1
|
Oehl EK, Jirsch PT, Hammes J, Stenglein A, Méndez M, Ruf S, Waldvogel SR. Electrochemical Synthesis of a Sitagliptin Precursor. J Org Chem 2024; 89:16214-16222. [PMID: 38655880 DOI: 10.1021/acs.joc.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A novel synthesis of sitagliptin based on a redox-active ester derived from the chiral pool is reported. The key step is an electrochemical nickel-catalyzed sp2-sp3 cross-coupling reaction using inexpensive nickel foam in an undivided cell. It was successfully applied to 21 examples in up to 88% yield. These sitagliptin-analogue precursors could potentially interact with the DPP4 enzyme. A full synthesis based on our new reaction pathway provided sitagliptin in an overall yield of 33%.
Collapse
Affiliation(s)
- Elisabeth K Oehl
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Paul T Jirsch
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jasmin Hammes
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - María Méndez
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G838, 65926 Frankfurt am Main, Germany
| | - Sven Ruf
- Sanofi R&D, Integrated Drug Discovery, Industriepark Höchst, Bldg. G838, 65926 Frankfurt am Main, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
- Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Cesca D, Arnold P, Kaldre D, Falivene F, Sladojevich F, Puentener K, Waldvogel SR. Anodic Desulfurization of Heterocyclic Thiones - A Synthesis to Imidazoles and Analogues. Org Lett 2024; 26:9476-9480. [PMID: 39467169 PMCID: PMC11555668 DOI: 10.1021/acs.orglett.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
An electrochemical desulfurization of 2-mercapto-imidazoles to the corresponding imidazole is established. This novel anodic transformation is bromide-mediated and easy to conduct in the simplest electrochemical setup, consisting of an undivided cell, carbon electrodes, and constant current electrolysis. The method proved successful in 14 diverse examples of imidazoles and triazoles with up to a 97% yield. The scalability was proven in the multigram synthesis of a technically relevant N-heterocyclic carbene (NHC) ligand precursor.
Collapse
Affiliation(s)
- Davide Cesca
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Philip Arnold
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Dainis Kaldre
- Department
of Process Chemistry & Catalysis, F.
Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Fabio Falivene
- Pharma
Research and Early Development, Roche Innovation
Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Filippo Sladojevich
- Pharma
Research and Early Development, Roche Innovation
Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kurt Puentener
- Department
of Process Chemistry & Catalysis, F.
Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Siegfried R. Waldvogel
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
- Department
of Electrosynthesis, Max-Planck-Institute
for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Karlsruher
Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Bohlen B, Daems N, Su Z, Chen A, Lipkowski J, Breugelmans T. In Situ Spectroelectrochemical Study of Acetate Formation by CO 2 Reduction Using Bi Catalyst in Amine-Based Capture Solution. CHEMSUSCHEM 2024; 17:e202400437. [PMID: 38712937 DOI: 10.1002/cssc.202400437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Carbon capture and utilization (CCU) are technologies sought to reduce the level of CO2 in the atmosphere. Industrial carbon capture is associated with energetic penalty, thus there is an opportunity to research alternatives. In this work, spectroelectrochemistry was used to analyze the electrochemical CO2 reduction (eCO2R) in CO2 saturated monoethanolamine (MEA)-based capture solutions, in a novel CCU process. The in situ Fourier transform infrared (FTIR) spectroscopy experiments show that at the Bi catalyst, the active species involved in the eCO2R is the dissolved CO2 in solution, and not carbamate. In addition, the products of eCO2R were evaluated under flow, using commercial Bi2O3 NP as catalyst. Formate and acetate were detected, with normalized FE for acetate up to 14.5 %, a remarkable result, considering the catalyst used. Acetate is formed either in the presence of cetrimonium bromide (CTAB) as surfactant or at higher current density (>-100 mA cm-2) and the results enabled the proposition of a pathway for its production. This work sheds light on the complex reaction environment of a capture medium electrolyte and is thus relevant for an improved understanding of the conversion of CO2 into value-added products and to evaluate the feasibility of a combined CCU approach.
