1
|
Nagy JI, Urena-Ramirez V, Ghia JE. Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons. FEBS Lett 2014; 588:1480-90. [PMID: 24548563 PMCID: PMC4043341 DOI: 10.1016/j.febslet.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 02/02/2023]
Abstract
Neurons in the enteric nervous system utilize numerous neurotransmitters to orchestrate rhythmic gut smooth muscle contractions. We examined whether electrical synapses formed by gap junctions containing connexin36 also contribute to communication between enteric neurons in mouse colon. Spontaneous contractility properties and responses to electrical field stimulation and cholinergic agonist were altered in gut from connexin36 knockout vs. wild-type mice. Immunofluorescence revealed punctate labelling of connexin36 that was localized at appositions between somata of enteric neurons immunopositive for the enzyme nitric oxide synthase. There is indication for a possible functional role of gap junctions between inhibitory nitrergic enteric neurons.
Collapse
Affiliation(s)
- James Imre Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Viridiana Urena-Ramirez
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada; Department of Immunology and Internal Medicine section of Gastroenterology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Department of Immunology and Internal Medicine section of Gastroenterology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
2
|
Farajian Mashhadi F, Naylor RJ, Javid FA. The Effects of Serotonin Receptor Antagonists on Contraction and Relaxation Responses Induced by Electrical Stimulation in the Rat Small Intestine. ACTA ACUST UNITED AC 2014. [DOI: 10.17795/gct-18311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Nishiyama K, Azuma YT, Shintaku K, Yoshida N, Nakajima H, Takeuchi T. Evidence that Nitric Oxide Is a Non-Adrenergic Non-Cholinergic Inhibitory Neurotransmitter in the Circular Muscle of the Mouse Distal Colon: A Study on the Mechanism of Nitric Oxide-Induced Relaxation. Pharmacology 2014; 94:99-108. [DOI: 10.1159/000363191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
|
4
|
Bülbül M, Tan R, Gemici B, Ozdem S, Ustünel I, Acar N, Izgüt-Uysal VN. Endogenous orexin-A modulates gastric motility by peripheral mechanisms in rats. Peptides 2010; 31:1099-108. [PMID: 20307611 DOI: 10.1016/j.peptides.2010.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/05/2010] [Accepted: 03/05/2010] [Indexed: 12/28/2022]
Abstract
Orexin-A (OXA) and orexin receptor type 1 (OX1R) are found in enteric nervous system and smooth muscle cells in the digestive tract. Fasting is a stimulant for OXA synthesis. The aim of the present study was to investigate central and peripheral effects of endogenous OXA on gastric motility. Endogenous OXA synthesis was induced by 36h fasting. Vagotomy was used to evaluate N.vagus-mediated effects of OXA. Gastric emptying and interdigestive gastric motility were measured by spectrophotometric and manometric methods, respectively. Rats were pretreated with OX1R antagonist SB-334867 prior to measurements. Plasma OXA concentration was assayed with radioimmunoassay while preproorexin (PPO) expression was determined with Western blotting in gastric and hypothalamic tissues. OXA immunoreactivity in antrum was determined with immunohistochemistry. Plasma OXA level, PPO protein expression and OXA immunoreactivity were significantly increased in response to 36h fasting. Endogenous OXA facilitated gastric emptying and inhibited gastric interdigestive motility. As these effects were abolished with SB-334867, it is likely that gastrokinetic effects of OXA are mediated via OX1R. Vagotomy did not alter OXA-mediated effects. According to current data, OXA is up-regulated both centrally and peripherally upon fasting. Endogenous OXA accelerates gastric emptying while it inhibits interdigestive motility.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07070 Antalya, Turkey.
