1
|
Sharath HV, Qureshi MI, Raghuveer R, Saklecha A, Nadipena PT. The Effect of Physical Rehabilitation on Oro-Motor Stimulation, Manual Airway Clearance, Positioning, and Tactile Stimulation (PROMPT) on Neonates With Respiratory Distress Syndrome. Cureus 2024; 16:e64656. [PMID: 39149671 PMCID: PMC11326758 DOI: 10.7759/cureus.64656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Neonatal respiratory distress syndrome (NRDS) is a significant cause of morbidity and mortality in preterm infants due to insufficient surfactant production in the lungs. This case report explores the effect of physical rehabilitation on oro-motor stimulation, manual airway clearance, positioning, and tactile stimulation (PROMPT) approach on a preterm neonate with NRDS. The report details the pre-natal, natal, and post-natal history of the patient, including maternal health, pregnancy complications, delivery specifics, initial clinical presentation, and subsequent management. Standard treatments such as exogenous surfactant administration and respiratory support were complemented with PROMPT techniques. The outcomes demonstrate the potential benefits of incorporating physical rehabilitation in the management of NRDS, highlighting improvements in respiratory function and overall clinical stability. This case underscores the importance of multidisciplinary approaches in enhancing the care and prognosis of neonates with NRDS.
Collapse
Affiliation(s)
- H V Sharath
- Department of Pediatric Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Moh'd Irshad Qureshi
- Department of Neuro Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Raghumahanti Raghuveer
- Department of Neuro Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akshaya Saklecha
- Department of Neuro Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pavan T Nadipena
- Department of Osteopathy, Dr Hullumani's Polyclinic and Rehabilitation, Bangalore, IND
| |
Collapse
|
2
|
Moya F, Curstedt T, Johansson J, Sweet D. Synthetic surfactants. Semin Fetal Neonatal Med 2023; 28:101503. [PMID: 38036308 DOI: 10.1016/j.siny.2023.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Fernando Moya
- Division of Wilmington Pediatric Subspecialties, Department of Pediatrics, UNC School of Medicine, USA
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jan Johansson
- Dept of Biosciences and Nutrition, Karolinska Institutet, Neo, 141 83, Huddinge Sweden
| | - David Sweet
- Regional Neonatal Unit, Royal Maternity Hospital, Grosvenor Road, Belfast, UK.
| |
Collapse
|
3
|
Budh HP, Nimbalkar S. Surfactant Replacement Therapy: What’s the New Future? JOURNAL OF NEONATOLOGY 2022; 36:331-347. [DOI: 10.1177/09732179221136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Surfactant replacement therapy (SRT) can be lifesaving for preterm babies with respiratory distress because of surfactant deficiency. Attempts have been made over the last two decades to make surfactant administration as smooth and as nontraumatic as possible. Lesser invasive techniques, such as less invasive surfactant administration, minimally invasive surfactant therapy, intrapartum pharyngeal surfactant therapy, and the laryngeal mask airway, are preferred over invasive techniques like intubate surfactant extubation to reduce trauma and peridosing adverse effects. However, at present, aerosolized surfactant (AS) via nebulization remains the only truly noninvasive method of SRT. Many animal and human studies have shown promising results with the use of AS with similar clinical effects to an instilled surfactant with greater safety potential. But still AS has not been adapted to routine neonatal care. There is still scope for studies to further strengthen the role of AS. Also, SRT is a constantly changing field with new innovations revolutionizing and replacing old techniques.
Collapse
Affiliation(s)
- Hetal Pramod Budh
- Department of Neonatology, Pramukhswami Medical College, Bhaikaka University, Karamsad, Gujarat, India
| | - Somashekhar Nimbalkar
- Department of Neonatology, Pramukhswami Medical College, Bhaikaka University, Karamsad, Gujarat, India
| |
Collapse
|
4
|
A recipe for a good clinical pulmonary surfactant. Biomed J 2022; 45:615-628. [PMID: 35272060 PMCID: PMC9486245 DOI: 10.1016/j.bj.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
The lives of thousands premature babies have been saved along the last thirty years thanks to the establishment and consolidation of pulmonary surfactant replacement therapies (SRT). It took some time to close the gap between the identification of the biophysical and molecular causes of the high mortality associated with respiratory distress syndrome in very premature babies and the development of a proper therapy. Closing the gap required the elucidation of some key questions defining the structure–function relationships in surfactant as well as the particular role of the different molecular components assembled into the surfactant system. On the other hand, the application of SRT as part of treatments targeting other devastating respiratory pathologies, in babies and adults, is depending on further extensive research still required before enough amounts of good humanized clinical surfactants will be available. This review summarizes our current concepts on the compositional and structural determinants defining pulmonary surfactant activity, the principles behind the development of efficient natural animal-derived or recombinant or synthetic therapeutic surfactants, as well as a the most promising lines of research that are already opening new perspectives in the application of tailored surfactant therapies to treat important yet unresolved respiratory pathologies.
Collapse
|
5
|
Allen J, Panitch H. Bronchopulmonary dysplasia-A historical perspective. Pediatr Pulmonol 2021; 56:3478-3489. [PMID: 33638603 DOI: 10.1002/ppul.25341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/08/2022]
Abstract
Bronchopulmonary dysplasia (BPD) was first described by Northway et al in 1967. This article describes the evolution of our understanding of the pathophysiology of BPD and the approaches to treatments of this illness developed over the past fifty years. These interventions had their roots in the understanding of the principles of the surface tension present at air-liquid interfaces, which were developed over 150 years before BPD's initial description. Improving outcomes in neonatal care have led to greater survival of preterm and very preterm infants, and to an evolution of the pathogenesis and pathology of BPD, from an illness caused primarily by barotrauma and oxygen toxicity to one of interruption of lung development. While the incidence of BPD has remained about the same in recent decades, this is because survival of infants born at lower gestational ages is increasing. Understanding of molecular, genetic and physiologic mechanisms has led to newer treatments that have mitigated some of the harmful effects of prolonged mechanical ventilation. Recognition of BPD as a chronic multi-system disease has resulted in further improvements in care after discharge from neonatal intensive care. Since many of the origins of chronic obstructive lung disease in adults are based in childhood respiratory illnesses, improving outcomes of BPD in infancy and childhood will undoubtedly lead to improved respiratory outcomes in the adults that these children will become.
Collapse
Affiliation(s)
- Julian Allen
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Howard Panitch
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Pioselli B, Salomone F, Mazzola G, Amidani D, Sgarbi E, Amadei F, Murgia X, Catinella S, Villetti G, De Luca D, Carnielli V, Civelli M. Pulmonary surfactant: a unique biomaterial with life-saving therapeutic applications. Curr Med Chem 2021; 29:526-590. [PMID: 34525915 DOI: 10.2174/0929867328666210825110421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, opening to innovative therapeutic avenues for the treatment of several respiratory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Sgarbi
- Preclinical R&D, Chiesi Farmaceutici, Parma. Italy
| | | | - Xabi Murgia
- Department of Biotechnology, GAIKER Technology Centre, Zamudio. Spain
| | | | | | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Antoine Béclère Medical Center, APHP, South Paris University Hospitals, Paris, France; Physiopathology and Therapeutic Innovation Unit-U999, South Paris-Saclay University, Paris. France
| | - Virgilio Carnielli
- Division of Neonatology, G Salesi Women and Children's Hospital, Polytechnical University of Marche, Ancona. Italy
| | | |
Collapse
|
7
|
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 2020; 19:122. [PMID: 32493486 PMCID: PMC7268969 DOI: 10.1186/s12944-020-01278-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM). Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions. Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections. Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling functions during homeostasis and during some of the most commonly observed pulmonary diseases.
Collapse
Affiliation(s)
- Christina W Agudelo
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Ghassan Samaha
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Itsaso Garcia-Arcos
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA.
| |
Collapse
|
8
|
Dassios T, Ambulkar H, Greenough A. Treatment and respiratory support modes for neonates with respiratory distress syndrome. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1769598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Theodore Dassios
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Neonatal Intensive Care Centre, King’s College Hospital NHS Foundation Trust, London, UK
| | - Hemant Ambulkar
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Anne Greenough
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| |
Collapse
|
9
|
Guo X, Luo S, Amidani D, Rivetti C, Pieraccini G, Pioselli B, Catinella S, Murgia X, Salomone F, Xu Y, Dong Y, Sun B. In vitro characterization and in vivo comparison of the pulmonary outcomes of Poractant alfa and Calsurf in ventilated preterm rabbits. PLoS One 2020; 15:e0230229. [PMID: 32168331 PMCID: PMC7069639 DOI: 10.1371/journal.pone.0230229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/12/2020] [Indexed: 11/18/2022] Open
Abstract
Poractant alfa and Calsurf are two natural surfactants widely used in China for the treatment of neonatal respiratory distress syndrome, which are extracted from porcine and calf lungs, respectively. The purpose of this experimental study was to compare their in vitro characteristics and in vivo effects in the improvement of pulmonary function and protection of lung injury. The biophysical properties, ultrastructure, and lipid composition of both surfactant preparations were respectively analysed in vitro by means of Langmuir-Blodgett trough (LBT), atomic force microscopy (AFM), and liquid-chromatography mass-spectrometry (LC-MS). Then, as core pharmacological activity, both head-to-head (100 and 200 mg/kg for both surfactants) and licensed dose comparisons (70 mg/kg Calsurf vs. 200 mg/kg Poractant alfa) between the two surfactants were conducted as prophylaxis in preterm rabbits with primary surfactant deficiency, assessing survival time and rate and dynamic compliance of the respiratory system (Cdyn). Intrapulmonary surfactant pools, morphometric volume density as alveolar expansion (Vv), and lung injury scores were determined post mortem. AFM and LC-MS analysis revealed qualitative differences in the ultrastructure as well as in the lipid composition of both preparations. Calsurf showed a longer plateau region of the LBT isotherm and lower film compressibility. In vivo, both surfactant preparations improved Cdyn at any dose, although maximum benefits in terms of Vv and intrapulmonary surfactant pools were seen with the 200 mg/kg dose in both surfactants. The group of animals treated with 200 mg/kg of Poractant alfa showed a prolonged survival time and rate compared to untreated but ventilated controls, and significantly ameliorated lung injury compared to Calsurf at any dose, including 200 mg/kg. The overall outcomes suggest the pulmonary effects to be dose dependent for both preparations. The group of animals treated with 200 mg/kg of Poractant alfa showed a significant reduction of mortality. Compared to Calsurf, Poractant alfa exerted better effects if licensed doses were compared, which requires further investigation.