Collapse
Affiliation(s)
- Barbara Bohlen
- Research Group Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Nick Daems
- Research Group Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Zhangfei Su
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Jacek Lipkowski
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Tom Breugelmans
- Research Group Applied Electrochemistry and Catalysis (ELCAT), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
4
|
Prenzel T, Schwarz N, Hammes J, Krähe F, Pschierer S, Winter J, Gálvez-Vázquez MDJ, Schollmeyer D, Waldvogel SR. Highly Selective Electrosynthesis of 1 H-1-Hydroxyquinol-4-ones-Synthetic Access to Versatile Natural Antibiotics. Org Process Res Dev 2024; 28:3922-3928. [PMID: 39444427 PMCID: PMC11494660 DOI: 10.1021/acs.oprd.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
1H-1-Hydroxyquinolin-4-ones represent a broad class of biologically active heterocycles having an exocyclic N,O motif. Electrosynthesis offers direct, highly selective, and sustainable access to 1-hydroxyquinol-4-ones by nitro reduction. A versatile synthetic route starting from easily accessible 2-nitrobenzoic acids was established. The broad applicability of this protocol was demonstrated on 26 examples with up to 93% yield, highlighted by the naturally occurring antibiotics Aurachin C and HQNO. The practicability and technical relevance were underlined by multigram scale electrolysis.
Collapse
Affiliation(s)
- Tobias Prenzel
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Nils Schwarz
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Jasmin Hammes
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Franziska Krähe
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Sarah Pschierer
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Johannes Winter
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | | | - Dieter Schollmeyer
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55128 Mainz, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
- Institute
of Biological and Chemical Systems−Functional Molecular Systems
(IBCS-FMS), Karlsruhe Institute of Technology
(KIT), Kaiserstraße
12, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Narobe R, Perner MN, Gálvez-Vázquez MDJ, Kuhwald C, Klein M, Broekmann P, Rösler S, Cezanne B, Waldvogel SR. Practical electrochemical hydrogenation of nitriles at the nickel foam cathode. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:10567-10574. [PMID: 39309016 PMCID: PMC11413620 DOI: 10.1039/d4gc03446e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
We report a scalable hydrogenation method for nitriles based on cost-effective materials in a very simple two-electrode setup under galvanostatic conditions. All components are commercially and readily available. The method is very easy to conduct and applicable to a variety of nitrile substrates, leading exclusively to primary amine products in yields of up to 89% using an easy work-up protocol. Importantly, this method is readily transferable from the milligram scale in batch-type screening cells to the multi-gram scale in a flow-type electrolyser. The transfer to flow electrolysis enabled us to achieve a notable 20 g day-1 productivity of phenylethylamine at a geometric current density of 50 mA cm-2 in a flow-type electrolyser with 48 cm2 electrodes. It is noteworthy that this method is sustainable in terms of process safety and reusability of components.
Collapse
Affiliation(s)
- Rok Narobe
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | - Marcel Nicolas Perner
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| | | | | | | | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern 3012 Bern Switzerland
| | - Sina Rösler
- Sigma-Aldrich Production GmbH 9470 Buchs Switzerland
| | | | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz 55128 Mainz Germany
- Max-Planck-Institute for Chemical Energy Conversion Stiftstraße 34-36 45470 Mülheim an der Ruhr Germany +49 208/306-3131
| |
Collapse
|
6
|
Rücker T, Pettersen T, Graute H, Wittgens B, Graßl T, Waldvogel SR. Pilot Scale Electrolysis of Peroxodicarbonate as an Oxidizer for Lignin Valorization. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:11283-11296. [PMID: 39091926 PMCID: PMC11289759 DOI: 10.1021/acssuschemeng.4c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
A pilot scale plant at Technology Readiness Level (TRL) 6 comprising an electrochemical ex-cell continuous production of sodium peroxodicarbonate and a thermal depolymerization plug flow reactor for kraft lignin conversion is established. Due to the labile nature of the "green" oxidizer peroxodicarbonate, special attention must be paid to the production parameters in order to optimize its use. A simplified design model describing steady-state and transient operations is formulated and finally validated against experimental data from the electrolysis setup. Design trade-offs are visualized, and their impact on specific energy consumption is evaluated. The pilot plant was operated for a 20-month period for more than 1200 h on-stream. Optimized process conditions result in vanillin yields of 8 wt % and thus prove the successful scale-up.