| | | | | | | | | | | | | |
Collapse
|
5
|
Hidaka A, Azuma YT, Nakajima H, Takeuchi T. Nitric oxide and carbon monoxide act as inhibitory neurotransmitters in the longitudinal muscle of C57BL/6J mouse distal colon. J Pharmacol Sci 2010; 112:231-41. [PMID: 20118618 DOI: 10.1254/jphs.09242fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The present study was designed to identify the inhibitory neurotransmitters mediating nonadrenergic noncholinergic relaxation in the longitudinal muscle of C57/BL mouse distal colon. Relaxation induced by electrical field stimulation (EFS) was recorded isotonically in the presence of atropine and guanethidine. Cyclic guanosine-3',5'-monophosphate (cyclic GMP) content was measured by radioimmunoassay. EFS-induced relaxation was inhibited by nitro-L-arginine (L-NNA) and Sn (IV) protoporphyrin dichloride IX (SnPP-IX), a nitric oxide (NO) and carbon monoxide (CO) synthase inhibitor, respectively. A combination of both inhibitors produced an additive effect. ODQ, a soluble guanylate cyclase inhibitor, inhibited EFS-induced relaxation. NOR-1, a NO donor, and carbon monoxide-releasing molecule-2 (CORM-2), a CO donor, treatment relaxed the distal colon and increased cyclic GMP content. The effects of NOR-1 and CORM-2 were inhibited by ODQ. KT5823, a cyclic GMP-dependent protein kinase inhibitor, inhibited EFS-induced relaxation. EFS-induced relaxation in the presence of KT5823 was further inhibited by L-NNA, but not by SnPP-IX. In addition, KT5823 inhibited CORM-2-induced relaxation, but not NOR-1-induced relaxation. H89, a cyclic AMP-dependent protein kinase inhibitor, inhibited EFS-induced relaxation, and EFS-induced relaxation in the presence of H89 was further inhibited by L-NNA. These results suggested that NO and CO function as inhibitory neurotransmitters in the longitudinal muscle of C57BL mouse distal colon.
Collapse
Affiliation(s)
- Ayako Hidaka
- Laboratory of Veterinary Pharmacology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Rinku-Ourai Kita, Izumisano-shi 598-8531, Japan
| | | | | | | |
Collapse
|
6
|
Dhaese I, Vanneste G, Sips P, Buys ES, Brouckaert P, Lefebvre RA. Small intestinal motility in soluble guanylate cyclase alpha1 knockout mice: (Jejunal phenotyping of sGCalpha1 knockout mice). Naunyn Schmiedebergs Arch Pharmacol 2008; 379:473-87. [PMID: 19052725 DOI: 10.1007/s00210-008-0380-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 11/13/2008] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) activates soluble guanylate cyclase (sGC) to produce guanosine-3',5'-cyclic-monophosphate (cGMP). The aim of this study was to investigate the nitrergic regulation of jejunal motility in sGCalpha(1) knockout (KO) mice. Functional responses to nitrergic stimuli and cGMP levels in response to nitrergic stimuli were determined in circular muscle strips. Intestinal transit was determined. Nitrergic relaxations induced by electrical field stimulation and exogenous NO were almost abolished in male KO strips, but only minimally reduced and sensitive to ODQ in female KO strips. Basal cGMP levels were decreased in KO strips, but NO still induced an increase in cGMP levels. Transit was not attenuated in male nor female KO mice. In vitro, sGCalpha(1)beta(1) is the most important isoform in nitrergic relaxation of jejunum, but nitrergic relaxation can also occur via sGCalpha(2)beta(1) activation. The latter mechanism is more pronounced in female than in male KO mice. In vivo, no important implications on intestinal motility were observed in male and female KO mice.
