1
|
Murofushi Y, Ochiai K, Yasukochi M, Sano K, Ichimoto K, Murayama K, Okazaki Y, Omata T, Takanashi JI. Increased ketone levels as a key magnetic resonance spectroscopic findings during acute exacerbation in ECHS1-related Leigh syndrome. Radiol Case Rep 2024; 19:6292-6296. [PMID: 39387038 PMCID: PMC11461927 DOI: 10.1016/j.radcr.2024.08.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Short-chain enoyl-CoA hydratase, encoded by ECHS1, plays a major role in the valine catabolic pathway and mitochondrial fatty acid β-oxidation. Deficiency of this enzyme causes Leigh syndrome. Herein, we report a case of ECHS1-related Leigh syndrome with a prominent ketone body spectrum on magnetic resonance spectroscopy during acute exacerbation. A 6-month-old boy with mild motor developmental delay presented with disturbances of consciousness and hypercapnia without prior infection or feeding failure. Upon admission, investigations revealed prominent ketosis and elevated 2,3-dihydroxy-2-methylbutyric acid excretion. Brain magnetic resonance imaging revealed symmetrical T2 prolongation with restricted diffusion in the basal ganglia. Magnetic resonance spectroscopy showed a prominent ketone body spectrum in the cerebral white matter, and prominent ketone bodies, elevated lactate and markedly decreased N-acetylaspartate levels in the basal ganglia. Genetic analysis identified compound heterozygous variants of ECHS1. Short-chain enoyl-CoA hydratase deficiency is a disease for which a valine-restricted diet is reported to be beneficial, and early diagnosis is desirable. Severe ketosis and the ketone body magnetic resonance spectroscopy spectrum during acute exacerbation may aid in the diagnosis of this disease.
Collapse
Affiliation(s)
- Yuka Murofushi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo, Chiba 276-8524, Japan
| | - Kenta Ochiai
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo, Chiba 276-8524, Japan
| | - Madoka Yasukochi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo, Chiba 276-8524, Japan
| | - Kentaro Sano
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo, Chiba 276-8524, Japan
| | - Keiko Ichimoto
- Department of Metabolism, Center for Medical Genetics, Chiba Children's Hospital, 579-1 Henda-cho, Midori-ku, Chiba 266-0007, Japan
| | - Kei Murayama
- Department of Metabolism, Center for Medical Genetics, Chiba Children's Hospital, 579-1 Henda-cho, Midori-ku, Chiba 266-0007, Japan
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1-B7, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1-B7, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Taku Omata
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo, Chiba 276-8524, Japan
| | - Jun-ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo, Chiba 276-8524, Japan
| |
Collapse
|
2
|
Guo Y, Zhu X, Li J, Zhu B, Ye Y, Peng X. Amide proton transfer and apparent diffusion coefficient analysis reveal susceptibility of brain regions to neonatal hypoxic-ischemic encephalopathy. Heliyon 2024; 10:e38062. [PMID: 39347396 PMCID: PMC11437946 DOI: 10.1016/j.heliyon.2024.e38062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose To identify brain regions affected by Hypoxic-Ischemic Encephalopathy (HIE) in neonates using Amide Proton Transfer (APT) imaging and Apparent Diffusion Coefficient (ADC). Materials and methods Twenty neonates were divided into HIE and control groups. All neonates were undergoing MRI, including APT and DWI. Imaging analysis was performed using SPM12. The independent-samples t-test was used to analyze the difference in APTw values and ADC values between the mild HIE neonates and the control group. The receiver operating characteristic (ROC) curves were established to assess the diagnostic values of APTw and ADC values in different brain regions for HIE. Pearson's correlation analysis was used to analyze the correlation between APTw values and ADC values for each region. Results APTw values were significantly higher in 26 regions of the HIE group. ADC values were lower in the right anterior temporal lobe and higher in bilateral Subthalamic nucleus in HIE. The APTw values of 22 regions showed very high area under the curve (AUC), whereas the AUC of ADC values in right anterior temporal lobe and right subthalamic nucleus were both 0.802. Notably, the right anterior temporal lobe exhibited significant differences in both APTw and ADC values between the HIE and control groups, additionally, APTw value was significant positive correlated with ADC values in right anterior temporal lobe. Conclusion APTw and ADC are effective in detecting HIE, with APTw being more sensitive. The right anterior temporal lobe is particularly affected by HIE, with significant changes in APTw and ADC values and a positive correlation between them. This suggests that temporal lobe damage may be critical in the long-term neurological consequences of HIE.
Collapse
Affiliation(s)
- Yu Guo
- Department of Radiology, Wuhan Children's Hospital(Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, China
- Wuhan Clinical Research Center for Children's Medical Imaging, China
| | - Xiaohu Zhu
- Department of Radiology, Wuhan Children's Hospital(Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, China
- Wuhan Clinical Research Center for Children's Medical Imaging, China
| | - Jian Li
- Department of Radiology, Wuhan Children's Hospital(Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, China
- Wuhan Clinical Research Center for Children's Medical Imaging, China
| | - Baiqi Zhu
- Department of Radiology, Wuhan Children's Hospital(Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, China
- Wuhan Clinical Research Center for Children's Medical Imaging, China
| | - Yajing Ye
- Department of Radiology, Wuhan Children's Hospital(Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, China
- Wuhan Clinical Research Center for Children's Medical Imaging, China
| | - Xuehua Peng
- Department of Radiology, Wuhan Children's Hospital(Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, China
- Wuhan Clinical Research Center for Children's Medical Imaging, China
| |
Collapse
|
3
|
Berja ED, Kwon H, Walsh KG, Bates SV, Kramer MA, Chu CJ. Infant sleep spindle measures from EEG improve prediction of cerebral palsy. Clin Neurophysiol 2024; 167:51-60. [PMID: 39278086 DOI: 10.1016/j.clinph.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/25/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Early identification of infants at risk of cerebral palsy (CP) enables interventions to optimize outcomes. Central sleep spindles reflect thalamocortical sensorimotor circuit function. We hypothesized that abnormal infant central spindle activity would predict later contralateral CP. METHODS We trained and validated an automated detector to measure spindle rate, duration, and percentage from central electroencephalogram (EEG) channels in high-risk infants (n = 35) and age-matched controls (n = 42). Neonatal magnetic resonance imaging (MRI) findings, infant motor exam, and CP outcomes were obtained from chart review. Using univariable and multivariable logistic regression models, we examined whether spindle activity, MRI abnormalities, and/or motor exam predicted future contralateral CP. RESULTS The detector had excellent performance (F1 = 0.50). Spindle rate (p = 0.005, p = 0.0004), duration (p < 0.001, p < 0.001), and percentage (p < 0.001, p < 0.001) were decreased in hemispheres corresponding to future CP compared to those without. In this cohort, PLIC abnormality (p = 0.004) and any MRI abnormality (p = 0.004) also predicted subsequent CP. After controlling for MRI findings, spindle features remained significant predictors and improved model fit (p < 0.001, all tests). Using both spindle duration and MRI findings had highest accuracy to classify hemispheres corresponding to future CP (F1 = 0.98, AUC 0.999). CONCLUSION Decreased central spindle activity improves the prediction of future CP in high-risk infants beyond early MRI or clinical exam alone. SIGNIFICANCE Decreased central spindle activity provides an early biomarker for CP.
Collapse
Affiliation(s)
- Erin D Berja
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Katherine G Walsh
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Sara V Bates
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Mark A Kramer
- Department of Mathematics and Statistics and Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
4
|
Bitar L, Stonestreet BS, Chalak LF. Key Inflammatory Biomarkers in Perinatal Asphyxia: A Comprehensive Review. Clin Perinatol 2024; 51:617-628. [PMID: 39095100 DOI: 10.1016/j.clp.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
This article summarizes the current evidence regarding inflammatory biomarkers (placental and postnatal) and provides a comprehensive understanding of their roles: (1) diagnostic accuracy to predict the severity of hypoxic-ischemia encephalopathy (HIE), (2) value in assessing treatment responses, and (3) prediction of both short- and long-term neurodevelopmental outcomes. In the early critical stages of perinatal asphyxia, inflammatory biomarkers may guide clinical decision-making. Additional research is required to increase our understanding of the optimal utility of biomarkers to predict the severity, evolution, and developmental outcomes after exposure to HIE.
Collapse
Affiliation(s)
- Lynn Bitar
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island; The Alpert Medical School of Brown University, Barrington, RI 02806, USA
| | - Lina F Chalak
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
5
|
Raghu K, Kalish BT, Tam EWY, El Shahed A, Chau V, Wilson D, Tung S, Kazazian V, Miran AA, Hahn C, Branson HM, Ly LG, Cizmeci MN. Prognostic Indicators of Reorientation of Care in Perinatal Hypoxic-Ischemic Encephalopathy Spectrum. J Pediatr 2024; 276:114273. [PMID: 39216619 DOI: 10.1016/j.jpeds.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To investigate the clinical, electrographic, and neuroimaging characteristics in neonates with perinatal hypoxic-ischemic encephalopathy who underwent reorientation of care using standardized scoring systems. STUDY DESIGN A nested observational substudy within a prospective hypoxic-ischemic encephalopathy cohort was conducted. Group 1 comprised infants whose parents received the medical recommendation for reorientation of care, while group 2 continued to receive standard care. Encephalopathy scores were monitored daily. Amplitude-integrated and continuous-video-integrated electroencephalogram during therapeutic hypothermia were analyzed. Standardized scoring systems for cranial ultrasonography and postrewarming brain magnetic resonance imaging were deployed. RESULTS The study included 165 infants, with 35 in group 1 and 130 in Group 2. By day 3, all infants in group 1 were encephalopathic with higher Thompson scores (median 13 [IQR 10-19] vs 0 [IQR 0-3], P < .001). Electrographic background normalization within 48 hours occurred in 3% of group 1 compared with 46% of group 2 (P < .001). Sleep-wake cycling was not observed in group 1 and emerged in 63% of group 2 within the first 72 hours (P < .001). The number of antiseizure medications received was higher in group 1 (median 3 [IQR, 2-4] vs 0 [IQR, 0-1], respectively; P < .001). Group 1 had higher cranial ultrasound injury scores (median 4 [IQR 2-7] vs 1 [IQR 0-1], P < .001) within 48 hours and postrewarming brain magnetic resonance imaging injury scores (median 33 [range 20-51] vs 4 [range 0-28], P < .001). CONCLUSIONS Neonates with perinatal hypoxic-ischemic encephalopathy who underwent reorientation of care presented with and maintained significantly more pronounced clinical manifestations, electrographic findings, and near-total brain injury as scored objectively on all modalities. TRIAL REGISTRATION Registration of the study cohort: NCT04913324.
Collapse
Affiliation(s)
- Krishna Raghu
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Brian T Kalish
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Emily W Y Tam
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Amr El Shahed
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vann Chau
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Diane Wilson
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Sandra Tung
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vanna Kazazian
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Atiyeh A Miran
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Cecil Hahn
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Helen M Branson
- Division of Radiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Linh G Ly
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mehmet N Cizmeci
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
G S G, Yeli RK, Nimbal V, S B D, Kumar M P. Early Morbidities of Hypoxia-Ischemic Encephalopathy in Term Neonates With a Resistive Index as a Prognostic Indicator. Cureus 2024; 16:e61936. [PMID: 38978884 PMCID: PMC11230602 DOI: 10.7759/cureus.61936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Background Acidosis, hypoxemia, and hypercarbia are symptoms of a syndrome known as perinatal asphyxia that occurs during the first and second stages of labor and shortly after delivery due to poor gas exchange. The Doppler technique is a non-invasive way to assess the risk of neurodevelopment damage in hypoxic-ischemic encephalopathy (HIE) that may be done at the patient's bedside without disturbing them. The study aims to evaluate cranial ultrasound findings in HIE and investigate the role of resistive index (RI) values assessed by color Doppler transcranial ultrasonography in predicting early morbidities in neonates with HIE within 72 hours of life. Methodology Prospective observational research was carried out at the north Karnataka region's tertiary newborn critical care unit. The study included 54 infants with HIE in total. The male-to-female ratio was 1.7:1, with 34 (63%) male and 20 (37%) female newborns. Results About 32 instances had grade I HIE, 8 had grade II HIE, and 14 had grade III HIE. In 35 instances (64.81%), the RI was normal; in 19 cases (35.19%), it was abnormal. Increased periventricular density and cerebral parenchyma echo density were common Doppler ultrasonography findings. Roughly 93% of people survived, and 7% of people died from HIE. Seizures (12.96%) and acute renal damage (33.33%) were the most frequent consequences. Conclusion In instances of HIE, the RI was revealed to be a favorable predictive indicator for newborn prognosis. Counseling and educating parents about early morbidities, anticipated long-term consequences, and the need for follow-up will all benefit from it. Additionally, color Doppler is a practical and secure diagnostic method for determining a newborn's level of HIE.
Collapse
Affiliation(s)
- Gowthami G S
- Department of Pediatrics, Al-Ameen Medical College and Research Center, Vijayapura, IND
| | - Ravi Kumar Yeli
- Department of Radiology, Bijapur Lingayat District Educational (BLDE) (Deemed to Be University), Shri B M Patil Medical College Hospital and Research Centre, Vijayapura, IND
| | - Vishal Nimbal
- Department of Radiodiagnosis, Bijapur Lingayat District Educational (BLDE) (Deemed to Be University), Shri B M Patil Medical College Hospital and Research Centre, Vijayapura, IND
| | - Dhanya S B
- Department of Radiology, Jagadguru Sri Shivarathreeshwara (JSS) Medical College, Mysore, IND
| | - Praveen Kumar M
- Department of Radiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Mysore, IND
| |
Collapse
|
7
|
Fan L, Feng L, Gan J, Luo R, Qu H, Chen X. Clinical characteristics of cystic encephalomalacia in children. Front Pediatr 2024; 12:1280489. [PMID: 38840803 PMCID: PMC11150847 DOI: 10.3389/fped.2024.1280489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose To investigate the primary causes and clinical characteristics of cystic encephalomalacia (CE) in children. Methods The clinical data of 50 children who were admitted to our hospital due to CE between January 2008 and December 2020 were retrospectively reviewed. Their primary causes, clinical manifestations and cranial magnetic resonance imaging features were analyzed. Results Among all patients, 5 had prematurity, 19 had hypoxic-ischemic encephalopathy (HIE), 13 had intracranial infection, 14 had traumatic brain injury and hemorrhage, 4 had cerebral infarction, 2 had congenital genetic diseases, and 1 had hypoglycemia. The average time from primary disease onset to CE diagnosis was 70.1 ± 61.0 days. The clinical manifestations included speech or motor developmental delay (n = 33), epilepsy (n = 31), dystonia (n = 27), limb paralysis (n = 16), and visual or auditory impairment (n = 5). Patients with HIE as the primary cause of CE had a significantly higher occurrence of dystonia, while a significantly higher incidence of paralysis was observed in those with cerebral infarction as the primary cause. Conclusion CE in children is mainly caused by HIE, intracranial infection, and cerebral hemorrhage. The major clinical manifestations included speech or motor developmental delay, epilepsy, and dystonia. Magnetic resonance imaging is an important tool for the diagnosis of CE.