Collapse
Affiliation(s)
- Xiaojing Guo
- Departments of Pediatrics and Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Siwei Luo
- Departments of Pediatrics and Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Davide Amidani
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giuseppe Pieraccini
- CISM Mass Spectrometry Centre, Department of Health Sciences, University of Florence, Firenze, Italy
| | - Barbara Pioselli
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Silvia Catinella
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Xabi Murgia
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research, Saarbrücken, Saarland, Germany
| | - Fabrizio Salomone
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Yaling Xu
- Departments of Pediatrics and Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Ying Dong
- Departments of Pediatrics and Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Bo Sun
- Departments of Pediatrics and Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail: ,
| |
Collapse
|
10
|
Surfactant replacement therapy: from biological basis to current clinical practice. Pediatr Res 2020; 88:176-183. [PMID: 31926483 PMCID: PMC7223236 DOI: 10.1038/s41390-020-0750-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023]
Abstract
This review summarizes the current knowledge on the physiological action of endogenous and exogenous pulmonary surfactant, the role of different types of animal-derived and synthetic surfactants for RDS therapy, different modes of administration, potential risks and strategies of ventilation, and highlights the most promising aims for future development. Scientists have clarified the physicochemical properties and functions of the different components of surfactant, and part of this successful research is derived from the characterization of genetic diseases affecting surfactant composition or function. Knowledge from functional tests of surfactant action, its immunochemistry, kinetics and homeostasis are important also for improving therapy with animal-derived surfactant preparations and for the development of modified surfactants. In the past decade newly designed artificial surfactants and additives have gained much attention and have proven different advantages, but their particular role still has to be defined. For clinical practice, alternative administration techniques as well as postsurfactant ventilation modes, taking into account alterations in lung mechanics after surfactant placement, may be important in optimizing the potential of this most important drug in neonatology.
Collapse
|
11
|
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic complication associated with extremely preterm birth. Although BPD is now an uncommon condition in infants born with birthweights higher than 1,500 g, among infants born at or near the current limits of viability, BPD rates have not improved over the past 2 to 3 decades and may be increasing. No single therapeutic intervention is effective at preventing BPD. As such, clinicians must use multiple evidence-based strategies to help reduce BPD rates. This review examines current evidence-based approaches to BPD prevention, primarily focusing on data obtained from randomized controlled trials.
Collapse
Affiliation(s)
- Erik A Jensen
- Division of Neonatology and Department of Pediatrics; Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Jeon GW. Surfactant preparations for preterm infants with respiratory distress syndrome: past, present, and future. KOREAN JOURNAL OF PEDIATRICS 2019; 62:155-161. [PMID: 30744318 PMCID: PMC6528062 DOI: 10.3345/kjp.2018.07185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/08/2019] [Indexed: 12/05/2022]
Abstract
Following the first successful trial of surfactant replacement therapy for preterm infants with respiratory distress syndrome (RDS) by Fujiwara in 1980, several animal-derived natural surfactants and synthetic surfactants have been developed. Synthetic surfactants were designed to overcome limitations of natural surfactants such as cost, immune reactions, and infections elicited by animal proteins contained in natural surfactants. However, first-generation synthetic surfactants that are protein-free have failed to prove their superiority over natural surfactants because they lack surfactant protein (SP). Lucinactant, a second-generation synthetic surfactant containing the SP-B analog, was better or at least as effective as the natural surfactant, suggesting that lucinactant could act an alternative to natural surfactants. Lucinactant was approved by the U. S. Food and Drug Administration in March 2012 as the fifth surfactant to treat neonatal RDS. CHF5633, a second-generation synthetic surfactant containing SP-B and SP-C analogs, was effective and safe in a human multicenter cohort study for preterm infants. Many comparative studies of natural surfactants used worldwide have reported different efficacies for different preparations. However, these differences are believed to due to site variations, not actual differences. The more important thing than the composition of the surfactant in improving outcome is the timing and mode of administration of the surfactant. Novel synthetic surfactants containing synthetic phospholipid incorporated with SP-B and SP-C analogs will potentially represent alternatives to natural surfactants in the future, while improvement of treatment modalities with less-invasive or noninvasive methods of surfactant administration will be the most important task to be resolved.
Collapse
Affiliation(s)
- Ga Won Jeon
- Department of Pediatrics, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
13
|
Johansson J, Curstedt T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 2019; 285:165-186. [PMID: 30357986 DOI: 10.1111/joim.12845] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treatment of neonatal respiratory distress syndrome (RDS) using animal-derived lung surfactant preparations has reduced the mortality of handling premature infants with RDS to a 50th of that in the 1960s. The supply of animal-derived lung surfactants is limited and only a part of the preterm babies is treated. Thus, there is a need to develop well-defined synthetic replicas based on key components of natural surfactant. A synthetic product that equals natural-derived surfactants would enable cost-efficient production and could also facilitate the development of the treatments of other lung diseases than neonatal RDS. Recently the first synthetic surfactant that contains analogues of the two hydrophobic surfactant proteins B (SP-B) and SP-C entered clinical trials for the treatment of neonatal RDS. The development of functional synthetic analogues of SP-B and SP-C, however, is considerably more challenging than anticipated 30 years ago when the first structural information of the native proteins became available. For SP-B, a complex three-dimensional dimeric structure stabilized by several disulphides has necessitated the design of miniaturized analogues. The main challenge for SP-C has been the pronounced amyloid aggregation propensity of its transmembrane region. The development of a functional non-aggregating SP-C analogue that can be produced synthetically was achieved by designing the amyloidogenic native sequence so that it spontaneously forms a stable transmembrane α-helix.
Collapse
Affiliation(s)
- J Johansson
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Nair T, Savulescu J, Everett J, Tonkens R, Wilkinson D. Settling for second best: when should doctors agree to parental demands for suboptimal medical treatment? JOURNAL OF MEDICAL ETHICS 2017; 43:831-840. [PMID: 28947505 PMCID: PMC5827708 DOI: 10.1136/medethics-2016-103461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 12/20/2016] [Accepted: 06/15/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Doctors sometimes encounter parents who object to prescribed treatment for their children, and request suboptimal substitutes be administered instead (suboptimal being defined as less effective and/or more expensive). Previous studies have focused on parental refusal of treatment and when this should be permitted, but the ethics of requests for suboptimal treatment has not been explored. METHODS The paper consists of two parts: an empirical analysis and an ethical analysis. We performed an online survey with a sample of the general public to assess respondents' thresholds for acceptable harm and expense resulting from parental choice, and the role that religion played in their judgement. We also identified and applied existing ethical frameworks to the case described in the survey to compare theoretical and empirical results. RESULTS Two hundred and forty-two Mechanical Turk workers took our survey and there were 178 valid responses (73.6%). Respondents' agreement to provide treatment decreased as the risk or cost of the requested substitute increased (p<0.001). More than 50% of participants were prepared to provide treatment that would involve a small absolute increased risk of death for the child (<5%) and a cost increase of US$<500, respectively. Religiously motivated requests were significantly more likely to be allowed (p<0.001). Existing ethical frameworks largely yielded ambiguous results for the case. There were clear inconsistencies between the theoretical and empirical results. CONCLUSION Drawing on both survey results and ethical analysis, we propose a potential model and thresholds for deciding about the permissibility of suboptimal treatment requests.
Collapse
Affiliation(s)
- Tara Nair
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK
| | - Julian Savulescu
- Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK
| | - Jim Everett
- Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Ryan Tonkens
- Centre for Human Bioethics, Monash University, Melbourne, Victoria, Australia
| | - Dominic Wilkinson
- Oxford Uehiro Centre for Practical Ethics, Faculty of Philosophy, University of Oxford, Oxford, UK
- Department of Paediatrics, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
15
|
Sweet DG, Turner MA, Straňák Z, Plavka R, Clarke P, Stenson BJ, Singer D, Goelz R, Fabbri L, Varoli G, Piccinno A, Santoro D, Speer CP. A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome. Arch Dis Child Fetal Neonatal Ed 2017; 102:F497-F503. [PMID: 28465315 PMCID: PMC5739829 DOI: 10.1136/archdischild-2017-312722] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE CHF5633 (Chiesi Farmaceutici S.p.A., Parma, Italy) is the first fully synthetic surfactant enriched by peptide analogues of two human surfactant proteins. We planned to assess safety and tolerability of CHF5633 and explore preliminary efficacy. DESIGN Multicentre cohort study. PATIENTS Forty infants from 27+0 to 33+6 weeks gestation with respiratory distress syndrome requiring fraction of inspired oxygen (FiO2) ≥0.35 were treated with a single dose of CHF5633 within 48 hours after birth. The first 20 received 100 mg/kg and the second 20 received 200 mg/kg. OUTCOME MEASURES Adverse events (AEs) and adverse drug reactions (ADRs) were monitored with complications of prematurity considered AEs if occurring after dosing. Systemic absorption and immunogenicity were assessed. Efficacy was assessed by change in FiO2 after dosing and need for poractant-alfa rescue. RESULTS Rapid and sustained improvements in FiO2 were observed in 39 (98%) infants. One responded neither to CHF5633 nor two poractant-alfa doses. A total of 79 AEs were experienced by 19 infants in the 100 mg/kg cohort and 53 AEs by 20 infants in the 200 mg/kg cohort. Most AEs were expected complications of prematurity. Two unrelated serious AEs occurred in the second cohort. One infant died of necrotising enterocolitis and another developed viral bronchiolitis after discharge. The single ADR was an episode of transient endotracheal tube obstruction following a 200 mg/kg dose. Neither systemic absorption, nor antibody development to either peptide was detected. CONCLUSIONS Both CHF5633 doses were well tolerated and showed promising clinical efficacy profile. These encouraging data provide a basis for ongoing randomised controlled trials. TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT01651637.
