1
|
Van Hooren B, Aagaard P, Blazevich AJ. Optimizing Resistance Training for Sprint and Endurance Athletes: Balancing Positive and Negative Adaptations. Sports Med 2024; 54:3019-3050. [PMID: 39373864 PMCID: PMC11608172 DOI: 10.1007/s40279-024-02110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Resistance training (RT) triggers diverse morphological and physiological adaptations that are broadly considered beneficial for performance enhancement as well as injury risk reduction. Some athletes and coaches therefore engage in, or prescribe, substantial amounts of RT under the assumption that continued increments in maximal strength capacity and/or muscle mass will lead to improved sports performance. In contrast, others employ minimal or no RT under the assumption that RT may impair endurance or sprint performances. However, the morphological and physiological adaptations by which RT might impair physical performance, the likelihood of these being evoked, and the training program specifications that might promote such impairments, remain largely undefined. Here, we discuss how selected adaptations to RT may enhance or impair speed and endurance performances while also addressing the RT program variables under which these adaptations are likely to occur. Specifically, we argue that while some myofibrillar (muscle) hypertrophy can be beneficial for increasing maximum strength, substantial hypertrophy can lead to macro- and microscopic adaptations such as increases in body (or limb) mass and internal moment arms that might, under some conditions, impair both sprint and endurance performances. Further, we discuss how changes in muscle architecture, fiber typology, microscopic muscle structure, and intra- and intermuscular coordination with RT may maximize speed at the expense of endurance, or maximize strength at the expense of speed. The beneficial effect of RT for sprint and endurance sports can be further improved by considering the adaptive trade-offs and practical implications discussed in this review.
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, Maastricht, NL, 6229 ER, The Netherlands.
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
2
|
Ma L, Chang L, Gong Y, Wang Y, Bian X, Hu C, Guo L, Chen W, Tang K. Haglund resection versus Haglund non-resection for calcific insertional Achilles tendinopathy with Haglund deformity: A retrospective study. Foot Ankle Surg 2024; 30:432-439. [PMID: 38494414 DOI: 10.1016/j.fas.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Calcific insertional Achilles tendinopathy(CIAT) with Haglund deformity is a type of recalcitrant tendinopathy. The necessity of concomitant removal of Haglund deformity during CIAT treatment is controversial. The present study aimed to evaluate the functional outcomes between Haglund resection and Haglund non-resection in the treatment of CIAT with Haglund deformity. METHODS A retrospective study included 29 patients who were underwent Achilles tendon debridement, bursal excision, and subsequent tendon reattachment.for CIAT with Haglund deformity. All patients were divided into 2 groups according to Haglund resection (resection group, n = 16) and Haglund non-resection (non-resection group, n = 13) using the parallel line method on lateral calcaneal X ray after surgery. Patients were evaluated in terms of the American Orthopedic Foot and Ankle Society (AOFAS), Visual Analog Scale (VAS) and Victorian Institute of Sports Assessment-Achilles (VISA-A) scores and the mean time of activities of daily living (ADL). Anatomy changes included the Fowler-Philip angle, calcaneal pitch angle and Achilles tendon force arm were measured with radiography preoperatively and postoperatively. RESULTS Both groups exhibited a significant increase in AOFAS, VAS and VISA-A scores after surgery. There were no significant differences between the resection group and the non-resection group for the AOFAS (92.38 ± 5.7 vs. 93.15 ± 12.17; P = 0.82), VAS (0.5 ± 0.52 vs. 0.61 ± 0.87; P = 0.66) and VISA-A questionnaire (82.56 ± 13.46 vs. 74.92 ± 16.4; P = 0.18) at the latest follow-up. The mean time of ADL in the non-resection group was significantly faster compared to that of the resection group (8.15 ± 2.51 weeks vs. 11.31 ± 4.06 weeks, P = 0.02). The Fowler-Philip angle of the resection group decreased from 55.55° ± 12.34° preoperatively to 44.52° ± 10.24° at the latest follow-up (P = 0.001). The Fowler-Philip angle of the non-resection group decreased from 54.38° ± 8.41° preoperatively to 46.52° ± 8.02° at the latest follow-up (P = 0.016). The calcaneal pitch angle of the resection group increased from 22.76° ± 5.37° preoperatively to 25.98° ± 6. 4° at the latest follow-up (P = 0.018). The Achilles tendon force arm of the resection group decreased from 178.50 mm ± 5.37 mm preoperatively to 173.90 mm ± 8.07 mm at the latest follow-up (P = 0.018). CONCLUSION Resection or non-resection of the posterosuperior calcaneal tuberosity for CIAT with Haglund deformity would both provide satisfactory functional outcomes. Haglund non-resection may expedite patients' return to their daily activities, suggesting a Haglund deformity resection may be unnecessary in the surgical treatment for CIAT with Haglund deformity.
