1
|
Cumulative prenatal exposure to adversity reveals associations with a broad range of neurodevelopmental outcomes that are moderated by a novel, biologically informed polygenetic score based on the serotonin transporter solute carrier family C6, member 4 (SLC6A4) gene expression. Dev Psychopathol 2017; 29:1601-1617. [DOI: 10.1017/s0954579417001262] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractWhile many studies focus on the association between early life adversity and the later risk for psychopathology, few simultaneously explore diverse forms of environmental adversity. Moreover, those studies that examined the cumulative impact of early life adversity focus uniquely on postnatal influences. The objective of this study was to focus on the fetal period of development to construct and validate a cumulative prenatal adversity score in relation to a wide range of neurodevelopmental outcomes. We also examined the interaction of this adversity score with a biologically informed genetic score based on the serotonin transporter gene. Prenatal adversities were computed in two community birth cohorts using information on health during pregnancy, birth weight, gestational age, income, domestic violence/sexual abuse, marital strain, as well as maternal smoking, anxiety, and depression. A genetic score based on genes coexpressed with the serotonin transporter in the amygdala, hippocampus, and prefrontal cortex during prenatal life was constructed with an emphasis on functionally relevant single nucleotide polymorphisms, that is, expression quantitative trait loci. Prenatal adversities predicted a wide range of developmental and behavioral alterations in children as young as 2 years of age in both cohorts. There were interactions between the genetic score and adversities for several domains of the Child Behavior Checklist (CBCL), with pervasive developmental problems remaining significant adjustment for multiple comparisons. Scores combining different prenatal adverse exposures predict childhood behavior and interact with the genetic background to influence the risk for psychopathology.
Collapse
|
2
|
Wazana A, Moss E, Jolicoeur-Martineau A, Graffi J, Tsabari G, Lecompte V, Pascuzzo K, Babineau V, Gordon-Green C, Mileva V, Atkinson L, Minde K, Bouvette-Turcot AA, Sassi R, St-André M, Carrey N, Matthews S, Sokolowski M, Lydon J, Gaudreau H, Steiner M, Kennedy JL, Fleming A, Levitan R, Meaney MJ. The interplay of birth weight, dopamine receptor D4 gene (DRD4), and early maternal care in the prediction of disorganized attachment at 36 months of age. Dev Psychopathol 2015; 27:1145-61. [PMID: 26439067 PMCID: PMC5380440 DOI: 10.1017/s0954579415000735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Disorganized attachment is an important early risk factor for socioemotional problems throughout childhood and into adulthood. Prevailing models of the etiology of disorganized attachment emphasize the role of highly dysfunctional parenting, to the exclusion of complex models examining the interplay of child and parental factors. Decades of research have established that extreme child birth weight may have long-term effects on developmental processes. These effects are typically negative, but this is not always the case. Recent studies have also identified the dopamine D4 receptor (DRD4) as a moderator of childrearing effects on the development of disorganized attachment. However, there are inconsistent findings concerning which variant of the polymorphism (seven-repeat long-form allele or non-seven-repeat short-form allele) is most likely to interact with caregiving in predicting disorganized versus organized attachment. In this study, we examined possible two- and three-way interactions and child DRD4 polymorphisms and birth weight and maternal caregiving at age 6 months in longitudinally predicting attachment disorganization at 36 months. Our sample is from the Maternal Adversity, Vulnerability and Neurodevelopment project, a sample of 650 mother-child dyads. Birth weight was cross-referenced with normative data to calculate birth weight percentile. Infant DRD4 was obtained with buccal swabs and categorized according to the presence of the putative allele seven repeat. Macroanalytic and microanalytic measures of maternal behavior were extracted from a videotaped session of 20 min of nonfeeding interaction followed by a 10-min divided attention maternal task at 6 months. Attachment was assessed at 36 months using the Strange Situation procedure, and categorized into disorganized attachment and others. The results indicated that a main effect for DRD4 and a two-way interaction of birth weight and 6-month maternal attention (frequency of maternal looking away behavior) and sensitivity predicted disorganized attachment in robust logistic regression models adjusted for social demographic covariates. Specifically, children in the midrange of birth weight were more likely to develop a disorganized attachment when exposed to less attentive maternal care. However, the association reversed with extreme birth weight (low and high). The DRD4 seven-repeat allele was associated with less disorganized attachment (protective), while non-seven-repeat children were more likely to be classified as disorganized attachment. The implications for understanding inconsistencies in the literature about which DRD4 genotype is the risk direction are also considered. Suggestions for intervention with families with infants at different levels of biological risk and caregiving risk are also discussed.