Collapse
Affiliation(s)
- David G Sweet
- Neonatal Unit, Royal Maternity Hospital, Belfast, Northern Ireland, UK
| | - Mark A Turner
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, England, UK
| | - Zbyněk Straňák
- Department of Neonatology, Institute for the Care of Mother and Child, Prague, Czech Republic
| | - Richard Plavka
- Division of Neonatology, General Faculty Hospital and 1st Faculty of Medicine, Prague, Czech Republic
| | - Paul Clarke
- Neonatal Intensive Care Unit, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Ben J Stenson
- Neonatal Unit, Simpson Centre for Reproductive Health, Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK
| | - Dominique Singer
- Division of Neonatology and Paediatric Intensive Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rangmar Goelz
- Department of Neonatology, University Children’s Hospital, Tuebingen, Germany
| | - Laura Fabbri
- Global Clinical Development, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Guido Varoli
- Global Clinical Development, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Annalisa Piccinno
- Global Clinical Development, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Debora Santoro
- Global Clinical Development, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Christian P Speer
- University Children’s Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Foglia EE, Jensen EA, Kirpalani H. Delivery room interventions to prevent bronchopulmonary dysplasia in extremely preterm infants. J Perinatol 2017; 37:1171-1179. [PMID: 28569744 PMCID: PMC5687993 DOI: 10.1038/jp.2017.74] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory complication of preterm birth. Preterm infants are at risk for acute lung injury immediately after birth, which predisposes to BPD. In this article, we review the current evidence for interventions applied during neonatal transition (delivery room and first postnatal hours of life) to prevent BPD in extremely preterm infants: continuous positive airway pressure (CPAP), sustained lung inflation, supplemental oxygen use during neonatal resuscitation, and surfactant therapy including less-invasive surfactant administration. Preterm infants should be stabilized with CPAP in the delivery room, reserving invasive mechanical ventilation for infants who fail non-invasive respiratory support. For infants who require endotracheal intubation and mechanical ventilation soon after birth, surfactant should be given early (<2 h of life). We recommend prudent titration of supplemental oxygen in the delivery room to achieve targeted oxygen saturations. Promising interventions that may further reduce BPD, such as sustained inflation and non-invasive surfactant administration, are currently under investigation.
Collapse
Affiliation(s)
- Elizabeth E. Foglia
- Division of Neonatology, The Children’s Hospital of Philadelphia, Philadelphia, USA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Erik A. Jensen
- Division of Neonatology, The Children’s Hospital of Philadelphia, Philadelphia, USA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Haresh Kirpalani
- Division of Neonatology, The Children’s Hospital of Philadelphia, Philadelphia, USA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| |
Collapse
|
17
|
Efficient protein production inspired by how spiders make silk. Nat Commun 2017; 8:15504. [PMID: 28534479 PMCID: PMC5457526 DOI: 10.1038/ncomms15504] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/04/2017] [Indexed: 01/05/2023] Open
Abstract
Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general.
Collapse
|
18
|
Lemyre B, Fusch C, Schmölzer GM, Rouvinez Bouali N, Reddy D, Barrowman N, Huneault-Purney N, Lacaze-Masmonteil T. Poractant alfa versus bovine lipid extract surfactant for infants 24+0 to 31+6 weeks gestational age: A randomized controlled trial. PLoS One 2017; 12:e0175922. [PMID: 28472058 PMCID: PMC5417427 DOI: 10.1371/journal.pone.0175922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/30/2017] [Indexed: 11/21/2022] Open
Abstract
Objectives To compare the efficacy and safety of poractant alfa and bovine lipid extract surfactant in preterm infants. Study design Randomized, partially-blinded, multicenter trial. Infants <32 weeks needing surfactant before 48 hours were randomly assigned to receive poractant alfa or bovine lipid extract surfactant. The primary outcome was being alive and extubated at 48 hours post-randomization. Secondary outcomes included need for re-dosing, duration of respiratory support and oxygen, bronchopulmonary dysplasia, mortality and complications during administration. Results Three centers recruited 87 infants (mean 26.7 weeks and 906 grams) at a mean age of 5.9 hours, between March 2013 and December 2015. 21/42 (50%) were alive and extubated at 48 hours in the poractant alfa group vs 26/45 (57.8%) in the bovine lipid extract surfactant group; adjusted OR 0.76 (95% CI 0.30–1.93) (p = 0.56). No differences were observed in the need to re-dose. Duration of oxygen support (41.5 vs 62 days; adjusted OR 1.69 95% CI 1.02–2.80; p = 0.04) was reduced in infants who received poractant alfa. We observed a trend in bronchopulmonary dysplasia among survivors (51.5% vs 72.1%; adjusted OR 0.35 95%CI 0.12–1.04; p = 0.06) favoring poractant alfa. Twelve infants died before discharge, 9 in the poractant alfa group and 3 in the bovine lung extract group. Severe airway obstruction following administration was observed in 0 (poractant alfa) and 5 (bovine lipid extract surfactant) infants (adjusted OR 0.09 95%CI <0.01–1.27; p = 0.07). Conclusion No statistically significant difference was observed in the proportion of infants alive and extubated within 48h between the two study groups. Poractant alfa may be more beneficial and associated with fewer complications than bovine lipid extract surfactant. However, we observed a trend towards higher mortality in the poractant alfa group. Larger studies are needed to determine whether observed possible benefits translate in shorter hospital admissions, or other long term benefits and determine whether there is a difference in mortality.
Collapse
Affiliation(s)
- Brigitte Lemyre
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- CHEO Research Institute, Ottawa, Ontario, Canada
- * E-mail:
| | - Christoph Fusch
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Georg M. Schmölzer
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada
| | - Nicole Rouvinez Bouali
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- CHEO Research Institute, Ottawa, Ontario, Canada
| | - Deepti Reddy
- CHEO Research Institute, Ottawa, Ontario, Canada
| | | | | | - Thierry Lacaze-Masmonteil
- Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Pediatrics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- CHEO Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Puthusseri B, Marudamuthu A, Tiwari N, Fu J, Idell S, Shetty S. Regulation of p53-mediated changes in the uPA-fibrinolytic system and in lung injury by loss of surfactant protein C expression in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2017; 312:L783-L796. [PMID: 28385810 DOI: 10.1152/ajplung.00291.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 01/24/2023] Open
Abstract
Pulmonary surfactant protein C (SP-C) expression by type II alveolar epithelial cells (AECs) is markedly reduced in diverse types of lung injuries and is often associated with AEC apoptosis. It is unclear whether loss of SP-C contributes to the increased p53 and urokinase-type plasminogen activator (uPA) system cross-talk and apoptosis of AECs. Therefore, we inhibited SP-C expression in human and murine AECs using lentivirus vector expressing shRNA and tested p53 and downstream changes in the uPA-fibrinolytic system. Inhibition of SP-C expression in AECs induced p53 and activated caspase-3, indicating AEC apoptosis. We also found that bleomycin or cigarette smoke exposure failed to inhibit SP-C expression or apoptosis in AECs in p53- and plasminogen activator inhibitor-1 (PAI-1)-deficient mice. Depletion of SP-C expression by lentiviral SP-C shRNA in PAI-1-deficient mice failed to induce p53 or apoptosis in AECs, whereas it increased both AEC p53 and apoptosis in wild-type and uPA-deficient mice. SP-C inhibition in AECs also increased in CXCL1 and CXCL2 and their receptor CXCR2 as well as ICAM-1 expression, which is indicative of a proinflammatory response. Overexpression of p53-binding 3'-UTR sequences in AECs inhibited PAI-1 induction while maintaining uPA and uPAR protein and mRNA expression. Furthermore, caveolin-1 expression and phosphorylation were increased in AECs, indicating an intricate link between caveolin-1 and Src kinase-mediated cell signaling and AEC apoptosis due to loss of SP-C expression through p53 and uPA system-mediated cross-talk. The role of uPA, PAI-1, and p53 in the regulation of AEC apoptosis after injury was also determined in knockout mice.
Collapse
Affiliation(s)
- Bijesh Puthusseri
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Amarnath Marudamuthu
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Nivedita Tiwari
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Jian Fu
- Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Steven Idell
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Sreerama Shetty
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas; and
| |
Collapse
|
20
|
In vitro and in vivo comparison between poractant alfa and the new generation synthetic surfactant CHF5633. Pediatr Res 2017; 81:369-375. [PMID: 27973472 DOI: 10.1038/pr.2016.231] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/30/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND CHF5633 is a new generation synthetic surfactant containing both SP-B and SP-C analogues developed for the treatment of respiratory distress syndrome. Here, the optimal dose and its performance in comparison to the animal-derived surfactant poractant alfa were investigated. METHODS In vitro surfactant activity was determined by means of the Wilhelmy balance and the capillary surfactometer. The dose-finding study was performed in preterm rabbits with severe surfactant deficiency. CHF5633 doses ranging from 50 to 300 mg/kg were used. Untreated animals and animals treated with 200 mg/kg of poractant alfa were included for comparison. RESULTS In vitro, minimum surface tension (γmin) was decreased from values above 70 to 0 mN/m by both surfactants, and they formed rapidly a film at the air-liquid interface. In vivo studies showed a clear dose-dependent improvement of lung function for CHF5633. The pulmonary effect of CHF5633 200 mg/kg dose was comparable to the pulmonary response elicited by 200 mg/kg of poractant alfa in preterm rabbits. CONCLUSION CHF5633 is as efficient as poractant alfa in our in vitro and in vivo settings. A clear dose-dependent improvement of lung function could be observed for CHF5633, with the dose of 200 mg/kg being the most efficient one.