Collapse
Affiliation(s)
- Ingeborg Dhaese
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
El-Yazbi AF, Cho WJ, Boddy G, Daniel EE. Caveolin-1 gene knockout impairs nitrergic function in mouse small intestine. Br J Pharmacol 2005; 145:1017-26. [PMID: 15937515 PMCID: PMC1576236 DOI: 10.1038/sj.bjp.0706289] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Caveolin-1 is a plasma membrane-associated protein that is responsible for caveolae formation. It plays an important role in the regulation of the function of different signaling molecules, among which are the different isoforms of nitric oxide synthase (NOS). Nitric oxide (NO) is known to be an important inhibitory mediator in the mouse gut. Caveolin-1 knockout mice (Cav1(-/-)) were used to examine the effect of caveolin-1 absence on the NO function in the mouse small intestine (ileum and jejunum) compared to their genetic controls and BALB/c controls. Immunohistochemical staining showed loss of caveolin-1 and NOS in the jejunal smooth muscles and myenteric plexus interstitial cells of Cajal (ICC) of Cav1(-/-) mice; however, nNOS immunoreactive nerves were still present in myenteric ganglia. Under nonadrenergic noncholinergic (NANC) conditions, small intestinal tissues from Cav1(-/-) mice relaxed to electrical field stimulation (EFS), as did tissues from control mice. Relaxation of tissues from control mice was markedly reduced by N-omega-nitro-L-arginine (10(-4) M), but relaxation of Cav1(-/-) animals was affected much less. Also, Cav1(-/-) mice tissues showed reduced relaxation responses to sodium nitroprusside (100 microM) compared to controls; yet there were no significant differences in the relaxation responses to 8-bromoguanosine-3': 5'-cyclic monophosphate (100 microM). Apamin (10(-6) M) significantly reduced relaxations to EFS in NANC conditions in Cav1(-/-) mice, but not in controls. The data from this study suggest that caveolin-1 gene knockout causes alterations in the smooth muscles and the ICC, leading to an impaired NO function in the mouse small intestine that could possibly be compensated by apamin-sensitive inhibitory mediators.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Woo-Jung Cho
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Geoffrey Boddy
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
| | - Edwin E Daniel
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 9-10 Medical Sciences Bldg., Edmonton, AB, Canada T6G 2H7
- Author for correspondence:
| |
Collapse
|
8
|
Zizzo MG, Mulè F, Serio R. Mechanisms underlying the inhibitory effects induced by pituitary adenylate cyclase-activating peptide in mouse ileum. Eur J Pharmacol 2005; 521:133-8. [PMID: 16185686 DOI: 10.1016/j.ejphar.2005.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 08/11/2005] [Accepted: 08/15/2005] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the signal transduction mechanisms underlying the inhibitory effect induced by pituitary adenylate cyclase activating peptide (PACAP-27) on the spontaneous contractile activity of longitudinal muscle of mouse ileum. Mechanical activity of ileal segments was recorded isometrically in vitro. PACAP-27 produced apamin-sensitive reduction of the amplitude of the spontaneous contractions. 9-(Tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22,536), adenylate cyclase inhibitor, or genistein and tyrphostin 25, tyrosine kinase inhibitors, had negligible effects on PACAP-27-induced inhibition. PACAP-27 effects were significantly inhibited by U-73122, phopholipase C (PLC) inhibitor, by 2-aminoethoxy-diphenylborate (2-APB), permeable blocker of inositol 1,4,5-triphosphate (IP3) receptors and by depletion of Ca2+ stores with cyclopiazonic acid or thapsigargin. Ryanodine did not reduce PACAP-27-inhibitory responses. We suggest that, in mouse ileum, the inhibitory responses to PACAP-27 involve stimulation of PLC, increased production of IP3 and localised Ca2+ release from intracellular stores, which could provide the opening of apamin-sensitive Ca2+-dependent K+ channels.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Dipartimento di Medicina Sperimentale-Viale delle Scienze, 90128 Palermo, Italia
| | | | | |
Collapse
|
9
|
Okishio Y, Takeuchi T, Fujita A, Suenaga K, Fujinami K, Munakata S, Takewaki T, Hata F. Ascending contraction and descending relaxation in the distal colon of mice lacking interstitial cells of Cajal. J Smooth Muscle Res 2005; 41:163-74. [PMID: 16006749 DOI: 10.1540/jsmr.41.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently an essential role of interstitial cells of Cajal (ICC) within myenteric plexus (ICC-MY) was suggested in ascending contraction and descending relaxation in the mouse ileum. The role of ICC in these neural reflexes was examined in the distal colonic segments prepared from the wild type and c-kit mutant, W/W(V) mice, in the present study. Localized distension of the segments from the wild type mice by using a small balloon resulted in ascending contraction and descending relaxation. In the segments from the mutant mice, localized distension also induced these neural reflexes similar to those observed in the wild type mice. Immunohistochemical examination demonstrated that ICC-MY and ICC present in muscle layers (ICC-IM) were severely disrupted in the mutant mouse, but only ICC, present within submucosal plexus (ICC-SMP), remained unchanged. In the small strips with ICC-SMP absent prepared from the mutant mouse, electrical field stimulation induced contraction or relaxation in the absence or presence of atropine, respectively. It was suggested that ICC have no important role in the ascending and descending neural reflexes in the mouse distal colon, this is in direct contrast to the role of ICC-MY in the ileum.
