1
|
Surenkok O, Aydin G, Ciftci EA, Kendal K, Atici E. Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise. Clin Physiol Funct Imaging 2025; 45:e12925. [PMID: 39737837 DOI: 10.1111/cpf.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS. OBJECTIVE This study aimed to investigate the effects of different BFR intensities on biomechanical alterations induced by DOMS in healthy individuals. DESIGN AND METHODS Thirty participants were split into two groups receiving either 80% or 20% BFR applied during low-intensity resistance exercise following DOMS induction. Pain perception, pressure pain threshold, muscle biometric characteristics, and strength were assessed before DOMS, after DOMS, and following BFR application at 24, 48, and 72 h. RESULTS The 80% BFR group experienced faster reductions in pain perception compared to the 20% BFR group. Muscle strength recovery was also statistically faster in the 80% BFR group. No significant differences were observed between groups in muscle stiffness, flexibility, or other mechanical properties. CONCLUSIONS These findings suggest that BFR, particularly at higher intensities, may alleviate DOMS symptoms and accelerate muscle strength recovery. However, the lack of a control group and limitations in muscle property assessment warrant further research to definitively determine BFR's efficacy in managing DOMS.
Collapse
Affiliation(s)
- Ozgur Surenkok
- Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey
| | - Gamze Aydin
- Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey
| | - Ebru Aloglu Ciftci
- Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey
- Division of Physiotherapy and Rehabilitation, Institute of Graduate Education, Istınye University, Istanbul, Turkey
| | - Kubra Kendal
- Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey
| | - Emine Atici
- Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey
| |
Collapse
|
2
|
Liu H, Jiang L, Wang J. The effects of blood flow restriction training on post activation potentiation and upper limb muscle activation: a meta-analysis. Front Physiol 2024; 15:1395283. [PMID: 39055689 PMCID: PMC11269198 DOI: 10.3389/fphys.2024.1395283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Objective This meta-analysis aims to systematically evaluate the impact of blood flow restriction training (BFRT) on muscle activation and post-activation potentiation (PAP) in the upper limbs, to provide guidance for upper limb protocols aiming to enhance explosive strength and activation. Methods PubMed, CNKI, Web of Science, and EBSCO databases were queried to identify randomized controlled trials (RCTs) investigating the effects of upper limb BFRT on muscle activation and PAP. Inclusion and exclusion criteria were applied using the Cochrane bias risk tool. Literature quality assessment and statistical analysis were conducted using Revman 5.4 and Stata 17.0 software. Sensitivity analysis and funnel plots were utilized to assess result stability and publication bias. Results A total of 31 articles involving 484 participants were included in the analysis. Meta-analysis results showed that upper limb BFRT significantly increased muscle iEMG values [SMD = 0.89, 95%CI (0.21, 1.58), p = 0.01]. BFRT had a significant effect on upper limb explosive force [SMD = 0.73, 95%CI (0.41, 1.04), p < 0.00001]. Subgroup analysis based on literature heterogeneity (I 2 = 92%, 80%) showed that exhaustive BFRT significantly decreased upper limb iEMG [SMD = -0.67, 95%CI (-1.25, -0.09), p = 0.01], with exercise modes including maximum output power of bench press [SMD = 1.87, 95%CI (0.22, 3.53), p < 0.0001], exercise intensity of 40%-70% 1RM [SMD = 1.31, 95%CI (0.61, 2.01), p < 0.0001], and pressure intensity of ≥60% AOP [SMD = 0.83, 95%CI (0.43, 1.23), p < 0.0001] reaching maximum effects and statistical significance. Conclusion Upper limb BFRT can induce muscle activation and PAP. BFRT with 40%-70% 1RM and ≥60% AOP in the upper limbs is more likely to promote PAP. Systematic Review Registration http://inplasy.com, identifier INPLASY202430008.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Physical Education, Ningbo University of Technology, Ningbo, China
| | - Lizhu Jiang
- Ningde Vocational and Technical College, Ningde, China
| | - Jian Wang
- Department of Physical Education, Ningbo University of Technology, Ningbo, China
| |
Collapse
|
3
|
Yang J, Ma F, Wang Q, Cui Y, Zheng J. Effect of blood flow restriction with low-load exercise on muscle damage in healthy adults: A systematic review of randomized controlled trials. Clin Physiol Funct Imaging 2024; 44:1-13. [PMID: 37577825 DOI: 10.1111/cpf.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Blood flow restriction (BFR) is a relatively new rehabilitative technique and low-load exercise combined with BFR (LL-BFR) can increase muscle strength and muscle mass. However, it is currently unknown whether LL-BFR causes muscle damage. Therefore, the aim of this study is to investigate the effects of LL-BFR on muscle damage and provide recommendations for sports training and physical exercise. MATERIALS AND METHODS A systematic search was conducted using PubMed, Web of Science, Medline, Cochrane Library and Physiotherapy Evidence Database (PEDro) with a cut-off of March 2022. Randomized controlled trials (RCTs) and English-language studies were selected. Two independent assessors used the PEDro scoring scale to evaluate the methodological quality and risk of bias of the included studies. RESULTS Of the 2935 articles identified, 15 RCTs were included in this systematic review. Two studies demonstrated that LL-BFR could induce muscle damage in healthy individuals; however, two studies presented contrasting findings in the short term. Four studies found that no muscle damage occurred after LL-BFR in the long term. The remaining seven articles showed that it was unclear if LL-BFR could cause muscle damage, regardless of whether these participants were trained or not. CONCLUSION Although LL-BFR may induce muscle damage within 1 week, it will help gain long-term muscle strength and muscle hypertrophy. However, the lack of sufficient evidence on the effect of LL-BFR on muscle damage in clinical practice warrants additional RCTs with large sample sizes in the future.
Collapse
Affiliation(s)
- Jinchao Yang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenghao Ma
- Department of Therapy, Shanghai Yangzhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanfen Cui
- Department of Pain Management, Wuhan No. 1 Hospital, Wuhan, China
| | - Jun Zheng
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Rivera PM, Proppe CE, Gonzalez-Rojas D, Wizenberg A, Hill EC. Effects Of Load Matched Isokinetic Versus Isotonic Blood Flow Restricted Exercise on Neuromuscular and Muscle Function. Eur J Sport Sci 2023:1-9. [PMID: 36825621 DOI: 10.1080/17461391.2023.2184724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
ABSTRACTPURPOSE: The purpose of this investigation was to examine neuromuscular function, muscle fatigue, rating of perceived exertion (RPE), and muscle swelling between isokinetic and isotonic leg extensions with blood flow restriction (BFR). METHODS: Fourteen (21±2years; 160cm±3.8; 61kg±9.1) trained women performed 75 (1×30,3×15) submaximal (30% of maximal strength), unilateral, isokinetic and isotonic leg extensions with BFR (60% of total arterial occlusion pressure). Before and after exercise, subjects performed maximal voluntary isometric contractions (MVIC) and muscle thickness (MT) was assessed with ultrasound. RPE was recorded across all sets and surface electromyography (EMG) was assessed during the MVIC muscle actions. Separate repeated measures ANOVAs were used to examine MVIC, MT, RPE and neuromuscular function. RESULTS: There were greater reductions in MVIC torque and EMG mean power frequency following isotonic (46.2±17.1%; 16.4±7.9%) than isokinetic (17.9±10.9%;6.5±6.3%). RPE was also higher during isotonic (7.5±2.2), than isokinetic (5.7±1.9). There were no differences in EMG amplitude or MT increases (20±2.1%) between conditions. CONCLUSIONS: Isotonic BFR elicited greater fatigue-induced decreases in muscular strength and greater RPE than isokinetic BFR, but similar MT and muscle excitation responses for both conditions. Therefore, both isokinetic and isotonic may induce similar acute physiological responses, but isotonic BFR was associated with greater muscle fatigue and perceived effort.