Collapse
Affiliation(s)
- Lijuan Fan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Lianying Feng
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Haibo Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaolu Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Montaldo P, Cirillo M, Burgod C, Caredda E, Ascione S, Carpentieri M, Puzone S, D’Amico A, Garegrat R, Lanza M, Moreno Morales M, Atreja G, Shivamurthappa V, Kariholu U, Aladangady N, Fleming P, Mathews A, Palanisami B, Windrow J, Harvey K, Soe A, Pattnayak S, Sashikumar P, Harigopal S, Pressler R, Wilson M, De Vita E, Shankaran S, Thayyil S. Whole-Body Hypothermia vs Targeted Normothermia for Neonates With Mild Encephalopathy: A Multicenter Pilot Randomized Clinical Trial. JAMA Netw Open 2024; 7:e249119. [PMID: 38709535 PMCID: PMC11074808 DOI: 10.1001/jamanetworkopen.2024.9119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 05/07/2024] Open
Abstract
Importance Although whole-body hypothermia is widely used after mild neonatal hypoxic-ischemic encephalopathy (HIE), safety and efficacy have not been evaluated in randomized clinical trials (RCTs), to our knowledge. Objective To examine the effect of 48 and 72 hours of whole-body hypothermia after mild HIE on cerebral magnetic resonance (MR) biomarkers. Design, Setting, and Participants This open-label, 3-arm RCT was conducted between October 31, 2019, and April 28, 2023, with masked outcome analysis. Participants were neonates at 6 tertiary neonatal intensive care units in the UK and Italy born at or after 36 weeks' gestation with severe birth acidosis, requiring continued resuscitation, or with an Apgar score less than 6 at 10 minutes after birth and with evidence of mild HIE on modified Sarnat staging. Statistical analysis was per intention to treat. Interventions Random allocation to 1 of 3 groups (1:1:1) based on age: neonates younger than 6 hours were randomized to normothermia or 72-hour hypothermia (33.5 °C), and those 6 hours or older and already receiving whole-body hypothermia were randomized to rewarming after 48 or 72 hours of hypothermia. Main Outcomes and Measures Thalamic N-acetyl aspartate (NAA) concentration (mmol/kg wet weight), assessed by cerebral MR imaging and thalamic spectroscopy between 4 and 7 days after birth using harmonized sequences. Results Of 225 eligible neonates, 101 were recruited (54 males [53.5%]); 48 (47.5%) were younger than 6 hours and 53 (52.5%) were 6 hours or older at randomization. Mean (SD) gestational age and birth weight were 39.5 (1.1) weeks and 3378 (380) grams in the normothermia group (n = 34), 38.7 (0.5) weeks and 3017 (338) grams in the 48-hour hypothermia group (n = 31), and 39.0 (1.1) weeks and 3293 (252) grams in the 72-hour hypothermia group (n = 36). More neonates in the 48-hour (14 of 31 [45.2%]) and 72-hour (13 of 36 [36.1%]) groups required intubation at birth than in the normothermic group (3 of 34 [8.8%]). Ninety-nine neonates (98.0%) had MR imaging data and 87 (86.1%), NAA data. Injury scores on conventional MR biomarkers were similar across groups. The mean (SD) NAA level in the normothermia group was 10.98 (0.92) mmol/kg wet weight vs 8.36 (1.23) mmol/kg wet weight (mean difference [MD], -2.62 [95% CI, -3.34 to -1.89] mmol/kg wet weight) in the 48-hour and 9.02 (1.79) mmol/kg wet weight (MD, -1.96 [95% CI, -2.66 to -1.26] mmol/kg wet weight) in the 72-hour hypothermia group. Seizures occurred beyond 6 hours after birth in 4 neonates: 1 (2.9%) in the normothermia group, 1 (3.2%) in the 48-hour hypothermia group, and 2 (5.6%) in the 72-hour hypothermia group. Conclusions and Relevance In this pilot RCT, whole-body hypothermia did not improve cerebral MR biomarkers after mild HIE, although neonates in the hypothermia groups were sicker at baseline. Safety and efficacy of whole-body hypothermia should be evaluated in RCTs. Trial Registration ClinicalTrials.gov Identifier: NCT03409770.
Collapse
Affiliation(s)
- Paolo Montaldo
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- Department of Woman, Child, and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, MRI Research Center, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Constance Burgod
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Elisabetta Caredda
- Department of Woman, Child, and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Serena Ascione
- Department of Woman, Child, and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Mauro Carpentieri
- Department of Woman, Child, and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Simona Puzone
- Department of Woman, Child, and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | | | - Reema Garegrat
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Marianna Lanza
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Maria Moreno Morales
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Gaurav Atreja
- Neonatal Unit, Imperial Health Care NHS Trust, London, United Kingdom
| | | | - Ujwal Kariholu
- Neonatal Unit, Imperial Health Care NHS Trust, London, United Kingdom
| | - Narendra Aladangady
- Neonatal Unit, Homerton Healthcare NHS Foundation Trust, London, United Kingdom
- Centre for Paediatrics, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul Fleming
- Neonatal Unit, Homerton Healthcare NHS Foundation Trust, London, United Kingdom
- Centre for Paediatrics, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Asha Mathews
- Neonatal Unit, Homerton Healthcare NHS Foundation Trust, London, United Kingdom
| | | | - Joanne Windrow
- Liverpool Women’s NHS Foundation Trust, Liverpool, United Kingdom
| | - Karen Harvey
- Liverpool Women’s NHS Foundation Trust, Liverpool, United Kingdom
| | - Aung Soe
- Oliver Fisher Neonatal Intensive Care Unit, Medway Maritime Hospital, Medway NHS Foundation Trust, Kent, United Kingdom
| | - Santosh Pattnayak
- Oliver Fisher Neonatal Intensive Care Unit, Medway Maritime Hospital, Medway NHS Foundation Trust, Kent, United Kingdom
| | - Palaniappan Sashikumar
- Oliver Fisher Neonatal Intensive Care Unit, Medway Maritime Hospital, Medway NHS Foundation Trust, Kent, United Kingdom
| | - Sundeep Harigopal
- Neonatal Medicine, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Ronit Pressler
- Department of Neurophysiology, Great Ormond Street Hospital, London, United Kingdom
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Enrico De Vita
- MRI Physics, Radiology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Seetha Shankaran
- Department of Neonatal-Perinatal Medicine, Wayne State University, Detroit, Michigan
- Department of Pediatrics, The University of Texas at Austin, Dell Children’s Hospital, Austin, Texas
| | - Sudhin Thayyil
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Christensen R, de Vries LS, Cizmeci MN. Neuroimaging to guide neuroprognostication in the neonatal intensive care unit. Curr Opin Pediatr 2024; 36:190-197. [PMID: 37800448 DOI: 10.1097/mop.0000000000001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Neurological problems are common in infants admitted to the neonatal intensive care unit (NICU). Various neuroimaging modalities are available for neonatal brain imaging and are selected based on presenting problem, timing and patient stability. RECENT FINDINGS Neuroimaging findings, taken together with clinical factors and serial neurological examination can be used to predict future neurodevelopmental outcomes. In this narrative review, we discuss neonatal neuroimaging modalities, and how these can be optimally utilized to assess infants in the NICU. We will review common patterns of brain injury and neurodevelopmental outcomes in hypoxic-ischemic encephalopathy, perinatal arterial ischemic stroke and preterm brain injury. SUMMARY Timely and accurate neuroprognostication can identify infants at risk for neurodevelopmental impairment and allow for early intervention and targeted therapies to improve outcomes.
Collapse
Affiliation(s)
- Rhandi Christensen
- Division of Neurology, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Linda S de Vries
- Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mehmet N Cizmeci
- Division of Neonatology, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Alonso-Alconada D, Gressens P, Golay X, Robertson NJ. Therapeutic hypothermia modulates the neurogenic response of the newborn piglet subventricular zone after hypoxia-ischemia. Pediatr Res 2024; 95:112-119. [PMID: 37573381 PMCID: PMC10798892 DOI: 10.1038/s41390-023-02751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. To investigate the neurogenic response to hypoxia-ischemia (HI) followed by normothermia (38.5 °C) or three different hypothermic temperatures (35, 33.5, or 30 °C) in the subventricular zone (SVZ) of the neonatal piglet. METHODS Following transient cerebral HI and resuscitation, 28 newborn piglets were randomized to: normothermia or whole-body cooling to 35 °C, 33.5 °C, or 30 °C during 2-26 h (all n = 7). At 48 h, piglets were euthanized and SVZ obtained to evaluate its cellularity, pattern of cell death, radial glia length, doublecortin (DCX, neuroblasts) expression, and Ki67 (cell proliferation) and Ki67/Sox2 (neural stem/progenitor dividing) cell counts. RESULTS Normothermic piglets showed lower total (Ki67+) and neural stem/progenitor dividing (Ki67+Sox2+) cell counts when compared to hypothermic groups. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and DCX immunohistochemistry. Cooling to 30 °C, however, revealed decreased cellularity in the lateral SVZ and shorter radial glia processes when compared with 33.5 °C. CONCLUSIONS In a neonatal piglet model, hypothermia to 33.5 °C modulates the neurogenic response of the SVZ after HI, highlighting the potential beneficial effect of hypothermia to 33.5 °C on endogenous neurogenesis and the detrimental effect of overcooling beyond this threshold. IMPACT Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. Hypothermia may modulate neurogenesis in the subventricular zone (SVZ) of the neonatal hypoxic-ischemic piglet. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and doublecortin immunohistochemistry; cooling to 30 °C, however, revealed decreased cellularity and shorter radial glia processes. In a neonatal piglet model, therapeutic hypothermia (33.5 °C) modulates the neurogenic response of the SVZ after hypoxia-ischemia, highlighting also the detrimental effect of overcooling beyond this threshold.
Collapse
Affiliation(s)
- Daniel Alonso-Alconada
- Department of Cell Biology & Histology, School of Medicine & Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain.
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.
- Edinburgh Neuroscience & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB*, UK.
| |
Collapse
|
11
|
Martínez-Orgado J, Martínez-Vega M, Silva L, Romero A, de Hoz-Rivera M, Villa M, del Pozo A. Protein Carbonylation as a Biomarker of Oxidative Stress and a Therapeutic Target in Neonatal Brain Damage. Antioxidants (Basel) 2023; 12:1839. [PMID: 37891918 PMCID: PMC10603858 DOI: 10.3390/antiox12101839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress (OS) constitutes a pivotal factor within the mechanisms underlying brain damage, for which the immature brain is particularly vulnerable. This vulnerability is caused by the abundance of immature oligodendrocytes in the immature brain, which are highly susceptible to OS-induced harm. Consequently, any injurious process involving OS within the immature brain can lead to long-term myelination impairment. Among the detrimental repercussions of OS, protein carbonylation stands out as a prominently deleterious consequence. Noteworthy elevation of protein carbonylation is observable across diverse models of neonatal brain injury, following both diffuse and focal hypoxic-ischemic insults, as well as intraventricular hemorrhage, in diverse animal species encompassing rodents and larger mammals, and at varying stages of brain development. In the immature brain, protein carbonylation manifests as a byproduct of reactive nitrogen species, bearing profound implications for cell injury, particularly in terms of inflammation amplification. Moreover, protein carbonylation appears as a therapeutic target for mitigating neonatal brain damage. The administration of a potent antioxidant, such as cannabidiol, yields substantial neuroprotective effects. These encompass the reduction in cerebral damage, restoration of neurobehavioral performance, and preservation of physiological myelination. Such effects are linked to the modulation of protein carbonylation. The assessment of protein carbonylation emerges as a reliable method for comprehending the intricate mechanisms underpinning damage and neuroprotection within neonatal brain injury.
Collapse
Affiliation(s)
- José Martínez-Orgado
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
- Department of Neonatology, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain
| | - María Martínez-Vega
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - Laura Silva
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - Angela Romero
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - María de Hoz-Rivera
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - María Villa
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| | - Aarón del Pozo
- Biomedical Research Foundation, Hospital Clínico San Carlos—IdISSC, 28040 Madrid, Spain; (M.M.-V.); (L.S.); (A.R.); (M.d.H.-R.); (M.V.); (A.d.P.)
| |
Collapse
|
12
|
Wu YW, Monsell SE, Glass HC, Wisnowski JL, Mathur AM, McKinstry RC, Bluml S, Gonzalez FF, Comstock BA, Heagerty PJ, Juul SE. How well does neonatal neuroimaging correlate with neurodevelopmental outcomes in infants with hypoxic-ischemic encephalopathy? Pediatr Res 2023; 94:1018-1025. [PMID: 36859442 PMCID: PMC10444609 DOI: 10.1038/s41390-023-02510-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND In newborns with hypoxic-ischemic encephalopathy (HIE), the correlation between neonatal neuroimaging and the degree of neurodevelopmental impairment (NDI) is unclear. METHODS Infants with HIE enrolled in a randomized controlled trial underwent neonatal MRI/MR spectroscopy (MRS) using a harmonized protocol at 4-6 days of age. The severity of brain injury was measured with a validated scoring system. Using proportional odds regression, we calculated adjusted odds ratios (aOR) for the associations between MRI/MRS measures of injury and primary ordinal outcome (i.e., normal, mild NDI, moderate NDI, severe NDI, or death) at age 2 years. RESULTS Of 451 infants with MRI/MRS at a median age of 5 days (IQR 4.5-5.8), outcomes were normal (51%); mild (12%), moderate (14%), severe NDI (13%); or death (9%). MRI injury score (aOR 1.06, 95% CI 1.05, 1.07), severe brain injury (aOR 39.6, 95% CI 16.4, 95.6), and MRS lactate/n-acetylaspartate (NAA) ratio (aOR 1.6, 95% CI 1.4,1.8) were associated with worse primary outcomes. Infants with mild/moderate MRI brain injury had similar BSID-III cognitive, language, and motor scores as infants with no injury. CONCLUSION In the absence of severe injury, brain MRI/MRS does not accurately discriminate the degree of NDI. Given diagnostic uncertainty, families need to be counseled regarding a range of possible neurodevelopmental outcomes. IMPACT Half of all infants with hypoxic-ischemic encephalopathy (HIE) enrolled in a large clinical trial either died or had neurodevelopmental impairment at age 2 years despite receiving therapeutic hypothermia. Severe brain injury and a global pattern of brain injury on MRI were both strongly associated with death or neurodevelopmental impairment. Infants with mild or moderate brain injury had similar mean BSID-III cognitive, language, and motor scores as infants with no brain injury on MRI. Given the prognostic uncertainty of brain MRI among infants with less severe degrees of brain injury, families should be counseled regarding a range of possible neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Sarah E Monsell
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Hannah C Glass
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology, University of California San Francisco, San Francisco, CA, USA
| | - Jessica L Wisnowski
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Amit M Mathur
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington Univ School of Medicine, St. Louis, MO, USA
| | - Stefan Bluml
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, University of Southern CA Keck School of Medicine, Los Angeles, CA, USA
| | - Fernando F Gonzalez
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Bryan A Comstock
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Sandra E Juul
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
13
|
Zhuang X, Jin K, Lin H, Li J, Yin Y, Dong X. Can radiomics be used to detect hypoxic-ischemic encephalopathy in neonates without magnetic resonance imaging abnormalities? Pediatr Radiol 2023; 53:1927-1940. [PMID: 37183229 PMCID: PMC10421781 DOI: 10.1007/s00247-023-05680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND No study has assessed normal magnetic resonance imaging (MRI) findings to predict potential brain injury in neonates with hypoxic-ischemic encephalopathy (HIE). OBJECTIVE We aimed to evaluate the efficacy of MRI-based radiomics models of the basal ganglia, thalami and deep medullary veins to differentiate between HIE and the absence of MRI abnormalities in neonates. MATERIALS AND METHODS In this study, we included 38 full-term neonates with HIE and normal MRI findings and 89 normal neonates. Radiomics features were extracted from T1-weighted images, T2-weighted images, diffusion-weighted imaging and susceptibility-weighted imaging (SWI). The different models were evaluated using receiver operating characteristic curve analysis. Clinical utility was evaluated using decision curve analysis. RESULTS The SWI model exhibited the best performance among the seven single-sequence models. For the training and validation cohorts, the area under the curves (AUCs) of the SWI model were 1.00 and 0.98, respectively. The combined nomogram model incorporating SWI Rad-scores and independent predictors of clinical characteristics was not able to distinguish HIE in patients without MRI abnormalities from the control group (AUC, 1.00). A high degree of fitting and favorable clinical utility was detected using the calibration curve with the Hosmer-Lemeshow test. Decision curve analysis was used for the SWI, clinical and combined nomogram models. The decision curve showed that the SWI and combined nomogram models had better predictive performance than the clinical model. CONCLUSIONS HIE can be detected in patients without MRI abnormalities using an MRI-based radiomics model. The SWI model performed better than the other models.