Collapse
Affiliation(s)
- Theresa Rücker
- Process
Technology, SINTEF Industry, Trondheim, Trøndelag NO-7465, Norway
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Torbjørn Pettersen
- Process
Technology, SINTEF Industry, Trondheim, Trøndelag NO-7465, Norway
| | - Hannah Graute
- Process
Technology, SINTEF Industry, Trondheim, Trøndelag NO-7465, Norway
| | - Bernd Wittgens
- Process
Technology, SINTEF Industry, Trondheim, Trøndelag NO-7465, Norway
| | - Tobias Graßl
- CONDIAS
GmbH, Fraunhofer Straße
1b, 25524 Itzehoe, Germany
| | - Siegfried R. Waldvogel
- Karlsruhe
Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Rücker T, Schupp N, Sprang F, Horsten T, Wittgens B, Waldvogel SR. Peroxodicarbonate - a renaissance of an electrochemically generated green oxidizer. Chem Commun (Camb) 2024; 60:7136-7147. [PMID: 38912960 DOI: 10.1039/d4cc02501f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The direct anodic conversion of alkali carbonates in aqueous media provides access to peroxodicarbonate, which is a safe to use and green oxidizer. Although first reports date back around 150 years, its low concentrations and limited thermal stability have consigned this reagent to oblivion. Boron-doped diamond anodes, novel electrolyser concepts for heat dissipation, and the mixed cation trick allow record breaking peroxodicarbonate concentrations >900 mM. The electrochemical generation of peroxodicarbonate was already demonstrated on a pilot scale. The inherent safety is ensured by the limited stability of the peroxodicarbonate solution, which decomposes under ambient conditions to oxygen and facilitates subsequent downstream processing. This peroxide has, in particular at higher concentrations, an unusual reactivity and seems to be an ideal reagent when peroxo-equivalents in combination with alkaline base are required. The conversions with peroxodicarbonate include the Dakin reaction, epoxidation, oxidation of amines (aliphatic and aromatic) and sulfur compounds, deborolative hydroxylation reactions, and many more. Since the base equivalents also represent the makeup chemical for pulping plants, peroxodicarbonate is an ideal reagent for the selective degradation of lignin to vanillin. Moreover, peroxodicarbonate can be used as a halogen-free bleaching agent. The emerging electrogeneration and use of this green platform oxidizer are surveyed for the first time.
Collapse
Affiliation(s)
- Theresa Rücker
- Process Technology, SINTEF Industry, Trondheim, Norway
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | - Niclas Schupp
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | - Fiona Sprang
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | - Tomas Horsten
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | | | - Siegfried R Waldvogel
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
| |
Collapse
|
8
|
Winter J, Lühr S, Hochadel K, Gálvez-Vázquez MDJ, Prenzel T, Schollmeyer D, Waldvogel SR. Simple electrochemical synthesis of cyclic hydroxamic acids by reduction of nitroarenes. Chem Commun (Camb) 2024; 60:7065-7068. [PMID: 38904167 PMCID: PMC11223186 DOI: 10.1039/d4cc02118e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
The electrochemical reduction of nitroarenes allows direct access to manifold nitrogen containing heterocycles. This work reports the simple and direct electro-organic synthesis of 18 different examples of 2H,4H-4-hydroxy-1,4-benzoxazin-3-ones in up to 81% yield. The scalability of the method was demonstrated on a gram-scale.
Collapse
Affiliation(s)
- Johannes Winter
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Susan Lühr
- Department of Chemistry, Faculty of Science, University of Chile, Las Palmeras 3425, Ñuñoa 775000, Santiago, Chile
| | - Kyra Hochadel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
9
|
Bieniek J, Nater DF, Eberwein SL, Schollmeyer D, Klein M, Waldvogel SR. Efficient and Sustainable Electrosynthesis of N-Sulfonyl Iminophosphoranes by the Dehydrogenative P-N Coupling Reaction. JACS AU 2024; 4:2188-2196. [PMID: 38938819 PMCID: PMC11200248 DOI: 10.1021/jacsau.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 06/29/2024]
Abstract
Iminophosphoranes are commonly used reagents in organic synthesis and are, therefore, of great interest. An efficient and sustainable iodide-mediated electrochemical synthesis of N-sulfonyl iminophosphoranes from readily available phosphines and sulfonamides is reported. This method features low amounts of supporting electrolytes, inexpensive electrode materials, a simple galvanostatic setup, and high conversion rates. The broad applicability could be demonstrated by synthesizing 20 examples in yields up to 90%, having diverse functional groups including chiral moieties and biologically relevant species. Furthermore, electrolysis was performed on a 20 g scale and could be run in repetitive mode by recycling the electrolyte, which illustrates the suitability for large-scale production. A reaction mechanism involving electrochemical mediation by the iodide-based supporting electrolyte is proposed, completely agreeing with all of the results.