Collapse
Affiliation(s)
- Paola M Rivera
- Exercise Physiology Intervention & Collaboration Laboratory, School of Kinesiology & Physical Therapy, Division of Kinesiology, University of Central Florid, Orlando, Florida 32816
| | - Christopher E Proppe
- Exercise Physiology Intervention & Collaboration Laboratory, School of Kinesiology & Physical Therapy, Division of Kinesiology, University of Central Florid, Orlando, Florida 32816
| | - David Gonzalez-Rojas
- Exercise Physiology Intervention & Collaboration Laboratory, School of Kinesiology & Physical Therapy, Division of Kinesiology, University of Central Florid, Orlando, Florida 32816
| | - Aaron Wizenberg
- Exercise Physiology Intervention & Collaboration Laboratory, School of Kinesiology & Physical Therapy, Division of Kinesiology, University of Central Florid, Orlando, Florida 32816
| | - Ethan C Hill
- Exercise Physiology Intervention & Collaboration Laboratory, School of Kinesiology & Physical Therapy, Division of Kinesiology, University of Central Florid, Orlando, Florida 32816.,Florida Space Institute, Partnership I, Research Parkway, University of Central Florida, Orlando, FL 32826
| |
Collapse
|
5
|
Jacobs E, Rolnick N, Wezenbeek E, Stroobant L, Capelleman R, Arnout N, Witvrouw E, Schuermans J. Investigating the autoregulation of applied blood flow restriction training pressures in healthy, physically active adults: an intervention study evaluating acute training responses and safety. Br J Sports Med 2023:bjsports-2022-106069. [PMID: 36604156 DOI: 10.1136/bjsports-2022-106069] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine the effects of autoregulated (AUTO) and non-autoregulated (NAUTO) blood flow restriction (BFR) application on adverse effects, performance, cardiovascular and perceptual responses during resistance exercise. METHODS Fifty-six healthy participants underwent AUTO and NAUTO BFR resistance exercise in a randomised crossover design using a training session with fixed amount of repetitions and a training session until volitional failure. Cardiovascular parameters, rate of perceived effort (RPE), rate of perceived discomfort (RPD) and number of repetitions were investigated after training, while the presence of delayed onset muscle soreness (DOMS) was verified 24 hours post-session. Adverse events during or following training were also monitored. RESULTS AUTO outperformed NAUTO in the failure protocol (p<0.001), while AUTO scored significantly lower for DOMS 24 hours after exercise (p<0.001). Perceptions of effort and discomfort were significantly higher in NAUTO compared with AUTO in both fixed (RPE: p=0.014, RPD: p<0.001) and failure protocol (RPE: p=0.028, RPD: p<0.001). Sixteen adverse events (7.14%) were recorded, with a sevenfold incidence in the fixed protocol for NAUTO compared with AUTO (NAUTO: n=7 vs AUTO: n=1) and five (NAUTO) vs three (AUTO) adverse events in the failure protocol. No significant differences in cardiovascular parameters were found comparing both pressure applications. CONCLUSION Autoregulation appears to enhance safety and performance in both fixed and failure BFR-training protocols. AUTO BFR training did not seem to affect cardiovascular stress differently, but was associated with lower DOMS, perceived effort and discomfort compared with NAUTO. TRIAL REGISTRATION NUMBER NCT04996680.
Collapse
Affiliation(s)
- Ewoud Jacobs
- Department of Rehabilitation Sciences, Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
| | - Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, New York City, New York, USA
| | - Evi Wezenbeek
- Department of Rehabilitation Sciences, Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
| | - Lenka Stroobant
- Department of Orthopaedics and Traumatology, Ghent University Hospital, Ghent, Belgium
| | - Robbe Capelleman
- Department of Rehabilitation Sciences, Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
| | - Nele Arnout
- Department of Orthopaedics and Traumatology, Ghent University Hospital, Ghent, Belgium
| | - Erik Witvrouw
- Department of Rehabilitation Sciences, Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
| | - Joke Schuermans
- Department of Rehabilitation Sciences, Ghent University Faculty of Medicine and Health Sciences, Ghent, Belgium
| |
Collapse
|
6
|
Rodrigues S, Forte P, Dewaele E, Branquinho L, Teixeira JE, Ferraz R, Barbosa TM, Monteiro AM. Effect of Blood Flow Restriction Technique on Delayed Onset Muscle Soreness: A Systematic Review. Medicina (B Aires) 2022; 58:medicina58091154. [PMID: 36143831 PMCID: PMC9505400 DOI: 10.3390/medicina58091154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The effect of the blood flow restriction technique (BFR) on delayed onset muscular soreness (DOMS) symptoms remains unclear. Since there is no consensus in the literature, the aim of the present study is to systematically identify and appraise the available evidence on the effects of the BFR technique on DOMS, in healthy subjects. Materials and Methods: Computerized literature search in the databases Pubmed, Google Scholar, EBSCO, Cochrane and PEDro to identify randomized controlled trials that assessed the effects of blood flow restriction on delayed onset muscular soreness symptoms. Results: Eight trials met the eligibility criteria and were included in this review, presenting the results of 118 participants, with a mean methodological rating of 6/10 on the PEDro scale. Conclusions: So far, there is not enough evidence to confirm or refute the influence of BFR on DOMS, and more studies with a good methodological basis are needed, in larger samples, to establish protocols and parameters of exercise and intervention. Data analysis suggests a tendency toward the proinflammatory effect of BFR during high restrictive pressures combined with eccentric exercises, while postconditioning BFR seems to have a protective effect on DOMS. Prospero ID record: 345457, title registration: “Effect of Blood Flow Restriction Technique on the Prevention of Delayed Onset Muscle Soreness: A Systematic Review”.