Collapse
Affiliation(s)
- Xiamei Zhuang
- Department of Radiology, Hunan Children's Hospital, 86 Ziyuan Road, Yuhua District, Changsha, 410007, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, 86 Ziyuan Road, Yuhua District, Changsha, 410007, China.
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha, 410005, China
| | - Junwei Li
- Department of Radiology, Hunan Children's Hospital, 86 Ziyuan Road, Yuhua District, Changsha, 410007, China
| | - Yan Yin
- Department of Radiology, Hunan Children's Hospital, 86 Ziyuan Road, Yuhua District, Changsha, 410007, China
| | - Xiao Dong
- Department of Radiology, Hunan Children's Hospital, 86 Ziyuan Road, Yuhua District, Changsha, 410007, China
| |
Collapse
|
14
|
Arulnathan E, Manchanda A, Dixit R, Kumar A. Temporal Evolution of Signal Alterations in the Deep Gray Nuclei in term Neonates With Hypoxic-Ischemic Brain Injury: A Comprehensive Review. J Child Neurol 2023; 38:550-556. [PMID: 37499176 DOI: 10.1177/08830738231188561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The deep gray nuclei are paired interconnected gray nuclei comprising the basal ganglia and thalami. Injury to the deep gray nuclei secondary to hypoxic-ischemic injury is associated with poor short- and long-term clinical outcomes. The signal changes following hypoxic-ischemic injury are dynamic and evolve over a period of time from injury to resolution. Radiologically relevant events following hypoxic-ischemic injury include the onset of anaerobic metabolism immediately following hypoxic-ischemic injury, increase in cytotoxic edema followed by its resolution, and the onset and progression of neuronal necrosis and gliosis. Appearance of lactate peak on proton spectroscopy is the initial radiologic evidence of hypoxic-ischemic injury. Diffusion-weighted imaging has the highest prognostic value and pseudo-normalizes following 1 week of hypoxic-ischemic injury. Recommended timing for magnetic resonance imaging (MRI) is between 4 and 7 days. MR imaging performed between 1 and 6 months underestimates the extent of injury because radiologic changes are subtle. This review provides a detailed timeline of radiologic abnormalities in the deep gray nuclei following hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Ebinesh Arulnathan
- Department of Radiodiagnosis, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi, India
| | - Alpana Manchanda
- Department of Radiodiagnosis, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi, India
| | - Rashmi Dixit
- Department of Radiodiagnosis, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi, India
| | - Ajay Kumar
- Department of Neonatology, Maulana Azad Medical College and associated Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
15
|
Kang OH, Jahn P, Eichhorn JG, Dresbach T, Müller A, Sabir H. Correlation of Different MRI Scoring Systems with Long-Term Cognitive Outcome in Cooled Asphyxiated Newborns. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1295. [PMID: 37628294 PMCID: PMC10453158 DOI: 10.3390/children10081295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
(1) Background: Cerebral MRI plays a significant role in assessing the extent of brain injury in neonates with neonatal encephalopathy after perinatal asphyxia. Over the last decades, several MRI scoring systems were developed to enhance the predictive accuracy of MRI. The aim of this study was to validate the correlation of four established MRI scoring systems with cognitive long-term outcomes in cooled asphyxiated newborns. (2) Methods: Forty neonates with neonatal encephalopathy treated with therapeutic hypothermia were included in this retrospective study. The MRI scans from the second week of life were scored using four existing MRI scoring systems (Barkovich, NICHD, Rutherford, and Weeke). The patients' outcome was assessed with the Bayley Scales of Infant Development (BSID-III) at the age of 2 years. To evaluate the correlation between the MRI scoring system with the cognitive scores of BSID-III, the correlation coefficient was calculated for each scoring system. (3) Results: All four MRI scoring systems showed a significant correlation with the cognitive scores of BSID-III. The strongest correlation was found between the Weeke Score (r2 = 0.43), followed by the Rutherford score (r2 = 0.39), the NICHD score (r2 = 0.22), and the Barkovich score (r2 = 0.17). (4) Conclusion: Our study confirms previously published results in an independent cohort and indicates that the Weeke and Rutherford scores have the strongest correlation with the cognitive score of BSID-III in cooled asphyxiated newborns.
Collapse
Affiliation(s)
- Ok-Hap Kang
- Children’s Hospital, Klinikum Leverkusen, 51375 Leverkusen, Germany; (O.-H.K.); (P.J.); (J.G.E.)
| | - Peter Jahn
- Children’s Hospital, Klinikum Leverkusen, 51375 Leverkusen, Germany; (O.-H.K.); (P.J.); (J.G.E.)
| | - Joachim G. Eichhorn
- Children’s Hospital, Klinikum Leverkusen, 51375 Leverkusen, Germany; (O.-H.K.); (P.J.); (J.G.E.)
| | - Till Dresbach
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany; (T.D.); (A.M.)
| | - Andreas Müller
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany; (T.D.); (A.M.)
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany; (T.D.); (A.M.)
| |
Collapse
|
16
|
Dathe AK, Stein A, Bruns N, Craciun ED, Tuda L, Bialas J, Brasseler M, Felderhoff-Mueser U, Huening BM. Early Prediction of Mortality after Birth Asphyxia with the nSOFA. J Clin Med 2023; 12:4322. [PMID: 37445355 DOI: 10.3390/jcm12134322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Birth asphyxia is a major cause of delivery room resuscitation. Subsequent organ failure and hypoxic-ischemic encephalopathy (HIE) account for 25% of all early postnatal deaths. The neonatal sequential organ failure assessment (nSOFA) considers platelet count and respiratory and cardiovascular dysfunction in neonates with sepsis. To evaluate whether nSOFA is also a useful predictor for in-hospital mortality in neonates (≥36 + 0 weeks of gestation (GA)) following asphyxia with HIE and therapeutic hypothermia (TH), (2) nSOFA was documented at ≤6 h of life. (3) A total of 65 infants fulfilled inclusion criteria for TH. All but one infant received cardiopulmonary resuscitation and/or respiratory support at birth. nSOFA was lower in survivors (median 0 [IQR 0-2]; n = 56, median GA 39 + 3, female n = 28 (50%)) than in non-survivors (median 10 [4-12], p < 0.001; n = 9, median GA 38 + 6, n = 4 (44.4%)). This was also observed for the respiratory (p < 0.001), cardiovascular (p < 0.001), and hematologic sub-scores (p = 0.003). The odds ratio for mortality was 1.6 [95% CI = 1.2-2.1] per one-point increase in nSOFA. The optimal cut-off value of nSOFA to predict mortality was 3.5 (sensitivity 100.0%, specificity 83.9%). (4) Since early accurate prognosis following asphyxia with HIE and TH is essential to guide decision making, nSOFA (≤6 h of life) offers the possibility of identifying infants at risk of mortality.
Collapse
Affiliation(s)
- Anne-Kathrin Dathe
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
- Department of Health and Nursing, Occupational Therapy, Ernst-Abbe-University of Applied Sciences, 07745 Jena, Germany
| | - Anja Stein
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Nora Bruns
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Elena-Diana Craciun
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Laura Tuda
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Johanna Bialas
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Maire Brasseler
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Ursula Felderhoff-Mueser
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| | - Britta M Huening
- Neonatology, Paediatric Intensive Care and Paediatric Neurology, Department of Paediatrics I, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Centre for Translational Neuro- and Behavioural Sciences, C-TNBS, Faculty of Medicine, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
17
|
Fink EL, Kochanek PM, Beers SR, Clark RRSB, Berger RP, Bayir H, Topjian AA, Newth C, Press C, Maddux AB, Willyerd F, Hunt EA, Siems A, Chung MG, Smith L, Doughty L, Diddle JW, Patregnani J, Piantino J, Walson KH, Balakrishnan B, Meyer MT, Friess S, Pineda J, Maloney D, Rubin P, Haller TL, Treble-Barna A, Wang C, Lee V, Wisnowski JL, Subramanian S, Narayanan S, Blüml S, Fabio A, Panigrahy A. Assessment of Brain Magnetic Resonance and Spectroscopy Imaging Findings and Outcomes After Pediatric Cardiac Arrest. JAMA Netw Open 2023; 6:e2320713. [PMID: 37389874 PMCID: PMC10314315 DOI: 10.1001/jamanetworkopen.2023.20713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/28/2023] [Indexed: 07/01/2023] Open
Abstract
Importance Morbidity and mortality after pediatric cardiac arrest are chiefly due to hypoxic-ischemic brain injury. Brain features seen on magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) after arrest may identify injury and aid in outcome assessments. Objective To analyze the association of brain lesions seen on T2-weighted MRI and diffusion-weighted imaging and N-acetylaspartate (NAA) and lactate concentrations seen on MRS with 1-year outcomes after pediatric cardiac arrest. Design, Setting, and Participants This multicenter cohort study took place in pediatric intensive care units at 14 US hospitals between May 16, 2017, and August 19, 2020. Children aged 48 hours to 17 years who were resuscitated from in-hospital or out-of-hospital cardiac arrest and who had a clinical brain MRI or MRS performed within 14 days postarrest were included in the study. Data were analyzed from January 2022 to February 2023. Exposure Brain MRI or MRS. Main Outcomes and Measures The primary outcome was an unfavorable outcome (either death or survival with a Vineland Adaptive Behavior Scales, Third Edition, score of <70) at 1 year after cardiac arrest. MRI brain lesions were scored according to region and severity (0 = none, 1 = mild, 2 = moderate, 3 = severe) by 2 blinded pediatric neuroradiologists. MRI Injury Score was a sum of T2-weighted and diffusion-weighted imaging lesions in gray and white matter (maximum score, 34). MRS lactate and NAA concentrations in the basal ganglia, thalamus, and occipital-parietal white and gray matter were quantified. Logistic regression was performed to determine the association of MRI and MRS features with patient outcomes. Results A total of 98 children, including 66 children who underwent brain MRI (median [IQR] age, 1.0 [0.0-3.0] years; 28 girls [42.4%]; 46 White children [69.7%]) and 32 children who underwent brain MRS (median [IQR] age, 1.0 [0.0-9.5] years; 13 girls [40.6%]; 21 White children [65.6%]) were included in the study. In the MRI group, 23 children (34.8%) had an unfavorable outcome, and in the MRS group, 12 children (37.5%) had an unfavorable outcome. MRI Injury Scores were higher among children with an unfavorable outcome (median [IQR] score, 22 [7-32]) than children with a favorable outcome (median [IQR] score, 1 [0-8]). Increased lactate and decreased NAA in all 4 regions of interest were associated with an unfavorable outcome. In a multivariable logistic regression adjusted for clinical characteristics, increased MRI Injury Score (odds ratio, 1.12; 95% CI, 1.04-1.20) was associated with an unfavorable outcome. Conclusions and Relevance In this cohort study of children with cardiac arrest, brain features seen on MRI and MRS performed within 2 weeks after arrest were associated with 1-year outcomes, suggesting the utility of these imaging modalities to identify injury and assess outcomes.
Collapse
Affiliation(s)
- Ericka L. Fink
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sue R. Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert R. S. B. Clark
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rachel P. Berger
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hülya Bayir
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alexis A. Topjian
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Christopher Newth
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Los Angeles, Los Angeles, California
| | - Craig Press
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Aline B. Maddux
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora
| | | | - Elizabeth A. Hunt
- Departments of Anesthesiology and Critical Care Medicine, and Pediatrics, Johns Hopkins Children’s Center, Baltimore, Maryland
| | - Ashley Siems
- Departments of Anesthesiology and Critical Care Medicine, and Pediatrics, Johns Hopkins Children’s Center, Baltimore, Maryland
| | - Melissa G. Chung
- Department of Pediatrics, Division of Critical Care Medicine, and Pediatric Neurology, Nationwide Children’s Hospital, Columbus, Ohio
| | - Lincoln Smith
- Department of Pediatrics, University of Washington School of Medicine, Seattle
| | - Leslie Doughty
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - J. Wesley Diddle
- Department of Pediatrics, Children’s National Medical Center, Washington, DC
| | - Jason Patregnani
- Department of Pediatrics, Children’s National Medical Center, Washington, DC
| | - Juan Piantino
- Department of Pediatrics, Oregon Health & Science University, Portland
| | | | - Binod Balakrishnan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Michael T. Meyer
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Stuart Friess
- Department of Pediatrics, St Louis Children’s Hospital, St Louis, Missouri
| | - Jose Pineda
- Department of Anesthesia Critical Care, Mattel Children’s Hospital, University of California, Los Angeles
| | - David Maloney
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pamela Rubin
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tamara L. Haller
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chunyan Wang
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Vince Lee
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica L. Wisnowski
- Department of Radiology, Children’s Hospital of Los Angeles, Los Angeles, California
| | - Subramanian Subramanian
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Srikala Narayanan
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stefan Blüml
- Department of Radiology, Children’s Hospital of Los Angeles, Los Angeles, California
| | - Anthony Fabio
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
18
|
Onda K, Chavez-Valdez R, Graham EM, Everett AD, Northington FJ, Oishi K. Quantification of Diffusion Magnetic Resonance Imaging for Prognostic Prediction of Neonatal Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2023; 46:55-68. [PMID: 37231858 PMCID: PMC10712961 DOI: 10.1159/000530938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/20/2023] [Indexed: 05/27/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.