Collapse
Affiliation(s)
- Lin Ma
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Le Chang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yan Gong
- Department of Hypertension and Endocrinology, Daping Hospital, Army Medical University, Chongqing 400038, China
| | - Yunjiao Wang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xuting Bian
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Chao Hu
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Lin Guo
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Wan Chen
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Kanglai Tang
- Department of Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Kovács B, Dong S, Song Y, Jingyi Y, Béres S, Tihanyi J, Zhang J, Petridis L, Gu Y. A longer Achilles tendon moment arm length is not associated with superior hopping performance. Front Bioeng Biotechnol 2023; 11:1270169. [PMID: 37954019 PMCID: PMC10639158 DOI: 10.3389/fbioe.2023.1270169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Variability in musculoskeletal and lower leg structure has the potential to influence hopping height. Achilles tendon moment arm length and plantarflexor muscle strength can influence ankle joint torque development and, consequently, hopping performance. While most studies have examined the connection of the Achilles tendon moment arm with hopping performance including the resting length, in this study we attempted to explore how the changes in Achilles tendon moment arm are related to hopping performance. Therefore, the purpose of this study was to test for correlations between foot and lower leg muscle structure parameters (i.e., muscle mass, volume, cross-sectional area and Achilles tendon moment arm length) and hopping height performance in relation to changes in Achilles tendon moment arm length. Eighteen participants (10 males 8 female) performed repetitive bilateral hopping on a force platform while sagittal plane kinematics of the lower leg were recorded. Additionally, maximal isometric plantarflexion was measured. To obtain structural parameters of the lower leg, the right lower leg of each participant was scanned with magnetic resonance imaging. The cross-sectional areas of the Achilles tendon, soleus, lateral and medial gastrocnemius were measured, while muscle volumes, muscle mass, and Achilles tendon moment arm length were calculated. Contrary to our initial assumption, longer Achilles tendon moment arm did not result in superior hopping performance. Interestingly, neither maximal isometric plantarflexion force nor muscle size correlated with repetitive bilateral hopping performance. We can assume that the mechanical characteristics of the tendon and the effective utilization of the stored strain energy in the tendon may play a more important role in repetitive hopping than the structural parameters of the lower leg.
Collapse
Affiliation(s)
- Bálint Kovács
- Faculty of Sport Science, Ningbo University, Ningbo, China
- Department of Kinesiology, Hungarian University of Sports Sciences, Budapest, Hungary
| | - Sun Dong
- Faculty of Sport Science, Ningbo University, Ningbo, China
| | - Yang Song
- Faculty of Sport Science, Ningbo University, Ningbo, China
| | - Ye Jingyi
- Faculty of Sport Science, Ningbo University, Ningbo, China
| | - Sándor Béres
- Department of Athletics, Hungarian University of Sports Sciences, Budapest, Hungary
| | - József Tihanyi
- Department of Kinesiology, Hungarian University of Sports Sciences, Budapest, Hungary
| | - Jingfeng Zhang
- Department of Radiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Leonidas Petridis
- Research Centre for Sport Physiology, Hungarian University of Sport Sciences, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sport Science, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Papachatzis N, Ray SF, Takahashi KZ. Does human foot anthropometry relate to plantar flexor fascicle mechanics and metabolic energy cost across various walking speeds? J Exp Biol 2023; 226:jeb245113. [PMID: 37092255 PMCID: PMC10226764 DOI: 10.1242/jeb.245113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Foot structures define the leverage in which the ankle muscles push off against the ground during locomotion. While prior studies have indicated that inter-individual variation in anthropometry (e.g. heel and hallux lengths) can directly affect force production of ankle plantar flexor muscles, its effect on the metabolic energy cost of locomotion has been inconclusive. Here, we tested the hypotheses that shorter heels and longer halluces are associated with slower plantar flexor (soleus) shortening velocity and greater ankle plantar flexion moment, indicating enhanced force potential as a result of the force-velocity relationship. We also hypothesized that such anthropometry profiles would reduce the metabolic energy cost of walking at faster walking speeds. Healthy young adults (N=15) walked at three speeds (1.25, 1.75 and 2.00 m s-1), and we collected in vivo muscle mechanics (via ultrasound), activation (via electromyography) and whole-body metabolic energy cost of transport (via indirect calorimetry). Contrary to our hypotheses, shorter heels and longer halluces were not associated with slower soleus shortening velocity or greater plantar flexion moment. Additionally, longer heels were associated with reduced metabolic cost of transport, but only at the fastest speed (2.00 m s-1, R2=0.305, P=0.033). We also found that individuals with longer heels required less increase in plantar flexor (soleus and gastrocnemius) muscle activation to walk at faster speeds, potentially explaining the reduced metabolic cost.
