1
|
Takai D. Does environmental enrichment mitigate the adverse effects of chronic low dose-rate radiation exposure on mice? RADIATION PROTECTION DOSIMETRY 2024; 200:1625-1630. [PMID: 39540512 DOI: 10.1093/rpd/ncae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 11/16/2024]
Abstract
The purpose of the study was to determine whether environmental enrichments (EE) can mitigate the adverse effects of chronic low-dose-rate radiation exposure in mice. Female B6C3F1 mice were continuously exposed to 20 mGy d-1 gamma-rays under specific-pathogen-free conditions since 8 weeks of age for 400 d. After completion of the radiation exposure, OV3121 cells, derived from an ovarian granulosa cell tumor, were inoculated subcutaneously alongside age-matched non-irradiated control mice. Irradiated mice were shown to have a significantly reduced ability to eliminate inoculated tumors. The results indicate that EE may be able to mitigate the adverse effects of low-dose-rate radiation exposure, but the effects vary greatly and are complex depending on the type of EE.
Collapse
Affiliation(s)
- Daisaku Takai
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa, Rokkasho, Aomori 039-3213, Japan
| |
Collapse
|
2
|
Biskupiak Z, Ha VV, Rohaj A, Bulaj G. Digital Therapeutics for Improving Effectiveness of Pharmaceutical Drugs and Biological Products: Preclinical and Clinical Studies Supporting Development of Drug + Digital Combination Therapies for Chronic Diseases. J Clin Med 2024; 13:403. [PMID: 38256537 PMCID: PMC10816409 DOI: 10.3390/jcm13020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Limitations of pharmaceutical drugs and biologics for chronic diseases (e.g., medication non-adherence, adverse effects, toxicity, or inadequate efficacy) can be mitigated by mobile medical apps, known as digital therapeutics (DTx). Authorization of adjunct DTx by the US Food and Drug Administration and draft guidelines on "prescription drug use-related software" illustrate opportunities to create drug + digital combination therapies, ultimately leading towards drug-device combination products (DTx has a status of medical devices). Digital interventions (mobile, web-based, virtual reality, and video game applications) demonstrate clinically meaningful benefits for people living with Alzheimer's disease, dementia, rheumatoid arthritis, cancer, chronic pain, epilepsy, depression, and anxiety. In the respective animal disease models, preclinical studies on environmental enrichment and other non-pharmacological modalities (physical activity, social interactions, learning, and music) as surrogates for DTx "active ingredients" also show improved outcomes. In this narrative review, we discuss how drug + digital combination therapies can impact translational research, drug discovery and development, generic drug repurposing, and gene therapies. Market-driven incentives to create drug-device combination products are illustrated by Humira® (adalimumab) facing a "patent-cliff" competition with cheaper and more effective biosimilars seamlessly integrated with DTx. In conclusion, pharma and biotech companies, patients, and healthcare professionals will benefit from accelerating integration of digital interventions with pharmacotherapies.
Collapse
Affiliation(s)
- Zack Biskupiak
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Victor Vinh Ha
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Aarushi Rohaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
- The Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84113, USA
| | - Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Gozalo AS, Elkins WR. A Review of the Effects of Some Extrinsic Factors on Mice Used in Research. Comp Med 2023; 73:413-431. [PMID: 38217072 PMCID: PMC10752364 DOI: 10.30802/aalas-cm-23-000028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024]
Abstract
Animals have been used in research for over 2,000 y. From very crude experiments conducted by ancient scholars, animal research, as a science, was refined over hundreds of years to what we know it as today. However, the housing conditions of animals used for research did not improve significantly until less than 100 years ago when guidelines for housing research animals were first published. In addition, it was not until relatively recently that some extrinsic factors were recognized as a research variable, even when animals were housed under recommended guidelines. For example, temperature, humidity, light, noise, vibration, diet, water, caging, bedding, etc., can all potentially affect research using mice, contributing the inability of others to reproduce published findings. Consequently, these external factors should be carefully considered in the design, planning, and execution of animal experiments. In addition, as recommended by others, the housing and husbandry conditions of the animals should be described in detail in publications resulting from animal research to improve study reproducibility. Here, we briefly review some common, and less common, external factors that affect research in one of the most popular animal models, the mouse.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
4
|