Collapse
Affiliation(s)
- Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raul Chavez-Valdez
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M. Graham
- Department of Gynecology & Obstetrics, Division of Maternal-Fetal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen D. Everett
- Department of Pediatrics, Division of Pediatric Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Thayyil S, Montaldo P, Krishnan V, Ivain P, Pant S, Lally PJ, Bandiya P, Benkappa N, Kamalaratnam CN, Chandramohan R, Manerkar S, Mondkar J, Jahan I, Moni SC, Shahidullah M, Rodrigo R, Sumanasena S, Sujatha R, Burgod C, Garegrat R, Mazlan M, Chettri I, Babu Peter S, Joshi AR, Swamy R, Chong K, Pressler RR, Bassett P, Shankaran S. Whole-Body Hypothermia, Cerebral Magnetic Resonance Biomarkers, and Outcomes in Neonates With Moderate or Severe Hypoxic-Ischemic Encephalopathy Born at Tertiary Care Centers vs Other Facilities: A Nested Study Within a Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2312152. [PMID: 37155168 PMCID: PMC10167567 DOI: 10.1001/jamanetworkopen.2023.12152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Importance The association between place of birth and hypothermic neuroprotection after hypoxic-ischemic encephalopathy (HIE) in low- and middle-income countries (LMICs) is unknown. Objective To ascertain the association between place of birth and the efficacy of whole-body hypothermia for protection against brain injury measured by magnetic resonance (MR) biomarkers among neonates born at a tertiary care center (inborn) or other facilities (outborn). Design, Setting, and Participants This nested cohort study within a randomized clinical trial involved neonates at 7 tertiary neonatal intensive care units in India, Sri Lanka, and Bangladesh between August 15, 2015, and February 15, 2019. A total of 408 neonates born at or after 36 weeks' gestation with moderate or severe HIE were randomized to receive whole-body hypothermia (reduction of rectal temperatures to between 33.0 °C and 34.0 °C; hypothermia group) for 72 hours or no whole-body hypothermia (rectal temperatures maintained between 36.0 °C and 37.0 °C; control group) within 6 hours of birth, with follow-up until September 27, 2020. Exposure 3T MR imaging, MR spectroscopy, and diffusion tensor imaging. Main Outcomes and Measures Thalamic N-acetyl aspartate (NAA) mmol/kg wet weight, thalamic lactate to NAA peak area ratios, brain injury scores, and white matter fractional anisotropy at 1 to 2 weeks and death or moderate or severe disability at 18 to 22 months. Results Among 408 neonates, the mean (SD) gestational age was 38.7 (1.3) weeks; 267 (65.4%) were male. A total of 123 neonates were inborn and 285 were outborn. Inborn neonates were smaller (mean [SD], 2.8 [0.5] kg vs 2.9 [0.4] kg; P = .02), more likely to have instrumental or cesarean deliveries (43.1% vs 24.7%; P = .01), and more likely to be intubated at birth (78.9% vs 29.1%; P = .001) than outborn neonates, although the rate of severe HIE was not different (23.6% vs 17.9%; P = .22). Magnetic resonance data from 267 neonates (80 inborn and 187 outborn) were analyzed. In the hypothermia vs control groups, the mean (SD) thalamic NAA levels were 8.04 (1.98) vs 8.31 (1.13) among inborn neonates (odds ratio [OR], -0.28; 95% CI, -1.62 to 1.07; P = .68) and 8.03 (1.89) vs 7.99 (1.72) among outborn neonates (OR, 0.05; 95% CI, -0.62 to 0.71; P = .89); the median (IQR) thalamic lactate to NAA peak area ratios were 0.13 (0.10-0.20) vs 0.12 (0.09-0.18) among inborn neonates (OR, 1.02; 95% CI, 0.96-1.08; P = .59) and 0.14 (0.11-0.20) vs 0.14 (0.10-0.17) among outborn neonates (OR, 1.03; 95% CI, 0.98-1.09; P = .18). There was no difference in brain injury scores or white matter fractional anisotropy between the hypothermia and control groups among inborn or outborn neonates. Whole-body hypothermia was not associated with reductions in death or disability, either among 123 inborn neonates (hypothermia vs control group: 34 neonates [58.6%] vs 34 [56.7%]; risk ratio, 1.03; 95% CI, 0.76-1.41), or 285 outborn neonates (hypothermia vs control group: 64 neonates [46.7%] vs 60 [43.2%]; risk ratio, 1.08; 95% CI, 0.83-1.41). Conclusions and Relevance In this nested cohort study, whole-body hypothermia was not associated with reductions in brain injury after HIE among neonates in South Asia, irrespective of place of birth. These findings do not support the use of whole-body hypothermia for HIE among neonates in LMICs. Trial Registration ClinicalTrials.gov Identifier: NCT02387385.
Collapse
Affiliation(s)
- Sudhin Thayyil
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Paolo Montaldo
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
- Neonatal Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Vaisakh Krishnan
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Phoebe Ivain
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Stuti Pant
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Peter J Lally
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Prathik Bandiya
- Neonatal Unit, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Naveen Benkappa
- Neonatal Unit, Indira Gandhi Institute of Child Health, Bengaluru, India
| | | | | | - Swati Manerkar
- Neonatal Unit, Lokmanya Tilak Municipal Medical College, Mumbai, India
| | - Jayshree Mondkar
- Neonatal Unit, Lokmanya Tilak Municipal Medical College, Mumbai, India
| | - Ismat Jahan
- Neonatal Unit, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Sadeka C Moni
- Neonatal Unit, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - Ranmali Rodrigo
- Department of Pediatrics, University of Kelaniya, Kelaniya, Sri Lanka
| | | | - Radhika Sujatha
- Neonatal Unit, Sree Avittom Thirunal Hospital, Government Medical College, Thiruvananthapuram, India
| | - Constance Burgod
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Reema Garegrat
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Munirah Mazlan
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Ismita Chettri
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | | | - Anagha R Joshi
- Department of Radiology, Lokmanya Tilak Municipal Medical College, Mumbai, India
| | - Ravi Swamy
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Kling Chong
- Department of Neuroradiology, Great Ormond Street Hospital, London, United Kingdom
| | - Ronit R Pressler
- Department of Neurophysiology, Great Ormond Street Hospital, London, United Kingdom
| | | | - Seetha Shankaran
- Division of Neonatal-Perinatal Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
20
|
Kamino D, Widjaja E, Brant R, Ly LG, Mamak E, Chau V, Moore AM, Williams T, Tam EW. Severity and duration of dysglycemia and brain injury among patients with neonatal encephalopathy. EClinicalMedicine 2023; 58:101914. [PMID: 37181414 PMCID: PMC10166778 DOI: 10.1016/j.eclinm.2023.101914] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 05/16/2023] Open
Abstract
Background Evidence is needed to inform thresholds for glycemic management in neonatal encephalopathy (NE). We investigated how severity and duration of dysglycemia relate to brain injury after NE. Methods A prospective cohort of 108 neonates ≥36 weeks gestational age with NE were enrolled between August 2014 and November 2019 at the Hospital for Sick Children, in Toronto, Canada. Participants underwent continuous glucose monitoring for 72 h, MRI at day 4 of life, and follow-up at 18 months. Receiver operating characteristic curves were used to assess the predictive value of glucose measures (minimum and maximum glucose, sequential 1 mmol/L glucose thresholds) during the first 72 h of life (HOL) for each brain injury pattern (basal ganglia, watershed, focal infarct, posterior-predominant). Linear and logistic regression analyses were used to assess the relationship between abnormal glycemia and 18-month outcomes (Bayley-III composite scores, Child Behavior Checklist [CBCL] T-scores, neuromotor score, cerebral palsy [CP], death), adjusting for brain injury severity. Findings Of 108 neonates enrolled, 102 (94%) had an MRI. Maximum glucose during the first 48 HOL best predicted basal ganglia (AUC = 0.811) and watershed (AUC = 0.858) injury. Minimum glucose was not predictive of brain injury (AUC <0.509). Ninety-one (89%) infants underwent follow-up assessments at 19.0 ± 1.7 months. A glucose threshold of >10.1 mmol/L during the first 48 HOL was associated with 5.8-point higher CBCL Internalizing Composite T-score (P = 0.029), 0.3-point worse neuromotor score (P = 0.035), 8.6-fold higher odds for CP diagnosis (P = 0.014). While the glucose threshold of >10.1 mmol/L during the first 48 HOL was associated with higher odds of the composite outcome of severe disability or death (OR 3.0, 95% CI 1.0-8.4, P = 0.042), it was not associated with the composite outcome of moderate-to-severe disability or death (OR 0.9, 95% CI 0.4-2.2, P = 0.801). All associations with outcome lost significance after adjusting for brain injury severity. Interpretation Maximum glucose concentration in the first 48 HOL is predictive of brain injury after NE. Further trials are needed to assess if protocols to control maximum glucose concentrations improve outcomes after NE. Funding Canadian Institutes for Health Research, National Institutes of Health, and SickKids Foundation.
Collapse
Affiliation(s)
- Daphne Kamino
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Elysa Widjaja
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children and University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Rollin Brant
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Department of Statistics, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Linh G. Ly
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Eva Mamak
- Department of Psychology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Vann Chau
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Aideen M. Moore
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Tricia Williams
- Department of Psychology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Emily W.Y. Tam
- Neurosciences and Mental Health, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, M5G 1X8, Canada
| |
Collapse
|
21
|
Predictive Value of MRI in Hypoxic-Ischemic Encephalopathy Treated with Therapeutic Hypothermia. CHILDREN 2023; 10:children10030446. [PMID: 36980004 PMCID: PMC10047577 DOI: 10.3390/children10030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Background: Hypoxic-ischemic encephalopathy (HIE) is a severe pathology, and no unique predictive biomarker has been identified. Our aims are to identify associations of perinatal and outcome parameters with morphological anomalies and ADC values from MRI. The secondary aims are to define a predictive ADC threshold value and detect ADC value fluctuations between MRIs acquired within 7 days (MR0) and at 1 year (MR1) of birth in relation to perinatal and outcome parameters. Methods: Fifty-one term children affected by moderate HIE treated with hypothermia and undergoing MRI0 and MRI1 were recruited. Brain MRIs were evaluated through the van Rooij score, while ADC maps were co-registered on a standardized cerebral surface, on which 29 ROIs were drawn. Statistical analysis was performed in Matlab, with the statistical significance value at 0.05. Results: ADC0 < ADC1 in the left and right thalami, left and right frontal white matter, right visual cortex, and the left dentate nucleus of children showing abnormal perinatal and neurodevelopmental parameters. At ROC analysis, the best prognostic ADC cut-off value was 1.535 mm2/s × 10−6 (sensitivity 80%, specificity 86%) in the right frontal white matter. ADC1 > ADC0 in the right visual cortex and left dentate nucleus, positively correlated with multiple abnormal perinatal and neurodevelopmental parameters. The van Rooij score was significantly higher in children presenting with sleep disorders. Conclusions: ADC values could be used as prognostic biomarkers to predict children’s neurodevelopmental outcomes. Further studies are needed to address these crucial topics and validate our results. Early and multidisciplinary perinatal evaluation and the subsequent re-assessment of children are pivotal to identify physical and neuropsychological disorders to guarantee early and tailored therapy.
Collapse
|
22
|
Fang XY, Tian YL, Chen SY, Shi Q, Zheng D, Wang YJ, Mao J. [A novel method for electroencephalography background analysis in neonates with hypoxic-ischemic encephalopathy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:128-134. [PMID: 36854687 DOI: 10.7499/j.issn.1008-8830.2208102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
OBJECTIVES To explore a new method for electroencephalography (EEG) background analysis in neonates with hypoxic-ischemic encephalopathy (HIE) and its relationship with clinical grading and head magnetic resonance imaging (MRI) grading. METHODS A retrospective analysis was performed for the video electroencephalography (vEEG) and amplitude-integrated electroencephalography (aEEG) monitoring data within 24 hours after birth of neonates diagnosed with HIE from January 2016 to August 2022. All items of EEG background analysis were enrolled into an assessment system and were scored according to severity to obtain the total EEG score. The correlations of total EEG score with total MRI score and total Sarnat score (TSS, used to evaluate clinical gradings) were analyzed by Spearman correlation analysis. The total EEG score was compared among the neonates with different clinical gradings and among the neonates with different head MRI gradings. The receiver operating characteristic (ROC) curve and the area under thecurve (AUC) were used to evaluate the value of total EEG score in diagnosing moderate/severe head MRI abnormalities and clinical moderate/severe HIE, which was then compared with the aEEG grading method. RESULTS A total of 50 neonates with HIE were included. The total EEG score was positively correlated with the total head MRI score and TSS (rs=0.840 and 0.611 respectively, P<0.001). There were significant differences in the total EEG score between different clinical grading groups and different head MRI grading groups (P<0.05). The total EEG score and the aEEG grading method had an AUC of 0.936 and 0.617 respectively in judging moderate/severe head MRI abnormalities (P<0.01) and an AUC of 0.887 and 0.796 respectively in judging clinical moderate/severe HIE (P>0.05). The total EEG scores of ≤6 points, 7-13 points, and ≥14 points were defined as mild, moderate, and severe EEG abnormalities respectively, which had the best consistency with clinical grading and head MRI grading (P<0.05). CONCLUSIONS The new EEG background scoring method can quantitatively reflect the severity of brain injury and can be used for the judgment of brain function in neonates with HIE.
Collapse
Affiliation(s)
- Xiu-Ying Fang
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yi-Li Tian
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shu-Yuan Chen
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Quan Shi
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Duo Zheng
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | |
Collapse
|
23
|
Labat J, Brocard C, Belaroussi Y, Bar C, Gotchac J, Chateil JF, Brissaud O. Hypothermia for neonatal hypoxic-ischemic encephalopathy: Retrospective descriptive study of features associated with poor outcome. Arch Pediatr 2023; 30:93-99. [PMID: 36522220 DOI: 10.1016/j.arcped.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/24/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
AIM To investigate the clinical, laboratory, electrophysiological, and imaging features associated with death or neurological impairment at 1 year of age in term neonates with hypoxic-ischemic encephalopathy (HIE) treated by therapeutic hypothermia (TH). METHODS This was a single-center retrospective and descriptive study conducted over a period of 2 years. We included consecutive term newborns with moderate or severe HIE who were treated by TH initiated within the sixth hour after birth and continued for 72 h,. For all patients, brain magnetic resonance imaging (MRI) was performed before the eighth day and a score was established; furthermore, at least two electroencephalograms were recorded. RESULTS Among the 33 patients included, 20 neonates had a favorable outcome and 13 had an unfavorable outcome. Early clinical seizures (15% vs. 53.8%, p = 0.047), the persistence of a poor prognosis according to the electroencephalogram pattern after TH (0% vs. 69.2%, p = 0.0001), and an elevated score on the early brain MRI (2 vs. 11, p < 0.001) combined with a high lactate/N-acetyl-aspartate ratio (0.52 vs. 1.33, p = 0.008) on spectroscopy were associated with death and a poor outcome. CONCLUSION A combination of tools can help the medical team to establish the most reliable prognosis for these full-term neonates, to guide care, and to inform parents most appropriately and sincerely.
Collapse
Affiliation(s)
- J Labat
- Pediatric Department, Children's University Hospital Bordeaux, France.
| | - C Brocard
- Pediatric Radiology Department, Children's University Hospital Bordeaux, France
| | - Y Belaroussi
- Inserm, Bordeaux Population Health Research Center, Epicene Team, University of Bordeaux, UMR 1219, Bordeaux F-33000, France
| | - C Bar
- Pediatric Neurology, Children's University Hospital Bordeaux, France
| | - J Gotchac
- Pediatric and Neonatal Intensive Care Unit Department, Children's University Hospital Bordeaux, France
| | - J F Chateil
- Pediatric Radiology Department, Children's University Hospital Bordeaux, France; CRMSB, UMR5536 CNRS, University of Bordeaux, Bordeaux F-33076, France
| | - O Brissaud
- Pediatric and Neonatal Intensive Care Unit Department, Children's University Hospital Bordeaux, France
| |
Collapse
|
24
|
Andersen HB, Andersen M, Andelius TCK, Pedersen MV, Løfgren B, Pedersen M, Ringgaard S, Kyng KJ, Henriksen TB. Epinephrine vs placebo in neonatal resuscitation: ROSC and brain MRS/MRI in term piglets. Pediatr Res 2023; 93:511-519. [PMID: 35681089 DOI: 10.1038/s41390-022-02126-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND We aimed to investigate the effect of epinephrine vs placebo on return of spontaneous circulation (ROSC) and brain magnetic resonance spectroscopy and imaging (MRS/MRI) in newborn piglets with hypoxic cardiac arrest (CA). METHODS Twenty-five piglets underwent hypoxia induced by endotracheal tube clamping until CA. The animals were randomized to CPR + intravenous epinephrine or CPR + placebo (normal saline). The primary outcome was ROSC, and secondary outcomes included time-to-ROSC, brain MRS/MRI, and composite endpoint of death or severe brain MRS/MRI abnormality. RESULTS ROSC was more frequent in animals treated with epinephrine than placebo; 10/13 vs 4/12, RR = 2.31 (95% CI: 1.09-5.77). We found no difference in time-to-ROSC (120 (113-211) vs 153 (116-503) seconds, p = 0.7) or 6-h survival (7/13 vs 3/12, p = 0.2). Among survivors, there was no difference between groups in brain MRS/MRI. We found no difference in the composite endpoint of death or severe brain MRS/MRI abnormality; RR = 0.7 (95% CI: 0.37-1.19). CONCLUSIONS Resuscitation with epinephrine compared to placebo improved ROSC frequency after hypoxic CA in newborn piglets. We found no difference in time-to-ROSC or the composite endpoint of death or severe brain MRS/MRI abnormality. IMPACT In a newborn piglet model of hypoxic cardiac arrest, resuscitation with epinephrine compared to placebo improved the rate of return of spontaneous circulation and more than doubled the 6-h survival. Brain MRS/MRI biomarkers were used to evaluate the effect of epinephrine vs placebo. We found no difference between groups in the composite endpoint of death or severe brain MRS/MRI abnormality. This study adds to the limited evidence regarding the effect and safety of epinephrine; the lack of high-quality evidence from randomized clinical trials was highlighted in the latest ILCOR 2020 guidelines, and newborn animal studies were specifically requested.