Collapse
Affiliation(s)
- Ashley Wazana
- McGill University, Montreal
- Centre for Child Development and Mental Health, Jewish General Hospital, Montreal
| | | | | | | | | | | | | | | | | | | | | | | | | | - Roberto Sassi
- McMaster University and St-Joseph’s Healthcare Hamilton
| | | | | | | | | | | | - Helene Gaudreau
- Ludmer Centre for Neuroinformatics and Mental Health and, Douglas Mental Health University Institute, Montreal
| | - Meir Steiner
- McMaster University and St-Joseph’s Healthcare Hamilton
| | - James L. Kennedy
- University of Toronto
- Centre for Addiction and Mental Health, Toronto
| | | | - Robert Levitan
- University of Toronto
- Centre for Addiction and Mental Health, Toronto
| | - Michael J Meaney
- McGill University, Montreal
- Ludmer Centre for Neuroinformatics and Mental Health and, Douglas Mental Health University Institute, Montreal
| |
Collapse
|
3
|
Boyce WT, Kobor MS. Development and the epigenome: the 'synapse' of gene-environment interplay. Dev Sci 2015; 18:1-23. [PMID: 25546559 DOI: 10.1111/desc.12282] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
This paper argues that there is a revolution afoot in the developmental science of gene-environment interplay. We summarize, for an audience of developmental researchers and clinicians, how epigenetic processes - chromatin structural modifications that regulate gene expression without changing DNA sequences - may offer a strong, parsimonious account for the convergence of genetic and contextual variation in the genesis of adaptive and maladaptive development. Epigenetic processes may play a plausible explanatory role in understanding: divergent trajectories and sexual dimorphisms in brain development; statistical interactions between genes and environments; the biological embedding of early psychosocial adversities; the linkages of such adversities to disorders of mental health; the striking individual variation in the strength of those linkages; the molecular origins of critical and sensitive periods; and the transgenerational inheritance of risk and protection. Taken together, these arguments converge in a claim that epigenetic processes constitute a promising and illuminating point of connection - a 'synapse' - between genes and environments.
Collapse
Affiliation(s)
- W Thomas Boyce
- Departments of Pediatrics and Psychiatry, University of California, San Francisco, USA; Child and Brain Development Program, Canadian Institute for Advanced Research, Canada
| | | |
Collapse
|
4
|
Maccani JZ, Maccani MA. Altered placental DNA methylation patterns associated with maternal smoking: current perspectives. ADVANCES IN GENOMICS AND GENETICS 2015; 2015:205-214. [PMID: 26203295 PMCID: PMC4507353 DOI: 10.2147/agg.s61518] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The developmental origins of health and disease hypothesis states that adverse early life exposures can have lasting, detrimental effects on lifelong health. Exposure to maternal cigarette smoking during pregnancy is associated with morbidity and mortality in offspring, including increased risks for miscarriage, stillbirth, low birth weight, preterm birth, asthma, obesity, altered neurobehavior, and other conditions. Maternal cigarette smoking during pregnancy interferes with placental growth and functioning, and it has been proposed that this may occur through the disruption of normal and necessary placental epigenetic patterns. Epigenome-wide association studies have identified a number of differentially methylated placental genes that are associated with maternal smoking during pregnancy, including RUNX3, PURA, GTF2H2, GCA, GPR135, and HKR1. The placental methylation status of RUNX3 and NR3C1 has also been linked to adverse infant outcomes, including preterm birth and low birth weight, respectively. Candidate gene analyses have also found maternal smoking-associated placental methylation differences in the NR3C1, CYP1A1, HTR2A, and HSD11B2 genes, as well as in the repetitive elements LINE-1 and AluYb8. The differential methylation patterns of several genes have been confirmed to also exhibit altered gene expression patterns, including CYP1A1, CYP19A1, NR3C1, and HTR2A. Placental methylation patterns associated with maternal smoking during pregnancy may be largely gene-specific and tissue-specific and, to a lesser degree, involve global changes. It is important for future research to investigate the mechanistic roles that these differentially methylated genes may play in mediating the association between maternal smoking during pregnancy and disease in later life, as well as to elucidate the potential influence of emerging tobacco product use during pregnancy, including the use of electronic cigarettes, on placental epigenetics.