Fernandes MSDS, Lacerda TR, Fidélis DEDS, Santos GCJ, Filgueira TO, de Souza RF, Lagranha CJ, Lira FS, Castoldi A, Souto FO. Environmental Enrichment in Cancer as a Possible Tool to Combat Tumor Development: A Systematic Review. Int J Mol Sci 2023; 24:16516. [PMID: 38003706 PMCID: PMC10671353 DOI: 10.3390/ijms242216516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This systematic review aims to evaluate the influence of environmental enrichment (EE) on oncological factors in experimental studies involving various types of cancer models. A comprehensive search was conducted in three databases: PubMed (161 articles), Embase (335 articles), and Scopus (274 articles). Eligibility criteria were applied based on the PICOS strategy to minimize bias. Two independent researchers performed the searches, with a third participant resolving any discrepancies. The selected articles were analyzed, and data regarding sample characteristics and EE protocols were extracted. The outcomes focused solely on cancer and tumor-related parameters, including cancer type, description of the cancer model, angiogenesis, tumor occurrence, volume, weight, mice with tumors, and tumor inhibition rate. A total of 770 articles were identified across the three databases, with 12 studies meeting the inclusion criteria for this systematic review. The findings demonstrated that different EE protocols were effective in significantly reducing various aspects of tumor growth and development, such as angiogenesis, volume, weight, and the number of mice with tumors. Furthermore, EE enhanced the rate of tumor inhibition in mouse cancer models. This systematic review qualitatively demonstrates the impacts of EE protocols on multiple parameters associated with tumor growth and development, including angiogenesis, occurrence, volume, weight, and tumor incidence. Moreover, EE demonstrated the potential to increase the rate of tumor inhibition. These findings underscore the importance of EE as a valuable tool in the management of cancer.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (M.S.d.S.F.); (T.O.F.); (A.C.)
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | - Tiago Ramos Lacerda
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | - Débora Eduarda da Silva Fidélis
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | | | - Tayrine Ordonio Filgueira
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (M.S.d.S.F.); (T.O.F.); (A.C.)
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | - Raphael Fabrício de Souza
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil;
| | - Claúdia Jacques Lagranha
- Programa de Pós-Graduação em Nutrição Atividade Física e Plasticidade Fenotípica, Centro Acadêmico de Vitória, Vitória de Santo Antão 55608-680, Pernambuco, Brazil;
| | - Fábio S. Lira
- Exercise and Immunometabolism Research Group, Postgraduate Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, São Paulo, Brazil;
- Faculty of Sport Science and Physical Education, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Angela Castoldi
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (M.S.d.S.F.); (T.O.F.); (A.C.)
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | - Fabrício Oliveira Souto
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (M.S.d.S.F.); (T.O.F.); (A.C.)
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
- Núcleo de Ciências da Vida—NCV, Centro Acadêmico do Agreste—CAA, Caruaru 50670-901, Pernambuco, Brazil
| |
Collapse
|
5
|
Canali MM, Guyot M, Simon T, Daoudlarian D, Chabry J, Panzolini C, Petit-Paitel A, Hypolite N, Nicolas S, Bourdely P, Schmid-Antomarchi H, Schmid-Alliana A, Soria J, Karimdjee Soilihi B, Hofman P, Prevost-Blondel A, Kato M, Mougneau E, Glaichenhaus N, Blancou P. Environmental signals perceived by the brain abate pro-metastatic monocytes by dampening glucocorticoids receptor signaling. Cancer Cell Int 2023; 23:15. [PMID: 36726173 PMCID: PMC9893572 DOI: 10.1186/s12935-023-02855-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
While positive social-behavioral factors predict longer survival in cancer patients, the underlying mechanisms are unknown. Since tumor metastasis are the major cancer mortality factor, we investigated how an enriched environment (EE) conductive to enhanced sensory, cognitive and motor stimulation impact metastatic progression in lungs following intravasation in the circulation. We find that mice housed in EE exhibited reduced number of lung metastatic foci compared to control mice housed in a standard environment (SE). Compared to SE mice, EE mice increased lung inflammation as early as 4 days after circulating tumor cells extravasation. The impact of environmental signals on lung metastasis is independent of adrenergic receptors signaling. By contrast, we find that serum corticosterone levels are lower in EE mice and that glucocorticoid receptor (GR) antagonist reduces the number of lung metastasis in SE mice. In addition, the difference of the number of lung metastasis between SE and EE mice is abolished when inflammatory monocytes are rendered deficient in GR signaling. This decreased GR signaling in inflammatory monocytes of SE mice results in an exacerbated inflammatory profile in the lung. Our study shows that not only EE reduces late stages of metastatic progression in lungs but disclose a novel anti-tumor mechanism whereby GR-dependent reprogramming of inflammatory monocytes can inhibit metastatic progression in lungs. Moreover, while inflammatory monocytes have been shown to promote cancer progression, they also have an anti-tumor effect, suggesting that their role is more complex than currently thought.