Collapse
Affiliation(s)
- Yutaka Okishio
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Osaka 599-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Toda N, Herman AG. Gastrointestinal Function Regulation by Nitrergic Efferent Nerves. Pharmacol Rev 2005; 57:315-38. [PMID: 16109838 DOI: 10.1124/pr.57.3.4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) smooth muscle responses to stimulation of the nonadrenergic noncholinergic inhibitory nerves have been suggested to be mediated by polypeptides, ATP, or another unidentified neurotransmitter. The discovery of nitric-oxide (NO) synthase inhibitors greatly contributed to our understanding of mechanisms involved in these responses, leading to the novel hypothesis that NO, an inorganic, gaseous molecule, acts as an inhibitory neurotransmitter. The nerves whose transmitter function depends on the NO release are called "nitrergic", and such nerves are recognized to play major roles in the control of smooth muscle tone and motility and of fluid secretion in the GI tract. Endothelium-derived relaxing factor, discovered by Furchgott and Zawadzki, has been identified to be NO that is biosynthesized from l-arginine by the constitutive NO synthase in endothelial cells and neurons. NO as a mediator or transmitter activates soluble guanylyl cyclase and produces cyclic GMP in smooth muscle cells, resulting in relaxation of the vasculature. On the other hand, NO-induced GI smooth muscle relaxation is mediated, not only by cyclic GMP directly or indirectly via hyperpolarization, but also by cyclic GMP-independent mechanisms. Numerous cotransmitters and cross talk of autonomic efferent nerves make the neural control of GI functions complicated. However, the findingsrelated to the nitrergic innervation may provide us a new way of understanding GI tract physiology and pathophysiology and might result in the development of new therapies of GI diseases. This review article covers the discovery of nitrergic nerves, their functional roles, and pathological implications in the GI tract.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Azuchi-machi, Chuo-ku, Osaka, Japan.
| | | |
Collapse
|
11
|
Takeuchi T, Fujinami K, Fujita A, Okishio Y, Takewaki T, Hata F. Essential role of the interstitial cells of Cajal in nitric oxide-mediated relaxation of longitudinal muscle of the mouse ileum. J Pharmacol Sci 2005; 95:71-80. [PMID: 15153653 DOI: 10.1254/jphs.95.71] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The role of interstitial cells of Cajal (ICC) in electrical field stimulation (EFS)-induced neurogenic responses in ileum was studied by using the ICC-deficient mutant (SLC-W/W(V)) mouse and its wild type. In the immunohistochemical study with anti-c-Kit antibody, ICC was observed in the myenteric plexus (MY) and deep muscular plexus (DMP) region in the wild type. In the mutant, ICC-MY were lost, only ICC-DMP were present. EFS induced a rapid contraction of the ileal segments from the wild type mouse in the direction of longitudinal muscle. In the mutant mouse, onset of contraction was delayed and its rate was slowed. EFS induced nonadrenergic, noncholinergic (NANC) relaxation in the presence of atropine and guanethidine in the wild type. A nitric oxide synthase inhibitor inhibited the relaxation and L-arginine reversed it. In the mutant, EFS did not induce NANC relaxation. There was no difference between the responsiveness of the segments from wild type and mutant mice to exogenously added acetylcholine or Nor-1. Taking into account the selective loss of ICC-MY in the mutant mice, it seems likely that ICC-MY have an essential role in inducing nitric oxide-mediated relaxation of longitudinal muscle of the mouse ileum and that ICC-MY partly participate in EFS-induced contraction.