Collapse
Affiliation(s)
- Jessica
C. Bieniek
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Darryl F. Nater
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany
| | - Sara L. Eberwein
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Dieter Schollmeyer
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Martin Klein
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
- Institute
of Biological and Chemical Systems—Functional Molecular Systems
(IBCS-FMS), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Schneider J, Häring AP, Waldvogel SR. Electrochemical Dehydration of Dicarboxylic Acids to Their Cyclic Anhydrides. Chemistry 2024; 30:e202400403. [PMID: 38527230 DOI: 10.1002/chem.202400403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
An intramolecular electrochemical dehydration reaction of dicarboxylic acids to their cyclic anhydrides is presented. This electrolysis allows dicarboxylic acids as naturally abundant, inexpensive, safe, and readily available starting materials to be transformed into carboxylic anhydrides under mild reaction conditions. No conventional dehydration reagent is required. The obtained cyclic anhydrides are highly valuable reagents in organic synthesis, and in this report, we use them in-situ for acylation reactions of amines to synthesize amides. This work is part of the recent progress in electrochemical dehydration, which - in contrast to electrochemical dehydrogenative reactions for example - is an underexplored field of research. The reaction mechanism was investigated by 18O isotope labeling, revealing the formation of sulfate by electrochemical oxidation and hydrolysis of the thiocyanate-supporting electrolyte. This transformation is not a classical Kolbe electrolysis, because it is non-decarboxylative, and all carbon atoms of the carboxylic acid starting material are contained in the carboxylic anhydride. In total, 20 examples are shown with NMR yields up to 71 %.
Collapse
Affiliation(s)
- Johannes Schneider
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Andreas P Häring
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany
- Karlsruhe Institut für Technologie, Kaiserstraße 12, 76131, Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
de A Bartolomeu A, Breitschaft FA, Schollmeyer D, Pilli RA, Waldvogel SR. Electrochemical Multicomponent Synthesis of Alkyl Alkenesulfonates using Styrenes, SO 2 and Alcohols. Chemistry 2024; 30:e202400557. [PMID: 38335153 DOI: 10.1002/chem.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
A novel electrochemical approach to access alkyl alkenesulfonates via a multicomponent reaction was developed. The metal-free method features easy-to-use SO2 stock solution forming monoalkylsulfites from alcohols with an auxiliary base in-situ. These intermediates serve a dual role as starting materials and as supporting electrolyte enabling conductivity. Anodic oxidation of the substrate styrene, radical addition of these monoalkylsulfites and consecutive second oxidation and deprotonation preserve the double bond and form alkyl β-styrenesulfonates in a highly regio- and stereoselective fashion. The feasibility of this electrosynthetic method is demonstrated in 44 examples with yields up to 81 %, employing various styrenes and related substrates as well as a diverse set of alcohols. A gram-scale experiment underlines the applicability of this process, which uses inexpensive and readily available electrode materials.
Collapse
Affiliation(s)
- Aloisio de A Bartolomeu
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Institute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil
| | - Florian A Breitschaft
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Ronaldo A Pilli
- Institute of Chemistry, University of Campinas, 13083-970, Campinas, SP, Brazil
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Kohlpaintner PJ, Schupp N, Ehlenz N, Marquart L, Gooßen LJ, Waldvogel SR. Synthesis of Aromatic N-Oxides Using Electrochemically Generated Peroxodicarbonate. Org Lett 2024; 26:1607-1611. [PMID: 38364789 DOI: 10.1021/acs.orglett.3c04386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Electrochemically generated green platform oxidizers like peroxodicarbonate (PODIC) constitute a game-changing technology in terms of sustainable chemistry while serving as an alternative counterreaction in the electrochemical hydrogen evolution. Peroxodicarbonate avoids the storage and shipping of concentrated hydrogen peroxide solution. We herein disclose an efficient method for the N-oxidation of quinolines, pyridines, and complex tertiary amines. The use of phenoyloxy succinimide (POSI) is the decisive factor for obtaining N-oxides (28 examples) in isolated yields of up to 98%.
Collapse
Affiliation(s)
- Philipp J Kohlpaintner
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Niclas Schupp
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Niklas Ehlenz
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Lucas Marquart
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Lukas J Gooßen
- Ruhr University Bochum, Evonik Chair of Organic Chemistry, Universitätsstr. 150, 44801 Bochum, Germany
| | - Siegfried R Waldvogel
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Moreno-García P, de Gálvez-Vázquez MDJ, Prenzel T, Winter J, Gálvez-Vázquez L, Broekmann P, Waldvogel SR. Self-Standing Metal Foam Catalysts for Cathodic Electro-Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307461. [PMID: 37917032 DOI: 10.1002/adma.202307461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Although electro-organic synthesis is currently receiving renewed interest because of its potential to enable sustainability in chemical processes to value-added products, challenges in process development persist: For reductive transformations performed in protic media, an inherent issue is the limited choice of metallic cathode materials that can effectively suppress the parasitic hydrogen evolution reaction (HER) while maintaining a high activity toward the targeted electro-organic reaction. Current development trends are aimed at avoiding the previously used HER-suppressing elements (Cd, Hg, and Pb) because of their toxicity. Here, this work reports the rational design of highly porous foam-type binary and ternary electrocatalysts with reduced Pb content. Optimized cathodes are tested in electro-organic reductions using an oxime to nitrile transformation as a model reaction relevant for the synthesis of fine chemicals. Their electrocatalytic performance is compared with that of the model CuSn7Pb15 bronze alloy that has recently been endorsed as the best cathode replacement for bare Pb electrodes. All developed metal foam catalysts outperform both bare Pb and the CuSn7Pb15 benchmark in terms of chemical yield and energetic efficiency. Moreover, post-electrolysis analysis of the crude electrolyte mixture and the cathode's surfaces through inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy (SEM), respectively, reveal the foam catalysts' elevated resistance to cathodic corrosion.
