutations of TBX5 and 22q11 deletion, leading to haploinsufficiency of TBX1, cause Holt-Oram and DiGeorge syndrome, respectively. Moreover, genes involved in signaling pathways, laterality determination, and epigenetic mechanisms have also been found mutated in TOF and/or DORV patients. Finally, genome-wide association studies identified common single nucleotide polymorphisms associated with the risk for TOF.
Collapse
Affiliation(s)
- Cornelia Dorn
- Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Perrot
- Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel Grunert
- Cardiovascular Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | | |
Collapse
|
2
|
Maven BEJ, Gifford CA, Weilert M, Gonzalez-Teran B, Hüttenhain R, Pelonero A, Ivey KN, Samse-Knapp K, Kwong W, Gordon D, McGregor M, Nishino T, Okorie E, Rossman S, Costa MW, Krogan NJ, Zeitlinger J, Srivastava D. The multi-lineage transcription factor ISL1 controls cardiomyocyte cell fate through interaction with NKX2.5. Stem Cell Reports 2023; 18:2138-2153. [PMID: 37863045 PMCID: PMC10679653 DOI: 10.1016/j.stemcr.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
Congenital heart disease often arises from perturbations of transcription factors (TFs) that guide cardiac development. ISLET1 (ISL1) is a TF that influences early cardiac cell fate, as well as differentiation of other cell types including motor neuron progenitors (MNPs) and pancreatic islet cells. While lineage specificity of ISL1 function is likely achieved through combinatorial interactions, its essential cardiac interacting partners are unknown. By assaying ISL1 genomic occupancy in human induced pluripotent stem cell-derived cardiac progenitors (CPs) or MNPs and leveraging the deep learning approach BPNet, we identified motifs of other TFs that predicted ISL1 occupancy in each lineage, with NKX2.5 and GATA motifs being most closely associated to ISL1 in CPs. Experimentally, nearly two-thirds of ISL1-bound loci were co-occupied by NKX2.5 and/or GATA4. Removal of NKX2.5 from CPs led to widespread ISL1 redistribution, and overexpression of NKX2.5 in MNPs led to ISL1 occupancy of CP-specific loci. These results reveal how ISL1 guides lineage choices through a combinatorial code that dictates genomic occupancy and transcription.
Collapse
Affiliation(s)
- Bonnie E J Maven
- Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Barbara Gonzalez-Teran
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Kathryn N Ivey
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Kaitlen Samse-Knapp
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Wesley Kwong
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - David Gordon
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Michael McGregor
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Tomohiro Nishino
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Eyuche Okorie
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Sage Rossman
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
3
|
Bolunduț AC, Lazea C, Mihu CM. Genetic Alterations of Transcription Factors and Signaling Molecules Involved in the Development of Congenital Heart Defects-A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050812. [PMID: 37238360 DOI: 10.3390/children10050812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Congenital heart defects (CHD) are the most common congenital abnormality, with an overall global birth prevalence of 9.41 per 1000 live births. The etiology of CHDs is complex and still poorly understood. Environmental factors account for about 10% of all cases, while the rest are likely explained by a genetic component that is still under intense research. Transcription factors and signaling molecules are promising candidates for studies regarding the genetic burden of CHDs. The present narrative review provides an overview of the current knowledge regarding some of the genetic mechanisms involved in the embryological development of the cardiovascular system. In addition, we reviewed the association between the genetic variation in transcription factors and signaling molecules involved in heart development, including TBX5, GATA4, NKX2-5 and CRELD1, and congenital heart defects, providing insight into the complex pathogenesis of this heterogeneous group of diseases. Further research is needed in order to uncover their downstream targets and the complex network of interactions with non-genetic risk factors for a better molecular-phenotype correlation.