Collapse
Affiliation(s)
- Nikolaos Papachatzis
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, USA
| | - Samuel F. Ray
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Kota Z. Takahashi
- Department of Health & Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Progressive daily hopping exercise improves running economy in amateur runners: a randomized and controlled trial. Sci Rep 2023; 13:4167. [PMID: 36914662 PMCID: PMC10011548 DOI: 10.1038/s41598-023-30798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
This study investigated the effects of a daily plyometric hopping intervention on running economy (RE) in amateur runners. In a randomized, controlled trial, thirty-four amateur runners (29 ± 7 years, 27 males) were allocated to a control or a hopping exercise group. During the six-week study, the exercise group performed 5 min of double-legged hopping exercise daily. To progressively increase loading, the number of hopping bouts (10 s each) was steadily increased while break duration between sets was decreased. Pre- and post-intervention, RE, peak oxygen uptake (VO2peak), and respiratory exchange ratio (RER) were measured during 4-min stages at three running speeds (10, 12, and 14 km/h). ANCOVAs with baseline values and potential cofounders as cofactors were performed to identify differences between groups. ANCOVA revealed an effect of hopping on RE at 12 km/h (df = 1; F = 4.35; p < 0.05; η2 = 0.072) and 14 km/h (df = 1; F = 6.72; p < 0.05; η2 = 0.098), but not at 10 km/h (p > 0.05). Exercise did not affect VO2peak (p > 0.05), but increased RER at 12 km/h (df = 1; F = 4.26; p < 0.05; η2 = 0.059) and 14 km/h (df = 1; F = 36.73; p < 0.001; η2 = 0.520). No difference in RER was observed at 10 km/h (p > 0.05). Daily hopping exercise is effective in improving RE at high running speeds in amateurs and thus can be considered a feasible complementary training program.Clinical trial registration German Register of Clinical Trials (DRKS00017373).
Collapse
|
6
|
Ko M, Ma T, Xiong S. Acute Effects of Carbon Fiber Insole on Three Aspects of Sports Performance, Lower Extremity Muscle Activity, and Subjective Comfort. SENSORS (BASEL, SWITZERLAND) 2023; 23:2154. [PMID: 36850749 PMCID: PMC9966218 DOI: 10.3390/s23042154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Carbon fiber insole (CFI), which is lightweight and stiff to reduce energy loss and help wearers perform better in sports, has recently been introduced. However, reports are scarce on the effects of CFI on sports performance, muscle activation, and wearing comfort. This study investigated the acute effects of CFI on sports performance, lower extremity muscle activity, and subjective comfort. Thirty young healthy males with shoe sizes between 260 and 270 mm performed various sports tasks (power generation, agility, and speed) and treadmill runs with wearable sensors under two experimental insole conditions (benchmark insole as a baseline, CFI). The results showed that, compared to the benchmark insole, CFI significantly improved sports performance in terms of power generation (~1.5%) and agility (~1%). However, it activated more of the Tibialis Anterior (~0.7%) and Gastrocnemius Medialis (~0.8%) muscles, and was perceived to be stiffer and less comfortable. These findings suggested that CFI could improve sports performance, but could cause more lower extremity muscle activation and subjective discomfort.
