1
|
Doneva D, Pál M, Szalai G, Vasileva I, Brankova L, Misheva S, Janda T, Peeva V. Manipulating the light spectrum to increase the biomass production, physiological plasticity and nutritional quality of Eruca sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109218. [PMID: 39461053 DOI: 10.1016/j.plaphy.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
The extensive development in light-emitting diodes (LEDs) in recent years provides an opportunity to positively influence plant growth and biomass accumulation and to optimize biochemical composition and nutritional quality. This study aimed to assess how different light spectra affect the growth, photosynthesis and biochemical properties of Eruca sativa. Therefore two LED lighting modes - red:blue (RB, 1:1) and red:green:blue (RGB, 2:1:2) were compared to the conventional white light fluorescent tubes (WL). Plant biomass, photosynthetic performance, several antioxidants, polyamines and nitrates contents were analyzed across different treatments. The plant growth was affected by the light quality - the presence of green light in the spectrum resulted in smaller plants and leaves, and correspondingly less biomass. RB spectral mode enhanced the total antioxidant and guaiacol peroxidase activity, pigments, flavonoids, polyphenols, ascorbate and polyamines contents. This effect under RB was combined with better leaf development compared to RGB and less nitrate in the leaves among all treatments. The RB light generated modifications in polyamines, which are interrelated with the nitrate content, further induce important metabolite and antioxidant changes. Both RB and RGB enhanced photosynthesis. The afterglow thermoluminescence band varied according to leaves development, being higher in RB and WL as a consequence of their faster growth. The RB light spectrum was found to be the most efficient for promoting the growth, biochemical composition, and overall quality of Eruca sativa compared to RGB and WL. These findings suggest that RB LEDs can be an effective tool for improving crop production in controlled environments.
Collapse
Affiliation(s)
- Dilyana Doneva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Magda Pál
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Ivanina Vasileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Liliana Brankova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria
| | - Tibor Janda
- Agricultural Institute, Centre of Agricultural Research, HUN REN, Brunszvik Str. 2, Martonvásár, 2462, Hungary
| | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, "G. Bonchev" Str., Bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
2
|
Asghar MA, Kulman K, Szalai G, Gondor OK, Mednyánszky Z, Simon-Sarkadi L, Gaudinova A, Dobrev PI, Vanková R, Kocsy G. Effect of ascorbate and hydrogen peroxide on hormone and metabolite levels during post-germination growth in wheat. PHYSIOLOGIA PLANTARUM 2023; 175:e13887. [PMID: 36894826 DOI: 10.1111/ppl.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The modulation of hormone and metabolite levels by ascorbate (ASA) and hydrogen peroxide (H2 O2 ) was compared during post-germination growth in shoots of wheat. Treatment with ASA resulted in a greater reduction of growth than the addition of H2 O2 . ASA also had a larger effect on the redox state of the shoot tissues as shown by the higher ASA and glutathione (GSH) levels, lower glutathione disulfide (GSSG) content and GSSG/GSH ratio compared to the H2 O2 treatment. Apart from common responses (i.e., increase of cis-zeatin and its O-glucosides), the contents of several compounds related to cytokinin (CK) and abscisic acid (ABA) metabolism were greater after ASA application. These differences in the redox state and hormone metabolism following the two treatments may be responsible for their distinct influence on various metabolic pathways. Namely, the glycolysis and citrate cycle were inhibited by ASA and they were not affected by H2 O2 , while the amino acid metabolism was induced by ASA and repressed by H2 O2 based on the changes in the level of the related carbohydrates, organic and amino acids. The first two pathways produce reducing power, while the last one needs it; therefore ASA, as a reductant may suppress and induce them, respectively. H2 O2 as an oxidant had different effect, namely it did not alter glycolysis and citrate cycle, and inhibited the formation of amino acids.
Collapse
Affiliation(s)
- Muhammad Ahsan Asghar
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Orsolya Kinga Gondor
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Zsuzsa Mednyánszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Livia Simon-Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| |
Collapse
|
3
|
Cao J, Gulyás Z, Kalapos B, Boldizsár Á, Liu X, Pál M, Yao Y, Galiba G, Kocsy G. Identification of a redox-dependent regulatory network of miRNAs and their targets in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:85-99. [PMID: 30260414 DOI: 10.1093/jxb/ery339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species and antioxidants have an important role in the regulation of plant growth and development under both optimal and stress conditions. In this study, we investigate a possible redox control of miRNAs in wheat (Triticum aestivum ssp. aestivum). Treatment of seedlings with 10 mM H2O2 via the roots for 24 h resulted in decreased glutathione content, increased half-cell reduction potential of the glutathione disulphide/glutathione redox pair, and greater ascorbate peroxidase activity compared to the control plants. These changes were accompanied by alterations in the miRNA transcript profile, with 70 miRNAs being identified with at least 1.5-fold difference in their expression between control and treated (0, 3, 6 h) seedlings. Degradome sequencing identified 86 target genes of these miRNAs, and 6722 possible additional target genes were identified using bioinformatics tools. The H2O2-responsiveness of 1647 target genes over 24 h of treatment was also confirmed by transcriptome analysis, and they were mainly found to be related to the control of redox processes, transcription, and protein phosphorylation and degradation. In a time-course experiment (0-24 h of treatment) a correlation was found between the levels of glutathione, other antioxidants, and the transcript levels of the H2O2-responsive miRNAs and their target mRNAs. This relationship together with bioinformatics modelling of the regulatory network indicated glutathione-related redox control of miRNAs and their targets, which allows the adjustment of the metabolism to changing environmental conditions.