Collapse
|
21
|
Sardesai S, Biniwale M, Wertheimer F, Garingo A, Ramanathan R. Evolution of surfactant therapy for respiratory distress syndrome: past, present, and future. Pediatr Res 2017; 81:240-248. [PMID: 27706130 DOI: 10.1038/pr.2016.203] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 11/10/2022]
Abstract
Respiratory distress syndrome (RDS) due to surfactant deficiency is the most common cause of respiratory failure in preterm infants. Tremendous progress has been made since the original description that surfactant deficiency is the major cause of RDS. Surfactant therapy has been extensively studied in preterm infants and has been shown to significantly decrease air leaks and neonatal and infant mortality. Synthetic and animal-derived surfactants from bovine as well as porcine origin have been evaluated in randomized controlled trials. Animal-derived surfactants generally result in faster weaning of respiratory support, shorter duration of invasive ventilation, and decreased mortality when compared to first- or second-generation of synthetic surfactants, but some of the second-generation synthetic surfactants are at least not inferior to the animal-derived surfactants. Using a higher initial dose of porcine derived surfactant may provide better outcomes when compared with using lower doses of bovine surfactants, likely, due to compositional difference and/or the dose. Third-generation synthetic surfactant containing peptide analogs of surfactant protein B and C are currently being studied. Less invasive intra-tracheal surfactant administration techniques in spontaneously breathing neonate receiving noninvasive ventilator support are also being evaluated. In the present era, prophylactic surfactant is not recommended as it may increase the risk of lung injury or death. In the future, surfactants may be used as vector to deliver steroids, or used in combination with molecules, such as, recombinant Club Cell Protein-10 (rhCC-10) to improve pulmonary outcomes. Also, noninvasive surfactant administration techniques, such as aerosolization or atomization of surfactant may play a greater role in the future.
Collapse
Affiliation(s)
- Smeeta Sardesai
- Department of Pediatrics, Division of Neonatal Medicine, LAC+USC Medical Center and Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Manoj Biniwale
- Department of Pediatrics, Division of Neonatal Medicine, LAC+USC Medical Center and Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Fiona Wertheimer
- Department of Pediatrics, Division of Neonatal Medicine, LAC+USC Medical Center and Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Arlene Garingo
- Department of Pediatrics, Division of Neonatal Medicine, LAC+USC Medical Center and Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Rangasamy Ramanathan
- Department of Pediatrics, Division of Neonatal Medicine, LAC+USC Medical Center and Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
22
|
Walther FJ, Gordon LM, Waring AJ. Design of Surfactant Protein B Peptide Mimics Based on the Saposin Fold for Synthetic Lung Surfactants. Biomed Hub 2016; 1. [PMID: 28503550 PMCID: PMC5424708 DOI: 10.1159/000451076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Surfactant protein (SP)-B is a 79-residue polypeptide crucial for the biophysical and physiological function of endogenous lung surfactant. SP-B is a member of the saposin or saposin-like proteins (SAPLIP) family of proteins that share an overall three-dimensional folding pattern based on secondary structures and disulfide connectivity and exhibit a wide diversity of biological functions. Here, we review the synthesis, molecular biophysics and activity of synthetic analogs of saposin proteins designed to mimic those interactions of the parent proteins with lipids that enhance interfacial activity. Saposin proteins generally interact with target lipids as either monomers or multimers via well-defined amphipathic helices, flexible hinge domains, and insertion sequences. Based on the known 3D-structural motif for the saposin family, we show how bioengineering techniques may be used to develop minimal peptide constructs that maintain desirable structural properties and activities in biomedical applications. One important application is the molecular design, synthesis and activity of Saposin mimics based on the SP-B structure. Synthetic lung surfactants containing active SP-B analogs may be potentially useful in treating diseases of surfactant deficiency or dysfunction including the neonatal respiratory distress syndrome and acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Frans J Walther
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Larry M Gordon
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alan J Waring
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Parra E, Kinoshita K, Needham D. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air-Water Interface: Presence of a SP-B Analog Peptide Promotes Membrane Aggregation, Formation of Tightly Stacked Lamellae, and Growth of Myelin Figures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10570-10581. [PMID: 27653452 DOI: 10.1021/acs.langmuir.6b01420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The present study is a microscopic interfacial characterization of a series of lung surfactant materials performed with the micropipette technique. The advantages of this technique include the measurement of equilibrium and dynamic surface tensions while acquiring structural and dynamic information at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB)-containing formulation. It was observed that the presence of the natural hydrophobic proteins and, more strikingly, the peptide SMB, promoted vesicle condensation as thick membrane stacks beneath the interface. Only in the presence of SMB, these stacks underwent spontaneous structural transformations, consisting of the nucleation and growth of microtubes and in some cases their subsequent coiling into helices. The dimensions of these tubes (2-15 μm diameter) and their linear (2-3 μm/s) and volumetric growth rates (20-30 μm3/s) were quantified, and no specific effects were found on them for increasing SMB concentrations from 0.1 to 4%. Nevertheless, a direct correlation between the number of tubes and SMB contents was found, suggesting that SMB molecules are the promoters of tube nucleation in these membranes. A detailed analysis of the tube formation process was performed following previous models for the growth of myelin figures, proposing a combined mechanism between dehydration-rehydration of the lipid bilayers and induction of mechanical defects by SMB that would act as nucleation sites for the tubes. The formation of tubes was also observed in Infasurf, and in NS only after subsequent expansion and compression but neither in the other clinical surfactants nor in protein-free preparations. Finally, the connection between this data and the observations from the lung surfactant literature concerning the widely reported "near-zero surface tension" for lung surfactant films and intact alveolar surfaces is also discussed.
Collapse
Affiliation(s)
- Elisa Parra
- Center for Single Particle Science and Engineering (SPSE), Southern Denmark University , Campusvej 55, DK-5230 Odense, Denmark
| | - Koji Kinoshita
- Center for Single Particle Science and Engineering (SPSE), Southern Denmark University , Campusvej 55, DK-5230 Odense, Denmark
| | - David Needham
- Center for Single Particle Science and Engineering (SPSE), Southern Denmark University , Campusvej 55, DK-5230 Odense, Denmark
- Department of Mechanical Engineering and Material Science, Duke University , Durham, North Carolina 90300, United States
| |
Collapse
|
24
|
Braide-Moncoeur O, Tran NT, Long JR. Peptide-based synthetic pulmonary surfactant for the treatment of respiratory distress disorders. Curr Opin Chem Biol 2016; 32:22-8. [DOI: 10.1016/j.cbpa.2016.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/18/2016] [Accepted: 02/21/2016] [Indexed: 12/31/2022]
|
25
|
Gupta R, Hernández-Juviel JM, Waring AJ, Walther FJ. Synthetic lung surfactant reduces alveolar-capillary protein leakage in surfactant-deficient rabbits. Exp Lung Res 2016; 41:293-9. [PMID: 26052829 DOI: 10.3109/01902148.2015.1024354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE OF THE STUDY Alveolar-capillary leakage of proteinaceous fluid impairs alveolar ventilation and surfactant function and decreases lung compliance in acute lung injury. We investigated the correlation between lung function and total protein levels in bronchoalveolar lavage fluid (BALF) of ventilated, lavaged surfactant-deficient rabbits treated with various clinical and synthetic lung surfactant preparations. MATERIALS AND METHODS 109 ventilated, young adult New Zealand White rabbits underwent lung lavage to induce surfactant-deficiency (PaO2 <100 torr in 100% O2), were treated with a clinical surfactant or a synthetic surfactant preparation with surfactant protein B (SP-B) and/or surfactant protein C (SP-C) analogs, and mechanically ventilated for 120 min. Total protein levels in postmortem BALF were correlated with arterial PO2 (PaO2) and dynamic lung compliance values at 120 min post-surfactant treatment. RESULTS Repeated lung lavages decreased mean PaO2 values from 540 to 58 torr and lung compliance from 0.64 to 0.33 mL/kg/cm H2O. Two hours after surfactant therapy and mechanical ventilation, mean PaO2 values had increased to 346 torr and lung compliance to 0.44 mL/kg/cm H2O. Eighty-six rabbits (79%) responded to surfactant therapy with an increase in PaO2 to values >200 torr. Fourteen non-responders received inactive surfactant preparations. BALF protein levels were inversely correlated with PaO2 and lung compliance (P < .001). Surfactant preparations containing both SP-B and SP-C proteins or peptide analogs outperformed single protein/peptide preparations. CONCLUSIONS Clinical and synthetic surfactant therapy reduces alveolar-capillary protein leakage in surfactant-deficient rabbits. Surfactant preparations with both SP-B and SP-C (analogs) were more efficient than preparations with SP-B or SP-C alone.