Collapse
Affiliation(s)
- Sandra Rodrigues
- FP-I3ID, FP-BHS, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia, 334, 4200-253 Porto, Portugal
- Correspondence:
| | - Pedro Forte
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - Eva Dewaele
- FP-I3ID, FP-BHS, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia, 334, 4200-253 Porto, Portugal
| | - Luís Branquinho
- Department of Sports, Higher Institute of Educational Sciences of the Douro, 4560-708 Penafiel, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - José E. Teixeira
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - Ricardo Ferraz
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
- Department of Sports Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Tiago M. Barbosa
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| | - António M. Monteiro
- Department of Sports Sciences and Physical Education, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- Research Center in Sports, Health and Human Development, 5001-801 Vila Real, Portugal
| |
Collapse
|
7
|
Merlo A, Bò MC, Campanini I. Electrode Size and Placement for Surface EMG Bipolar Detection from the Brachioradialis Muscle: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:7322. [PMID: 34770627 PMCID: PMC8587451 DOI: 10.3390/s21217322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
The brachioradialis muscle (BRD) is one of the main elbow flexors and is often assessed by surface electromyography (sEMG) in physiology, clinical, sports, ergonomics, and bioengineering applications. The reliability of the sEMG measurement strongly relies on the characteristics of the detection system used, because of possible crosstalk from the surrounding forearm muscles. We conducted a scoping review of the main databases to explore available guidelines of electrode placement on BRD and to map the electrode configurations used and authors' awareness on the issues of crosstalk. One hundred and thirty-four studies were included in the review. The crosstalk was mentioned in 29 studies, although two studies only were specifically designed to assess it. One hundred and six studies (79%) did not even address the issue by generically placing the sensors above BRD, usually choosing large disposable ECG electrodes. The analysis of the literature highlights a general lack of awareness on the issues of crosstalk and the need for adequate training in the sEMG field. Three guidelines were found, whose recommendations have been compared and summarized to promote reliability in further studies. In particular, it is crucial to use miniaturized electrodes placed on a specific area over the muscle, especially when BRD activity is recorded for clinical applications.
Collapse
Affiliation(s)
- Andrea Merlo
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy;
- Merlo Bioengineering, 43100 Parma, Italy;
| | | | - Isabella Campanini
- LAM-Motion Analysis Laboratory, S. Sebastiano Hospital, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Via Circondaria 29, 42015 Correggio, Italy;
| |
Collapse
|
8
|
Davids CJ, Næss TC, Moen M, Cumming KT, Horwath O, Psilander N, Ekblom B, Coombes JS, Peake JM, Raastad T, Roberts LA. Acute cellular and molecular responses and chronic adaptations to low-load blood flow restriction and high-load resistance exercise in trained individuals. J Appl Physiol (1985) 2021; 131:1731-1749. [PMID: 34554017 DOI: 10.1152/japplphysiol.00464.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood flow restriction (BFR) with low-load resistance exercise (RE) is often used as a surrogate to traditional high-load RE to stimulate muscular adaptations, such as hypertrophy and strength. However, it is not clear whether such adaptations are achieved through similar cellular and molecular processes. We compared changes in muscle function, morphology and signaling pathways between these differing training protocols. Twenty-one males and females (mean ± SD: 24.3 ± 3.1 years) experienced with resistance training (4.9 ± 2.6 years) performed nine weeks of resistance training (three times per week) with either high-loads (75-80% 1RM; HL-RT), or low-loads with BFR (30-40% 1RM; LL-BFR). Before and after the training intervention, resting muscle biopsies were collected, and quadricep cross-sectional area (CSA), muscular strength and power were measured. Approximately 5 days following the intervention, the same individuals performed an additional 'acute' exercise session under the same conditions, and serial muscle biopsies were collected to assess hypertrophic- and ribosomal-based signaling stimuli. Quadricep CSA increased with both LL-BFR (7.4±4.3%) and HL-RT (4.6±2.9%), with no significant differences between training groups (p=0.37). Muscular strength also increased in both training groups, but with superior gains in squat 1RM occurring with HL-RT (p<0.01). Acute phosphorylation of several key proteins involved in hypertrophy signaling pathways, and expression of ribosomal RNA transcription factors occurred to a similar degree with LL-BFR and HL-RT (all p>0.05 for between-group comparisons). Together, these findings validate low-load resistance training with continuous BFR as an effective alternative to traditional high-load resistance training for increasing muscle hypertrophy in trained individuals.
Collapse
Affiliation(s)
- Charlie J Davids
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia.,Queensland Academy of Sport, Nathan, Australia
| | - Tore C Næss
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Maria Moen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | | | - Oscar Horwath
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Niklas Psilander
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Björn Ekblom
- Åstrand Laboratory, Department of Physiology, Nutrition and Biomechanics, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Jonathan M Peake
- Queensland Academy of Sport, Nathan, Australia.,Queensland University of Technology, School of Biomedical Science, Brisbane, Australia
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Science, Oslo, Norway
| | - Llion Arwyn Roberts
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia.,Queensland Academy of Sport, Nathan, Australia.,Griffith Sports Science, School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
| |
Collapse
|
9
|
de Queiros VS, dos Santos ÍK, Almeida-Neto PF, Dantas M, de França IM, Vieira WHDB, Neto GR, Dantas PMS, Cabral BGDAT. Effect of resistance training with blood flow restriction on muscle damage markers in adults: A systematic review. PLoS One 2021; 16:e0253521. [PMID: 34143837 PMCID: PMC8213181 DOI: 10.1371/journal.pone.0253521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background The purpose of this review was to systematically analyze the evidence regarding the occurrence of muscle damage (changes in muscle damage markers) after resistance training with blood flow restriction sessions. Materials and methods This systematic review was conducted in accordance with the PRISMA recommendations. Two researchers independently and blindly searched the following electronic databases: PubMed, Scopus, Web of Science, CINAHL, LILACS and SPORTdicus. Randomized and non-randomized clinical trials which analyzed the effect of resistance training with blood flow restriction on muscle damage markers in humans were included. The risk of bias assessment was performed by two blinded and independent researchers using the RoB2 tool. Results A total of 21 studies involving 352 healthy participants (men, n = 301; women, n = 51) were eligible for this review. The samples in 66.6% of the studies (n = 14) were composed of untrained individuals. All included studies analyzed muscle damage using indirect markers. Most studies had more than one muscle damage marker and Delayed Onset Muscle Soreness was the measure most frequently used. The results for the occurrence of significant changes in muscle damage markers after low-load resistance training with blood flow restriction sessions were contrasting, and the use of a pre-defined repetition scheme versus muscle failure seems to be the determining point for this divergence, mainly in untrained individuals. Conclusions In summary, the use of sets until failure is seen to be determinant for the occurrence of significant changes in muscle damage markers after low-load resistance training with blood flow restriction sessions, especially in individuals not used to resistance exercise. Trial registration Register number: PROSPERO number: CRD42020177119.