Collapse
Affiliation(s)
| | | | - Shuping Xiong
- Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Bennett EC, Machado E, Fletcher JR. How do differences in Achilles' tendon moment arm lengths affect muscle-tendon dynamics and energy cost during running? Front Sports Act Living 2023; 5:1125095. [PMID: 37139299 PMCID: PMC10150092 DOI: 10.3389/fspor.2023.1125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction The relationship between the Achilles tendon moment arm length (ATMA) and the energy cost of running (Erun) has been disputed. Some studies suggest a short ATMA reduces Erun while others claim a long ATMA reduces Erun. For a given ankle joint moment, a short ATMA permits a higher tendon strain energy storage, whereas a long ATMA reduces muscle fascicle force and muscle energy cost but shortening velocity is increased, elevating the metabolic cost. These are all conflicting mechanisms to reduce Erun, since AT energy storage comes at a metabolic cost. Neither of these proposed mechanisms have been examined together. Methods We measured ATMA using the tendon travel method in 17 males and 3 females (24 ± 3 years, 75 ± 11 kg, 177 ± 7 cm). They ran on a motorized treadmill for 10 min at 2.5 m · s-1 while Erun was measured. AT strain energy storage, muscle lengths, velocities and muscle energy cost were calculated during time-normalized stance from force and ultrasound data. A short (SHORT n = 11, ATMA = 29.5 ± 2.0 mm) and long (LONG, n = 9, ATMA = 36.6 ± 2.5 mm) ATMA group was considered based on a bimodal distribution of measured ATMA. Results Mean Erun was 4.9 ± 0.4 J · kg-1 · m-1. The relationship between ATMA and Erun was not significant (r 2 = 0.13, p = 0.12). Maximum AT force during stance was significantly lower in LONG (5,819 ± 1,202 N) compared to SHORT (6,990 ± 920 N, p = 0.028). Neither AT stretch nor AT strain energy storage was different between groups (mean difference: 0.3 ± 1 J · step-1, p = 0.84). Fascicle force was significantly higher in SHORT (508 ± 93 N) compared to LONG (468 ± 84 N. p = 0.02). Fascicle lengths and velocities were similar between groups (p > 0.72). Muscle energy cost was significantly lower in LONG (0.028 ± 0.08 J · kg · step-1) compared to SHORT (0.045 ± 0.14 J · kg · step-1 p = 0.004). There was a significant negative relationship between ATMA and total muscle energy cost relative to body mass across the stance phase (r = -0.699, p < 0.001). Discussion Together these results suggest that a LONG ATMA serves to potentially reduce Erun by reducing the muscle energy cost of the plantarflexors during stance. The relative importance of AT energy storage and return in reducing Erun should be re-considered.
Collapse
|
8
|
Callow JH, Cresswell M, Damji F, Seto J, Hodgson AJ, Scott A. The Distal Free Achilles Tendon Is Longer in People with Tendinopathy than in Controls: A Retrospective Case-Control Study. TRANSLATIONAL SPORTS MEDICINE 2022; 2022:6585980. [PMID: 38655157 PMCID: PMC11022772 DOI: 10.1155/2022/6585980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 04/26/2024]
Abstract
Objectives The free Achilles tendon is defined as the region of tendon distal to the soleus which is "unbuttressed," i.e., unsupported by muscular tissue. We reasoned that a relative lack of distal buttressing could place the tendon at a greater risk for developing Achilles tendinopathy. Therefore, our primary goal was to compare the free Achilles tendon length between those with midportion or insertional Achilles tendinopathy and healthy controls. Design This is a retrospective case-control study. Setting. Hospital in Vancouver, Canada. Participants. 66 cases with Achilles tendinopathy (25 insertional, 41 midportion) consecutively drawn from a hospital database within a 5-year period and matched to 66 controls (without tendinopathy) based on sex, age, and weight. Main outcome measures. Odds ratio of the risk of developing Achilles tendinopathy given the length of free tendon, defined anatomically on MRI, after adjustment for confounders. Results MRI-defined free Achilles tendon length is a statistically significant predictor of having midportion Achilles tendinopathy (odds ratio = 0.53, 95% confidence interval 1.13 to 2.07). Midportion Achilles tendinopathy cases had significantly longer free tendons (Mdn = 51.2 mm, IQR = 26.9 mm) compared to controls (Mdn = 40.8 mm, IQR = 20.0 mm), p = 0.007. However, there was no significant difference between the free Achilles tendon lengths in insertional AT cases (Mdn = 47.9 mm, IQR = 15.1 mm) and controls (Mdn = 39.2 mm, IQR = 17.9 mm), p = 0.158. Free Achilles tendon length was also correlated with the tendon thickness among those with Achilles tendinopathy, rτ = 0.25, and p = 0.003. Conclusions The MRI-defined length of the free Achilles tendon is positively associated with the risk of midportion Achilles tendinopathy. A relative lack of distal muscular buttressing of the Achilles tendon may therefore influence the development of tendinopathy.