Collapse
Affiliation(s)
- María Magdalena Canali
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Mélanie Guyot
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Thomas Simon
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Douglas Daoudlarian
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Joelle Chabry
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Clara Panzolini
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Agnès Petit-Paitel
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Nicolas Hypolite
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Sarah Nicolas
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Pierre Bourdely
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Heidy Schmid-Antomarchi
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France
| | - Annie Schmid-Alliana
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France
| | - Javier Soria
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Babou Karimdjee Soilihi
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France ,Polyclinique Saint Jean, Cagnes sur mer, France
| | - Paul Hofman
- grid.410528.a0000 0001 2322 4179Laboratory of Clinical and Experimental Pathology and Biobank, Nice University Hospital, Nice, France ,grid.460782.f0000 0004 4910 6551Research Institute on Cancer and Aging, Université Côte d’Azur, CNRS, INSERM, 28 Avenue de Valombrose, Nice, France
| | - Armelle Prevost-Blondel
- grid.462098.10000 0004 0643 431XUniversité Paris Descartes, CNRS, INSERM, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | - Masashi Kato
- grid.27476.300000 0001 0943 978XDepartment of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Evelyne Mougneau
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Nicolas Glaichenhaus
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Philippe Blancou
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| |
Collapse
|
6
|
de Sousa Fernandes MS, Santos GCJ, Filgueira TO, Gomes DA, Barbosa EAS, dos Santos TM, Câmara NOS, Castoldi A, Souto FO. Cytokines and Immune Cells Profile in Different Tissues of Rodents Induced by Environmental Enrichment: Systematic Review. Int J Mol Sci 2022; 23:ijms231911986. [PMID: 36233282 PMCID: PMC9570198 DOI: 10.3390/ijms231911986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Environmental Enrichment (EE) is based on the promotion of socio-environmental stimuli, which mimic favorable environmental conditions for the practice of physical activity and health. The objective of the present systematic review was to evaluate the influence of EE on pro-and anti-inflammatory immune parameters, but also in cell activation related to the innate and acquired immune responses in the brain and peripheral tissues in rodents. Three databases [PubMed (2209 articles), Scopus (1154 articles), and Science Direct (1040 articles)] were researched. After applying the eligibility criteria, articles were selected for peer review, independently, as they were identified by September 2021. The protocol for this systematic review was registered in the PROSPERO. Of the 4417 articles found, 16 were selected for this systematic review. In the brain, EE promoted a reduction in proinflammatory cytokines and chemokines. In the blood, EE promoted a higher percentage of leukocytes, an increase in CD19+ B lymphocytes, and the proliferation of Natura Killer (NK cells). In the bone marrow, there was an increase in the number of CD27- and CD11b+ mature NK cells and a reduction in CD27- and CD11b+ immature Natural Killer cells. In conclusion, EE can be an immune modulation approach and plays a key role in the prevention of numerous chronic diseases, including cancer, that have a pro-inflammatory response and immunosuppressive condition as part of their pathophysiology.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Programa de Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Médicas, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Faculdade de Comunicação Turismo e Tecnologia de Olinda, Olinda 53030-010, Brazil
| | | | - Tayrine Ordonio Filgueira
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
| | - Dayane Aparecida Gomes
- Programa de Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Médicas, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
| | | | - Tony Meireles dos Santos
- Programa de Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Médicas, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Departamento de Educação Física, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Angela Castoldi
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Núcleo de Ciências da Vida-NCV, Centro Acadêmico do Agreste—CAA, Universidade Federal de Pernambuco, Caruaru 55014-900, Brazil
| | - Fabricio Oliveira Souto
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Núcleo de Ciências da Vida-NCV, Centro Acadêmico do Agreste—CAA, Universidade Federal de Pernambuco, Caruaru 55014-900, Brazil
- Correspondence:
| |
Collapse
|
7
|