Collapse
Affiliation(s)
- Victor Sabino de Queiros
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- * E-mail:
| | - Ísis Kelly dos Santos
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Paulo Francisco Almeida-Neto
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Matheus Dantas
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Ingrid Martins de França
- Graduate Program in Physiotherapy, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | | - Gabriel Rodrigues Neto
- Graduate Program in Family Health, Faculties of Nursing and Medicine Nova Esperança (FACENE / FAMENE), João Pessoa, Paraíba, Brazil
| | - Paulo Moreira Silva Dantas
- Graduate Program in Physical Education, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | | |
Collapse
|
10
|
Cerqueira MS, Maciel DG, Barboza JAM, Centner C, Lira M, Pereira R, De Brito Vieira WH. Effects of low-load blood flow restriction exercise to failure and non-failure on myoelectric activity: a meta-analysis. J Athl Train 2021; 57:402-417. [PMID: 34038945 DOI: 10.4085/1062-6050-0603.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To compare the short- and long-term effects of low load blood flow restriction (LL-BFR) versus low- (LL-RT) or high-load (HL-RT) resistance training with free blood flow on myoelectric activity, and investigate the differences between failure and non-failure protocols. DATA SOURCE We identified sources by searching the MEDLINE/PUBMED, CINAHL, WEB OF SCIENCE, CENTRAL, SCOPUS, SPORTDiscus, and PEDro electronic databases. STUDY SELECTION We screened titles and abstracts of 1048 articles using our inclusion criteria. A total of 39 articles were selected for further analysis. DATA EXTRACTION Two reviewers independently assessed the methodological quality of each study and extracted data from studies. A meta-analytic approach was used to compute standardized mean differences (SMD ± 95% confidence intervals (CI)). Subgroup analyses were conducted for both failure or non-failure protocols. DATA SYNTHESIS The search identified n = 39 articles that met the inclusion criteria. Regarding the short-term effects, LL-BFR increased muscle excitability compared with LL-RT during non-failure exercises (SMD 0.61, 95% CI 0.34 to 0.88), whereas HL-RT increased muscle excitability compared with LL-BFR regardless of voluntary failure (SMD -0.61, 95% CI -1.01 to 0.21) or not (SMD -1.13, CI -1.94 to -0.33). Concerning the long-term effects, LL-BFR increased muscle excitability compared with LL-RT during exercises performed to failure (SMD 1.09, CI 0.39 to 1.79). CONCLUSIONS Greater short-term muscle excitability levels are observed in LL-BFR than LL-RT during non-failure protocols. Conversely, greater muscle excitability is present during HL-RT compared with LL-BFR, regardless of volitional failure. Furthermore, LL-BFR performed to failure increases muscle excitability in the long-term compared with LL-RT.
Collapse
Affiliation(s)
- Mikhail Santos Cerqueira
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Daniel Germano Maciel
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Jean Artur Mendonça Barboza
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany; Praxisklinik Rennbahn, Muttenz, Switzerland,
| | - Maria Lira
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia, Brazil,
| | - Wouber Hérickson De Brito Vieira
- Neuromuscular Performance Analysis Laboratory - Department of Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil,
| |
Collapse
|
11
|
Skiba GH, Andrade SF, Rodacki AF. Effects of functional electro-stimulation combined with blood flow restriction in affected muscles by spinal cord injury. Neurol Sci 2021; 43:603-613. [PMID: 33978870 DOI: 10.1007/s10072-021-05307-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022]
Abstract
Muscle atrophy is a great consequence of spinal cord injuries (SCI) due to immobility. SCI's detrimental effects on large muscle groups may lead to secondary effects such as glucose intolerance, increased risk of metabolic syndrome, and diabetes. Exercising with blood flow restriction (BFR) has been proposed as an effective method to induce hypertrophy using low training loads, with little or no muscle damage. This study investigated acute and chronic effects of low-intensity functional electrical stimulation (FES) combined with BFR on muscles affected by spinal cord injury. The acute effects of one bout of FES with (FES + BFR group) and without BFR (FES group) on muscle thickness (MT) and edema formation were compared. The chronic effects on MT and edema following 8 weeks of twice weekly training with and without BFR were also compared. The FES + BFR group showed MT and edema increases compared to the FES only group (p< 0.05). The FES + BFR showed a chronic MT increase after 4 weeks of training (p <0.05), with no further MT increases from the 4th to the 8th week (p>0.05). Following 3 weeks of detraining, MT decreased to baseline. No MT changes were observed in the FES (p>0.05). The FES + BF stimuli induced MT increases on the paralyzed skeletal muscles of SCI. The acute effects suggest that FES causes a greater metabolite accumulation and edema when combined with BFR. The early increases in MT can be attributed to edema, whereas after the 4th week, it is likely to be related to muscle hypertrophy. Register Clinical Trial Number on ReBeC: RBR-386rm8.
Collapse
Affiliation(s)
- Gabriel H Skiba
- Motor Behavior Studies Center/Physiology Education Post Graduation Program, Federal University of Paraná, Curitiba, Brazil.
| | - Sérgio F Andrade
- Motor Behavior Studies Center/Physiology Education Post Graduation Program, Federal University of Paraná, Curitiba, Brazil
| | - André F Rodacki
- Motor Behavior Studies Center/Physiology Education Post Graduation Program, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
12
|
The perceptual responses of individuals with multiple sclerosis to blood flow restriction versus traditional resistance exercise. Physiol Behav 2021; 229:113219. [PMID: 33250152 DOI: 10.1016/j.physbeh.2020.113219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Low-load resistance exercise with blood flow restriction (LLBFR-RE) has been shown capable of improving neuromuscular parameters in several clinical populations, however, its tolerability and effects on individuals with multiple sclerosis (MS) remains unknown. OBJECTIVE To investigate the perceptual responses of individuals with MS to LLBFR-RE versus traditional high-load resistance exercise (HL-RE). METHODS Four men and eleven women diagnosed with relapsing-remitting MS randomly completed the following experimental trials: 1) LLBFR-RE four sets of 30-15-15-15 repetitions, at 20% of one-repetition maximum (1-RM) of leg-press (LP) and knee-extension (KE), with 50% of BFR, and a 1-min rest interval between sets; 2) HL-RE- four sets of 8-10 repetitions, at 70% 1-RM of LP and KE, with the same rest intervals. Ratings of perceived exertion (RPE) were measured after each set, pain was measured before and after sets, and delayed-onset muscle soreness (DOMS) was measured at 5, 30, 60 min, and 24-h post-exercise. RESULTS HL-RE elicited significantly (p<0.05) greater RPE compared to LLBFR-RE during all sets. Additionally, there were no significant (p>0.05) differences between LLBFR-RE and HL-RE for pain immediately after all sets, although pain measured before sets were significantly (p<0.05) greater for LLBFR-RE. Finally, both protocols resulted in similar DOMS, however, it was significantly (p<0.05) elevated 24-h post-exercise compared to 1-h after for HL-RE but not for LLBFR-RE. CONCLUSION Altogether, these data demonstrate that LLBFR-RE is well tolerated by individuals with MS, requires less muscular exertion than HL-RE, and does not cause exaggerated pain during exercise or elevated DOMS up to 24 h post-exercise.