Collapse
Affiliation(s)
- Rohun Gupta
- 1Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | | | | | | |
Collapse
|
26
|
Recomendaciones para la asistencia respiratoria en el recién nacido ( iii ). Surfactante y óxido nítrico. An Pediatr (Barc) 2015; 83:354.e1-6. [DOI: 10.1016/j.anpedi.2015.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/18/2015] [Indexed: 11/18/2022] Open
|
27
|
Castillo Salinas F, Elorza Fernández D, Gutiérrez Laso A, Moreno Hernando J, Bustos Lozano G, Gresa Muñoz M, López de Heredia Goya J, Aguar Carrascosa M, Miracle Echegoyen X, Fernández Lorenzo J, Serrano M, Concheiro Guisan A, Carrasco Carrasco C, Comuñas Gómez J, Moral Pumarega M, Sánchez Torres A, Franco M. Recommendations for respiratory support in the newborn (III). Surfactant and nitric oxide. An Pediatr (Barc) 2015. [DOI: 10.1016/j.anpede.2015.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Zhang L, Cao HY, Zhao S, Yuan LJ, Han D, Jiang H, Wu S, Wu HM. Effect of exogenous pulmonary surfactants on mortality rate in neonatal respiratory distress syndrome: A network meta-analysis of randomized controlled trials. Pulm Pharmacol Ther 2015; 34:46-54. [DOI: 10.1016/j.pupt.2015.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/15/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023]
|
29
|
Ardell S, Pfister RH, Soll R. Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev 2015; 8:CD000144. [PMID: 26301526 PMCID: PMC9210808 DOI: 10.1002/14651858.cd000144.pub3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND A wide variety of surfactant preparations have been developed and tested including synthetic surfactants and surfactants derived from animal sources. Although clinical trials have demonstrated that both synthetic surfactant and animal derived surfactant preparations are effective, comparison in animal models has suggested that there may be greater efficacy of animal derived surfactant products, perhaps due to the protein content of animal derived surfactant. OBJECTIVES To compare the effect of animal derived surfactant to protein free synthetic surfactant preparations in preterm infants at risk for or having respiratory distress syndrome (RDS). SEARCH METHODS Searches were updated of the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (2014), PubMed, CINAHL and EMBASE (1975 through November 2014). All languages were included. SELECTION CRITERIA Randomized controlled trials comparing administration of protein free synthetic surfactants to administration of animal derived surfactant extracts in preterm infants at risk for or having respiratory distress syndrome were considered for this review. DATA COLLECTION AND ANALYSIS Data collection and analysis were conducted according to the standards of the Cochrane Neonatal Review Group. MAIN RESULTS Fifteen trials met the inclusion criteria. The meta-analysis showed that the use of animal derived surfactant rather than protein free synthetic surfactant resulted in a significant reduction in the risk of pneumothorax [typical relative risk (RR) 0.65, 95% CI 0.55 to 0.77; typical risk difference (RD) -0.04, 95% CI -0.06 to -0.02; number needed to treat to benefit (NNTB) 25; 11 studies, 5356 infants] and a marginal reduction in the risk of mortality (typical RR 0.89, 95% CI 0.79 to 0.99; typical RD -0.02, 95% CI -0.04 to -0.00; NNTB 50; 13 studies, 5413 infants).Animal derived surfactant was associated with an increase in the risk of necrotizing enterocolitis [typical RR 1.38, 95% CI 1.08 to 1.76; typical RD 0.02, 95% CI 0.01 to 0.04; number needed to treat to harm (NNTH) 50; 8 studies, 3462 infants] and a marginal increase in the risk of any intraventricular hemorrhage (typical RR 1.07, 95% CI 0.99 to 1.15; typical RD 0.02, 95% CI 0.00 to 0.05; 10 studies, 5045 infants) but no increase in Grade 3 to 4 intraventricular hemorrhage (typical RR 1.08, 95% CI 0.91 to 1.27; typical RD 0.01, 95% CI -0.01 to 0.03; 9 studies, 4241 infants).The meta-analyses supported a marginal decrease in the risk of bronchopulmonary dysplasia or mortality associated with the use of animal derived surfactant preparations (typical RR 0.95, 95% CI 0.91 to 1.00; typical RD -0.03, 95% CI -0.06 to 0.00; 6 studies, 3811 infants). No other relevant differences in outcomes were noted. AUTHORS' CONCLUSIONS Both animal derived surfactant extracts and protein free synthetic surfactant extracts are effective in the treatment and prevention of respiratory distress syndrome. Comparative trials demonstrate greater early improvement in the requirement for ventilator support, fewer pneumothoraces, and fewer deaths associated with animal derived surfactant extract treatment. Animal derived surfactant may be associated with an increase in necrotizing enterocolitis and intraventricular hemorrhage, though the more serious hemorrhages (Grade 3 and 4) are not increased. Despite these concerns, animal derived surfactant extracts would seem to be the more desirable choice when compared to currently available protein free synthetic surfactants.
Collapse
Affiliation(s)
- Stephanie Ardell
- University of Pittsburgh Medical CenterPediatrics Division of Newborn Medicine300 Halket StreetPittsburghPennsylvaniaUSA15219
| | - Robert H Pfister
- St Charles Health CareDivision of Neonatology2500 NE Neff RdBendOregonUSA97701
| | - Roger Soll
- University of Vermont Medical CenterDivision of Neonatal‐Perinatal Medicine111 Colchester AvenueBurlingtonVermontUSA05401
| | | |
Collapse
|
30
|
Ardell S, Pfister RH, Soll R. Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome. Cochrane Database Syst Rev 2015:CD000144. [PMID: 26009996 DOI: 10.1002/14651858.cd000144.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND A wide variety of surfactant preparations have been developed and tested including synthetic surfactants and surfactants derived from animal sources. Although clinical trials have demonstrated that both synthetic surfactant and animal derived surfactant preparations are effective, comparison in animal models has suggested that there may be greater efficacy of animal derived surfactant products, perhaps due to the protein content of animal derived surfactant. OBJECTIVES To compare the effect of animal derived surfactant to protein free synthetic surfactant preparations in preterm infants at risk for or having respiratory distress syndrome (RDS). SEARCH METHODS Searches were updated of the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (2014), PubMed, CINAHL and EMBASE (1975 through November 2014). All languages were included. SELECTION CRITERIA Randomized controlled trials comparing administration of protein free synthetic surfactants to administration of animal derived surfactant extracts in preterm infants at risk for or having respiratory distress syndrome were considered for this review. DATA COLLECTION AND ANALYSIS Data collection and analysis were conducted according to the standards of the Cochrane Neonatal Review Group. MAIN RESULTS Fifteen trials met the inclusion criteria. The meta-analysis showed that the use of animal derived surfactant rather than protein free synthetic surfactant resulted in a significant reduction in the risk of pneumothorax [typical relative risk (RR) 0.65, 95% CI 0.55 to 0.77; typical risk difference (RD) -0.04, 95% CI -0.06 to -0.02; number needed to treat to benefit (NNTB) 25; 11 studies, 5356 infants] and a marginal reduction in the risk of mortality (typical RR 0.89, 95% CI 0.79 to 0.99; typical RD -0.02, 95% CI -0.04 to -0.00; NNTB 50; 13 studies, 5413 infants).Animal derived surfactant was associated with an increase in the risk of necrotizing enterocolitis [typical RR 1.38, 95% CI 1.08 to 1.76; typical RD 0.02, 95% CI 0.01 to 0.04; number needed to treat to harm (NNTH) 50; 8 studies, 3462 infants] and a marginal increase in the risk of any intraventricular hemorrhage (typical RR 1.07, 95% CI 0.99 to 1.15; typical RD 0.02, 95% CI 0.00 to 0.05; 10 studies, 5045 infants) but no increase in Grade 3 to 4 intraventricular hemorrhage (typical RR 1.08, 95% CI 0.91 to 1.27; typical RD 0.01, 95% CI -0.01 to 0.03; 9 studies, 4241 infants).The meta-analyses supported a marginal decrease in the risk of bronchopulmonary dysplasia or mortality associated with the use of animal derived surfactant preparations (typical RR 0.95, 95% CI 0.91 to 1.00; typical RD -0.03, 95% CI -0.06 to 0.00; 6 studies, 3811 infants). No other relevant differences in outcomes were noted. AUTHORS' CONCLUSIONS Both animal derived surfactant extracts and protein free synthetic surfactant extracts are effective in the treatment and prevention of respiratory distress syndrome. Comparative trials demonstrate greater early improvement in the requirement for ventilator support, fewer pneumothoraces, and fewer deaths associated with animal derived surfactant extract treatment. Animal derived surfactant may be associated with an increase in necrotizing enterocolitis and intraventricular hemorrhage, though the more serious hemorrhages (Grade 3 and 4) are not increased. Despite these concerns, animal derived surfactant extracts would seem to be the more desirable choice when compared to currently available protein free synthetic surfactants.
Collapse
Affiliation(s)
- Stephanie Ardell
- Pediatrics Division of Newborn Medicine, University of Pittsburgh Medical Center, 300 Halket Street, Pittsburgh, Pennsylvania, USA, 15219
| | | | | |
Collapse
|
31
|
Danhaive O, Chapin C, Horneman H, Cogo PE, Ballard PL. Surface film formation in vitro by infant and therapeutic surfactants: role of surfactant protein B. Pediatr Res 2015; 77:340-6. [PMID: 25360829 PMCID: PMC4391810 DOI: 10.1038/pr.2014.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/24/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Pulmonary surfactant provides an alveolar surface-active film that is critical for normal lung function. Our objective was to determine in vitro film formation properties of therapeutic and infant surfactants and the influence of surfactant protein (SP)-B content. METHODS We used a multiwell fluorescent assay measuring maximum phospholipid surface accumulation (Max), phospholipid concentration required for half-maximal film formation (½Max), and time for maximal accumulation (tMax). RESULTS Among five therapeutic surfactants, calfactant (highest SP-B content) had film formation values similar to natural surfactant, and addition of SP-B to beractant (lowest SP-B) normalized its Max value. Addition of budesonide to calfactant did not adversely affect film formation. In tracheal aspirates of preterm infants with evolving chronic lung disease, SP-B content correlated with ½Max and tMax values, and SP-B supplementation of SP-B-deficient infant surfactant restored normal film formation. Reconstitution of normal surfactant indicated a role for both SP-B and SP-C in film formation. CONCLUSION Film formation in vitro differs among therapeutic surfactants and is highly dependent on SP-B content in infant surfactant. The results support a critical role of SP-B for promoting surface film formation.