Collapse
Affiliation(s)
- Joanne H. Callow
- Department of Rehabilitation Sciences, University of British Columbia, Vancouver, Canada
| | - Mark Cresswell
- Department of Radiology, University of British Columbia, Vancouver, Canada
| | - Faraz Damji
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Joshua Seto
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Antony J. Hodgson
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada
| | - Alex Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Does the Achilles Tendon Influence Foot Strike Patterns During an Exhaustive Run? J Appl Biomech 2022; 38:263-270. [PMID: 35894909 DOI: 10.1123/jab.2021-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
The study purpose was to investigate whether there is a relationship between the Achilles tendon (AT) length, moment arm length, and the foot strike pattern (FP) change during an exhaustive run (EXR) in nonrearfoot FP runners. Twenty-eight runners were recruited and divided into 2 groups (highly trained/moderately trained) according to their weekly training volume. Participants underwent the graded exercise test, the EXR with biomechanical analysis at the beginning, and at the end, and the magnetic resonance imaging scan of the AT. Correlations were used to assess associations between FP change (value of the difference between end and beginning) and the selected performance and AT variables. AT length significantly correlated with the FP change according to foot strike angle (r = -.265, P = .049). The AT moment arm length significantly correlated with the FP change according to strike index during EXR (r = -.536, P = .003). Multiple regression showed that AT length was a significant predictor for the FP change according to foot strike angle if the second predictor was the graded exercise test duration and the third predictor was training group association. These results suggest that a runner's training volume, along with a longer AT and AT moment arm appear to be associated with the ability to maintain a consistent FP during EXR by nonrearfoot FP runners.
Collapse
|
10
|
Kunimasa Y, Sano K, Oda T, Nicol C, Komi P, Ishikawa M. Muscle-tendon architecture in Kenyans and Japanese: Potential role of genetic endowment in the success of elite Kenyan endurance runners. Acta Physiol (Oxf) 2022; 235:e13821. [PMID: 35403817 DOI: 10.1111/apha.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
AIM The specificity of muscle-tendon and foot architecture of elite Kenyan middle- and long-distance runners has been found to contribute to their superior running performance. To investigate the respective influence of genetic endowment and training on these characteristics, we compared leg and foot segmental lengths as well as muscle-tendon architecture of Kenyans and Japanese males (i) from infancy to adulthood and (ii) non-athletes versus elite runners. METHODS The 676 participants were divided according to their nationality (Kenyans and Japanese), age (nine different age groups for non-athletes) and performance level in middle- and long-distance races (non-athlete, non-elite and elite adult runners). Shank and Achilles tendon (AT) lengths, medial gastrocnemius (MG) fascicle length, pennation angle and muscle thickness, AT moment arm (MAAT ), and foot lever ratio were measured. RESULTS Above 8 years old, Kenyans had a longer shank and AT, shorter fascicle, greater pennation angle, thinner MG muscle as well as longer MAAT , with lower foot lever ratio than age-matched Japanese. Among adults of different performance levels and independently of the performance level, Kenyans had longer shank, AT and MAAT , thinner MG muscle thickness, and lower foot lever ratio than Japanese. The decrease in MG fascicle length and increase pennation angle observed for the adult Japanese with the increase in performance level resulted in a lack of difference between elite Kenyans and Japanese. CONCLUSION The specificity of muscle-tendon and foot architecture of elite Kenyan runners could result from genetic endowment and contribute to the dominance of Kenyans in middle- and long-distance races.
Collapse
Affiliation(s)
- Yoko Kunimasa
- Graduate School of Sport and Exercise Sciences Osaka University of Health and Sport Sciences Osaka Japan
- Institut des Sciences du Mouvement CNRS Aix‐Marseille Université Marseille France
| | - Kanae Sano
- Graduate School of Sport and Exercise Sciences Osaka University of Health and Sport Sciences Osaka Japan
- Faculty of Health Sciences Morinomiya University of Medical Sciences Osaka Japan
| | - Toshiaki Oda
- Graduate School of Education Hyogo University of Teacher Education Hyogo Japan
| | - Caroline Nicol
- Institut des Sciences du Mouvement CNRS Aix‐Marseille Université Marseille France
| | - Paavo V. Komi
- NMRC and Likes Research Center University of Jyväskylä Jyväskylä Finland
| | - Masaki Ishikawa
- Graduate School of Sport and Exercise Sciences Osaka University of Health and Sport Sciences Osaka Japan
| |
Collapse
|