Collapse
|
13
|
Penailillo L, Santander M, Zbinden-Foncea H, Jannas-Vela S. Metabolic Demand and Indirect Markers of Muscle Damage After Eccentric Cycling With Blood Flow Restriction. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2020; 91:705-712. [PMID: 32023184 DOI: 10.1080/02701367.2019.1699234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Purpose: To compare the effects of a single bout of eccentric cycling (ECC) and eccentric cycling with blood flow restriction (ECCBFR) on the changes in cardio-metabolic demand and indirect markers of muscle damage in healthy men. Method: Twenty-one young men (24.0 ± 3.2 y) were randomly allocated in two groups to perform a 30-min eccentric cycling bout with or without blood flow restriction. Oxygen consumption, heart rate, rate of perceived exertion and mean arterial blood pressure were monitored during cycling. Blood lactate was measured before and after cycling. Maximal voluntary isometric knee extensor strength and muscle damage were measured before, immediately after and 1-4 days after each eccentric cycling bout. Results: Oxygen consumption, heart rate, rate of perceived exertion and mean arterial blood pressure were similar between bouts. Blood lactate concentrations increased in both groups (p < .01), with ECCBFR showing 60% greater blood lactate concentration than eccentric cycling (p < .01). Maximal voluntary isometric knee extensor strength decreased 19-7% until 48 h and decreased 16-7% until 72 h after ECC and ECCBFR, respectively. Muscle soreness and pressure pain threshold remained elevated until 72 h after ECC and until 96 h after ECCBFR. Conclusion: These results show that ECCBFR induces similar cardiovascular stress, greater lactate production and longer time to recover than ECC alone. Thus, BFR can be safely implemented with eccentric cycling.
Collapse
|
14
|
Rolnick N, Schoenfeld BJ. Blood Flow Restriction Training and the Physique Athlete: A Practical Research-Based Guide to Maximizing Muscle Size. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Abstract
BACKGROUND The competitive environment of athletics has promoted the exploration of any technology application that may offer an edge with performance and recovery from injury. Ischemic therapy is one such technology that has rapidly been incorporated into training rooms and physical therapy clinics worldwide. This therapy modality is reported to increase an athlete's ability to improve muscle mass, strength, and endurance. PURPOSE To provide the sports medicine physician with an understanding of the current state of ischemic therapy technology, including treatment specifications, known physiological effects, hypothesized mechanisms, biochemical effects, athletic applications, medical applications, animal models, and future research recommendations. STUDY DESIGN Literature review. METHODS A computer-based search of the PubMed database was used to perform a comprehensive literature review on musculoskeletal ischemic therapy. RESULTS The current research on ischemic therapy is largely composed of case series with varying equipment, methods, and therapy specifications. The publication of case series has value in identifying this technology for future research, but the results of these studies should not be justification for application to athletes without validation of safety and effectiveness. CONCLUSION To date, ischemic therapy remains unvalidated, and the mechanism by which it improves muscle performance is not clear.
Collapse
Affiliation(s)
- Austin J Ramme
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, Michigan, USA.,Steindler Orthopedic Clinic, Iowa City, Iowa, USA
| | - Brennan J Rourke
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, Michigan, USA
| | | | - Asheesh Bedi
- Department of Orthopaedic Surgery, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Centner C, Lauber B. A Systematic Review and Meta-Analysis on Neural Adaptations Following Blood Flow Restriction Training: What We Know and What We Don't Know. Front Physiol 2020; 11:887. [PMID: 32848843 PMCID: PMC7417362 DOI: 10.3389/fphys.2020.00887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: To summarize the existing evidence on the long-term effects of low-load (LL) blood flow restricted (BFR) exercise on neural markers including both central and peripheral adaptations. Methods: A systematic review and meta-analysis was conducted according to the PRISMA guidelines. The literature search was performed independently by two reviewers in the following electronic databases: PubMed, Web of Science, Scopus and CENTRAL. The systematic review included long-term trials investigating the effects of LL-BFR training in healthy subjects and compared theses effects to either LL or high-load (HL) training without blood flow restriction. Results: From a total of N = 4499 studies, N = 10 studies were included in the qualitative synthesis and N = 4 studies in a meta-analysis. The findings indicated that LL-BFR resulted in enhanced levels of muscle excitation compared to LL training with pooled effect sizes of 0.87 (95% CI: 0.38-1.36). Compared to HL training, muscle excitation following LL-BFR was reported as either similar or slightly lower. Differences between central activation between LL-BFR and LL or HL are less clear. Conclusion: The summarized effects in this systematic review and meta-analysis highlight that BFR training facilitates neural adaptations following LL training, although differences to conventional HL training are less evident. Future research is urgently needed to identify neural alterations following long-term blood flow restricted exercise.
Collapse
Affiliation(s)
- Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Benedikt Lauber
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
Shiromaru FF, de Salles Painelli V, Silva-Batista C, Longo AR, Lasevicius T, Schoenfeld BJ, Aihara AY, Tricoli V, de Almeida Peres B, Teixeira EL. Differential muscle hypertrophy and edema responses between high-load and low-load exercise with blood flow restriction. Scand J Med Sci Sports 2019; 29:1713-1726. [PMID: 31281989 DOI: 10.1111/sms.13516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 01/25/2023]
Abstract
We sought to determine whether early increases in cross-sectional area (CSA) of different muscles composing the quadriceps with low-load resistance training with blood flow restriction (LL-BFR) were mainly driven by muscle hypertrophy or by edema-induced swelling. We also compared these changes to those promoted by high-load resistance training (HL-RT). In a randomized within-subject design, fifteen healthy, untrained men were submitted to magnetic resonance imaging (MRI) for CSA and edema-induced muscle swelling assessment (fast spin echo inversion recovery, FSE-STIR). MRI was performed in LL-BFR and HL-RT at baseline (W0) and after 3 weeks (W3), with a further measure after 6 weeks (W6) for HL-RT. Participants were also assessed at these time points for indirect muscle damage markers (range of motion, ROM; muscle soreness, SOR). CSA significantly increased for all the quadriceps muscles, for both LL-BFR and HL-RT at W3 (all P < .05) compared to W0. However, FSE-STIR was elevated at W3 for all the quadriceps muscles only for HL-RT (all P < .0001), not LL-BFR (all P > .05). Significant increases and decreases were shown in SOR and ROM, respectively, for HL-RT in W3 compared to W0 (both P < .05), while these changes were mitigated at W6 compared to W0 (both P > .05). No significant changes in SOR or ROM were demonstrated for LL-BFR across the study. Early increases in CSA with LL-BFR seem to occur without the presence of muscle edema, whereas initial gains obtained by HL-RT were influenced by muscle edema, in addition to muscle hypertrophy.