Collapse
Affiliation(s)
- Tadayoshi Takeuchi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Fujita A, Okishio Y, Fujinami K, Nakagawa M, Takeuchi T, Takewaki T, Hata F. Role of the interstitial cells distributed in the myenteric plexus in neural reflexes in the mouse ileum. J Pharmacol Sci 2004; 96:483-92. [PMID: 15599097 DOI: 10.1254/jphs.fp0040499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We examined the role of interstitial cells of Cajal (ICC) in the ascending and descending neural reflexes in the ileal segments prepared from wild type mice and c-kit mutant W/WV mice. Localized distension of the ileal segments from wild type mice with a small balloon caused contraction or relaxation of the circular muscle on the oral or anal side of the distended region, respectively. However, these intestinal reflexes were not induced in the ileal segments from the mutant mice. In the small strips that include the step of the pathways from efferent motor neurons to smooth muscle cells, nerve stimulation induced contraction of circular muscle in the absence of atropine and relaxation in the presence of atropine. The extent of nerve stimulation-induced contractions and relaxations of the ileal circular muscle were similar in wild type and W/WV mice. The responsiveness of ileal circular muscle to exogenously added acetylcholine and Nor-1, a nitric oxide donor, was also unaffected in the mutant ileum. Since previous immunohistochemical study had revealed selective loss of ICC within the myenteric plexus (ICC-MY) in the mutant ileum, it was concluded that ICC-MY have an essential role in ascending and descending neural pathways in the mouse ileum.
Collapse
Affiliation(s)
- Akikazu Fujita
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Ueno T, Duenes JA, Zarroug AE, Sarr MG. Nitrergic mechanisms mediating inhibitory control of longitudinal smooth muscle contraction in mouse small intestine. J Gastrointest Surg 2004; 8:831-41. [PMID: 15531236 DOI: 10.1016/j.gassur.2004.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies using genetic manipulation to investigate mechanisms of control of physiologic function often necessitate mouse models. However, baseline functional analysis of murine small intestinal motility has not been well defined. Our aim was to define nitrergic mechanisms regulating mouse small intestinal longitudinal muscle. Endogenous nitric oxide (NO) is an important neuroregulatory substance mediating inhibition of contractile activity in murine small bowel. Full-thickness muscle strips of jejunum and ileum from C57BL/6 mice (n > or =6 mice) cut in the direction of longitudinal muscle were studied. Numerous conditions of electrical field stimulation (EFS) and effects of exogenous NO and NO donors were studied in the absence or presence of inhibitors of nitric oxide synthase (NOS) and 1H-[1,2,4]-oxadiazaolo-[4,3-a]-quinoxalin-1-one (ODQ), a downstream inhibitor of guanylyl cyclase. EFS induced a frequency-dependent inhibition of contractile activity in both jejunum and ileum (P < 0.05). As the voltage of EFS was increased, inhibition turned to excitation in the jejunum; in contrast, the ileum demonstrated a voltage-dependent increasing inhibition (P < 0.05 each). EFS-induced inhibition was blocked by NOS inhibitors and ODQ. NO donors inhibited spontaneous contractile activity abolished by ODQ. NO appears to be an endogenous inhibitory neurotransmitter in murine longitudinal small bowel muscle. Nitrergic mechanisms mediate inhibitory control of murine longitudinal small intestinal muscle. Differences exist in neuroregulatory control between jejunum and ileum that may be related to their known difference in motor patterns.