Collapse
Affiliation(s)
- Pavel Moreno-García
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, 3012, Switzerland
| | | | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Liliana Gálvez-Vázquez
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
| |
Collapse
|
14
|
Bieniek JC, Mashtakov B, Schollmeyer D, Waldvogel SR. Dehydrogenative Electrochemical Synthesis of N-Aryl-3,4-Dihydroquinolin-2-ones by Iodine(III)-Mediated Coupling Reaction. Chemistry 2024; 30:e202303388. [PMID: 38018461 DOI: 10.1002/chem.202303388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Electrochemically generated hypervalent iodine(III) species are powerful reagents for oxidative C-N coupling reactions, providing access to valuable N-heterocycles. A new electrocatalytic hypervalent iodine(III)-mediated in-cell synthesis of 1H-N-aryl-3,4-dihydroquinolin-2-ones by dehydrogenative C-N bond formation is presented. Catalytic amounts of the redox mediator, a low supporting electrolyte concentration and recycling of the solvent used make this method a sustainable alternative to electrochemical ex-cell or conventional approaches. Furthermore, inexpensive, readily available electrode materials and a simple galvanostatic set-up are applied. The broad functional group tolerance could be demonstrated by synthesizing 23 examples in yields up to 96 %, with one reaction being performed on a 10-fold higher scale. Based on the obtained results a sound reaction mechanism could be proposed.
Collapse
Affiliation(s)
- Jessica C Bieniek
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Boris Mashtakov
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Klein J, Waldvogel SR. Selective Electrochemical Degradation of Lignosulfonate to Bio-Based Aldehydes. CHEMSUSCHEM 2023; 16:e202202300. [PMID: 36651115 DOI: 10.1002/cssc.202202300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Indexed: 06/17/2023]
Abstract
A sustainable electrochemical pathway for degradation and thermal treatment of technical lignosulfonate is presented. This approach is an opportunity to produce remarkable quantities of low molecular weight compounds, such as vanillin and acetovanillone. For the electrochemical degradation, a simple two-electrode arrangement in aqueous media is used, which is also easily scalable. The oxidation of the biopolymer occurs at the anode whereas hydrogen is evolved at the cathode. The subsequent thermal treatment supports the degradation of the robust chemical structure of lignosulfonates. With optimized electrolytic conditions, vanillin could be obtained in 9.7 wt% relative to the dry mass of lignosulfonate used. Aside from vanillin, by-products such as acetovanillone or vanillic acid were observed in lower yields. A new and reliable one-pot, two-step degradation of different technically relevant lignosulfonates is established with the advantages of using electrons as an oxidizing agent, which results in low quantities of reagent waste.
Collapse
Affiliation(s)
- Jana Klein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55131, Mainz, Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Koleda O, Prenzel T, Winter J, Hirohata T, de Jesús Gálvez-Vázquez M, Schollmeyer D, Inagi S, Suna E, Waldvogel SR. Simple and scalable electrosynthesis of 1 H-1-hydroxy-quinazolin-4-ones. Chem Sci 2023; 14:2669-2675. [PMID: 36908965 PMCID: PMC9993888 DOI: 10.1039/d3sc00266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Cathodic synthesis provides sustainable access to 1-hydroxy- and 1-oxy-quinazolin-4-ones from easily accessible nitro starting materials. Mild reaction conditions, inexpensive and reusable carbon-based electrode materials, an undivided electrochemical setup, and constant current conditions characterise this method. Sulphuric acid is used as a simple supporting electrolyte as well as a catalyst for cyclisation. The broad applicability of this protocol is demonstrated in 27 differently substituted derivatives in high yields of up to 92%. Moreover, mechanistic studies based on cyclic voltammetry measurements highlight a selective reduction of the nitro substrate to hydroxylamine as a key step. The relevance for preparative applications is demonstrated by a 100-fold scale-up for gram-scale electrolysis.