Collapse
Affiliation(s)
- Alexandru Cristian Bolunduț
- 1st Department of Pediatrics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
| | - Cecilia Lazea
- 1st Department of Pediatrics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400370 Cluj-Napoca, Romania
- 1st Pediatrics Clinic, Emergency Pediatric Hospital, 400370 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Yin XY, Chen HX, Chen Z, Yang Q, Han J, He GW. Genetic Variants of ISL1 Gene Promoter Identified from Congenital Tetralogy of Fallot Patients Alter Cellular Function Forming Disease Basis. Biomolecules 2023; 13:biom13020358. [PMID: 36830727 PMCID: PMC9953631 DOI: 10.3390/biom13020358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease in newborns. ISL1 is a master transcription factor in second heart field development, whereas the roles of ISL1 gene promoter variants in TOF patients have not been genetically investigated. Total DNA extraction from 601 human subjects, including 308 TOF patients and 293 healthy controls, and Sanger sequencing were performed. Four variants (including one novel heterozygous variant) within the ISL1 gene promoter were only found in TOF patients. Functional analysis of DNA sequence variants was performed by using the dual-luciferase reporter assay and demonstrated that three of the four variants significantly decreased the transcriptional activity of ISL1 gene promoter in HL-1 cells (p < 0.05). Further, the online JASPAR database and electrophoretic mobility shift assay showed that the three variants affected the binding of transcription factors and altered ISL1 expression levels. In conclusion, the current study for the first time demonstrated that the variants identified from the ISL1 gene promoter region are likely involved in the development of TOF by affecting the transcriptional activity and altering the ISL1 expression level. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of TOF.
Collapse
Affiliation(s)
- Xiu-Yun Yin
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Zhuo Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin 300457, China
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
- Correspondence: or ; Tel.: +86-22-6520-9089
| |
Collapse
|
5
|
Ke ZP, Zhang GF, Guo YH, Sun YM, Wang J, Li N, Qiu XB, Xu YJ, Yang YQ. A novel PRRX1 loss-of-function variation contributing to familial atrial fibrillation and congenital patent ductus arteriosus. Genet Mol Biol 2022; 45:e20210378. [PMID: 35377386 PMCID: PMC8978609 DOI: 10.1590/1678-4685-gmb-2021-0378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/25/2022] [Indexed: 12/27/2022] Open
Abstract
Atrial fibrillation (AF) represents the most common type of sustained cardiac arrhythmia in humans and confers a significantly increased risk for thromboembolic stroke, congestive heart failure and premature death. Aggregating evidence emphasizes the predominant genetic defects underpinning AF and an increasing number of deleterious variations in more than 50 genes have been involved in the pathogenesis of AF. Nevertheless, the genetic basis underlying AF remains incompletely understood. In the current research, by whole-exome sequencing and Sanger sequencing analysis in a family with autosomal-dominant AF and congenital patent ductus arteriosus (PDA), a novel heterozygous variation in the PRRX1 gene encoding a homeobox transcription factor critical for cardiovascular development, NM_022716.4:c.373G>T;p.(Glu125*), was identified to be in co-segregation with AF and PDA in the whole family. The truncating variation was not detected in 306 unrelated healthy individuals employed as controls. Quantitative biological measurements with a reporter gene analysis system revealed that the Glu125*-mutant PRRX1 protein failed to transactivate its downstream target genes SHOX2 and ISL1, two genes that have been causally linked to AF. Conclusively, the present study firstly links PRRX1 loss-of-function variation to AF and PDA, suggesting that AF and PDA share a common abnormal developmental basis in a proportion of cases.