Collapse
Affiliation(s)
- Tatsuya Ueno
- Department of Surgery and Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
14
|
Ueno T, Duenes JA, Kost LJ, Sarr MG. Contractile activity of mouse small intestinal longitudinal smooth muscle. J Surg Res 2004; 118:136-43. [PMID: 15100002 DOI: 10.1016/s0022-4804(03)00334-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Indexed: 11/25/2022]
Abstract
BACKGROUND Interest in genomic modulation experimentally often necessitates use of mouse models. MATERIALS AND METHODS AIM To characterize and quantitate smooth muscle contractile activity of the mouse small intestine using in vitro techniques. Full-thickness jejunal and ileal muscle strips from mice were cut in the direction of longitudinal muscle, suspended in tissue baths (37 degrees C), and connected to force transducers. Spontaneous contractility and two dose-response curves to the cholinergic agonist bethanechol and adrenergic agonist norepinephrine were quantitated for 6 h. RESULTS Total contractile activity increased over 4 to 5 h in jejunum (P < 0.01) but not in ileum. Frequency of contractions (counts/min) in jejunum increased from 16 to 33 (P < 0.01) in the first 4 h, then remained stable; ileal frequency did not change. One hour of cold preservation had no major effect on contractile activity and frequency. Bethanechol increased and norepinephrine decreased contractile activity in dose-dependent fashion. The dose of bethanechol producing 50% increase in maximal response did not differ between the first and second dose-response; in contrast, the concentration of norepinephrine producing 50% decrease in activity for the second dose-response in jejunum was decreased compared to the first dose-response (P < 0.01). Cold preservation had no substantive effect on agonist responses. CONCLUSION Experiments in murine jejunal but not ileal longitudinal muscle in vitro must consider early changes in contractile activity after tissue harvest. These experiments serve as a baseline for comparison of stimuli or genetic modifications on murine contractile activity of longitudinal muscle in vivo.
Collapse
Affiliation(s)
- Tatsuya Ueno
- Department of Surgery and the Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
15
|
Zizzo MG, Mulè F, Serio R. Interplay between PACAP and NO in mouse ileum. Neuropharmacology 2004; 46:449-55. [PMID: 14975700 DOI: 10.1016/j.neuropharm.2003.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Revised: 09/11/2003] [Accepted: 09/24/2003] [Indexed: 12/01/2022]
Abstract
We investigated the possibility that pituitary adenylate cyclase activating peptide (PACAP) has a role in the control of contractility in the mouse ileum. PACAP-(1-27) produced tetrodotoxin (TTX)-insensitive, concentration-dependent reduction of the amplitude of the spontaneous contractions of longitudinal muscle up to their complete disappearance. This effect was inhibited by PACAP-(6-38), PACAP receptor antagonist, and by apamin, blocker of small-conductance Ca2+-activated K+-channels. Nomega-nitro-L-arginine methyl ester (L-NAME), nitric oxide (NO) synthase inhibitor, reduced the PACAP-inhibitory response, and the joint application of apamin plus L-NAME produced additive effects. 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), inhibitor of NO-stimulated soluble guanylate cyclase, significantly reduced the effect of PACAP. Exogenous NO, given as sodium nitroprusside (SNP), induced a concentration-dependent suppression of the phasic contractions, which was unaffected by apamin but reduced by either PACAP-(6-38) or TTX. Neurally evoked muscular relaxation was deeply antagonised by L-NAME. PACAP-(6-38) induced a reduction of the response to EFS only in the absence L-NAME. In conclusion, our results suggest that PACAP controls smooth muscle contractility, acting directly on the muscle cells through PACAP-27 preferring receptors coupled to apamin-sensitive Ca2+-dependent K+-channels and indirectly through the stimulation of NO production. In turn, NO would stimulate the release of PACAP from inhibitory neurones.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | | |
Collapse
|
16
|
Zizzo MG, Mulè F, Serio R. Duodenal contractile activity in dystrophic (mdx) mice: reduction of nitric oxide influence. Neurogastroenterol Motil 2003; 15:559-65. [PMID: 14507355 DOI: 10.1046/j.1365-2982.2003.00438.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study was undertaken to analyse duodenal contractility in adult dystrophic (mdx) mice. The spontaneous changes of the isometric tension and the responses of longitudinal duodenal muscle to nonadrenergic, noncholinergic (NANC) nerve stimulation and to exogenous drugs were compared between normal and mdx mice. Duodenal segments from mdx mice displayed spontaneous contractions with higher frequency than normals. N omega-nitro-L-arginine methyl ester (L-NAME) increased the frequency of contractions in normals without affecting that in mdx mice. In normals, NANC nerve stimulation elicited a transient relaxation abolished by L-NAME. In mdx mice a frank relaxation was not observed, the inhibitory response consisted just in the suppression of the phasic activity. This response was reduced by L-NAME and abolished by the subsequent addition of alpha-chymotrypsin. In normals, alpha-chymotrypsin hardly affected NANC relaxation, whilst it significantly antagonised that in mdx mice. Mdx duodenal muscle also showed a reduced responsiveness to sodium nitroprusside, and to 8-bromoguanosine 3', 5'-cyclic monophosphate in comparison with normal preparations. The results indicate that mdx mice experience duodenal contractile disturbances due to an impairment of NO function with defective responsiveness of the muscle to NO. The reduction in NO influence is functionally compensated by the peptidergic system.