Collapse
Affiliation(s)
- Olivier Danhaive
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Cheryl Chapin
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Hart Horneman
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Paola E. Cogo
- Department of Cardiology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Philip L. Ballard
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| |
Collapse
|
32
|
Curstedt T, Halliday HL, Speer CP. A unique story in neonatal research: the development of a porcine surfactant. Neonatology 2015; 107:321-9. [PMID: 26044099 DOI: 10.1159/000381117] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surfactant deficiency was identified as the cause of respiratory distress syndrome (RDS) as long ago as 1959. Trials of surfactant replacement in the 1960s were unsuccessful because the preparations used contained only phospholipids and they were administered inefficiently by nebulization. In the 1970s Bengt Robertson and Göran Enhörning showed that natural surfactant, containing both phospholipids and proteins, could ameliorate the signs of RDS in immature rabbits. In the 1980s Bengt Robertson and Tore Curstedt developed a porcine surfactant, Curosurf (named after their surnames), which was effective in immature animals and was used in a pilot clinical trial beginning in 1983. Subsequent randomized clinical trials were planned a year later by Bengt Robertson, Tore Curstedt and Henry Halliday, and the first trial was begun in 1985. This showed that Curosurf reduced pulmonary air leaks and neonatal mortality in preterm infants with severe RDS. A second trial, coordinated by Christian Speer, demonstrated that multiple doses of Curosurf were more effective than a single dose. Subsequent trials conducted by the Collaborative European Multicenter Study Group, which included among others Guilio Bevilacqua, Janna Koppe, Ola Saugstad, Nils Svenningsen and Jean-Pierre Relier, showed that early treatment was more effective than later administration and that infants treated at birth had similar neurodevelopmental status to untreated controls at a corrected age of 2 years. Members of the Collaborative European Multicenter Study Group in Denmark and Sweden performed studies to demonstrate the benefits of a combination of surfactant treatment and early continuous positive airway pressure. Curosurf has also been compared with several synthetic and natural surfactants, and at a dose of 200 mg/kg Curosurf has been shown to be superior to either Survanta or Curosurf used at a dose of 100 mg/kg. Recently, new-generation synthetic surfactants containing both phospholipids and proteins have been developed. After preclinical testing, CHF5633 (developed by Tore Curstedt and Jan Johansson in collaboration with Chiesi Farmaceutici) has undergone a preliminary first study in humans under the guidance of Christian Speer. If effective, this new surfactant preparation could revolutionize the treatment of preterm infants worldwide as it could be made consistently and safely in almost unlimited quantities. This story of a porcine surfactant preparation has been truly remarkable, and many thousands of preterm babies worldwide are now alive and well because of it.
Collapse
Affiliation(s)
- Tore Curstedt
- Section of Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
33
|
Rimensberger PC. Surfactant. PEDIATRIC AND NEONATAL MECHANICAL VENTILATION 2015. [PMCID: PMC7175631 DOI: 10.1007/978-3-642-01219-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exogenous pulmonary surfactant, widely used in neonatal care, is one of the best-studied treatments in neonatology, and its introduction in the 1990s led to a significant improvement in neonatal outcomes in preterm infants, including a decrease in mortality. This chapter provides an overview of surfactant composition and function in health and disease and summarizes the evidence for its clinical use.
Collapse
Affiliation(s)
- Peter C. Rimensberger
- Service of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University Hospital of Geneva, Geneve, Switzerland
| |
Collapse
|
34
|
Turner AL, Braide O, Mills FD, Fanucci GE, Long JR. Residue specific partitioning of KL4 into phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3212-9. [DOI: 10.1016/j.bbamem.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/24/2014] [Accepted: 09/15/2014] [Indexed: 01/14/2023]
|
35
|
Hines M, Swinburn K, McIntyre S, Novak I, Badawi N. Infants at risk of cerebral palsy: a systematic review of outcomes used in Cochrane studies of pregnancy, childbirth and neonatology. J Matern Fetal Neonatal Med 2014; 28:1871-83. [PMID: 25283846 DOI: 10.3109/14767058.2014.972355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To systematically review meta-analyses (MAs) and randomised controlled trials (RCTs) of interventions for infants at risk of cerebral palsy (CP), to determine if consensus exists in study end-points. METHODS MAs within the "Neonatal" and "Pregnancy and Childbirth" Review Groups in Cochrane Database of Systematic Reviews (to June 2011) were included if they contained risk factors for CP as a study end-point, and were either published in 2010 or 2011 or cited >20 times in Sciverse Scopus. Up to 20 RCTs from each MA were included. Outcome measures, definitions and cut-points for ordinal groupings were extracted from MAs and RCTs and frequencies calculated. RESULTS Twenty-two MAs and 165 RCTs were appraised. High consistency existed in types of outcome domains listed as important in MAs. For 10/16 most frequently cited outcome domains, <50% of RCTs contributed data for meta-analyses. Low consistency in outcome definitions, measures, cut-points in RCTs and long-term follow-up prohibited data aggregation. CONCLUSIONS Variation in outcome measurement and long-term follow up has hampered the ability of RCTs to contribute data on important outcomes for CP, resulting in lost opportunities to measure the impact of maternal and neonatal interventions. There is an urgent need for and long-term follow up of these interventions and an agreed set of standardised and clinically relevant common data elements for study end-points.
Collapse
Affiliation(s)
- Monique Hines
- a Cerebral Palsy Alliance Research Institute , Darlinghurst , Australia
| | - Katherine Swinburn
- a Cerebral Palsy Alliance Research Institute , Darlinghurst , Australia .,b School of Medicine, University of Notre Dame Australia , Darlinghurst , Australia
| | - Sarah McIntyre
- a Cerebral Palsy Alliance Research Institute , Darlinghurst , Australia .,b School of Medicine, University of Notre Dame Australia , Darlinghurst , Australia
| | - Iona Novak
- a Cerebral Palsy Alliance Research Institute , Darlinghurst , Australia .,b School of Medicine, University of Notre Dame Australia , Darlinghurst , Australia
| | - Nadia Badawi
- a Cerebral Palsy Alliance Research Institute , Darlinghurst , Australia .,b School of Medicine, University of Notre Dame Australia , Darlinghurst , Australia .,c Discipline of Paediatrics & Child Health, Sydney Medical School, University of Sydney , Sydney , Australia , and.,d The Children's Hospital at Westmead, Grace Centre for Newborn Care , Westmead , Australia
| |
Collapse
|
36
|
Rebello CM, Precioso AR, Mascaretti RS. A multicenter, randomized, double-blind trial of a new porcine surfactant in premature infants with respiratory distress syndrome. EINSTEIN-SAO PAULO 2014; 12:397-404. [PMID: 25628188 PMCID: PMC4879903 DOI: 10.1590/s1679-45082014ao3095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/28/2014] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To compare the efficacy and safety of a new porcine-derived pulmonary surfactant developed by Instituto Butantan with those of animal-derived surfactants commercially available in Brazil, regarding neonatal mortality and the major complications of prematurity in preterm newborns with birth weight up to 1500g and diagnosed with respiratory distress syndrome. METHODS Neonates diagnosed with respiratory distress syndrome were randomized to receive either Butantan surfactant (Butantan group) or one of the following surfactants: Survanta® or Curosurf®. Newborns receiving Survanta® or Curosurf® comprised the control group. The main outcome measures were mortality rates at 72 hours and at 28 days of life; the typical complications of prematurity as evaluated on the 28th day of life were defined as secundary outcomes. RESULTS No differences were observed between the Butantan (n=154) and control (n=173) groups in relation to birth weight, gestational age, sex, and prenatal use of corticosteroids, or in mortality rates both at 72 hours (14.19% versus 14.12%; p=0.98) and at 28 days (39.86% versus 33.33%; p=0.24) of life. Higher 1- and 5-minute Apgar scores were observed among control group newborns. No differences were observed as regards the secondary outcomes, except for greater need for supplemental oxygen and a higher incidence of interstitial pulmonary emphysema in the Butantan group. CONCLUSION The mortality rates at 72 hours and 28 days of life and the incidence of major complications of prematurity were comparable to those found with the animal-derived surfactants commercially available in Brazil, showing the efficacy and safety of the new surfactant in the treatment of respiratory distress syndrome in newborns.
Collapse
Affiliation(s)
| | - Alexander Roberto Precioso
- Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
37
|
Sinha S, Tin W. Adjunctive drug therapies for treatment of respiratory diseases in the newborn: based on evidence or habit? Ther Adv Respir Dis 2014; 8:53-62. [PMID: 24670391 DOI: 10.1177/1753465814526444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Respiratory distress syndrome is a disease of prematurity and is caused by a relative deficiency of endogenous surfactant production. Respiratory distress syndrome is the most common cause of mortality and morbidity in the newborn population and the standard of care is to provide exogenous surfactant therapy. This saves lives and reduces respiratory complications but, despite treatment, a significant proportion of these infants go onto develop chronic lung disease, the severest form of which is bronchopulmonary dysplasia. Once developed, this is a multisystem disease and treatment is mostly supportive by using various therapeutic adjuncts. Some of these have been proven to be safe and effective in large randomized, controlled trials but similar evidence for other drugs is lacking. The aim of this paper is to provide an overview and critically appraise the available scientific evidence for or against their use in routine practice.
Collapse
Affiliation(s)
- Sunil Sinha
- University of Durham & The James Cook University Hospital, Department of Neonatal Medicine, Marton Road, Middlesbrough TS4 3BW, UK
| | | |
Collapse
|
38
|
Abstract
Respiratory failure secondary to surfactant deficiency is a major cause of morbidity and mortality in preterm infants. Surfactant therapy substantially reduces mortality and respiratory morbidity for this population. Secondary surfactant deficiency also contributes to acute respiratory morbidity in late-preterm and term neonates with meconium aspiration syndrome, pneumonia/sepsis, and perhaps pulmonary hemorrhage; surfactant replacement may be beneficial for these infants. This statement summarizes the evidence regarding indications, administration, formulations, and outcomes for surfactant-replacement therapy. The clinical strategy of intubation, surfactant administration, and extubation to continuous positive airway pressure and the effect of continuous positive airway pressure on outcomes and surfactant use in preterm infants are also reviewed.