Collapse
Affiliation(s)
- Jie Cao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
4
|
Gondor OK, Pál M, Darkó É, Janda T, Szalai G. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.). PLoS One 2016; 11:e0160157. [PMID: 27490102 PMCID: PMC4973972 DOI: 10.1371/journal.pone.0160157] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/14/2016] [Indexed: 11/22/2022] Open
Abstract
The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms.
Collapse
Affiliation(s)
- Orsolya Kinga Gondor
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Magda Pál
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Éva Darkó
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Gabriella Szalai
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- * E-mail:
| |
Collapse
|
5
|
Cho KM, Nguyen HTK, Kim SY, Shin JS, Cho DH, Hong SB, Shin JS, Ok SH. CML10, a variant of calmodulin, modulates ascorbic acid synthesis. THE NEW PHYTOLOGIST 2016; 209:664-78. [PMID: 26315131 DOI: 10.1111/nph.13612] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/19/2015] [Indexed: 05/18/2023]
Abstract
Calmodulins (CaMs) regulate numerous Ca(2+) -mediated cellular processes in plants by interacting with their respective downstream effectors. Due to the limited number of CaMs, other calcium sensors modulate the regulation of Ca(2+) -mediated cellular processes that are not managed by CaMs. Of 50 CaM-like (CML) proteins identified in Arabidopsis thaliana, we characterized the function of CML10. Yeast two-hybrid screening revealed phosphomannomutase (PMM) as a putative interaction partner of CML10. In vitro and in vivo interaction assays were performed to analyze the interaction mechanisms of CML10 and PMM. PMM activity and the phenotypes of cml10 knock-down mutants were studied to elucidate the role(s) of the CML10-PMM interaction. PMM interacted specifically with CML10 in the presence of Ca(2+) through its multiple interaction motifs. This interaction promoted the activity of PMM. The phenotypes of cml10 knock-down mutants were more sensitive to stress conditions than wild-type plants, corresponding with the fact that PMM is an enzyme which modulates the biosynthesis of ascorbic acid, an antioxidant. The results of this research demonstrate that a calcium sensor, CML10, which is an evolutionary variant of CaM, modulates the stress responses in Arabidopsis by regulating ascorbic acid production.
Collapse
Affiliation(s)
- Kwang-Moon Cho
- Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | | | - Soo Youn Kim
- Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Jin Seok Shin
- Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Dong Hwa Cho
- Graduate School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Korea
| | - Seung Beom Hong
- Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 136-701, Korea
| | - Sung Han Ok
- Food Science and Technology, Division of Engineering, Seoil University, Seoul, 131-702, Korea
| |
Collapse
|
6
|
Török A, Gulyás Z, Szalai G, Kocsy G, Majdik C. Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:371-8. [PMID: 26143200 DOI: 10.1016/j.jhazmat.2015.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/12/2015] [Accepted: 06/18/2015] [Indexed: 05/27/2023]
Abstract
Phytochelatins (PCs) play important role in phytoremediation as heavy metal binding peptides. In the present study, the association between heavy metal removal capacity and phytochelatin synthesis was compared through the examination of three aquatic plants: Elodea canadensis, Salvinia natans and Lemna minor. In case of a Cd treatment, or a Cd treatment combined with Cu and Zn, the highest removal capacity was observed in L. minor. At the same time, E. canadensis showed the lowest removal capacity except for Zn. The heavy metal-induced (Cu+Zn+Cd) oxidative stress generated the highest ascorbate level in L. minor. Cd in itself or combined with the other two metals induced a 10-15-fold increase in the amount of ɣ-glutamylcysteine in L. minor while no or smaller changes were observed in the other two species. Correspondingly, the total PC content was 6-8-fold greater in L. minor. In addition, PCs with higher degree of polymerization were only observed in L. minor (PC4, PC6 and PC7) while PC2 and PC3 occurred in E. canadensis and S. natans only. The correlation analysis indicated that the higher phytoremediation capacity of L. minor was associated with the synthesis of PCs and their higher degree of polymerization.
Collapse
Affiliation(s)
- Anamaria Török
- Department of Technological Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania; Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary.
| | - Cornelia Majdik
- Department of Technological Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Kovács V, Gondor OK, Szalai G, Darkó E, Majláth I, Janda T, Pál M. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. JOURNAL OF HAZARDOUS MATERIALS 2014; 280:12-9. [PMID: 25113613 DOI: 10.1016/j.jhazmat.2014.07.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 05/22/2023]
Abstract
Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.
Collapse
Affiliation(s)
- Viktória Kovács
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Orsolya K Gondor
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Eva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Imre Majláth
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary.
| |
Collapse
|