Collapse
Affiliation(s)
- M G Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, Palermo, Italy
| | | | | |
Collapse
|
17
|
Serio R, Alessandro M, Zizzo MG, Tamburello MP, Mulè F. Neurotransmitters involved in the fast inhibitory junction potentials in mouse distal colon. Eur J Pharmacol 2003; 460:183-90. [PMID: 12559380 DOI: 10.1016/s0014-2999(02)02923-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated, in murine colon circular muscle, the role of adenosine 5'-triphosphate (ATP) and pituitary adenylate cyclase activating peptide (PACAP) as inhibitory neurotransmitters of the fast component of nerve-evoked inhibitory junction potential (fast IJP). Fast IJP was antagonised by apamin or suramin, abolished by desensitisation with the P2Y receptor agonist, adenosine 5'-O-2-thiodiphosphate (ADPbetaS), unaffected by desensitisation with P2X receptor agonist, alpha,beta-methylene ATP (alpha,beta-meATP), and reduced by PACAP-(6-38), a PACAP receptor antagonist. ATP induced membrane hyperpolarization resistant to tetrodotoxin, N(omega)-nitro-L-arginine methyl ester (L-NAME) or PACAP-(6-38), but antagonised by apamin, suramin, P2X and P2Y receptor desensitisation. PACAP-(1-27) caused membrane hyperpolarization antagonised by PACAP-(6-38), apamin and P2Y receptor desensitisation, reduced by tetrodotoxin, but not affected by L-NAME and by P2X receptor desensitisation. Therefore, in murine colon circular muscle, an ATP-like endogenous P2Y purinoceptor ligand is the final nonadrenergic, noncholinergic (NANC) inhibitory mediator involved in the generation of fast IJP. A neuromodulator role of PACAP in the inhibitory pathway is supposed.
Collapse
Affiliation(s)
- Rosa Serio
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | | | | | | | | |
Collapse
|
18
|
Mulè F, Serio R. Spontaneous mechanical activity and evoked responses in isolated gastric preparations from normal and dystrophic (mdx) mice. Neurogastroenterol Motil 2002; 14:667-75. [PMID: 12464089 DOI: 10.1046/j.1365-2982.2002.00368.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study examined whether alterations of the spontaneous and evoked mechanical activity are present in the stomach of the mdx mouse, the animal model for Duchenne muscular dystrophy. The gastric mechanical activity from whole-organ of normal and mdx mice was recorded in vitro as changes of intraluminal pressure. All gastric preparations developed spontaneous tone and phasic contractions, although the tone of the mdx preparations was significantly greater. Atropine reduced the tone of the two preparations by the same degree. Nomega-nitro-l-arginine methyl ester (l-NAME) significantly increased the tone and spontaneous contractions only in the stomach from normal animals, but did not affect on the mdx preparations. Effects ofl-NAME on tone and contractility were preserved in the presence of tetrodotoxin. In both types of tissues electrical field stimulation (EFS) induced a biphasic response: cholinergic contraction followed by slow relaxation. In nonadrenergic noncholinergic conditions, EFS induced a rapid relaxation followed by a slow component in both types of tissues. l-NAME abolished the rapid component, reduced the slow component and unmasked tachychinergic contractions. No significant difference was found in evoked responses. The enteric neurotransmission is preserved in mdx gastric preparations, although alterations in the ongoing production of nitric oxide are present.