Collapse
Affiliation(s)
| | | | - Yu-Han Guo
- Fudan University, China; Fudan University, China
| | | | | | - Ning Li
- Shanghai Jiao Tong University, China
| | | | - Ying-Jia Xu
- Fudan University, China; Fudan University, China
| | - Yi-Qing Yang
- Fudan University, China; Fudan University, China; Fudan University, China; Fudan University, China
| |
Collapse
|
6
|
Ren J, Miao D, Li Y, Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol 2021; 9:793605. [PMID: 34901033 PMCID: PMC8656156 DOI: 10.3389/fcell.2021.793605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiac transcription factors orchestrate a regulatory network controlling cardiovascular development. Isl1, a LIM-homeodomain transcription factor, acts as a key player in multiple organs during embryonic development. Its crucial roles in cardiovascular development have been elucidated by extensive studies, especially as a marker gene for the second heart field progenitors. Here, we summarize the roles of Isl1 in cardiovascular development and function, and outline its cellular and molecular modes of action, thus providing insights for the molecular basis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Danxiu Miao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Khatami M, Ghorbani S, Adriani MR, Bahaloo S, Naeini MA, Heidari MM, Hadadzadeh M. Novel Point Mutations in 3'-Untranslated Region of GATA4 Gene Are Associated with Sporadic Non-syndromic Atrial and Ventricular Septal Defects. Curr Med Sci 2021; 42:129-143. [PMID: 34652630 DOI: 10.1007/s11596-021-2428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/14/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Transcription factor GATA4 has significant roles in embryonic heart development. Mutations of GATA4 appear to be responsible for a wide variety of congenital heart defects (CHD). Despite the high prevalence of GATA4 mutations in CHD phenotypes, extensive studies have not been performed. The 3'-untranslated region (3'-UTR) of the GATA4 gene comprises regulatory motifs and microRNA binding sites that are critical for the appropriate gene expression, nuclear transportation, and regulation of translation, and stability of mRNA. This study aimed to evaluate the association between mutations in the 3'-UTR of the GATA4 gene and CHD risk among Iranian patients. METHODS We analyzed the coding region of exon 6 and the whole 3'-UTR of GATA4 in DNA isolated from 175 blood samples of CHD patients and 115 unrelated healthy individuals. The functional importance of the observed GATA4 mutations was evaluated using a variety of bioinformatics algorithms for assessment of nonsynonymous mutations and those observed in miRNA binding sites of 3'-UTR. RESULTS Twenty-one point mutations including one missense mutation (c.511A>G: p.Ser377Gly) in exon 6 and 20 nucleotide variations in 3'-UTR of GATA4 gene were identified in 65 of the 175 CHD patients. In our patients, we identified 12 novel sequence alterations and 8 single nucleotide polymorphisms in the 3'-UTR of GATA4. Most of them had statistically significant differences between CHD patients and controls. CONCLUSION Our results suggest that 3'-UTR variations of the GATA4 gene probably change microRNA binding sites and present an additional molecular risk factor for the susceptibility of CHD.
Collapse
Affiliation(s)
- Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran.
| | - Sajedeh Ghorbani
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | | | - Sahar Bahaloo
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | - Mehri Azami Naeini
- Department of Biology, Faculty of Science, Yazd University, Yazd, 8915818411, Iran
| | | | - Mehdi Hadadzadeh
- Department of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, 8915887856, Iran
| |
Collapse
|
8
|
Zheng SQ, Chen HX, Liu XC, Yang Q, He GW. Identification of variants of ISL1 gene promoter and cellular functions in isolated ventricular septal defects. Am J Physiol Cell Physiol 2021; 321:C443-C452. [PMID: 34260301 DOI: 10.1152/ajpcell.00167.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventricular septal defects (VSDs) are the most common congenital heart defects (CHDs). Studies have documented that ISL1 has a crucial impact on cardiac growth, but the role of variants in the ISL1 gene promoter in patients with VSD has not been explored. In 400 subjects (200 patients with isolated and sporadic VSDs: 200 healthy controls), we investigated the ISL1 gene promoter variant and performed cellular functional experiments by using the dual-luciferase reporter assay to verify the impact on gene expression. In the ISL1 promoter, five variants were found only in patients with VSD by sequencing. Cellular functional experiments demonstrated that three variants decreased the transcriptional activity of the ISL1 promoter (P < 0.05). Further analysis with the online JASPAR database demonstrated that a cluster of putative binding sites for transcription factors may be altered by these variants, possibly resulting in change of ISL1 protein expression and VSD formation. Our study has, for the first time, identified novel variants in the ISL1 gene promoter region in the Han Chinese patients with isolated and sporadic VSD. In addition, the cellular functional experiments, electrophoretic mobility shift assay, and bioinformatic analysis have demonstrated that these variants significantly alter the expression of the ISL1 gene and affect the binding of transcription factors, likely resulting in VSD. Therefore, this study may provide new insights into the role of the gene promoter region for a better understanding of genetic basis of the formation of CHDs and may promote further investigations on mechanism of the formation of CHDs.