Collapse
Affiliation(s)
- Olesja Koleda
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Tobias Prenzel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
| | - Tomoki Hirohata
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - María de Jesús Gálvez-Vázquez
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8502 Japan
| | - Edgars Suna
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany https://www.aksw.uni-mainz.de/
- Institute of Biological and Chemical Systems -Functional Molecular Systems (IBCS-FMS) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
17
|
Klein M, Troglauer DL, Waldvogel SR. Dehydrogenative Imination of Low-Valent Sulfur Compounds-Fast and Scalable Synthesis of Sulfilimines, Sulfinamidines, and Sulfinimidate Esters. JACS AU 2023; 3:575-583. [PMID: 36873686 PMCID: PMC9975850 DOI: 10.1021/jacsau.2c00663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Herein, we describe an electrochemical pathway for the synthesis of sulfilimines, sulfoximines, sulfinamidines, and sulfinimidate esters from readily available low-valent sulfur compounds and primary amides or their analogues. The combination of solvents and supporting electrolytes together act both as an electrolyte as well as a mediator, leading to efficient use of reactants. Both can be easily recovered, enabling an atom-efficient and sustainable process. A broad scope of sulfilimines, sulfinamidines, and sulfinimidate esters with N-EWGs is accessed in up to excellent yields with broad functional group tolerance. This fast synthesis can be easily scaled up to multigram quantities with high robustness for fluctuation of current densities of up to 3 orders of magnitude. The sulfilimines are converted into the corresponding sulfoximines in an ex-cell process in high to excellent yields using electro-generated peroxodicarbonate as a green oxidizer. Thereby, preparatively valuable NH sulfoximines are accessible.
Collapse
|
18
|
Linden M, Hofmann S, Herman A, Ehler N, Bär RM, Waldvogel SR. Electrochemical Synthesis of Pyrazolines and Pyrazoles via [3+2] Dipolar Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202214820. [PMID: 36478106 DOI: 10.1002/anie.202214820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Pyrazolines and pyrazoles are common and important motifs of pharmaceutical agents and agrochemicals. Herein, the first electrochemical approach for their direct synthesis from easily accessible hydrazones and dipolarophiles up to decagram scale is presented. The application of a biphasic system (aqueous/organic) even allows for the conversion of highly sensitive alkenes, wherein inexpensive sodium iodide is employed in a dual role as supporting electrolyte and mediator. In addition, mechanistic insight into the reaction is given by the isolation of key step intermediates. The relevance of the presented reaction is underlined by the synthesis of commercial herbicide safener mefenpyr-diethyl in good yields.
Collapse
Affiliation(s)
- Martin Linden
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Silja Hofmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Antonia Herman
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Nicole Ehler
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Robin M Bär
- Research & Development, Crop Science, Bayer AG, Alfred-Nobel-Str. 50, 40789, Monheim am Rhein, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
19
|
Beck AD, Haufe S, Waldvogel SR. General Concepts and Recent Advances in the Electrochemical Transformation of Chloro‐ and Hydrosilanes. ChemElectroChem 2023. [DOI: 10.1002/celc.202201149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Alexander D. Beck
- Wacker Chemie AG Consortium für elektrochemische Industrie Zielstattstraße 20 81379 München Germany
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Stefan Haufe
- Wacker Chemie AG Consortium für elektrochemische Industrie Zielstattstraße 20 81379 München Germany
| | - Siegfried R. Waldvogel
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
20
|
Dong X, Klein M, Waldvogel SR, Morandi B. Controlling Selectivity in Shuttle Hetero-difunctionalization Reactions: Electrochemical Transfer Halo-thiolation of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202213630. [PMID: 36336662 PMCID: PMC10107926 DOI: 10.1002/anie.202213630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Shuttle hetero-difunctionalization reaction, in which two chemically distinct functional groups are transferred between two molecules, has long been an unmet goal due to the daunting challenges in controlling the chemo-, regio-, and stereoselectivity. Herein, we disclose an electrochemistry enabled shuttle reaction (e-shuttle) to selectively transfer one RS- and one X- group between β-halosulfides and unsaturated hydrocarbons via a consecutive paired electrolysis mechanism. The preferential anodic oxidation of one anion over the other, which is controlled by their distinct redox potentials, plays a pivotal role in controlling the high chemoselectivity of the process. This easily scalable methodology enables the construction of a myriad of densely functionalized β-halo alkenyl sulfides in unprecedented chemo-, regio-, and stereoselectivity using benign surrogates, e.g., 2-bromoethyl sulfide, avoiding the handling of corrosive and oxidative RS-Br reagents. In a broader context, these results open up new strategies for selective shuttle difunctionalization reactions.