Collapse
Affiliation(s)
- F Mulè
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, Italia.
| | | |
Collapse
|
19
|
Mukai K, Satoh Y, Fujita A, Takeuchi T, Shintani N, Hashimoto H, Baba A, Hata F. PAC1 receptor-mediated relaxation of longitudinal muscle of the mouse proximal colon. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 90:97-100. [PMID: 12396034 DOI: 10.1254/jjp.90.97] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Since pituitary adenylate cyclase-activating polypeptide (PACAP) was shown to partially mediate nonadrenergic, noncholinergic (NANC) relaxation of longitudinal muscle of the proximal colon of ICR mice, we further studied the receptor subtype activated by PACAP by using a mutant mouse whose PAC1 receptors are markedly reduced. In wild-type mice, the PACAP-mediated component of NANC relaxation was 33%, but it was absent in the mutant mice. The potency of exogenous PACAP in inducing relaxation in the mutant mice was one hundredth of that in wild-type mice. VPAC1 and VPAC2 receptors were not suggested to have any role in the relaxation. These results suggest that PACAP mediates NANC relaxation of longitudinal muscle of mouse proximal colon via PAC1 receptors.
Collapse
MESH Headings
- Animals
- Colon/drug effects
- Colon/physiology
- Female
- Male
- Mice
- Mice, Mutant Strains
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscles/drug effects
- Muscles/metabolism
- Neuropeptides/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/agonists
- Receptors, Pituitary Hormone/deficiency
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
Collapse
Affiliation(s)
- Kazunori Mukai
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, Osaka Prefecture University, Sakai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Satoh Y, Uchida M, Fujita A, Nishio H, Takeuchi T, Hata F. Possible role of orexin A in nonadrenergic, noncholinergic inhibitory response of muscle of the mouse small intestine. Eur J Pharmacol 2001; 428:337-42. [PMID: 11689192 DOI: 10.1016/s0014-2999(01)01339-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of a novel peptide, orexin A, on longitudinal muscle of ICR mouse small intestine was examined in vitro. Exogenous orexin A induced a transient contraction in duodenal, jejunal and ileal segments. Atropine and tetrodotoxin completely inhibited the contractions. Contraction of longitudinal muscle of jejunal segments induced by electrical field stimulation was still observed after the jejunal segment had been desensitized to orexin A, suggesting that orexin A is not a final neurotransmitter to induce the contraction. On the other hand, in the presence of atropine and guanethidine, orexin A induced a transient gradual relaxation in duodenal, jejunal and ileal segments. Electrical field stimulation also induced significant relaxation of the muscle in jejunal segments. The electrical field stimulation-induced relaxation was inhibited by 55% after the desensitization of the segments to orexin A. Although the electrical field stimulation-induced relaxation was inhibited by 47% by a nitric oxide synthesis inhibitor, NG-nitro-L-arginine (L-NOARG), orexin desensitization did not affect the relaxation which persisted after L-NOARG treatment. The exogenous orexin A-induced relaxation was completely inhibited by L-NOARG. The results suggest that orexin A partially mediates nonadrenergic, noncholinergic (NANC) relaxation via activation of nitrergic neurones in longitudinal muscle of ICR mouse small intestine.
Collapse
Affiliation(s)
- Y Satoh
- Department of Medical Technology, Osaka Prefectural College of Health Sciences, Osaka 583-8555, Habikino, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Hata F, Takeuchi T, Nishio H, Fujita A. Mediators and intracellular mechanisms of NANC relaxation of smooth muscle in the gastrointestinal tract. J Smooth Muscle Res 2000; 36:181-204. [PMID: 11398897 DOI: 10.1540/jsmr.36.181] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- F Hata
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Science, Osaka Prefecture University, Sakai, Japan.
| | | | | | | |
Collapse
|