Collapse
Affiliation(s)
- Hannah B Andersen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Mads Andersen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ted C K Andelius
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette V Pedersen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Løfgren
- Research Center for Emergency, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kasper J Kyng
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tine B Henriksen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Zhuang X, Jin K, Li J, Yin Y, Dong X, Lin H. A radiomics-based study of deep medullary veins in infants: Evaluation of neonatal brain injury with hypoxic-ischemic encephalopathy via susceptibility-weighted imaging. Front Neurosci 2023; 16:1093499. [PMID: 36733926 PMCID: PMC9887113 DOI: 10.3389/fnins.2022.1093499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Objective The deep medullary veins (DMVs) can be evaluated using susceptibility-weighted imaging (SWI). This study aimed to apply radiomic analysis of the DMVs to evaluate brain injury in neonatal patients with hypoxic-ischemic encephalopathy (HIE) using SWI. Methods This study included brain magnetic resonance imaging of 190 infants with HIE and 89 controls. All neonates were born at full-term (37+ weeks gestation). To include the DMVs in the regions of interest, manual drawings were performed. A Rad-score was constructed using least absolute shrinkage and selection operator (LASSO) regression to identify the optimal radiomic features. Nomograms were constructed by combining the Rad-score with a clinically independent factor. Receiver operating characteristic curve analysis was applied to evaluate the performance of the different models. Clinical utility was evaluated using a decision curve analysis. Results The combined nomogram model incorporating the Rad-score and clinical independent predictors, was better in predicting HIE (in the training cohort, the area under the curve was 0.97, and in the validation cohort, it was 0.95) and the neurologic outcomes after hypoxic-ischemic (in the training cohort, the area under the curve was 0.91, and in the validation cohort, it was 0.88). Conclusion Based on radiomic signatures and clinical indicators, we developed a combined nomogram model for evaluating neonatal brain injury associated with perinatal asphyxia.
Collapse
Affiliation(s)
- Xiamei Zhuang
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children’s Hospital, Changsha, China,*Correspondence: Ke Jin,
| | - Junwei Li
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Yan Yin
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Xiao Dong
- Department of Radiology, Hunan Children’s Hospital, Changsha, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, General Electric (GE) Healthcare, Changsha, China
| |
Collapse
|
26
|
Andersen HB, Andersen M, Bennedsgaard K, Kerrn-Jespersen S, Kyng KJ, Holm IE, Henriksen TB. No Differences in Cerebral Immunohistochemical Markers following Remote Ischemic Postconditioning in Newborn Piglets with Hypoxia-Ischemia. Neuropediatrics 2022; 53:423-431. [PMID: 35777661 PMCID: PMC9643070 DOI: 10.1055/a-1889-8544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Despite therapeutic hypothermia, neonates with hypoxic-ischemic encephalopathy still develop neurological disabilities. We have previously investigated neuroprotection by remote ischemic postconditioning (RIPC) in newborn piglets following hypoxia-ischemia (HI). The aim of this study was to further investigate potential effects of RIPC on cerebral immunohistochemical markers related to edema, apoptosis, and angiogenesis. METHODS Brain expression of aquaporin 4, caspase-3, B-cell lymphoma 2, and vascular endothelial growth factor was analyzed by immunohistochemistry in 23 piglets, randomly selected from a larger study of RIPC after HI. Twenty animals were subjected to 45 minutes of HI and randomized to treatment with and without RIPC, while three animals were randomized to sham procedures. RIPC was conducted by four conditioning cycles of 5-minute ischemia and reperfusion. Piglets were euthanized 72 hours after the HI insult. RESULTS Piglets subjected to HI treated with and without RIPC were similar at baseline and following the HI insult. However, piglets randomized to HI alone had longer duration of low blood pressure during the insult. We found no differences in the brain expression of the immunohistochemical markers in any regions of interest or the whole brain between the two HI groups. CONCLUSION RIPC did not influence brain expression of markers related to edema, apoptosis, or angiogenesis in newborn piglets at 72 hours after HI. These results support previous findings of limited neuroprotective effect by this RIPC protocol. Our results may have been affected by the time of assessment, use of fentanyl as anesthetic, or limitations related to our immunohistochemical methods.
Collapse
Affiliation(s)
- Hannah B. Andersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Andersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Bennedsgaard
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrid Kerrn-Jespersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper J. Kyng
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ida E. Holm
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Tine B. Henriksen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
27
|
Bonifacio SL, Chalak LF, Van Meurs KP, Laptook AR, Shankaran S. Neuroprotection for hypoxic-ischemic encephalopathy: Contributions from the neonatal research network. Semin Perinatol 2022; 46:151639. [PMID: 35835616 PMCID: PMC11500562 DOI: 10.1016/j.semperi.2022.151639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Therapeutic hypothermia (TH) is now well established as the standard of care treatment for moderate to severe neonatal encephalopathy secondary to perinatal hypoxic ischemic encephalopathy (HIE) in infants ≥36 weeks gestation in high income countries. The Neonatal Research Network (NRN) contributed greatly to the study of TH as a neuroprotectant with three trials now completed in infants ≥36 weeks gestation and the only large randomized-controlled trial of TH in preterm infants now in the follow-up phase. Data from the first NRN TH trial combined with data from other large trials of TH affirm the safety and neuroprotective qualities of TH and highlight the importance of providing TH to all infants who qualify. In this review we will highlight the findings of the three NRN trials of TH in the term infant population and the secondary analyses that continue to inform the care of patients with HIE.
Collapse
Affiliation(s)
- Sonia Lomeli Bonifacio
- Division of Neonatal & Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Lina F Chalak
- Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Krisa P Van Meurs
- Division of Neonatal & Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Abbot R Laptook
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Providence, RI, USA
| | - Seetha Shankaran
- Department of Pediatrics, Wayne State University, Detroit, MI, USA
| |
Collapse
|
28
|
Iwata S, Katayama R, Tsuda K, Lin YC, Kurata T, Kinoshita M, Kawase K, Kato T, Kato S, Hisano T, Oda M, Ohmae E, Takashima S, Araki Y, Saitoh S, Iwata O. Near-infrared light scattering and water diffusion in newborn brains. Ann Clin Transl Neurol 2022; 9:1417-1427. [PMID: 35943446 PMCID: PMC9463954 DOI: 10.1002/acn3.51641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Objective MRI provides useful information regarding brain maturation and injury in newborn infants. However, MRI studies are generally restricted during acute phase, resulting in uncertainty around upstream clinical events responsible for subtle cerebral injuries. Time‐resolved near‐infrared spectroscopy non‐invasively provides the reduced scattering coefficient (μs′), which theoretically reflects tissue structural complexity. This study aimed to test whether μs′ values of the newborn head reflected MRI findings. Methods Between June 2009 and January 2015, 77 hospitalised newborn infants (31.7 ± 3.8 weeks gestation) were assessed at 38.8 ± 1.3 weeks post‐conceptional age. Associations of μs′ values with MRI scores, mean diffusivity and fractional anisotropy were assessed. Results Univariable analysis showed that μs′ values were associated with gestational week (p = 0.035; regression coefficient [B], 0.065; 95% confidence interval [CI], 0.005–0.125), fractional anisotropy in the cortical grey matter (p = 0.020; B, −5.994; 95%CI, −11.032 to −0.957), average diffusivity in the cortical grey matter (p < 0.001; B, −4.728; 95%CI, −7.063 to −2.394) and subcortical white matter (p = 0.001; B, −2.071; 95%CI, −3.311 to −0.832), subarachnoid space (p < 0.001; B, −0.289; 95%CI, −0.376 to −0.201) and absence of brain abnormality (p = 0.042; B, −0.422; 95%CI, −0.829 to −0.015). The multivariable model to explain μs′ values comprised average diffusivity in the subcortical white matter (p < 0.001; B, −2.066; 95%CI, −3.200 to −0.932), subarachnoid space (p < 0.001; B, −0.314; 95%CI, −0.412 to −0.216) and absence of brain abnormality (p = 0.021; B, −0.400; 95%CI, −0.739 to −0.061). Interpretation Light scattering was associated with brain structure indicated by MRI‐assessed brain abnormality and diffusion‐tensor‐imaging‐assessed water diffusivity. When serially assessed in a larger population, μs′ values might help identify covert clinical events responsible for subtle cerebral injury.
Collapse
Affiliation(s)
- Sachiko Iwata
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.,Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Reiji Katayama
- Centre for the Study of Medical Education, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Kennosuke Tsuda
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.,Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yung-Chieh Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, 70457, Taiwan
| | - Tsuyoshi Kurata
- Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Masahiro Kinoshita
- Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Koya Kawase
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Takenori Kato
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Shin Kato
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Tadashi Hisano
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Motoki Oda
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, 434-8601, Japan
| | - Etsuko Ohmae
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Shizuoka, 434-8601, Japan
| | - Sachio Takashima
- Yanagawa Institute for Developmental Disabilities, International University of Health and Welfare, Yanagawa, Fukuoka, 832-0813, Japan
| | - Yuko Araki
- Graduate School of Information Sciences, Tohoku University, Sendai City, Miyagi, 980-8579, Japan
| | - Shinji Saitoh
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Osuke Iwata
- Center for Human Development and Family Science, Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan.,Department of Paediatrics and Child Health, Centre for Developmental and Cognitive Neuroscience, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
29
|
Onda K, Catenaccio E, Chotiyanonta J, Chavez-Valdez R, Meoded A, Soares BP, Tekes A, Spahic H, Miller SC, Parker SJ, Parkinson C, Vaidya DM, Graham EM, Stafstrom CE, Everett AD, Northington FJ, Oishi K. Development of a composite diffusion tensor imaging score correlating with short-term neurological status in neonatal hypoxic-ischemic encephalopathy. Front Neurosci 2022; 16:931360. [PMID: 35983227 PMCID: PMC9379310 DOI: 10.3389/fnins.2022.931360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the most common cause of neonatal acquired brain injury. Although conventional MRI may predict neurodevelopmental outcomes, accurate prognostication remains difficult. As diffusion tensor imaging (DTI) may provide an additional diagnostic and prognostic value over conventional MRI, we aimed to develop a composite DTI (cDTI) score to relate to short-term neurological function. Sixty prospective neonates treated with therapeutic hypothermia (TH) for HIE were evaluated with DTI, with a voxel size of 1 × 1 × 2 mm. Fractional anisotropy (FA) and mean diffusivity (MD) from 100 neuroanatomical regions (FA/MD *100 = 200 DTI parameters in total) were quantified using an atlas-based image parcellation technique. A least absolute shrinkage and selection operator (LASSO) regression was applied to the DTI parameters to generate the cDTI score. Time to full oral nutrition [short-term oral feeding (STO) score] was used as a measure of short-term neurological function and was correlated with extracted DTI features. Seventeen DTI parameters were selected with LASSO and built into the final unbiased regression model. The selected factors included FA or MD values of the limbic structures, the corticospinal tract, and the frontotemporal cortices. While the cDTI score strongly correlated with the STO score (rho = 0.83, p = 2.8 × 10-16), it only weakly correlated with the Sarnat score (rho = 0.27, p = 0.035) and moderately with the NICHD-NRN neuroimaging score (rho = 0.43, p = 6.6 × 10-04). In contrast to the cDTI score, the NICHD-NRN score only moderately correlated with the STO score (rho = 0.37, p = 0.0037). Using a mixed-model analysis, interleukin-10 at admission to the NICU (p = 1.5 × 10-13) and tau protein at the end of TH/rewarming (p = 0.036) and after rewarming (p = 0.0015) were significantly associated with higher cDTI scores, suggesting that high cDTI scores were related to the intensity of the early inflammatory response and the severity of neuronal impairment after TH. In conclusion, a data-driven unbiased approach was applied to identify anatomical structures associated with some aspects of neurological function of HIE neonates after cooling and to build a cDTI score, which was correlated with the severity of short-term neurological functions.
Collapse
Affiliation(s)
- Kengo Onda
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eva Catenaccio
- Division of Pediatric Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jill Chotiyanonta
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Raul Chavez-Valdez
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Avner Meoded
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Bruno P. Soares
- Division of Neuroradiology, Department of Radiology, Larner College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Aylin Tekes
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Radiology and Pediatric Neuroradiology, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harisa Spahic
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah C. Miller
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Charlamaine Parkinson
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dhananjay M. Vaidya
- Department of General Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ernest M. Graham
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carl E. Stafstrom
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allen D. Everett
- Division of Pediatric Cardiology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Frances J. Northington
- Neuroscience Intensive Care Nursery Program, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Cerebral perfusion changes of the basal ganglia and thalami in full-term neonates with hypoxic-ischaemic encephalopathy: a three-dimensional pseudo continuous arterial spin labelling perfusion magnetic resonance imaging study. Pediatr Radiol 2022; 52:1559-1567. [PMID: 35357515 DOI: 10.1007/s00247-022-05344-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the common causes of neurological injury in full-term neonates following perinatal asphyxia. The conventional magnetic resonance technique has low sensitivity in detecting variations in cerebral blood flow in patients with HIE. OBJECTIVE This article evaluates the clinical diagnostic value of three-dimensional pseudo-continuous arterial spin labelling (3-D pcASL) perfusion magnetic resonance imaging (MRI) for early prediction of neurobehavioral outcomes in full-term neonates with HIE. MATERIALS AND METHODS All neonates diagnosed with HIE underwent MRI (conventional and 3-D pcASL perfusion MRI). Cerebral blood flow values were measured in the basal ganglia (caudate nuclei, lenticular nuclei), thalami and white matter regions (frontal lobes, corona radiata). After 1-month follow-up, the Neonatal Behavioral Neurological Assessment scores were used to divide patients into favourable outcome group versus adverse outcome group. RESULTS Twenty-three patients were enrolled in this study. There were no statistical differences between the symmetrical cerebral blood flow values of bilateral basal ganglia, thalami and white matter regions. However, the cerebral blood flow values of grey matter nuclei were higher than the white matter regions. The average value of cerebral blood flow in the basal ganglia and thalami in the adverse outcome group was 37.28±6.42 ml/100 g/min, which is greater than the favourable outcome group (22.55 ± 3.21 ml/100 g/min) (P<0.01). The area under the curve (AUC) of 3-D pcASL perfusion MRI was 0.992 with a cutoff value of 28.75 ml/100 g/min, with a Youden's index of 0.9231. The sensitivity and specificity were 92.3% and 100%, respectively. CONCLUSION The 3-D pcASL demonstrated higher perfusion alteration in the basal ganglia and thalami of neonatal HIE with adverse outcomes. The 3-D pcASL perfusion MRI has the potential to predict neurobehavioral outcomes of neonates with HIE.