Collapse
|
39
|
Jordan BK, Donn SM. Lucinactant for the prevention of respiratory distress syndrome in premature infants. Expert Rev Clin Pharmacol 2013; 6:115-21. [PMID: 23473590 DOI: 10.1586/ecp.12.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory distress syndrome (RDS) is the leading cause of neonatal morbidity and mortality in premature infants. It is caused by surfactant deficiency and lung immaturity. Lucinactant is a synthetic surfactant containing sinapultide, a bioengineered peptide mimic of surfactant-associated protein B. A meta-analysis of clinical trials demonstrates that lucinactant is as effective as animal-derived surfactants in preventing RDS in premature neonates, and in vitro studies suggest it is more resistant to oxidative and protein-induced inactivation. Its synthetic origin confers lower infection and inflammation risks as well other potential benefits, which may make lucinactant an advantageous alternative to its animal-derived counterparts, which are presently the standard treatment for RDS.
Collapse
Affiliation(s)
- Brian K Jordan
- Department of Pediatrics & Communicable Diseases, Division of Neonatal-Perinatal Medicine, CS Mott Children's Hospital, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
40
|
El-Gendy N, Kaviratna A, Berkland C, Dhar P. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders. Ther Deliv 2013; 4:951-80. [PMID: 23919474 PMCID: PMC3840129 DOI: 10.4155/tde.13.72] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung surfactant is crucial for optimal pulmonary function throughout life. An absence or deficiency of surfactant can affect the surfactant pool leading to respiratory distress. Even if the coupling between surfactant dysfunction and the underlying disease is not always well understood, using exogenous surfactants as replacement is usually a standard therapeutic option in respiratory distress. Exogenous surfactants have been extensively studied in animal models and clinical trials. The present article provides an update on the evolution of surfactant therapy, types of surfactant treatment, and development of newer-generation surfactants. The differences in the performance between various surfactants are highlighted and advanced research that has been conducted so far in developing the optimal delivery of surfactant is discussed.
Collapse
Affiliation(s)
- Nashwa El-Gendy
- Department of Pharmaceutical Chemistry, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Beni-suef University, Egypt
| | - Anubhav Kaviratna
- Department of Chemical & Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
- Department of Chemical & Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
| | - Prajnaparamita Dhar
- Department of Chemical & Petroleum Engineering, The University of Kansas, 1530 W 15th Street, Lawrence, KS 66045, USA
| |
Collapse
|
41
|
Abstract
Each year, the FDA approves many pharmaceuticals and products designed to treat or improve a patient's condition. The following is a sampling of some of the most important drugs approved in 2012 that specifically apply to nurse practitioner practice.
Collapse
|
42
|
Abstract
Bronchopulmonary dysplasia (BPD) is the most prevalent long-term morbidity in surviving extremely preterm infants and is linked to increased risk of reactive airways disease, pulmonary hypertension, post-neonatal mortality, and adverse neurodevelopmental outcomes. BPD affects approximately 20% of premature newborns, and up to 60% of premature infants born before completing 26 weeks of gestation. It is characterized by the need for assisted ventilation and/or supplemental oxygen at 36 weeks postmenstrual age. Approaches to prevention and treatment of BPD have evolved with improved understanding of its pathogenesis. This review will focus on recent advancements and detail current research in pharmacotherapy for BPD. The evidence for both current and potential future experimental therapies will be reviewed in detail. As our understanding of the complex and multifactorial pathophysiology of BPD changes, research into these current and future approaches must continue to evolve.
Collapse
Affiliation(s)
- Sailaja Ghanta
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Enders 9, Boston, MA 02115, , Tel: (774) 249 8137, Fax: (617) 730-0260
| | - Kristen Tropea Leeman
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Enders 9, Boston, MA 02115, , Tel: (919) 475 9260, Fax: (617) 730 0222
| | - Helen Christou
- Division of Newborn Medicine, Brigham and Women’s Hospital, Boston Children’s Hospital, Harvard Medical School, 75 Francis Street, Thorn 1005, Boston, MA 02115, , Tel: (617) 515 8129, Fax: (617) 582 6026
| |
Collapse
|
43
|
Lahey T. The ethics of clinical research in low- and middle-income countries. HANDBOOK OF CLINICAL NEUROLOGY 2013; 118:301-13. [PMID: 24182387 DOI: 10.1016/b978-0-444-53501-6.00025-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The increasing conduct of clinical research in low- and middle-income countries (LMIC) is motivated by the desire to promote host country access to biomedical research, to enhance LMIC access to modern clinical care, and opportunities to conduct research with simpler regulatory requirements and at lower cost. Yet clinical research in LMIC is associated with ethical risks beyond those of clinical research conducted in high-income countries (HIC). Ethical challenges particular to clinical research in LMIC include the conduct of placebo-controlled clinical trials in LMIC despite HIC availability of effective comparator interventions, obtaining informed consent despite power inequities, and the obligation of HIC researchers to redress health disparities in LMIC. This chapter covers these and additional ethical challenges of clinical research in LMIC, and proposes ways to navigate these challenges through awareness, regulatory oversight, consultation, and collaboration with LMIC investigators and community representatives. With its ethical challenges properly managed, clinical research in LMIC provides historic opportunities to bring biomedical research and better healthcare infrastructure to countries previously left behind in the modern rush to biomedical innovation.
Collapse
Affiliation(s)
- Timothy Lahey
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover; Section of Infectious Diseases and International Health, Department of Medicine, Lebanon and Bioethics Committee, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
44
|
Guardia CG, Moya FR, Sinha S, Simmons PD, Segal R, Greenspan JS. A pharmacoeconomic analysis of in-hospital costs resulting from reintubation in preterm infants treated with lucinactant, beractant, or poractant alfa. J Pediatr Pharmacol Ther 2012; 17:220-7. [PMID: 23258964 DOI: 10.5863/1551-6776-17.3.220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Reintubation and subsequent mechanical ventilation (MV) in preterm infants after surfactant replacement therapy are associated with excess morbidity and mortality and likely increase in-hospital costs. Specific surfactant therapy selection for prevention of respiratory distress syndrome (RDS) in preterm infants receiving conventional MV may impact not only clinical outcomes but also pharmacoeconomic outcomes. METHODS We conducted a pharmacoeconomic analysis of the impact of surfactant selection and reintubation and subsequent MV of preterm infants on health care resource utilization. Rates of reintubation and duration of MV after reintubation were determined from 1546 preterm infants enrolled in two surfactant trials comparing lucinactant to beractant and poractant alfa. Hospital costs were obtained from a 2010 US database from 1564 preterm infants with RDS, with a direct cost of $2637 per day for MV in the neonatal intensive care unit. Cost of reintubation by study and treatment was estimated as the incidence of reintubation multiplied by days on MV therapy after reintubation multiplied by cost per day for direct MV costs, standardized per 100 surfactant-treated infants. RESULTS There were no differences between studies or treatment groups in the overall extubation rate. Average MV duration following reintubation was similar between groups in both trials; however, reintubation rates were significantly lower (p<0 05) for infants treated with lucinactant than for those receiving beractant or poractant alfa. The observed differences in reintubation rates resulted in a projected cost saving of $160,013 to $252,203 per 100 infants treated with lucinactant versus animal-derived surfactants. CONCLUSIONS In this analysis, higher reintubation rates following successful extubation in preterm infants receiving animal-derived surfactant preparations significantly increased estimated in-hospital costs, primarily due to excess costs associated with MV. This analysis suggests that surfactant selection may have a significant pharmacoeconomic impact on cost of patient care. Additional cost assessment of potential reduction in reintubation-associated morbidity is warranted.
Collapse
Affiliation(s)
- Carlos G Guardia
- Centro de Investigación Perinatal, Universidad de Chile, Santiago, Chile ; Discovery Laboratories, Inc., Warrington, Pennsylvania
| | | | | | | | | | | |
Collapse
|
45
|
Garner SS, Cox TH. Lucinactant: New and Approved, But Is It an Improvement? J Pediatr Pharmacol Ther 2012; 17:206-10. [DOI: 10.5863/1551-6776-17.3.206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sandra S. Garner
- Departments of Clinical Pharmacy and Outcome Sciences, South Carolina College of Pharmacy, Charleston, South Carolina
- Departments of Pharmacy, Medical University of South Carolina, Charleston, South Carolina
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Toby H. Cox
- Departments of Clinical Pharmacy and Outcome Sciences, South Carolina College of Pharmacy, Charleston, South Carolina
- Departments of Pharmacy, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
46
|
Waisman D, Faingersh A, Levy C, Colman-Klotzman I, Rotschild A, Lichtenstein O, Landesberg A. Transient decrease in PaCO(2) and asymmetric chest wall dynamics in early progressing pneumothorax. Intensive Care Med 2012. [PMID: 23179332 DOI: 10.1007/s00134-012-2749-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Diagnosis of pneumothorax (PTX) in newborn infants has been reported as late. To explore diagnostic indices for early detection of progressing PTX, and offer explanations for delayed diagnoses. METHODS Progressing PTX was created in rabbits (2.3 ± 0.5 kg, n = 7) by injecting 1 ml/min of air into the pleural space. Hemodynamic parameters, tidal volume, EtCO(2), SpO(2), blood gas analyses and chest wall tidal displacements (TDi) on both sides of the chest were recorded. RESULTS (Mean ± SD): A decrease in SpO(2) below 90 % was detected only after 46.6 ± 11.3 min in six experiments. In contrary to the expected gradual increase of CO(2), there was a prolonged transient decrease of 14.2 ± 4.5 % in EtCO(2) (p < 0.01), and a similar decrease in PaCO(2) (p < 0.025). EtCO(2) returned back to baseline only after 55.2 ± 24.7 min, and continued to rise thereafter. The decrease in CO(2) was a mirror image of the 14.6 ± 5.3 % increase in tidal volume. The analysis of endotracheal flow and pressure dynamics revealed a paradoxical transient increase in the apparent compliance. Significant decrease in mean arterial blood pressure was observed after 46.2 ± 40.1 min. TDi provided the most sensitive and earliest sign of PTX, decreasing on the PTX side after 16.1 ± 7.2 min. The TDi progressively decreased faster and lower on the PTX side, thus enabling detection of asymmetric ventilation. CONCLUSIONS The counterintuitive transient prolonged decrease in CO(2) without changes in SpO(2) may explain the delay in diagnosis of PTX encountered in the clinical environment. An earlier indication of asymmetrically decreased ventilation on the affected side was achieved by monitoring the TDi.