Collapse
Affiliation(s)
- Si-Qiang Zheng
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Xiao-Cheng Liu
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, People's Republic of China.,Drug Research and Development Center, Wannan Medical College, Wuhu, People's Republic of China.,Department of Surgery, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
9
|
Wang TM, Wang SS, Xu YJ, Zhao CM, Qiao XH, Yang CX, Liu XY, Yang YQ. SOX17 Loss-of-Function Mutation Underlying Familial Pulmonary Arterial Hypertension. Int Heart J 2021; 62:566-574. [PMID: 33952808 DOI: 10.1536/ihj.20-711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) refers to a rare, progressive disorder that is characterized by occlusive pulmonary vascular remodeling, resulting in increased pulmonary arterial pressure, right-sided heart failure, and eventual death. Emerging evidence from genetic investigations of pediatric-onset PAH highlights the strong genetic basis underpinning PAH, and deleterious variants in multiple genes have been found to cause PAH. Nevertheless, PAH is of substantial genetic heterogeneity, and the genetic defects underlying PAH in the overwhelming majority of cases remain elusive. In this investigation, a consanguineous family suffering from PAH transmitted as an autosomal-dominant trait was identified. Through whole-exome sequencing and bioinformatic analyses as well as Sanger sequencing analyses of the PAH family, a novel heterozygous SOX17 mutation, NM_022454.4: c.379C>T; p. (Gln127*), was found to co-segregate with the disease in the family, with complete penetrance. The nonsense mutation was neither observed in 612 unrelated healthy volunteers nor retrieved in the population genetic databases encompassing the Genome Aggregation Database, the Exome Aggregation Consortium database, and the Single Nucleotide Polymorphism database. Biological analyses using a dual-luciferase reporter assay system revealed that the Gln127*-mutant SOX17 protein lost the ability to transcriptionally activate its target gene NOTCH1. Moreover, the Gln127*-mutant SOX17 protein exhibited no inhibitory effect on the function of CTNNB1-encode β-catenin, which is a key player in vascular morphogenesis. This research firstly links SOX17 loss-of-function mutation to familial PAH, which provides novel insight into the molecular pathogenesis of PAH, suggesting potential implications for genetic and prognostic risk evaluation as well as personalized prophylaxis of the family members affected with PAH.
Collapse
Affiliation(s)
- Tian-Ming Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Shan-Shan Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University.,Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University.,Central Laboratory, Shanghai Fifth People's Hospital, Fudan University
| |
Collapse
|
10
|
Zhao L, Jiang WF, Yang CX, Qiao Q, Xu YJ, Shi HY, Qiu XB, Wu SH, Yang YQ. SOX17 loss-of-function variation underlying familial congenital heart disease. Eur J Med Genet 2021; 64:104211. [PMID: 33794346 DOI: 10.1016/j.ejmg.2021.104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
As the most prevalent form of human birth defect, congenital heart disease (CHD) contributes to substantial morbidity, mortality and socioeconomic burden worldwide. Aggregating evidence has convincingly demonstrated that genetic defects exert a pivotal role in the pathogenesis of CHD, and causative mutations in multiple genes have been causally linked to CHD. Nevertheless, CHD is of pronounced genetic heterogeneity, and the genetic components underpinning CHD in the overwhelming majority of patients remain obscure. In this research, a four-generation consanguineous family suffering from CHD transmitted in an autosomal dominant mode was recruited. By whole-exome sequencing and bioinformatics analyses as well as Sanger sequencing analyses of the family members, a new heterozygous SOX17 variation, NM_022454.4: c.553G > T; p.(Glu185*), was identified to co-segregate with CHD in the family, with complete penetrance. The nonsense variation was neither detected in 310 unrelated healthy volunteers used as controls nor retrieved in such population genetics databases as the Exome Aggregation Consortium database, Genome Aggregation Database, and the Single Nucleotide Polymorphism database. Functional assays by utilizing a dual-luciferase reporter assay system unveiled that the Glu185*-mutant SOX17 protein had no transcriptional activity on its two target genes NOTCH1 and GATA4, which have been reported to cause CHD. Furthermore, the mutation abrogated the synergistic transactivation between SOX17 and NKX2.5, another established CHD-causing transcription factor. These findings firstly indicate SOX17 loss-of-function mutation predisposes to familial CHD, which adds novel insight to the molecular mechanism of CHD, implying potential implications for genetic risk appraisal and individualized prophylaxis of the family members affected with CHD.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, 264003, Shandong Province, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