Collapse
Affiliation(s)
- Xichang Dong
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Martin Klein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| |
Collapse
|
21
|
Klein M, Waldvogel SR. Counter Electrode Reactions-Important Stumbling Blocks on the Way to a Working Electro-organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202204140. [PMID: 35668714 PMCID: PMC9828107 DOI: 10.1002/anie.202204140] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 01/12/2023]
Abstract
Over the past two decades, electro-organic synthesis has gained significant interest, both in technical and academic research as well as in terms of applications. The omission of stoichiometric oxidizers or reducing agents enables a more sustainable route for redox reactions in organic chemistry. Even if it is well-known that every electrochemical oxidation is only viable with an associated reduction reaction and vice versa, the relevance of the counter reaction is often less addressed. In this Review, the importance of the corresponding counter reaction in electro-organic synthesis is highlighted and how it can affect the performance and selectivity of the electrolytic conversion. A selection of common strategies and unique concepts to tackle this issue are surveyed to provide a guide to select appropriate counter reactions for electro-organic synthesis.
Collapse
Affiliation(s)
- Martin Klein
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
22
|
Britschgi J, Kersten W, Waldvogel SR, Schüth F. Electrochemically Initiated Synthesis of Methanesulfonic Acid. Angew Chem Int Ed Engl 2022; 61:e202209591. [PMID: 35972467 DOI: 10.1002/anie.202209591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 01/07/2023]
Abstract
The direct sulfonation of methane to methanesulfonic acid was achieved in an electrochemical reactor without adding peroxide initiators. The synthesis proceeds only from oleum and methane. This is possible due to in situ formation of an initiating species from the electrolyte at a boron-doped diamond anode. Elevated pressure, moderate temperature and suitable current density are beneficial to reach high concentration at outstanding selectivity. The highest concentration of 3.7 M (approximately 62 % yield) at 97 % selectivity was reached with a stepped electric current program at 6.25-12.5 mA cm-2 , 70 °C and 90 bar methane pressure in 22 hours. We present a novel, electrochemical method to produce methanesulfonic acid, propose a reaction mechanism and show general dependencies between parameters and yields for methanesulfonic acid.
Collapse
Affiliation(s)
- Joel Britschgi
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | - Wolfgang Kersten
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | - Siegfried R Waldvogel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| |
Collapse
|
23
|
Pollok D, Großmann LM, Behrendt T, Opatz T, Waldvogel SR. A General Electro-Synthesis Approach to Amaryllidaceae Alkaloids. Chemistry 2022; 28:e202201523. [PMID: 35662286 PMCID: PMC9543536 DOI: 10.1002/chem.202201523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Amaryllidaceae alkaloids appeal to organic chemists with their attractive structures and their impressive antitumor and acetylcholinesterase inhibitory properties. We demonstrate a highly versatile access to this family of natural products. A general protocol with high yields in a sustainable electro-organic key transformation on a metal-free anode to spirodienones facilitates functionalization to the alkaloids. The biomimetic syntheses start with the readily available, inexpensive biogenic starting materials methyl gallate, O-methyl tyramine, and vanillin derivatives. Through known dynamic resolutions, this technology provides access to both enantiomeric series of (epi-)martidine, (epi-)crinine, siculine, and galantamine, clinically prescribed for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Luca M. Großmann
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Torsten Behrendt
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Till Opatz
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
24
|
Arndt S, Kohlpaintner PJ, Donsbach K, Waldvogel SR. Synthesis and Applications of Periodate for Fine Chemicals and Important Pharmaceuticals. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Philipp J. Kohlpaintner
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kai Donsbach
- Virginia Commonwealth University, College of Engineering, Medicines for All Institute, 601 West Main Street, Richmond, Virginia 23284-3068, United States
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
25
|
Britschgi J, Kersten W, Waldvogel SR, Schüth F. Electrochemically Initiated Synthesis of Methanesulfonic Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel Britschgi
- Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis GERMANY
| | | | | | - Ferdi Schüth
- Max-Planck-Institut fur Kohlenforschung Heterogeneous Catalysis Kaiser-Wilhelm-Platz 1 45470 Mülheim GERMANY
| |
Collapse
|
26
|
Beck AD, Haufe S, Waldvogel SR. Boron‐catalyzed electrochemical oxidative Si‐C bond formation. ChemElectroChem 2022. [DOI: 10.1002/celc.202200840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander D. Beck
- Johannes Gutenberg Universität Mainz: Johannes Gutenberg Universitat Mainz Department Chemie GERMANY
| | - Stefan Haufe
- Wacker Group: Wacker Chemie AG Consortium für Elektrochemie GERMANY
| | - Siegfried R Waldvogel
- Johannes Gutenberg-Universität Mainz Institut für Organische Chemie Duesbergweg 10-14 55128 Mainz GERMANY
| |
Collapse
|
27
|
Arndt S, Rücker R, Stenglein A, Waldvogel SR. Reactor Design for the Direct Electrosynthesis of Periodate. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Arndt
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Richard Rücker
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Andreas Stenglein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10−14, 55128 Mainz, Germany
| |
Collapse
|
28
|
Xia J, Liu X, Sun D, Li C, Wang Z. Energy Consumption Connection of Industrial Sector Based on Industrial Link Theory: A Case Study of China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.897574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
China’s energy consumption and its growth trend determine the domestic energy production and supply pattern. The understanding of energy consumption and its changes will help to enhance urban resilience. Based on the improved input-output model and hypothesis extraction model, this paper aims at constructing the energy-industry connection model, analyzing the energy transfer implied in the economic activities of various industrial sectors, and examining the energy transfer effect between the supply-side (SS) and demand-side industry sectors of the Shaanxi Province. The results showed that, in 2017, the energy industrial sector was the most energy consumption industry in Shaanxi Province. The industrial energy sector belonged to the net energy output industrial sector, and the energy products were transferred to other industrial sectors. This paper can provide a scientific basis for the energy SS reform, adjusting the industrial layout of regions in the Yellow River Basin.