Collapse
Affiliation(s)
- Fabiano Freitas Shiromaru
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil
| | - Vitor de Salles Painelli
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil.,School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Carla Silva-Batista
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Ariel Roberth Longo
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil
| | - Thiago Lasevicius
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | | | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Bergson de Almeida Peres
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil
| | - Emerson Luiz Teixeira
- Strength Training Study and Research Group, Institute of Health Sciences, Paulista University, São Paulo, Brazil.,School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Alvarez IF, Damas F, Biazon TMPD, Miquelini M, Doma K, Libardi CA. Muscle damage responses to resistance exercise performed with high-load versus low-load associated with partial blood flow restriction in young women. Eur J Sport Sci 2019; 20:125-134. [PMID: 31043129 DOI: 10.1080/17461391.2019.1614680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study was to compare if an acute exercise session of high-load resistance training (HL-RT, e.g. 70% of 1 repetition-maximum, 1 RM) induces a higher magnitude of muscle damage compared with a RT protocol with low-loads (e.g. 20% 1 RM) associated with partial blood flow restriction (LL-BFR), and investigate the recovery in the days after the protocols. We used an unilateral crossover research design in which 10 young women (22(2) y; 162(5) cm; 66(11) kg) performed HL-RT and LL-BFR in a randomized, counterbalanced manner with a minimum interval of 2 weeks between protocols. Indirect muscle damage markers were evaluated before and once a day for 4 days into recovery. Main results showed decreases of 8-12% at 24-48 h in maximal voluntary isometric and concentric contraction torques (P < 0.03), and changes in muscle architecture markers (P < 0.03) for HL-RT and LL-BFR, with no differences between protocols (P > 0.05). Moreover, delayed onset muscle soreness increased only after LL-BFR (P < 0.001). We conclude that an acute bout of low volume HL-RT or LL-BFR to failure resulted in edema-induced muscle swelling, but do not induce major or long-lasting decrements in muscle function and the level of soreness promoted from LL-BFR was mild.
Collapse
Affiliation(s)
- Ieda Fernanda Alvarez
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Felipe Damas
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Thaís Marina Pires de Biazon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Maiara Miquelini
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Kenji Doma
- College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
19
|
Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, Abe T, Nielsen JL, Libardi CA, Laurentino G, Neto GR, Brandner C, Martin-Hernandez J, Loenneke J. Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol 2019; 10:533. [PMID: 31156448 PMCID: PMC6530612 DOI: 10.3389/fphys.2019.00533] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
The current manuscript sets out a position stand for blood flow restriction (BFR) exercise, focusing on the methodology, application and safety of this mode of training. With the emergence of this technique and the wide variety of applications within the literature, the aim of this position stand is to set out a current research informed guide to BFR training to practitioners. This covers the use of BFR to enhance muscular strength and hypertrophy via training with resistance and aerobic exercise and preventing muscle atrophy using the technique passively. The authorship team for this article was selected from the researchers focused in BFR training research with expertise in exercise science, strength and conditioning and sports medicine.
Collapse
Affiliation(s)
- Stephen D. Patterson
- Faculty of Sport, Health and Applied Sciences, St Marys University, London, United Kingdom
| | - Luke Hughes
- Faculty of Sport, Health and Applied Sciences, St Marys University, London, United Kingdom
| | - Stuart Warmington
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Jamie Burr
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Brendan R. Scott
- Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
| | - Johnny Owens
- Owens Recovery Science, San Antonio, TX, United States
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, University of Mississippi, Oxford, MS, United States
| | - Jakob L. Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Cleiton Augusto Libardi
- MUSCULAB – Laboratory of Neuromuscular Adaptations to Resistance Training, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Gilberto Laurentino
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Gabriel Rodrigues Neto
- Coordination of Physical Education/Professional Master’s in Family Health, Nursing and Medical Schools, Nova Esperança (FAMENE/FACENE), João Pessoa, Brazil
| | | | - Juan Martin-Hernandez
- I+HeALTH Research Group, Department of Health Sciences, Faculty of Health Sciences, Miguel de Cervantes European University, Valladolid, Spain
| | - Jeremy Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
20
|
Behringer M, Heinke L, Leyendecker J, Mester J. Effects of blood flow restriction during moderate-intensity eccentric knee extensions. J Physiol Sci 2018; 68:589-599. [PMID: 28889225 PMCID: PMC10717657 DOI: 10.1007/s12576-017-0568-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
We investigated if blood flow restriction (BFR, cuff pressure 20 mmHG below individual occlusion pressure) increases metabolic stress, hormonal response, release of muscle damage markers, and muscle swelling induced by moderate-intensity eccentric contractions. In a randomized, matched-pair design, 20 male subjects (25.3 ± 3.3 years) performed four sets of unilateral eccentric knee extensions (75% 1RM) to volitional failure with (IG) or without (CG) femoral BFR. Despite significant differences of performed repetitions between IG (85.6 ± 15.4 repetitions) and CG (142.3 ± 44.1 repetitions), peak values of lactate (IG 7.0 ± 1.4 mmol l-1, CG 6.9 ± 2.7 mmol l-1), growth-hormone (IG 4.9 ± 4.8 ng ml-1, CG 5.2 ± 3.5 ng ml-1), insulin-like growth factor 1 (IG 172.1 ± 41.9 ng ml-1, CG 178.7 ± 82.1 ng ml-1), creatine-kinase (IG 625.5 ± 464.8 U l-1, CG 510.7 ± 443.5 U l-1), the absolute neutrophil count (IG 7.9 ± 1.3 103 µl-1, CG 8.7 ± 2.0 103 µl-1), induced muscle swelling of rectus femoris and vastus lateralis and perceived pain did not differ. The present data indicate that BFR is suitable to intensify eccentric exercises.
Collapse
Affiliation(s)
- Michael Behringer
- Institute of Sports Sciences, University of Frankfurt, Ginnheimer Landstraße 39, Frankfurt, Germany.