Collapse
Affiliation(s)
- Jennifer Zj Maccani
- Penn State Tobacco Center of Regulatory Science, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA
| | - Matthew A Maccani
- Penn State Tobacco Center of Regulatory Science, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA
| |
Collapse
|
5
|
Merriman JD, Aouizerat BE, Cataldo JK, Dunn LB, Kober K, Langford DJ, West C, Cooper BA, Paul SM, Miaskowski C. Associations between catecholaminergic, GABAergic, and serotonergic genes and self-reported attentional function in oncology patients and their family caregivers. Eur J Oncol Nurs 2014; 19:251-9. [PMID: 25524657 DOI: 10.1016/j.ejon.2014.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022]
Abstract
PURPOSE OF THE RESEARCH Evaluate for associations between variations in genes involved in catecholaminergic, gamma-aminobutyric acid (GABA)-ergic, and serotonergic mechanisms of neurotransmission and attentional function latent classes. PATIENTS AND METHODS This descriptive, longitudinal study was conducted at two radiation therapy departments. The sample included three latent classes of individuals with distinct trajectories of self-reported attentional function during radiation therapy, who were previously identified using growth mixture modeling among 167 oncology patients and 85 of their family caregivers. Multivariable models were used to evaluate for genotypic associations of neurotransmission genes with attentional function latent class membership, after controlling for covariates. RESULTS Variations in catecholaminergic (i.e., ADRA1D rs4815675, SLC6A3 rs37022), GABAergic (i.e., SLC6A1 rs2697138), and serotonergic (i.e., HTR2A rs2296972, rs9534496) neurotransmission genes were significant predictors of latent class membership in multivariable models. CONCLUSIONS Findings suggest that variations in genes that encode for three distinct but related neurotransmission systems are involved in alterations in attentional function. Knowledge of both phenotypic and genetic markers associated with alterations in attentional function can be used by clinicians to identify patients and family caregivers who are at higher risk for this symptom. Increased understanding of the genetic markers associated with alterations in attentional function may provide insights into the underlying mechanisms for this significant clinical problem.
Collapse
Affiliation(s)
- John D Merriman
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Bradley E Aouizerat
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA; Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, Box 0794, San Francisco, CA 94143-0794, USA.
| | - Janine K Cataldo
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Laura B Dunn
- School of Medicine, University of California, San Francisco, 513 Parnassus Avenue, Box 0410, San Francisco, CA 94143-0410, USA.
| | - Kord Kober
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Dale J Langford
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Claudia West
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| | - Christine Miaskowski
- School of Nursing, University of California, San Francisco, 2 Koret Way, Box 0610, San Francisco, CA 94143-0610, USA.
| |
Collapse
|
6
|
Paquette AG, Lesseur C, Armstrong DA, Koestler DC, Appleton AA, Lester BM, Marsit CJ. Placental HTR2A methylation is associated with infant neurobehavioral outcomes. Epigenetics 2013; 8:796-801. [PMID: 23880519 DOI: 10.4161/epi.25358] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The serotonin receptor, HTR2A, exhibits placental expression and function and can be controlled through DNA methylation. The relationship between methylation of HTR2A in the placenta and neurodevelopmental outcomes, evaluated using the NICU Network Neurobehavioral Scales (NNNS), was assessed in newborn infants (n = 444). HTR2A methylation was significantly higher in males and marginally higher in infants whose mothers reported tobacco use during pregnancy. Controlling for confounding variables, HTR2A methylation was negatively associated with infant quality of movement (p = 0.05) and positively associated with infant attention (p = 0.0001). These results suggest that methylation of the HTR2A gene can be biologically and environmentally modulated and is associated with key measures of neurodevelopment.
Collapse
Affiliation(s)
- Alison G Paquette
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Dartmouth, NH USA
| | | | | | | | | | | | | |
Collapse
|