You X, Ryu MJ, Cho E, Sang Y, Damnernsawad A, Zhou Y, Liu Y, Zhang J, Lee Y. Embryonic Expression of Nras G 12 D Leads to Embryonic Lethality and Cardiac Defects. Front Cell Dev Biol 2021; 9:633661. [PMID: 33681212 PMCID: PMC7928391 DOI: 10.3389/fcell.2021.633661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ras proteins control a complex intracellular signaling network. Gain-of-function mutations in RAS genes lead to RASopathy disorders in humans, including Noonan syndrome (NS). NS is the second most common syndromic cause of congenital heart disease. Although conditional expression of the NrasG12D/+ mutation in adult hematopoietic system is leukemogenic, its effects on embryonic development remain unclear. Here, we report that pan-embryonic expression of endogenous NrasG12D/+ by Mox2-Cre in mice caused embryonic lethality from embryonic day (E) 15.5 and developmental defects predominantly in the heart. At E13.5, NrasG12D/+; Mox2Cre/+ embryos displayed a moderate expansion of hematopoietic stem and progenitor cells without a significant impact on erythroid differentiation in the fetal liver. Importantly, the mutant embryos exhibited cardiac malformations resembling human congenital cardiac defects seen in NS patients, including ventricular septal defects, double outlet right ventricle, the hypertrabeculation/thin myocardium, and pulmonary valve stenosis. The mutant heart showed dysregulation of ERK, BMP, and Wnt pathways, crucial signaling pathways for cardiac development. Endothelial/endocardial-specific expression of NrasG12D/+ caused the cardiac morphological defects and embryonic lethality as observed in NrasG12D/+; Mox2Cre/+ mutants, but myocardial-specific expression of NrasG12D/+ did not. Thus, oncogenic NrasG12D mutation may not be compatible with embryonic survival.
Collapse
Affiliation(s)
- Xiaona You
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Myung-Jeom Ryu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Eunjin Cho
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yanzhi Sang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Yangang Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Jiang WF, Xu YJ, Zhao CM, Wang XH, Qiu XB, Liu X, Wu SH, Yang YQ. A novel TBX5 mutation predisposes to familial cardiac septal defects and atrial fibrillation as well as bicuspid aortic valve. Genet Mol Biol 2020; 43:e20200142. [PMID: 33306779 PMCID: PMC7783509 DOI: 10.1590/1678-4685-gmb-2020-0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
TBX5 has been linked to Holt-Oram syndrome, with congenital heart defect (CHD) and atrial fibrillation (AF) being two major cardiac phenotypes. However, the prevalence of a TBX5 variation in patients with CHD and AF remains obscure. In this research, by sequencing analysis of TBX5 in 178 index patients with both CHD and AF, a novel heterozygous variation, NM_000192.3: c.577G>T; p.(Gly193*), was identified in one index patient with CHD and AF as well as bicuspid aortic valve (BAV), with an allele frequency of approximately 0.28%. Genetic analysis of the proband's pedigree showed that the variation co-segregated with the diseases. The pathogenic variation was not detected in 292 unrelated healthy subjects. Functional analysis by using a dual-luciferase reporter assay system showed that the Gly193*-mutant TBX5 protein failed to transcriptionally activate its target genes MYH6 and NPPA. Moreover, the mutation nullified the synergistic transactivation between TBX5 and GATA4 as well as NKX2-5. Additionally, whole-exome sequencing analysis showed no other genes contributing to the diseases. This investigation firstly links a pathogenic variant in the TBX5 gene to familial CHD and AF as well as BAV, suggesting that CHD and AF as well as BAV share a common developmental basis in a subset of patients.