| | - Lars Heinke
- Institute of Movement and Neurosciences, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Jannik Leyendecker
- German Research Centre of Elite Sport-Momentum, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Joachim Mester
- German Research Centre of Elite Sport-Momentum, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
21
|
Andersen IT, Harrison A, Broholm R, Harder A, Nielsen JB, Bülow J, Pingel J. Microvascularization is not a limiting factor for exercise in adults with cerebral palsy. J Appl Physiol (1985) 2018; 125:536-544. [DOI: 10.1152/japplphysiol.00827.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Muscle contractures are a common complication in patients with central nervous system (CNS) lesions which limit range of movement and cause joint deformities. Furthermore, it has previously been shown that muscles with contractures have a reduced number of capillaries, indicating decreased tissue vascularization. The aim of the present study was to investigate the microvascular volume (MV) at rest and after acute exercise in the muscle tissue of individuals with cerebral palsy (CP) and healthy control individuals. Contrast-enhanced ultrasound (CEUS) was used before and after 30 min of walking or running on a treadmill in 10 healthy control participants and 10 individuals with CP to detect MV of their skeletal muscle tissue. A significant increase in the MV was observed after exercise both in the adult CP group (21–53 yr) and in the control group (21–52 yr) (1.8 ± 0.8 ΔdB to 3.1 ± 0.9 ΔdB or 42.9% and 1.5 ± 0.6 ΔdB to 2.5 ± 0.9 ΔdB or 39.0%, respectively). Furthermore, a difference in the resting MV was observed between the most severe cases of CP [gross motor function classification scale (GMFCS) 3 and 4] (2.3 ± 0.5 ΔdB) and the less severe cases (GMFCS 1 and 2) (1.5 ± 0.2 ΔdB). When the CP group was walking (3.4 km/h), the lactate levels, Borg score, and heart rate matched the level of controls when they were running (9.8 km/h). In conclusion, individuals with CP become exhausted at much lower exercise intensities than healthy individuals. This is not explained by impaired microvascularization, since the MV of the individuals with CP respond normally to increased O2 demand during acute exercise. NEW & NOTEWORTHY Cerebral palsy (CP) patients were less physically active compared with typically developed individuals. This may affect the microvascularization. We observed that the CP group became exhausted at much lower exercise intensities compared with healthy individuals. However, impaired microvascularization was not the reason for the decreased physical activity as the CP group responded normally to increased O2 demand during acute exercise. These results indicate that walking may be recommended as an intervention to train and maintain skeletal muscle tissue in individuals with CP.
Collapse
Affiliation(s)
| | - Adrian Harrison
- MyoDynamik ApS, Copenhagen, Denmark
- Department of Veterinary & Animal Sciences, Faculty of Health & Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Rikke Broholm
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
| | | | - Jens Bo Nielsen
- Center for Neuroscience, Copenhagen University, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen University, Copenhagen, Denmark
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Jessica Pingel
- Center for Neuroscience, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
22
|
Mouser JG, Dankel SJ, Mattocks KT, Jessee MB, Buckner SL, Abe T, Loenneke JP. Blood flow restriction and cuff width: effect on blood flow in the legs. Clin Physiol Funct Imaging 2018; 38:944-948. [PMID: 29356291 DOI: 10.1111/cpf.12504] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Abstract
Much of the literature examining blood flow restriction in the lower body uses cuffs of differing widths. It is currently unknown whether similar relative pressures using cuffs of differing widths elicit the same blood flow response. PURPOSE To examine the hemodynamic responses to relative pressures using two commonly used cuffs (10 and 12 cm). METHODS In a random order over two laboratory visits, one cuff was applied to the right proximal thigh of the participant (men = 17, women = 14), and arterial occlusion pressure (AOP) was measured. Ultrasound measures of blood flow, mean blood velocity, peak blood velocity and artery diameter were taken from the posterior tibial artery at rest and during the application of 10% increments of the AOP. RESULTS There was no significant difference between the 10- and 12-cm cuff relating to blood flow (-0·501 ml min-1 , SD 7·9, P = 0·728), mean blood velocity (-0·168 cm s-1 , SD 1·7, P = 0·590), peak blood velocity (0·586 cm s-1 , SD 11·7, P = 0·783) or artery diameter (0·003 cm, SD 0·02, P = 0·476). There was a main effect of pressure for blood flow (P<0·0005), mean blood velocity (P<0·0005), peak blood velocity (P<0·0005) and artery diameter (P = 0·005), with each decreasing with increasing pressures. Peak blood velocity increased to 60% of AOP before decreasing with increased pressure. CONCLUSION As long as relative pressures are applied, cuff width appears to have little to no effect on the blood flow stimulus during blood flow restriction at rest.
Collapse
Affiliation(s)
- J Grant Mouser
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Scott J Dankel
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Kevin T Mattocks
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Matthew B Jessee
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Samuel L Buckner
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Takashi Abe
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, MS, USA
| |
Collapse
|
23
|
Curty VM, Melo AB, Caldas LC, Guimarães-Ferreira L, de Sousa NF, Vassallo PF, Vasquez EC, Barauna VG. Blood flow restriction attenuates eccentric exercise-induced muscle damage without perceptual and cardiovascular overload. Clin Physiol Funct Imaging 2017; 38:468-476. [PMID: 28444936 DOI: 10.1111/cpf.12439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the acute effects of high-intensity eccentric exercise (HI-ECC) combined with blood flow restriction (BFR) on muscle damage markers, and perceptual and cardiovascular responses. Nine healthy men (26 ± 1 years, BMI 24 ± 1 kg m- ²) underwent unilateral elbow extension in two conditions: without (HI-ECC) and with BFR (HI-ECC+BFR). The HI-ECC protocol corresponded to three sets of 10 repetitions with 130% of maximal strength (1RM). The ratings of perceived exertion (RPE) and pain (RPP) were measured after each set. Muscle damage was evaluated by range of motion (ROM), upper arm circumference (CIR) and muscle soreness using a visual analogue scale at different moments (pre-exercise, immediately after, 24 and 48 h postexercise). Systolic (SBP), diastolic (DBP), mean blood pressure (MBP) and heart rate (HR) were measured before exercise and after each set. RPP was higher in HI-ECC+BFR than in HI-ECC after each set. Range of motion decreased postexercise in both conditions; however, in HI-ECC+BFR group, it returned to pre-exercise condition earlier (post-24 h) than HI-ECC (post-48 h). CIR increased only in HI-ECC, while no difference was observed in HI-ECC+BFR condition. Regarding cardiovascular responses, MBP and SBP did not change at any moment. HR showed similar increases in both conditions during exercise while DBP decreased only in HI-ECC condition. Thus, BFR attenuated HI-ECC-induced muscle damage and there was no increase in cardiovascular responses.