Collapse
Affiliation(s)
- Dan Waisman
- Department of Neonatology, Faculty of Medicine, Carmel Medical Center, 7 Michal St, 34632, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
47
|
A pilot, randomized, controlled clinical trial of lucinactant, a peptide-containing synthetic surfactant, in infants with acute hypoxemic respiratory failure. Pediatr Crit Care Med 2012; 13:646-53. [PMID: 22791092 DOI: 10.1097/pcc.0b013e3182517bec] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Inhibition of surfactant function and abnormal surfactant synthesis lead to surfactant dysfunction in children with acute hypoxemic respiratory failure. We evaluated whether intratracheal lucinactant, a synthetic, peptide-containing surfactant, was safe and well-tolerated in infants with acute hypoxemic respiratory failure, and assessed its effects on clinical outcomes. METHODS AND MAIN RESULTS Infants ≤ 2 yrs of age with acute hypoxemic respiratory failure were enrolled in a phase II, double-blind, multinational, placebo-controlled randomized trial across 36 pediatric intensive care units. Infants requiring mechanical ventilation with persistent hypoxemia meeting acute lung injury criteria were randomized to receive intratracheal lucinactant (175 mg/kg) or air placebo. One retreatment was allowed 12-24 hrs after initial dosing if hypoxemia persisted. Peri-dosing tolerability of intratracheal lucinactant and adverse experiences were assessed. Mechanical ventilation duration was analyzed using analysis of variance. The Cochran-Mantel-Haenszel test was used for categorical variables.We enrolled 165 infants (84 lucinactant; 81 placebo) with acute hypoxemic respiratory failure. There were no significant differences in baseline subject characteristics, with the exception of a lower positive end-expiratory pressure and higher tidal volume in placebo subjects. The incidence of transient peri-dosing bradycardia and desaturation was significantly higher in the lucinactant treatment group. There were no statistical differences between groups for other adverse events or mortality. Oxygenation improved in infants randomized to receive lucinactant as indicated by fewer second treatments (67% lucinactant vs. 81% placebo, p = .02) and a trend in improvement in partial pressure of oxygen in arterial blood to fraction of inspired oxygen from eligibility to 48 hrs after dose (p = .06). There was no significant reduction in duration of mechanical ventilation with lucinactant (geometric least square means: 4.0 days lucinactant vs. 4.5 days placebo; p = .254). In a subset of infants (n = 22), the duration of mechanical ventilation in children with acute lung injury (partial pressure of oxygen in arterial blood to fraction of inspired oxygen >200) was significantly shorter with lucinactant (least square means: 2.4 days lucinactant vs. 4.3 days placebo; p = .006). CONCLUSIONS In mechanically ventilated infants with acute hypoxemic respiratory failure, treatment with intratracheal lucinactant appeared to be generally safe. An improvement in oxygenation and a significantly reduced requirement for retreatment suggests that lucinactant might improve lung function in infants with acute hypoxemic respiratory failure.
Collapse
|
48
|
Buck D, McColl E, Powell CJ, Shen J, Sloper J, Steen N, Taylor R, Tiffin P, Vale L, Clarke MP. Surgery versus Active Monitoring in Intermittent Exotropia (SamExo): study protocol for a pilot randomised controlled trial. Trials 2012; 13:192. [PMID: 23072556 PMCID: PMC3521171 DOI: 10.1186/1745-6215-13-192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Childhood intermittent exotropia [X(T)] is a type of strabismus (squint) in which one eye deviates outward at times, usually when the child is tired. It may progress to a permanent squint, loss of stereovision and/or amblyopia (reduced vision). Treatment options for X(T) include eye patches, glasses, surgery and active monitoring. There is no consensus regarding how this condition should be managed, and even when surgery is the preferred option clinicians disagree as to the optimal timing. Reports on the natural history of X(T) are limited, and there is no randomised controlled trial (RCT) evidence on the effectiveness or efficiency of surgery compared with active monitoring. The SamExo (Surgery versus Active Monitoring in Intermittent Exotropia) pilot study has been designed to test the feasibility of such a trial in the UK. METHODS DESIGN an external pilot patient randomised controlled trial. SETTING four UK secondary ophthalmology care facilities at Newcastle NHS Hospitals Foundation Trust, Sunderland Eye Infirmary, Moorfields Eye Hospital and York NHS Trust. PARTICIPANTS children aged between 6 months and 16 years referred with suspected and subsequently diagnosed X(T). Recruitment target is a total of 144 children over a 9-month period, with 120 retained by 9-month outcome visit.Randomisation: permuted blocks stratified by collaborating centre, age and severity of X(T). INTERVENTIONS initial clinical assessment; randomisation (eye muscle surgery or active monitoring); 3-, 6- and 9-month (primary outcome) clinical assessments; participant/proxy completed questionnaire covering time and travel costs, health services use and quality of life (Intermittent Exotropia Questionnaire); qualitative interviews with parents to establish reasons for agreeing or declining participation in the pilot trial. OUTCOMES recruitment and retention rates; nature and extent of participation bias; nature and extent of biases arising from crossover or loss to follow-up; reasons for agreeing/declining participation; variability of cure rates (to inform power calculations for a definitive RCT); completion rates of outcome measures. DISCUSSION The SamExo pilot trial will provide important pointers regarding the feasibility of a full RCT of immediate surgery versus deferred surgery/active monitoring. The results of this pilot, including differences in cure rates, will inform the design of a definitive RCT. TRIAL REGISTRATION ISRCTN44114892.
Collapse
Affiliation(s)
- Deborah Buck
- Institute of Neuroscience, c/o Clinical Trials Unit, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Elaine McColl
- Institute of Health & Society, Baddiley-Clark Building, Newcastle University, Newcastle upon Tyne, UK
| | - Christine J Powell
- Royal Victoria Infirmary Eye Department, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Jing Shen
- Institute of Health & Society, Baddiley-Clark Building, Newcastle University, Newcastle upon Tyne, UK
| | | | - Nick Steen
- Institute of Health & Society, Baddiley-Clark Building, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Luke Vale
- Institute of Health & Society, Baddiley-Clark Building, Newcastle University, Newcastle upon Tyne, UK
| | - Michael P Clarke
- Royal Victoria Infirmary Eye Department, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Wolfson MR, Wu J, Hubert TL, Gregory TJ, Mazela J, Shaffer TH. Lucinactant attenuates pulmonary inflammatory response, preserves lung structure, and improves physiologic outcomes in a preterm lamb model of RDS. Pediatr Res 2012; 72:375-83. [PMID: 22821059 PMCID: PMC3888789 DOI: 10.1038/pr.2012.96] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Acute inflammatory responses to supplemental oxygen and mechanical ventilation have been implicated in the pathophysiological sequelae of respiratory distress syndrome (RDS). Although surfactant replacement therapy (SRT) has contributed to lung stability, the effect on lung inflammation is inconclusive. Lucinactant contains sinapultide (KL4), a novel synthetic peptide that functionally mimics surfactant protein B, a protein with anti-inflammatory properties. We tested the hypothesis that lucinactant may modulate lung inflammatory response to mechanical ventilation in the management of RDS and may confer greater protection than animal-derived surfactants. METHODS Preterm lambs (126.8 ± 0.2 SD d gestation) were randomized to receive lucinactant, poractant alfa, beractant, or no surfactant and studied for 4 h. Gas exchange and pulmonary function were assessed serially. Lung inflammation biomarkers and lung histology were assessed at termination. RESULTS SRT improved lung compliance relative to no SRT without significant difference between SRT groups. Lucinactant attenuated lung and systemic inflammatory response, supported oxygenation at lower ventilatory requirements, and preserved lung structural integrity to a greater degree than either no SRT or SRT with poractant alfa or beractant. CONCLUSION These data suggest that early intervention with lucinactant may more effectively mitigate pulmonary pathophysiological sequelae of RDS than the animal-derived surfactants poractant alfa or beractant.
Collapse
Affiliation(s)
- Marla R. Wolfson
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania,Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania,Departments of Pediatrics, Temple University School of Medicine, Philadelphia, Pennsylvania,Center for Inflammation, Translational, and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jichuan Wu
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania,Center for Inflammation, Translational, and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Terrence L. Hubert
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | | | - Jan Mazela
- Discovery Laboratories, Inc., Warrington, Pennsylvania,Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas H. Shaffer
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania,Departments of Pediatrics, Temple University School of Medicine, Philadelphia, Pennsylvania,Center For Pediatric Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware
| |
Collapse
|
50
|
Cada DJ, Demaris K, Levien TL, Baker DE. Lucinactant. Hosp Pharm 2012. [DOI: 10.1310/hpj4710-788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are sent in print and are also available on-line. Monographs can be customized to meet the needs of a facility. Subscribers to The Formulary Monograph Service also receive access to a pharmacy bulletin board, The Formulary Information Exchange (The F.I.X.). All topics pertinent to clinical and hospital pharmacy are discussed on The F.I.X. A drug class review is now published monthly with The Formulary Monograph Service. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service or The F.I.X., call The Formulary at 800-322-4349. The October 2012 monograph topics are on aclidinium bromide, carfilzomib, phentermine/topiramate, lixisenatide, and odanacatib. The DUE/MUE is on aclidinium bromide.
Collapse
Affiliation(s)
- Dennis J. Cada
- Department of Pharmacotherapy, College of Pharmacy, Washington State University, Spokane, Washington
| | - Kendra Demaris
- Department of Pharmacotherapy, College of Pharmacy, Washington State University, Spokane, Washington
| | - Terri L. Levien
- Drug Information Center, Washington State University, Spokane, Washington
| | - Danial E. Baker
- Drug Information Center, and College of Pharmacy, Washington State University Spokane, PO Box 1495, Spokane, Washington 99210–1495
| |
Collapse
|