Collapse
|
31
|
Hellwig L, Brada M, Held U, Hagmann C, Bode P, Frontzek K, Frey B, Brotschi B, Grass B. Association of perinatal sentinel events, placental pathology and cerebral MRI in neonates with hypoxic-ischemic encephalopathy receiving therapeutic hypothermia. J Perinatol 2022; 42:885-891. [PMID: 35228682 PMCID: PMC9259485 DOI: 10.1038/s41372-022-01356-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/06/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Placental pathology might provide information on the etiology of hypoxic-ischemic encephalopathy (HIE). To evaluate the association of perinatal sentinel events (PSE), placental pathology and cerebral MRI in cooled neonates with moderate/severe HIE. STUDY DESIGN Retrospective analysis of 52 neonates with HIE registered in the Swiss National Asphyxia and Cooling Register 2011-2019. PSE and Non-PSE groups were tested for association with placental pathology. Placental pathology categories were correlated with MRI scores. RESULTS In total, 14/52 neonates (27%) had a PSE, 38 neonates (73%) did not have a PSE. There was no evidence for an association of occurrence of PSE and placental pathologies (p = 0.364). Neonates with high MRI scores tended to have more often chronic pathologies in their placentas than acute pathologies or normal placentas (p = 0.067). CONCLUSION Independent of the occurrence of PSE, chronic placental pathologies might be associated with more severe brain injury and needs further study.
Collapse
Affiliation(s)
- Lia Hellwig
- Division of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- University of Zurich, Raemistrasse 71, 8006, Zurich, Switzerland
| | - Muriel Brada
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Ulrike Held
- Epidemiology, Biostatistics and Prevention Institute, Department of Biostatistics, University of Zurich, Hirschengraben 84, 8001, Zurich, Switzerland
| | - Cornelia Hagmann
- Division of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- University of Zurich, Raemistrasse 71, 8006, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Peter Bode
- University of Zurich, Raemistrasse 71, 8006, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Karl Frontzek
- University of Zurich, Raemistrasse 71, 8006, Zurich, Switzerland
- Institute of Neuropathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Bernhard Frey
- Division of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Barbara Brotschi
- Division of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
- University of Zurich, Raemistrasse 71, 8006, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beate Grass
- Division of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.
- University of Zurich, Raemistrasse 71, 8006, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
32
|
Proton MR Spectroscopy of Pediatric Brain Disorders. Diagnostics (Basel) 2022; 12:diagnostics12061462. [PMID: 35741272 PMCID: PMC9222059 DOI: 10.3390/diagnostics12061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
In vivo MR spectroscopy is a non -invasive methodology that provides information about the biochemistry of tissues. It is available as a “push-button” application on state-of-the-art clinical MR scanners. MR spectroscopy has been used to study various brain diseases including tumors, stroke, trauma, degenerative disorders, epilepsy/seizures, inborn errors, neuropsychiatric disorders, and others. The purpose of this review is to provide an overview of MR spectroscopy findings in the pediatric population and its clinical use.
Collapse
|
33
|
Hayakawa K, Tanda K, Nishimura A, Koshino S, Kizaki Z, Ohno K. Diffusion restriction in the corticospinal tract and the corpus callosum of term neonates with hypoxic-ischemic encephalopathy. Pediatr Radiol 2022; 52:1356-1369. [PMID: 35294621 DOI: 10.1007/s00247-022-05331-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Diffusion-weighted imaging performed shortly after brain injury has been shown to facilitate visualization of acute corticospinal tract injury known as "pre-Wallerian degeneration." OBJECTIVE The aim of this study was to determine whether diffusion restriction in the corticospinal tract and corpus callosum occurs within the first 2 weeks after birth in neonates with neonatal hypoxic-ischemic encephalopathy. MATERIALS AND METHODS We enrolled a consecutive series of 66 infants diagnosed with hypoxic-ischemic encephalopathy who underwent MRI. We evaluated diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) values to assess the presence of restricted diffusion in the corticospinal tract and corpus callosum. Next, we compared ADC values in the corticospinal tract and in the splenium and genu of the corpus callosum of infants with abnormal pattern on MRI with those of control infants, who showed a normal pattern on MRI. We attempted to follow all infants with hypoxic-ischemic encephalopathy until 18 months of age and assess them using a standardized neurologic examination. RESULTS After exclusions, we recruited 25 infants with abnormal MRI and 20 with normal MRI (controls). Among these 45 neonates, pre-Wallerian degeneration was visualized in the corticospinal tract in 10 neonates and in the corpus callosum in 12. The ADC values in the corticospinal tract in the first week were significantly lower than they were in the second week. Infants with pre-Wallerian degeneration in the corticospinal tract showed an unfavorable outcome. CONCLUSION Pre-Wallerian degeneration was visualized in the corticospinal tract and corpus callosum and was associated with extensive brain injury caused by hypoxic-ischemic encephalopathy. The changes in signal were observed to evolve over time within the first 2 weeks. The clinical outcome of infants having pre-Wallerian degeneration in the corticospinal tract was unfavorable.
Collapse
Affiliation(s)
- Katsumi Hayakawa
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, 15-749 Hon-machi, Higashiyama-ku, Kyoto, 605-0981, Japan.
| | - Koichi Tanda
- Department of Neonatology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan.,Department of Pediatrics, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Akira Nishimura
- Department of Neonatology, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Sachiko Koshino
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, 15-749 Hon-machi, Higashiyama-ku, Kyoto, 605-0981, Japan
| | - Zenro Kizaki
- Department of Pediatrics, Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Koji Ohno
- Department of Diagnostic Radiology, Red Cross Kyoto Daiichi Hospital, 15-749 Hon-machi, Higashiyama-ku, Kyoto, 605-0981, Japan
| |
Collapse
|
34
|
Cebeci B, Alderliesten T, Wijnen JP, van der Aa NE, Benders MJNL, de Vries LS, van den Hoogen A, Groenendaal F. Brain proton magnetic resonance spectroscopy and neurodevelopment after preterm birth: a systematic review. Pediatr Res 2022; 91:1322-1333. [PMID: 33953356 DOI: 10.1038/s41390-021-01539-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Preterm infants are at risk of neurodevelopmental impairments. At present, proton magnetic resonance spectroscopy (1H-MRS) is used to evaluate brain metabolites in asphyxiated term infants. The aim of this review is to assess associations between cerebral 1H-MRS and neurodevelopment after preterm birth. METHODS PubMed and Embase were searched to identify studies using 1H-MRS and preterm birth. Eligible studies for this review included 1H-MRS of the brain, gestational age ≤32 weeks, and neurodevelopment assessed at a corrected age (CA) of at least 12 months up to the age of 18 years. RESULTS Twenty papers evaluated 1H-MRS in preterm infants at an age between near-term and 18 years and neurodevelopment. 1H-MRS was performed in both white (WM) and gray matter (GM) in 12 of 20 studies. The main regions were frontal and parietal lobe for WM and basal ganglia for GM. N-acetylaspartate/choline (NAA/Cho) measured in WM and/or GM is the most common metabolite ratio associated with motor, language, and cognitive outcome at 18-24 months CA. CONCLUSIONS NAA/Cho in WM assessed at term-equivalent age was associated with motor, cognitive, and language outcome, and NAA/Cho in deep GM was associated with language outcome at 18-24 months CA. IMPACT In preterm born infants, brain metabolism assessed using 1H-MRS at term-equivalent age is associated with motor, cognitive, and language outcomes at 18-24 months. 1H-MRS at term-equivalent age in preterm born infants may be used as an early indication of brain development. Specific findings relating to NAA were most predictive of outcome.
Collapse
Affiliation(s)
- Burcu Cebeci
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.,Department of Neonatology, Health Sciences University, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Jannie P Wijnen
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Niek E van der Aa
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Agnes van den Hoogen
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Floris Groenendaal
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
35
|
Bartnik-Olson BL, Blood AB, Terry MH, Hanson SFL, Day C, Kido D, Kim P. Quantitative susceptibility mapping as a measure of cerebral oxygenation in neonatal piglets. J Cereb Blood Flow Metab 2022; 42:891-900. [PMID: 34878947 PMCID: PMC9254037 DOI: 10.1177/0271678x211065199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022]
Abstract
Prominence of cerebral veins using susceptibility weighted magnetic resonance imaging (SWI) has been used as a qualitative indicator of cerebral venous oxygenation (CvO2). Quantitative susceptibility mapping (QSM) adds more precision to the assessment of CvO2, but has not been applied to neonatal hypoxic ischemic injury (HII). We proposed to study QSM measures of venous susceptibility and their correlation with direct measures of brain oxygenation and cerebral blood flow (CBF) in the neonatal piglet. The association of QSM intravascular cerebral venous susceptibility, with brain tissue O2 tension, CBF, cortical tissue oxyhemoglobin saturation, and the partial pressure of oxygen in arterial blood measurement during various oxygenation states was determined by linear regression. Compared to normoxia, venous susceptibility in the straight sinus increased 56.8 ± 25.4% during hypoxia, while decreasing during hyperoxia (23.5 ± 32.9%) and hypercapnia (23.3 ± 73.1%), which was highly correlated to all other measures of oxygenation (p < 0.0001) but did not correlate to CBF (p = 0.82). These findings demonstrate a strong relationship between venous susceptibility and brain tissue O2 tension. Our results suggest that QSM-derived venous susceptibility is sensitive to cerebral oxygenation status across various oxygenation states.
Collapse
Affiliation(s)
| | - Arlin B Blood
- Department of Pediatrics, Loma Linda University School of
Medicine, Center for Perinatal Biology, Loma Linda, CA, USA
| | - Michael H Terry
- Department of Pulmonary & Critical Care, Loma Linda
University Medical Center, Loma Linda, CA, USA
| | - Shawn FL Hanson
- Center for Perinatal Biology, Loma Linda University School of
Medicine, Loma Linda, CA, USA
| | - Christopher Day
- Department of Pediatrics, Office of Graduate Medical Education,
Loma Linda, CA, USA
| | - Daniel Kido
- Department of Radiology, Loma Linda University Medical Center,
Loma Linda, CA, USA
| | - Paggie Kim
- Department of Radiology, Loma Linda University Medical Center,
Loma Linda, CA, USA
| |
Collapse
|
36
|
Parmentier CEJ, de Vries LS, Groenendaal F. Magnetic Resonance Imaging in (Near-)Term Infants with Hypoxic-Ischemic Encephalopathy. Diagnostics (Basel) 2022; 12:diagnostics12030645. [PMID: 35328199 PMCID: PMC8947468 DOI: 10.3390/diagnostics12030645] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/14/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of neurological sequelae in (near-)term newborns. Despite the use of therapeutic hypothermia, a significant number of newborns still experience impaired neurodevelopment. Neuroimaging is the standard of care in infants with HIE to determine the timing and nature of the injury, guide further treatment decisions, and predict neurodevelopmental outcomes. Cranial ultrasonography is a helpful noninvasive tool to assess the brain before initiation of hypothermia to look for abnormalities suggestive of HIE mimics or antenatal onset of injury. Magnetic resonance imaging (MRI) which includes diffusion-weighted imaging has, however, become the gold standard to assess brain injury in infants with HIE, and has an excellent prognostic utility. Magnetic resonance spectroscopy provides complementary metabolic information and has also been shown to be a reliable prognostic biomarker. Advanced imaging modalities, including diffusion tensor imaging and arterial spin labeling, are increasingly being used to gain further information about the etiology and prognosis of brain injury. Over the past decades, tremendous progress has been made in the field of neonatal neuroimaging. In this review, the main brain injury patterns of infants with HIE, the application of conventional and advanced MRI techniques in these newborns, and HIE mimics, will be described.
Collapse
Affiliation(s)
- Corline E. J. Parmentier
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (C.E.J.P.); (L.S.d.V.)
| | - Linda S. de Vries
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (C.E.J.P.); (L.S.d.V.)
- Department of Neonatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Floris Groenendaal
- Department of Neonatology, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands; (C.E.J.P.); (L.S.d.V.)
- Correspondence:
| |
Collapse
|
37
|
Wang J, Li J, Yin X, Zhou H, Zheng Y, Huaijun Liu MM. Cerebral hemodynamics of hypoxic-ischemic encephalopathy neonates at different ages detected by arterial spin labeling imaging. Clin Hemorheol Microcirc 2022; 81:271-279. [PMID: 35253735 DOI: 10.3233/ch-211324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE: This study aims to investigate the application value of three-dimensional arterial spin labeling (ASL) perfusion imaging in detecting cerebral hemodynamics of neonates with hypoxic-ischemic encephalopathy (HIE). METHODS: Sixty normal full-term neonates and 60 HIE neonates were enrolled in this study and were respectively divided into three groups: the 1–3 days group, the 4–7 days group, and the 8–15 days group. The brains of these neonates were scanned with the 3D ASL sequence, and cerebral blood flow (CBF) images were obtained. The CBF values of the bilateral symmetrical brain regions and brain stem were measured on CBF images, and the values were averaged. The cerebral blood flow of HIE neonates in the 1–3 days group, the 4–7 days group, and the 8–15 days group was compared with normal neonates at matched ages, and the characteristics of cerebral hemodynamics in HIE neonates at different ages were summarized. RESULTS: The CBF values of the basal ganglia, thalamus, and brainstem in the 1–3 days HIE group were higher than normal neonates at matched ages, and the CBF value of the frontal lobe was lower than the normal group, and the differences were statistically significant (P < 0.05). The CBF values of the basal ganglia, thalamus, corona radiata, and frontal lobe in the 4–7 days HIE group were lower than the normal group, and the differences were statistically significant (P < 0.05). There were no significant differences in CBF values of different brain regions between the 8–15 days HIE and normal groups (P > 0.05). CONCLUSION: Early hyperperfusion of the basal ganglia and thalamus is helpful for early diagnosis and prognosis of HIE.
Collapse
Affiliation(s)
- Jianing Wang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jia Li
- Department of Otorhinolary Head and Neck Surgery, Baoding Second Hospital, Baoding, China
| | - Xiaoping Yin
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Huan Zhou
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yating Zheng
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, China
| | - MM Huaijun Liu
- Department of Radiology, The Second Hospita of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
38
|
Chalak L. New Horizons in Mild Hypoxic-ischemic Encephalopathy: A Standardized Algorithm to Move past Conundrum of Care. Clin Perinatol 2022; 49:279-294. [PMID: 35210007 DOI: 10.1016/j.clp.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) presents clinically with a neonatal encephalopathy (NE) whereby the mild spectrum is difficult to classify immediately after birth. For decades trials have focused exclusively on infants with moderate-severe HIE s, as these infants were easier to identify after birth and had the highest risk of adverse outcomes. Twenty years after those trials, the PRIME study finally solved the first part of the conundrum by providing a definition of mild HIE in the first 6 hours. There is strong biological plausibility and preclinical evidence supporting the efficacy of therapeutic hypothermia (TH) but there is a lack of comparative clinical data to establish the risk-benefit in mild HIE. The fundamental question of how best to manage mild HIE remains unanswered. This review will summarize (1) the evidence that neonates with mild HIE are at significant risk for adverse outcomes, (2) the gaps/controversies in management, and (3) an algorithm of care is proposed to ensure standardized management of mild HIE and the direction of future trials.
Collapse
Affiliation(s)
- Lina Chalak
- Neonatal-Perinatal Medicine, University of Texas Southwestern Medical School, 5323 Harry Hines Boulevard, Dallas, TX 75390-9063, USA.
| |
Collapse
|
39
|
Song Y, Lally PJ, Yanez Lopez M, Oeltzschner G, Nebel MB, Gagoski B, Kecskemeti S, Hui SCN, Zöllner HJ, Shukla D, Arichi T, De Vita E, Yedavalli V, Thayyil S, Fallin D, Dean DC, Grant PE, Wisnowski JL, Edden RAE. Edited magnetic resonance spectroscopy in the neonatal brain. Neuroradiology 2022; 64:217-232. [PMID: 34654960 PMCID: PMC8887832 DOI: 10.1007/s00234-021-02821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
J-difference-edited spectroscopy is a valuable approach for the detection of low-concentration metabolites with magnetic resonance spectroscopy (MRS). Currently, few edited MRS studies are performed in neonates due to suboptimal signal-to-noise ratio, relatively long acquisition times, and vulnerability to motion artifacts. Nonetheless, the technique presents an exciting opportunity in pediatric imaging research to study rapid maturational changes of neurotransmitter systems and other metabolic systems in early postnatal life. Studying these metabolic processes is vital to understanding the widespread and rapid structural and functional changes that occur in the first years of life. The overarching goal of this review is to provide an introduction to edited MRS for neonates, including the current state-of-the-art in editing methods and editable metabolites, as well as to review the current literature applying edited MRS to the neonatal brain. Existing challenges and future opportunities, including the lack of age-specific reference data, are also discussed.