Collapse
Affiliation(s)
- Victor M Curty
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Alexandre B Melo
- Center of Physical Education and Sports, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Leonardo C Caldas
- Center of Physical Education and Sports, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Lucas Guimarães-Ferreira
- Center of Physical Education and Sports, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Nuno F de Sousa
- Faculty of Estacio de Sá, Department of Physical Education, Vitoria, ES, Brazil
| | - Paula F Vassallo
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Elisardo C Vasquez
- Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Brazil
| | - Valério G Barauna
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| |
Collapse
|
24
|
Lauver JD, Cayot TE, Rotarius T, Scheuermann BW. The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect. Eur J Appl Physiol 2017; 117:1005-1015. [DOI: 10.1007/s00421-017-3589-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/11/2017] [Indexed: 11/29/2022]
|
25
|
Neto GR, Novaes JS, Salerno VP, Gonçalves MM, Batista GR, Cirilo-Sousa MS. Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress? J Sports Sci 2017; 36:104-110. [DOI: 10.1080/02640414.2017.1283430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gabriel R. Neto
- Department of Physical Education, Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil
- Department of Gymnastics, Federal University of Rio de Janeiro (UFRJ), Physical Education Graduate Program, Rio de Janeiro, Brazil
- Department of Physical Education, Federal University of Paraíba (UFPB) Kinanthropometry and Human Development Laboratory, João Pessoa, Brazil
| | - Jefferson S. Novaes
- Department of Gymnastics, Federal University of Rio de Janeiro (UFRJ), Physical Education Graduate Program, Rio de Janeiro, Brazil
| | - Verônica P. Salerno
- Department of Bioscience of Physical Activity, Federal University of Rio de Janeiro (UFRJ), Physical Education Graduate Program, Rio de Janeiro, Brazil
| | - Michel M. Gonçalves
- Department of Gymnastics, Federal University of Rio de Janeiro (UFRJ), Physical Education Graduate Program, Rio de Janeiro, Brazil
- Brazilian Army Research Institute of Physical Fitness, Rio de Janeiro, Brazil
| | - Gilmário R. Batista
- Department of Physical Education, Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil
- Department of Physical Education, Federal University of Paraíba (UFPB) Kinanthropometry and Human Development Laboratory, João Pessoa, Brazil
| | - Maria S. Cirilo-Sousa
- Department of Physical Education, Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil
- Department of Physical Education, Federal University of Paraíba (UFPB) Kinanthropometry and Human Development Laboratory, João Pessoa, Brazil
- Department of Physical Education, Regional University of Cariri (URCA), Crato, Brazil
| |
Collapse
|
26
|
The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Med 2016; 46:913-21. [DOI: 10.1007/s40279-016-0473-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Muscle damage and repeated bout effect following blood flow restricted exercise. Eur J Appl Physiol 2015; 116:513-25. [PMID: 26645685 DOI: 10.1007/s00421-015-3304-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Blood-flow restricted resistance exercise training (BFRE) is suggested to be effective in rehabilitation training, but more knowledge is required about its potential muscle damaging effects. Therefore, we investigated muscle-damaging effects of BFRE performed to failure and possible protective effects of previous bouts of BFRE or maximal eccentric exercise (ECC). METHODS Seventeen healthy young men were allocated into two groups completing two exercise bouts separated by 14 days. One group performed BFRE in both exercise bouts (BB). The other group performed ECC in the first and BFRE in the second bout. BFRE was performed to failure. Indicators of muscle damage were evaluated before and after exercise. RESULTS The first bout in the BB group led to decrements in maximum isometric torque, and increases in muscle soreness, muscle water retention, and serum muscle protein concentrations after exercise. These changes were comparable in magnitude and time course to what was observed after first bout ECC. An attenuated response was observed in the repeated exercise bout in both groups. CONCLUSION We conclude that unaccustomed single-bout BFRE performed to failure induces significant muscle damage. Additionally, both ECC and BFRE can precondition against muscle damage induced by a subsequent bout of BFRE.
Collapse
|
28
|
Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med 2015; 45:187-200. [PMID: 25249278 DOI: 10.1007/s40279-014-0264-9] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It has traditionally been believed that resistance training can only induce muscle growth when the exercise intensity is greater than 65% of the 1-repetition maximum (RM). However, more recently, the use of low-intensity resistance exercise with blood-flow restriction (BFR) has challenged this theory and consistently shown that hypertrophic adaptations can be induced with much lower exercise intensities (<50% 1-RM). Despite the potent hypertrophic effects of BFR resistance training being demonstrated by numerous studies, the underlying mechanisms responsible for such effects are not well defined. Metabolic stress has been suggested to be a primary factor responsible, and this is theorised to activate numerous other mechanisms, all of which are thought to induce muscle growth via autocrine and/or paracrine actions. However, it is noteworthy that some of these mechanisms do not appear to be mediated to any great extent by metabolic stress but rather by mechanical tension (another primary factor of muscle hypertrophy). Given that the level of mechanical tension is typically low with BFR resistance exercise (<50% 1-RM), one may question the magnitude of involvement of these mechanisms aligned to the adaptations reported with BFR resistance training. However, despite the low level of mechanical tension, it is plausible that the effects induced by the primary factors (mechanical tension and metabolic stress) are, in fact, additive, which ultimately contributes to the adaptations seen with BFR resistance training. Exercise-induced mechanical tension and metabolic stress are theorised to signal a number of mechanisms for the induction of muscle growth, including increased fast-twitch fibre recruitment, mechanotransduction, muscle damage, systemic and localised hormone production, cell swelling, and the production of reactive oxygen species and its variants, including nitric oxide and heat shock proteins. However, the relative extent to which these specific mechanisms are induced by the primary factors with BFR resistance exercise, as well as their magnitude of involvement in BFR resistance training-induced muscle hypertrophy, requires further exploration.
Collapse
Affiliation(s)
- Stephen John Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Manchester, M6 6PU, UK,
| | | |
Collapse
|
29
|
Sudo M, Ando S, Poole DC, Kano Y. Blood flow restriction prevents muscle damage but not protein synthesis signaling following eccentric contractions. Physiol Rep 2015; 3:3/7/e12449. [PMID: 26149281 PMCID: PMC4552529 DOI: 10.14814/phy2.12449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is a growing body of evidence to suggest that resistance training exercise combined with blood flow restriction (BFR) increases muscle size and strength in humans. Eccentric contraction (ECC) frequently induces severe muscle damage. However, it is not known whether and to what extent muscle damage occurs following ECC + BFR due to the difficulty of conducting definitive invasive studies. The purpose of this study was to examine muscle fiber damage following ECC + BFR at the cellular level. High-intensity ECC was purposefully selected to maximize the opportunity for muscle damage and hypertrophic signaling in our novel in vivo animal model. Male Wistar rats were assigned randomly to the following groups: ECC and ECC + BFR at varying levels of occlusion pressure (140, 160, and 200 Torr). In all conditions, electrical stimulation was applied to the dorsiflexor muscles simultaneously with electromotor-induced plantar flexion. We observed severe histochemical muscle fiber damage (area of damaged fibers/total fiber area analyzed) following ECC (26.4 ± 4.0%). Surprisingly, however, muscle damage was negligible following ECC + BFR140 (2.6 ± 1.2%), ECC+BFR160 (3.0 ± 0.5%), and ECC + BFR200 (0.2 ± 0.1%). Ribosomal S6 kinase 1 (S6K1) phosphorylation, a downstream target of rapamycin (mTOR)-phosphorylation kinase, increased following ECC + BFR200 as well as ECC. In contrast, S6K1 phosphorylation was not altered by BFR alone. The present findings suggest that ECC combined with BFR, even at high exercise intensities, may enhance muscle protein synthesis without appreciable muscle fiber damage.
Collapse
Affiliation(s)
- Mizuki Sudo
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-communications, Chofu Tokyo, Japan Physical Fitness Research Institute Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Soichi Ando
- Department of Mechanical Engineering and Intelligent Systems, Control Systems Program, University of Electro-communications, Chofu Tokyo, Japan
| | - David C Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-communications, Chofu Tokyo, Japan
| |
Collapse
|