Córneo E, Michels M, Abatti M, Vieira A, Gonçalves RC, Gabriel FF, Borges H, Goulart A, da Silva Matos N, Dominguini D, Varela R, Valvassori S, Dal-Pizzol F. Enriched environment causes epigenetic changes in hippocampus and improves long-term cognitive function in sepsis. Sci Rep 2022; 12:11529. [PMID: 35798809 PMCID: PMC9262921 DOI: 10.1038/s41598-022-14660-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by an inappropriate host response to infection. The presence of oxidative stress and inflammatory mediators in sepsis leads to dysregulated gene expression, leading to a hyperinflammatory response. Environmental conditions play an important role in various pathologies depending on the stimulus it presents. A standard environment condition (SE) may offer reduced sensory and cognitive stimulation, but an enriched environment improves spatial learning, prevents cognitive deficits induced by disease stress, and is an important modulator of epigenetic enzymes. The study evaluated the epigenetic alterations and the effects of the environmental enrichment (EE) protocol in the brain of animals submitted to sepsis by cecal ligation and perforation (CLP). Male Wistar rats were divided into sham and CLP at 24 h, 72 h, 10 days and 30 days after sepsis. Other male Wistar rats were distributed in a SE or in EE for forty-five days. Behavioral tests, analysis of epigenetic enzymes:histone acetylase (HAT), histone deacetylase (HDAC) and DNA methyltransferase (DNMT), biochemical and synaptic plasticity analyzes were performed. An increase in HDAC and DNMT activities was observed at 72 h, 10 days and 30 days. There was a positive correlation between epigenetic enzymes DNMT and HDAC 24 h, 10 days and 30 days. After EE, HDAC and DNMT enzyme activity decreased, cognitive impairment was reversed, IL1-β levels decreased and there was an increase in PSD-95 levels in the hippocampus. Interventions in environmental conditions can modulate the outcomes of long-term cognitive consequences associated with sepsis, supporting the idea of the potential benefits of EE.
Collapse
Affiliation(s)
- Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil.
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| | - Mariane Abatti
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| | - Andriele Vieira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| | - Renata Casagrande Gonçalves
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| | - Filipe Fernandes Gabriel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| | - Heloisa Borges
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| | - Amanda Goulart
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| | - Natan da Silva Matos
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| | - Roger Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Samira Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806000, Brazil
| |
Collapse
|
8
|
The Nervous System Contributes to the Tumorigenesis and Progression of Human Digestive Tract Cancer. J Immunol Res 2022; 2022:9595704. [PMID: 35295188 PMCID: PMC8920690 DOI: 10.1155/2022/9595704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tumors of the gastrointestinal tract are one of the highest incidences of morbidity and mortality in humans. Recently, a growing number of researchers have indicated that nerve fibers and nerve signals participate in tumorigenesis. The current overarching view based on the responses to therapy revealed that tumors are partly promoted by the tumor microenvironment (TME), endogenous oncogenic factors, and complex systemic processes. Homeostasis of the neuroendocrine-immune axis (NEI axis) maintains a healthy in vivo environment in humans, and dysfunction of the axis contributes to various cancers, including the digestive tract. Interestingly, nerves might promote tumor development via multiple mechanisms, including perineural invasion (PNI), central level regulation, NEI axis effect, and neurotransmitter induction. This review focuses on the association between digestive tumors and nerve regulation, including PNI, the NEI axis, stress, and neurotransmitters, as well as on the potential clinical application of neurotherapy, aiming to provide a new perspective on the management of digestive cancers.
Collapse
|
9
|
Xiao R, Ali S, Caligiuri MA, Cao L. Enhancing Effects of Environmental Enrichment on the Functions of Natural Killer Cells in Mice. Front Immunol 2021; 12:695859. [PMID: 34394087 PMCID: PMC8355812 DOI: 10.3389/fimmu.2021.695859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
The environment of an organism can convey a powerful influence over its biology. Environmental enrichment (EE), as a eustress model, has been used extensively in neuroscience to study neurogenesis and brain plasticity. EE has also been used as an intervention for the treatment and prevention of neurological and psychiatric disorders with limited clinical application. By contrast, the effects of EE on the immune system are relatively less investigated. Recently, accumulating evidence has demonstrated that EE can robustly impact immune function. In this review, we summarize the major components of EE, the impact of EE on natural killer (NK) cells, EE's immunoprotective roles in cancer, and the underlying mechanisms of EE-induced NK cell regulation. Moreover, we discuss opportunities for translational application based on insights from animal research of EE-induced NK cell regulation.