Collapse
Affiliation(s)
- Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter J Lally
- Department of Brain Sciences, Imperial College London, London, UK
| | - Maria Yanez Lopez
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Borjan Gagoski
- Department of Radiology, Division of Neuroradiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | | | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Deepika Shukla
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Tomoki Arichi
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Enrico De Vita
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, St Thomas's Hospital, Westminster Bridge Road, Lambeth Wing, 3rd Floor, London, SE1 7EH, UK
| | - Vivek Yedavalli
- Division of Neuroradiology, Park 367G, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. B-112 D, Baltimore, MD, 21287, USA
| | - Sudhin Thayyil
- Centre for Perinatal Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, USA.,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Douglas C Dean
- Waisman Center, University of WI-Madison, Madison, WI, 53705, USA.,Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of WI-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Medical Physics, University of WI-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA
| | - P Ellen Grant
- Department of Radiology, Division of Neuroradiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.,Department of Medicine, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica L Wisnowski
- Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Radiology and Fetal and Neonatal Institute, CHLA Division of Neonatology, Department of Pediatrics, Children's Hospital of Los Angeles, University of Southern California, Los Angeles, CA, 90033, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA. .,Division of Neuroradiology, Park 367G, The Johns Hopkins University School of Medicine, 600 N. Wolfe St. B-112 D, Baltimore, MD, 21287, USA.
| |
Collapse
|
40
|
Tuiskula A, Metsäranta M, Toiviainen‐Salo S, Vanhatalo S, Haataja L. Profile of minor neurological findings after perinatal asphyxia. Acta Paediatr 2022; 111:291-299. [PMID: 34599610 PMCID: PMC9299470 DOI: 10.1111/apa.16133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
Aim To characterise the spectrum of findings in sequential neurological examinations, general movements (GM) assessment and magnetic resonance imaging (MRI) of infants with perinatal asphyxia. Methods The prospective cohort study of term infants with perinatal asphyxia treated at Helsinki University Hospital's neonatal units in 2016–2020 used Hammersmith Neonatal Neurological Examination (HNNE) and brain MRI at 2 weeks and Hammersmith Infant Neurological Examination (HINE) and GM assessment at 3 months of age. Results Analysis included 50 infants: 33 displaying perinatal asphyxia without hypoxic‐ischaemic encephalopathy (HIE), seven with HIE1 and 10 with HIE2. Of the infants with atypical HNNE findings, 24/25 perinatal asphyxia without HIE cases, 5/6 HIE1 cases and all 10 HIE2 cases showed atypical findings in the HINE. The HINE identified atypical spontaneous movements significantly more often in infants with white matter T2 hyperintensity. Conclusion In this cohort, most infants with perinatal asphyxia, with or without HIE, presented atypical neurological findings in sequential examinations. The profile of neurological findings for children with perinatal asphyxia without HIE resembled that of children with HIE. White matter T2 hyperintensity was associated with atypical spontaneous movements in the HINE and was a frequent MRI finding also in perinatal asphyxia without HIE.
Collapse
Affiliation(s)
- Anna Tuiskula
- BABA Center Pediatric Research Center Department of Pediatrics, Children's Hospital Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Marjo Metsäranta
- Department of Neonatology, Children's Hospital BABA Center Pediatric Research Center Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Sanna Toiviainen‐Salo
- Department of Pediatric Radiology, Radiology, HUS Diagnostic Center BABA Center Pediatric Research Center Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, Children's Hospital BABA Center Pediatric Research Center Neuroscience Center, Helsinki Institute of Life Science Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Leena Haataja
- Department of Pediatric Neurology, Children's Hospital BABA Center Pediatric Research Center Helsinki University Hospital and University of Helsinki Helsinki Finland
| |
Collapse
|
41
|
Gire C, Berbis J, Dequin M, Marret S, Muller JB, Saliba E, Tosello B. A correlation between Magnetic Resonance Spectroscopy (1-H MRS) and the neurodevelopment of two-year-olds born preterm in an EPIRMEX cohort study. Front Pediatr 2022; 10:936130. [PMID: 36061395 PMCID: PMC9437452 DOI: 10.3389/fped.2022.936130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preterm infants are at risk of neurodevelopmental impairments. At present, proton magnetic resonance spectroscopy (1H-MRS) is currently used to evaluate brain metabolites in asphyxiated term infants. The purpose of this study was to identify in the preterm EPIRMEX cohort any correlations between (1H-MRS) metabolites ratio at term equivalent age (TEA) and neurodevelopmental outcomes at 2 years. METHODS Our study included EPIRMEX eligible patients who were very preterm infants (gestational age at birth ≤32 weeks) and who underwent a brain MRI at TEA and 1H-MRS using a monovoxel technique. The volumes of interest (VOI) were periventricular white matter posterior area and basal ganglia. The ratio of N Acetyl Aspartate (NAA) to Cho (Choline), NAA to Cr (creatine), Cho to Cr, and Lac (Lactate) to Cr were measured. Neurodevelopment was assessed at 24 months TEA with ASQ (Ages and Stages Questionnaire). RESULTS A total of 69 very preterm infants had a 1H-MRS at TEA. In white matter there was a significant correlation between a reduction in the NAA/Cho ratio and a total ASQ and/or abnormal communication score, and an increase in the Lac/Cr ratio and an abnormality of fine motor skills. In the gray nuclei there was a trend correlation between the reduction in the NAA/Cho ratio and sociability disorders; and the increase in the Lac/Cr ratio and an anomaly in problem-solving. CONCLUSIONS Using NAA as a biomarker, the vulnerability of immature oligodendrocytes in preterm children at TEA was correlated to neurodevelopment at 2 years. Similarly, the presence of lactate at TEA was associated with abnormal neurodevelopment at 2 years in the preterm brain.
Collapse
Affiliation(s)
- Catherine Gire
- Department of Neonatal Medicine, Assistance Publique Hopitaux de Marseille, Marseille, France.,EA3279, Faculty of Medicine, Self-Perceived Health Assessment Research Unit, Marseille, France
| | - Julie Berbis
- EA3279, Faculty of Medicine, Self-Perceived Health Assessment Research Unit, Marseille, France
| | - Marion Dequin
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital and Institut National de la Santé et de la Recherche Médicale INSERM U 1245 Team 4 Neovasc, School of Medicine, Normandy University, Rouen, France
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, Rouen University Hospital and Institut National de la Santé et de la Recherche Médicale INSERM U 1245 Team 4 Neovasc, School of Medicine, Normandy University, Rouen, France
| | | | - Elie Saliba
- UMR 1253, iBrain, Tours University, Institut National de la Santé et de la Recherche Médicale (INSERM), Tours, France
| | - Barthélémy Tosello
- Department of Neonatal Medicine, Assistance Publique Hopitaux de Marseille, Marseille, France.,Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
42
|
Nanyunja C, Sadoo S, Mambule I, Mathieson SR, Nyirenda M, Webb EL, Mugalu J, Robertson NJ, Nabawanuka A, Gilbert G, Bwambale J, Martinello K, Bainbridge A, Lubowa S, Srinivasan L, Ssebombo H, Morgan C, Hagmann C, Cowan FM, Le Doare K, Wintermark P, Kawooya M, Boylan GB, Nakimuli A, Tann CJ. Protocol for the Birth Asphyxia in African Newborns (Baby BRAiN) Study: a Neonatal Encephalopathy Feasibility Cohort Study. Gates Open Res 2022; 6:10. [PMID: 35614965 PMCID: PMC9110736 DOI: 10.12688/gatesopenres.13557.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND: Neonatal encephalopathy (NE) is a leading cause of child mortality worldwide and contributes substantially to stillbirths and long-term disability. Ninety-nine percent of deaths from NE occur in low-and-middle-income countries (LMICs). Whilst therapeutic hypothermia significantly improves outcomes in high-income countries, its safety and effectiveness in diverse LMIC contexts remains debated. Important differences in the aetiology, nature and timing of neonatal brain injury likely influence the effectiveness of postnatal interventions, including therapeutic hypothermia. METHODS: This is a prospective pilot feasibility cohort study of neonates with NE conducted at Kawempe National Referral Hospital, Kampala, Uganda. Neurological investigations include continuous video electroencephalography (EEG) (days 1-4), serial cranial ultrasound imaging, and neonatal brain Magnetic Resonance Imaging and Spectroscopy (MRI/ MRS) (day 10-14). Neurodevelopmental follow-up will be continued to 18-24 months of age including Prechtl's Assessment of General Movements, Bayley Scales of Infant Development, and a formal scored neurological examination. The primary outcome will be death and moderate-severe neurodevelopmental impairment at 18-24 months. Findings will be used to inform explorative science and larger trials, aiming to develop urgently needed neuroprotective and neurorestorative interventions for NE applicable for use in diverse settings. DISCUSSION: The primary aims of the study are to assess the feasibility of establishing a facility-based cohort of children with NE in Uganda, to enhance our understanding of NE in a low-resource sub-Saharan African setting and provide infrastructure to conduct high-quality research on neuroprotective/ neurorestorative strategies to reduce death and disability from NE. Specific objectives are to establish a NE cohort, in order to 1) investigate the clinical course, aetiology, nature and timing of perinatal brain injury; 2) describe electrographic activity and quantify seizure burden and the relationship with adverse outcomes, and; 3) develop capacity for neonatal brain MRI/S and examine associations with early neurodevelopmental outcomes.
Collapse
Affiliation(s)
| | - Samantha Sadoo
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Ivan Mambule
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
| | | | | | - Emily L Webb
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - J Mugalu
- Kawempe National Referral Hospital, Kampala, UK
| | - Nicola J Robertson
- University College London, London, UK
- University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | - Cathy Morgan
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, Australia
| | | | | | - Kirsty Le Doare
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- St George's, University of London, London, UK
| | | | - Michael Kawooya
- Ernest Cook Ultrasound Research and Education Institute (ECUREI), Kampala, Uganda
| | | | - Annettee Nakimuli
- Kawempe National Referral Hospital, Kampala, UK
- Makarere University, Kampala, Uganda
| | - Cally J Tann
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
43
|
Kyng KJ, Wellmann S, Lehnerer V, Hansen LH, Kuhle J, Henriksen TB. Neurofilament Light Chain serum levels after Hypoxia-Ischemia in a newborn piglet model. Front Pediatr 2022; 10:1068380. [PMID: 36699314 PMCID: PMC9869944 DOI: 10.3389/fped.2022.1068380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
AIM Neurofilament light Chain (NfL) is a promising brain injury biomarker which may assist diagnosis and prognostication in hypoxic-ischemic encephalopathy (HIE). The aim of this study was to investigate serum NfL levels after hypoxia-ischemia (HI) in a newborn piglet model. Second, to characterize the influence of sex, weight, and treatment with remote ischemic postconditioning (RIPC) on NfL and the correlation between NfL, brain imaging and histologic brain injury. METHODS We used serum from 48 newborn piglets of both sexes subjected to 45 min of global HI, and 4 sham piglets. Blood was collected pre-HI, 2 h post-HI and 72 h post-HI. NfL was measured by single-molecule array (Simoa™). We analysed the temporal profile of NfL after HI, and correlations between NfL, magnetic resonance spectroscopy brain Lac/NAA ratios and histologic brain injury 72 h after HI. RESULTS Median (IQR) NfL levels were: pre-HI: 66 pg/ml (45-87), 2 h post-HI: 105 pg/ml (77-140), and 72 h post-HI: 380 pg/ml (202-552). The increase in NfL after HI was statistically significant (p < 0.0001, mixed-effects ANOVA). Median NfL levels in sham animals were 41.4 pg/ml at baseline and 92.4 pg/ml at 72 h (p = 0.11, paired t-test). Neither sex, nor treatment with RIPC influenced NfL levels. Weight had a small, not biologically important, influence. NfL levels at 72 h were moderately correlated with histologic brain injury and brain Lac/NAA ratios. NfL 72 h post-HI > 330 pg/ml had a sensitivity of 89% (95% CI, 57%-99%) and a specificity of 52% (95% CI, 34%-69%) for predicting basal ganglia Lac/NAA ratio in the highest quartile. NfL 72 h post-HI > 445 pg/ml had a sensitivity of 90% (95% CI, 60%-99%) and a specificity of 74% (95% CI, 58%-86%) for predicting cortical brain histopathology injury in the highest quartile. CONCLUSION NfL increased after HI, with the largest values at 72 h post-HI. Early NfL was sensitive but not very specific, whereas NfL at 72 h was both highly sensitive and specific for exposure to moderate-severe HI in this model of HI-induced brain injury. This was supported by a moderate correlation of NfL at 72 h with brain Lac/NAA ratio and histopathology.
Collapse
Affiliation(s)
- Kasper Jacobsen Kyng
- Aarhus University Hospital and Aarhus University, Department of Pediatrics and Adolescent Medicine and Department of Clinical Medicine, Aarhus, Denmark
| | - Sven Wellmann
- Department of Neonatology, University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Verena Lehnerer
- Department of Neonatology, University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Lærke Hjøllund Hansen
- Aarhus University Hospital and Aarhus University, Department of Pediatrics and Adolescent Medicine and Department of Clinical Medicine, Aarhus, Denmark
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Tine Brink Henriksen
- Aarhus University Hospital and Aarhus University, Department of Pediatrics and Adolescent Medicine and Department of Clinical Medicine, Aarhus, Denmark
| |
Collapse
|
44
|
Barta H, Jermendy A, Kovacs L, Schiever N, Rudas G, Szabo M. Predictive performance and metabolite dynamics of proton MR spectroscopy in neonatal hypoxic-ischemic encephalopathy. Pediatr Res 2022; 91:581-589. [PMID: 34489532 PMCID: PMC8904256 DOI: 10.1038/s41390-021-01626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Prognostic value of proton MR spectroscopy (H-MRS) in hypoxic-ischemic encephalopathy (HIE) is acknowledged; however, effects of gestational age (GA) and postnatal age (PA) on prediction and metabolite levels are unknown. METHODS One hundred and sixty-nine newborns with moderate-to-severe HIE were studied, having ≥1 H-MRS scan during postnatal days 0-14 and known neurodevelopmental outcome (Bayley-II score/cerebral palsy/death). Initial scans were categorized by PA (day 1-3/4-6/≥7), and metabolite ratios were compared by predictive value. Metabolite dynamics were assessed in a total of 214 scans performed in the study population, using regression modeling, with predictors GA, PA, and outcome. RESULTS N-acetyl-aspartate (NAA)/creatine (Cr) and myo-inositol (mI)/NAA height ratios were consistently associated with outcome throughout the first 14 days, with the highest predictive value in the late (≥7 days) period (AUC = 0.963 and 0.816, respectively). Neither GA nor PA had an overall effect on these metabolite ratios, which showed strongest association with outcome (p < 0.001). Assessed separately in patients with good outcome, GA became a significant covariate for metabolite ratios (p = 0.0058 and 0.0002, respectively). However, this association disappeared in the poor outcome group. CONCLUSIONS In HIE, NAA/Cr and mI/NAA give most accurate outcome prediction throughout postnatal days 0-14. GA only affected metabolite levels in the good outcome group. IMPACT Proton MR spectroscopy metabolite ratios N-acetyl-aspartate/creatine and myo-inositol/N-acetyl-aspartate have persistently high predictive value throughout postnatal days 0-14 in newborns with hypoxic-ischemic encephalopathy, with the highest predictive power between postnatal days 7 and 14. Overall, neither metabolite ratio was affected by gestational age nor by postnatal age, while they showed the strongest association with neurological outcome. However, in newborns facing good outcome, metabolite ratios were associated with gestational age, whereas in cases facing poor outcome, this association disappeared. Proton MR spectroscopy provides valuable prognostic information in neonatal hypoxic-ischemic encephalopathy throughout the first 2 weeks of life, irrespective of the timing of MR scan.