Collapse
Affiliation(s)
- Wei-Feng Jiang
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Ying-Jia Xu
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China
| | - Cui-Mei Zhao
- Tongji University School of Medicine, Department of Cardiology, Tongji Hospital, Shanghai, China
| | - Xin-Hua Wang
- Shanghai Jiao Tong University School of Medicine, Department of Cardiology, Renji Hospital, Shanghai, China
| | - Xing-Biao Qiu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Xu Liu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Shao-Hui Wu
- Shanghai Jiao Tong University, Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Yi-Qing Yang
- Fudan University, Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Shanghai, China.,Fudan University, Central Laboratory, Shanghai Fifth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Wu SH, Wang XH, Xu YJ, Gu JN, Yang CX, Qiao Q, Guo XJ, Guo YH, Qiu XB, Jiang WF, Yang YQ. ISL1 loss-of-function variation causes familial atrial fibrillation. Eur J Med Genet 2020; 63:104029. [PMID: 32771629 DOI: 10.1016/j.ejmg.2020.104029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 02/08/2023]
Abstract
Atrial fibrillation (AF) represents the most frequent form of sustained cardiac rhythm disturbance, affecting approximately 1% of the general population worldwide, and confers a substantially enhanced risk of cerebral stroke, heart failure, and death. Increasing epidemiological studies have clearly demonstrated a strong genetic basis for AF, and variants in a wide range of genes, including those coding for ion channels, gap junction channels, cardiac structural proteins and transcription factors, have been identified to underlie AF. Nevertheless, the genetic pathogenesis of AF is complex and still far from completely understood. Here, whole-exome sequencing and bioinformatics analyses of a three-generation family with AF were performed, and after filtering variants by multiple metrics, we identified a heterozygous variant in the ISL1 gene (encoding a transcription factor critical for embryonic cardiogenesis and postnatal cardiac remodeling), NM_002202.2: c.481G > T; p.(Glu161*), which was validated by Sanger sequencing and segregated with autosome-dominant AF in the family with complete penetrance. The nonsense variant was absent from 284 unrelated healthy individuals used as controls. Functional assays with a dual-luciferase reporter assay system revealed that the truncating ISL1 protein lost transcriptional activation on the verified target genes MEF2C and NKX2-5. Additionally, the variant nullified the synergistic transactivation between ISL1 and TBX5 as well as GATA4, two other transcription factors that have been implicated in AF. The findings suggest ISL1 as a novel gene contributing to AF, which adds new insight to the genetic mechanisms underpinning AF, implying potential implications for genetic testing and risk stratification of the AF family members.
Collapse
Affiliation(s)
- Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Zhang Y, Sun YM, Xu YJ, Zhao CM, Yuan F, Guo XJ, Guo YH, Yang CX, Gu JN, Qiao Q, Wang J, Yang YQ. A New TBX5 Loss-of-Function Mutation Contributes to Congenital Heart Defect and Atrioventricular Block. Int Heart J 2020; 61:761-768. [DOI: 10.1536/ihj.19-650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yan Zhang
- Department of Cardiology, Shanghai Jing'an District Central Hospital, Fudan University
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing'an District Central Hospital, Fudan University
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People's Hospital, Fudan University
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Fang Yuan
- Department of Cardiology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People's Hospital, Fudan University
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People's Hospital, Fudan University
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People's Hospital, Fudan University
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People's Hospital, Fudan University
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People's Hospital, Fudan University
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University
| | - Jun Wang
- Department of Cardiology, Shanghai Jing'an District Central Hospital, Fudan University
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People's Hospital, Fudan University
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University
| |
Collapse
|