Collapse
Affiliation(s)
- Run Xiao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| | - Seemaab Ali
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, United States
| | - Michael A. Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and the Beckman Research Institute, Los Angeles, CA, United States
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| |
Collapse
|
10
|
Carvalho-Paulo D, Bento Torres Neto J, Filho CS, de Oliveira TCG, de Sousa AA, dos Reis RR, dos Santos ZA, de Lima CM, de Oliveira MA, Said NM, Freitas SF, Sosthenes MCK, Gomes GF, Henrique EP, Pereira PDC, de Siqueira LS, de Melo MAD, Guerreiro Diniz C, Magalhães NGDM, Diniz JAP, Vasconcelos PFDC, Diniz DG, Anthony DC, Sherry DF, Brites D, Picanço Diniz CW. Microglial Morphology Across Distantly Related Species: Phylogenetic, Environmental and Age Influences on Microglia Reactivity and Surveillance States. Front Immunol 2021; 12:683026. [PMID: 34220831 PMCID: PMC8250867 DOI: 10.3389/fimmu.2021.683026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Microglial immunosurveillance of the brain parenchyma to detect local perturbations in homeostasis, in all species, results in the adoption of a spectrum of morphological changes that reflect functional adaptations. Here, we review the contribution of these changes in microglia morphology in distantly related species, in homeostatic and non-homeostatic conditions, with three principal goals (1): to review the phylogenetic influences on the morphological diversity of microglia during homeostasis (2); to explore the impact of homeostatic perturbations (Dengue virus challenge) in distantly related species (Mus musculus and Callithrix penicillata) as a proxy for the differential immune response in small and large brains; and (3) to examine the influences of environmental enrichment and aging on the plasticity of the microglial morphological response following an immunological challenge (neurotropic arbovirus infection). Our findings reveal that the differences in microglia morphology across distantly related species under homeostatic condition cannot be attributed to the phylogenetic origin of the species. However, large and small brains, under similar non-homeostatic conditions, display differential microglial morphological responses, and we argue that age and environment interact to affect the microglia morphology after an immunological challenge; in particular, mice living in an enriched environment exhibit a more efficient immune response to the virus resulting in earlier removal of the virus and earlier return to the homeostatic morphological phenotype of microglia than it is observed in sedentary mice.
Collapse
Affiliation(s)
- Dario Carvalho-Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Faculdade de Fisioterapia e Terapia Ocupacional, Universidade Federal do Pará, Belém, Brazil
| | - Carlos Santos Filho
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Thais Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Aline Andrade de Sousa
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Zaire Alves dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Nivin Mazen Said
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Sinara Franco Freitas
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Giovanni Freitas Gomes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Patrick Douglas Côrrea Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Mauro André Damasceno de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Nara Gyzely de Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Pedro Fernando da Costa Vasconcelos
- Dep. de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Belém, Brazil
- Departamento de Patologia, Universidade do Estado do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | | | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
11
|
Jiang SH, Zhang XX, Hu LP, Wang X, Li Q, Zhang XL, Li J, Gu JR, Zhang ZG. Systemic Regulation of Cancer Development by Neuro-Endocrine-Immune Signaling Network at Multiple Levels. Front Cell Dev Biol 2020; 8:586757. [PMID: 33117814 PMCID: PMC7561376 DOI: 10.3389/fcell.2020.586757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
The overarching view of current tumor therapies simplifies cancer to a cell-biology problem in which neoplasms are caused solely by malignant cells and the exploration of carcinogenesis and tumor progression largely focuses on somatic mutations and other genetic abnormalities of cancer cells. The limited therapeutic response indicates that cancer is driven not only by endogenous oncogenic factors and reciprocal interactions within the tumor microenvironment, but also by complex systemic processes. Homeostasis is the fundamental premise of health, and is maintained by systemic regulation of neuro-endocrine-immune axis. Cancer is also a systemic disease that manifested by dysfunction of the nervous, endocrine, and immune systems. Multiple axes of regulation exist in cancer, including central-, organ-, and microenvironment-level manipulation. At each specific regulatory level, the tridirectional communication among the nervous, endocrine, and immune factors transmit flexible signaling to induce proliferation, invasion, reprogrammed metabolism, therapeutic resistance, and other malignant phenotypes of cancer cells, resulting in the extremely poor prognosis of this lethal disease. Understanding this coordinated signaling network will enable the development of new approaches for cancer treatment via behavioral and pharmacological interventions.
Collapse
Affiliation(s)
- Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Ren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|