Collapse
Affiliation(s)
- Hajnalka Barta
- Division of Neonatology, 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.
| | - Agnes Jermendy
- grid.11804.3c0000 0001 0942 9821Division of Neonatology, 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Livia Kovacs
- grid.11804.3c0000 0001 0942 9821Division of Neonatology, 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Noemie Schiever
- grid.11804.3c0000 0001 0942 9821Division of Neonatology, 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Gabor Rudas
- grid.11804.3c0000 0001 0942 9821Medical Imaging Centre, Department of Neuroradiology, Semmelweis University, Budapest, Hungary
| | - Miklos Szabo
- grid.11804.3c0000 0001 0942 9821Division of Neonatology, 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Ní Bhroin M, Kelly L, Sweetman D, Aslam S, O'Dea MI, Hurley T, Slevin M, Murphy J, Byrne AT, Colleran G, Molloy EJ, Bokde ALW. Relationship Between MRI Scoring Systems and Neurodevelopmental Outcome at Two Years in Infants With Neonatal Encephalopathy. Pediatr Neurol 2022; 126:35-42. [PMID: 34736061 DOI: 10.1016/j.pediatrneurol.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) scoring systems are used in the neonatal period to predict outcome in infants with neonatal encephalopathy. Our aim was to assess the relationship between three MRI scores and neurodevelopmental outcome assessed using Bayley Scales of Infant and Toddler Development, third edition (Bayley-III), at two years in infants with neonatal encephalopathy. METHODS Term-born neonates with evidence of perinatal asphyxia born between 2011 and 2015 were retrospectively reviewed. MRI scanning was performed within the first two weeks of life and scored using Barkovich, National Institute of Child Health and Human Development (NICHD) Neonatal Research Network (NRN), and Weeke systems by a single assessor blinded to the infants clinical course. Neurodevelopmental outcome was assessed using composite scores on the Bayley-III at two years. Multiple linear regression analyses were used to assess the association between MRI scores and Bayley-III composite scores, with postmenstrual age at scan and sex included as covariates. RESULTS Of the 135 recruited infants, 90 infants underwent MRI, and of these, 66 returned for follow-up. MRI abnormalities were detected with the highest frequency using the Weeke score (Barkovich 40%, NICHD NRN 50%, Weeke 77%). The inter-rater agreement was good for the Barkovich score and excellent for NICHD NRN and Weeke scores. There was a significant association between Barkovich, NICHD NRN, and Weeke scores and Bayley-III cognitive and motor scores. Only the Weeke score was associated with Bayley-III language scores. CONCLUSIONS Our findings confirm the predictive value of existing MRI scoring systems for cognitive and motor outcome and suggest that more detailed scoring systems have predictive value for language outcome.
Collapse
Affiliation(s)
- Megan Ní Bhroin
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland.
| | - Lynne Kelly
- Department of Paediatric and Child Health, Trinity College Dublin, Tallaght University Hospital (TUH), Dublin, Ireland
| | - Deirdre Sweetman
- Department of Neonatology, The National Maternity Hospital, Dublin, Ireland
| | - Saima Aslam
- Department of Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Mary I O'Dea
- Department of Paediatric and Child Health, Trinity College Dublin, Tallaght University Hospital (TUH), Dublin, Ireland; Department of Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Tim Hurley
- Department of Paediatric and Child Health, Trinity College Dublin, Tallaght University Hospital (TUH), Dublin, Ireland
| | - Marie Slevin
- Department of Neonatology, The National Maternity Hospital, Dublin, Ireland
| | - John Murphy
- Department of Neonatology, The National Maternity Hospital, Dublin, Ireland
| | - Angela T Byrne
- Department of Radiology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Gabrielle Colleran
- Department of Radiology, The National Maternity Hospital, Dublin, Ireland and Children's Hospital Ireland (CHI) at Temple Street, Dublin, Ireland; Department of Paediatrics, Trinity College Dublin, Dublin, Ireland; Women's and Children's Health, University College Dublin (UCD), School of Medicine, University College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Department of Paediatric and Child Health, Trinity College Dublin, Tallaght University Hospital (TUH), Dublin, Ireland; Department of Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Arun L W Bokde
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
46
|
Kerrn-Jespersen S, Andersen M, Bennedsgaard K, Andelius TCK, Pedersen M, Kyng KJ, Henriksen TB. Remote ischemic postconditioning increased cerebral blood flow and oxygenation assessed by magnetic resonance imaging in newborn piglets after hypoxia-ischemia. Front Pediatr 2022; 10:933962. [PMID: 36245727 PMCID: PMC9559709 DOI: 10.3389/fped.2022.933962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We have previously investigated neurological outcomes following remote ischemic postconditioning (RIPC) in a newborn piglet model of hypoxic-ischemic encephalopathy. The aim of this study was to further investigate potential mechanisms of neuroprotection by comparing newborn piglets subjected to global hypoxia-ischemia (HI) treated with and without RIPC with regards to measures of cerebral blood flow and oxygenation assessed by functional magnetic resonance imaging. MATERIALS AND METHODS A total of 50 piglets were subjected to 45 min global HI and randomized to either no treatment or RIPC treatment. Magnetic resonance imaging was performed 72 h after the HI insult with perfusion-weighted (arterial spin labeling, ASL) and oxygenation-weighted (blood-oxygen-level-dependent, BOLD) sequences in the whole brain, basal ganglia, thalamus, and cortex. Four sham animals received anesthesia and mechanical ventilation only. RESULTS Piglets treated with RIPC had higher measures of cerebral blood flow in all regions of interest and the whole brain (mean difference: 2.6 ml/100 g/min, 95% CI: 0.1; 5.2) compared with the untreated controls. They also had higher BOLD values in the basal ganglia and the whole brain (mean difference: 4.2 T2*, 95% CI: 0.4; 7.9). Measures were similar between piglets treated with RIPC and sham animals. CONCLUSION Piglets treated with RIPC had higher measures of cerebral blood flow and oxygenation assessed by magnetic resonance imaging in the whole brain and several regions of interest compared with untreated controls 72 h after the HI insult. Whether this reflects a potential neuroprotective mechanism of RIPC requires further study.
Collapse
Affiliation(s)
- Sigrid Kerrn-Jespersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Andersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Bennedsgaard
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ted Carl Kejlberg Andelius
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kasper Jacobsen Kyng
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tine Brink Henriksen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
47
|
Lin L, Liu W, Mu J, Zhan E, Wei H, Hong S, Hua Z. Effect of neonatal neuronal intensive care unit on neonatal encephalopathy. PLoS One 2021; 16:e0261837. [PMID: 34972144 PMCID: PMC8719725 DOI: 10.1371/journal.pone.0261837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Prophylaxis of brain injury in newborns has been a main concern since the first neonatal neuronal intensive care unit (NNICU) was established in the world in 2008. The aim of this study was to outline and evaluate the unit's development by analyzing the demographics of the patients, the services delivered, the short-term outcomes before and after the establishment of NNICU. During the two investigation periods, 384 newborns were diagnosed or suspected as "neonatal encephalopathy", among which 185 patients admitted to NNICU between 2011.03.01 and 2012.09.30 before the establishment of NNICU were enrolled in the pre-NNICU group, another 199 neonates hospitalized during 2018.03.01 to 2019.09.30 were included in the post-NNICU group. Patients in the post-NNICU group were more likely to have seizures (P = 0.001), incomplete or absent primitive reflexes (P = 0.002), therapeutic hypothermia (P<0.001) and liquid control (P<0.001) in acute phase. Meanwhile, amplitude-integrated electro encephalogram (aEEG) monitoring (P<0.001) and cranial ultrasound (P<0.001) were more often used in NNICU. Both of the follow-up rate in brain MRI and the assessment of neurodevelopment at 3 months were higher in the post-NNICU group (P<0.001). In conclusion, the NNICU focused on the neonatal neurocritical care for the babies susceptible to NE with the guidance of evidence-based medicine, the establishment of NNICU is gradually improving and standardizing the neuroprotective therapy and clinical follow-up to improve neurodevelopmental prognosis of the NE patients in CHCMU.
Collapse
Affiliation(s)
- Lu Lin
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children’s Hospital of Chongqing Medical University, Chongqing, P.R China
| | - Weiqin Liu
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children’s Hospital of Chongqing Medical University, Chongqing, P.R China
| | - Jing Mu
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children’s Hospital of Chongqing Medical University, Chongqing, P.R China
| | - Enmei Zhan
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children’s Hospital of Chongqing Medical University, Chongqing, P.R China
| | - Hong Wei
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children’s Hospital of Chongqing Medical University, Chongqing, P.R China
| | - Siqi Hong
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children’s Hospital of Chongqing Medical University, Chongqing, P.R China
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children’s Hospital of Chongqing Medical University, Chongqing, P.R China
| |
Collapse
|
48
|
Elshal FIS, Elshehaby WA, Dawoud MAE, Shaban EA. Magnetic resonance imaging and spectroscopy in evaluation of hypoxic ischemic encephalopathy in pediatric age group. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hypoxic ischemic encephalopathy is a major cause of pediatric mortality and morbidity, with possible long-term neurologic sequel, such as cerebral palsy. With improvements in care of at-risk neonates, more children survive. This makes it increasingly important to assess, soon after birth, the prognosis of children with hypoxic-ischemic encephalopathy. The aim of the study was to assess the additive role of magnetic resonance spectroscopy over conventional MRI in diagnosis and early prediction of pathological motor development in neonates with hypoxic ischemic encephalopathy.
Results
MRS ratios showed significant difference between unfavorable and normal outcome infants. MRS ratios as Lac/Cr, NAA/Cr and NAA/Cho within basal ganglia, thalamus and white matter can significantly differentiate between patients with normal and pathological outcome at 1 year.
Lac/Cr positively correlates with the severity of HIE. Both NAA/Cr and NAA/Cho negatively correlate with the severity of the disease. Ratios cutoff values as Lac/Cr above 0.38 and 0.42 in basal ganglia and white matter, respectively, NAA/Cr below 0.9 and 0.8 in basal ganglia and occipital white matter, respectively, and NAA/Cho below 0.29 and 0.31 in basal ganglia and frontal white matter, respectively, were significantly predictive of pathological outcome.
Conclusion
High Lac/Cr, low NAA/Cr and low NAA/Cho ratios within examined regions of the brain including deep grey matter nuclei as well as white matter are associated with an adverse outcome in infants with perinatal asphyxia. MRS is an accurate quantitative MR biomarker within the neonatal period for prediction of neurodevelopmental outcome after perinatal HIE. MRS may be useful in early clinical management decisions, and counseling parents thereby ensuring appropriate early intervention and rehabilitation.
Collapse
|
49
|
Adams M, Brotschi B, Birkenmaier A, Schwendener K, Rathke V, Kleber M, Hagmann C. Process variations between Swiss units treating neonates with hypoxic-ischemic encephalopathy and their effect on short-term outcome. J Perinatol 2021; 41:2804-2812. [PMID: 34290374 PMCID: PMC8752440 DOI: 10.1038/s41372-021-01156-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/28/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To compare therapeutic hypothermia (TH) treatment of term and near-term neonates with hypoxic-ischemic encephalopathy (HIE) between neonatal units. STUDY DESIGN Population-based, retrospective analysis of TH initiation and maintenance, and of diagnostic imaging. The comparison between units was based on crude data analysis, indirect standardization, and adjusted logistic regression. RESULTS TH was provided to 570 neonates with HIE between 2011 and 2018 in 10 Swiss units. We excluded 121 off-protocol cooled neonates to avoid selection bias. Of the remaining 449 neonates, the outcome was favorable to international benchmarks, but there were large unit-to-unit variations in baseline perinatal data and TH management. A total of 5% neonates did not reach target temperature within 7 h (3-10% between units), and 29% experienced over- or undercooling (0-38%). CONCLUSION Although the neonates had favorable short-term outcomes, areas for improvement remain for Swiss units in both process and outcome measures.
Collapse
Affiliation(s)
- Mark Adams
- Newborn Research, Department of Neonatology, University and University Hospital Zurich, Zurich, Switzerland.
| | - Barbara Brotschi
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital Zurich, Zurich, Switzerland
| | - André Birkenmaier
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital St. Gallen, Neonatal and Pediatric Intensive Care Unit, St. Gallen, Switzerland
| | - Katharina Schwendener
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, Spitalstrasse, Lucerne, Switzerland
| | - Verena Rathke
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital Zurich, Zurich, Switzerland
| | - Michael Kleber
- Clinic of Neonatology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Cornelia Hagmann
- Division of Neonatology and Pediatric Intensive Care, Children's University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Shibasaki J, Niwa T, Piedvache A, Tomiyasu M, Morisaki N, Fujii Y, Toyoshima K, Aida N. Comparison of Predictive Values of Magnetic Resonance Biomarkers Based on Scan Timing in Neonatal Encephalopathy Following Therapeutic Hypothermia. J Pediatr 2021; 239:101-109.e4. [PMID: 34391766 DOI: 10.1016/j.jpeds.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/28/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine the optimal quantitative magnetic resonance (MR) biomarker in neonatal encephalopathy following therapeutic hypothermia based on scan timing. STUDY DESIGN This retrospective study included 98 neonates (35-41 weeks of gestation) with neonatal encephalopathy, who underwent therapeutic hypothermia; diffusion-weighted imaging and proton MR spectroscopy were performed at 24-96 hours (n = 56) and 7-14 days (n = 92) after birth, respectively, to estimate apparent diffusion coefficient (ADC) values, N-acetylaspartate and N-acetylaspartylglutamate (tNAA), lactate, and choline concentrations, and lactate/tNAA, tNAA/choline ratios in the deep gray matter. Adverse outcomes included death or neurodevelopmental impairment at 18-22 months of age. We used receiver operating characteristic curves to examine the prognostic accuracy of each MR biomarker. RESULTS Deep gray matter tNAA concentrations showed the best prognostic value, with an area under the curve (AUC) of 0.97 and 1.00 at 24-96 hours and 7-14 days after birth, respectively. At 24-96 hours of age, ADC values, lactate concentrations, and lactate/tNAA ratios showed prognostic value with AUCs of 0.90, 0.95, and 0.97, respectively. At 7-14 days of age, the AUCs of ADC values, lactate, and lactate/tNAA ratios were 0.61, 0.67, and 0.80, respectively; these were lower than those at 24-96 hours of age. CONCLUSIONS During the first 2 weeks of life, the deep gray matter tNAA concentration was the most accurate quantitative MR biomarker. Although ADC values, lactate levels, and lactate/tNAA ratios also showed high prognostic value during 24-96 hours of life, only tNAA retained high prognostic value in the second week of life.
Collapse
Affiliation(s)
- Jun Shibasaki
- Department of Neonatology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tetsu Niwa
- Department of Radiology, Tokai University School of Medicine, Isehara, Japan; Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan.
| | - Aurélie Piedvache
- Division of Lifecourse Epidemiology, Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Moyoko Tomiyasu
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan; Department of Molecular Imaging and Theranostics, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Naho Morisaki
- Division of Lifecourse Epidemiology, Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yuta Fujii
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Katsuaki Toyoshima
- Department of Neonatology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|