Collapse
|
29
|
Pollok D, Rausch FU, Beil SB, Franzmann P, Waldvogel SR. Allocolchicines─Synthesis with Electro-organic Key Transformations. Org Lett 2022; 24:3760-3765. [PMID: 35503929 DOI: 10.1021/acs.orglett.2c01084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The naturally occurring colchicine and allocolchicines in the meadow saffron are potentially active ingredients for cancer therapy. A concise protocol for the sustainable synthesis of allocolchicines using up to two electro-organic key transformations is demonstrated. This straightforward synthesis of N-acetylcolchinol methyl ether in a five-step protocol was adopted using protecting groups to enable access to N-acetylcolchinol and the phosphate derivative ZD6126.
Collapse
Affiliation(s)
- Dennis Pollok
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Florian U Rausch
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Sebastian B Beil
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Peter Franzmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
30
|
Cantillo D. Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability. Chem Commun (Camb) 2022; 58:619-628. [PMID: 34951414 DOI: 10.1039/d1cc06296d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Organic electrochemistry is receiving renewed attention as a green and cost-efficient synthetic technology. Electrochemical methods promote redox transformations by electron exchange between electrodes and species in solution, thus avoiding the use of stoichiometric amounts of oxidizing or reducing agents. The rapid development of electroorganic synthesis over the past decades has enabled the preparation of molecules of increasing complexity. Redox steps that involve hazardous or waste-generating reagents during the synthesis of active pharmaceutical ingredients or their intermediates can be substituted by electrochemical procedures. In addition to enhance sustainability, increased selectivity toward the target compound has been achieved in some cases. Electroorganic synthesis can be safely and readily scaled up to production quantities. For this pupose, utilization of flow electrolysis cells is fundamental. Despite these advantages, the application of electrochemical methods does not guarantee superior sustainability when compared with conventional protocols. The utilization of large amounts of supporting electrolytes, enviromentally unfriendly solvents or sacrificial electrodes may turn electrochemistry unfavorable in some cases. It is therefore crucial to carefully select and optimize the electrolysis conditions and carry out green metrics analysis of the process to ensure that turning a process electrochemical is advantageous.
Collapse
Affiliation(s)
- David Cantillo
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
31
|
Beck AD, Haufe S, Tillmann J, Waldvogel SR. Challenges in the Electrochemical Synthesis of Si
2
Cl
6
Starting from Tetrachlorosilane and Trichlorosilane. ChemElectroChem 2022. [DOI: 10.1002/celc.202101374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander D. Beck
- Consortium für elektrochemische Industrie Wacker Chemie AG Zielstattstraße 20 81379 München Germany
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Stefan Haufe
- Consortium für elektrochemische Industrie Wacker Chemie AG Zielstattstraße 20 81379 München Germany
| | - Jan Tillmann
- Consortium für elektrochemische Industrie Wacker Chemie AG Zielstattstraße 20 81379 München Germany
| | - Siegfried R. Waldvogel
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
32
|
Bieniek JC, Grünewald M, Winter J, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of
N
,
N
’‑ Disubstituted Indazolin-3-ones via Intramolecular Anodic DehydrogenativeN-NCoupling Reaction. Chem Sci 2022; 13:8180-8186. [PMID: 35919432 PMCID: PMC9278119 DOI: 10.1039/d2sc01827f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
The use of electricity as a traceless oxidant enables a sustainable and novel approach to N,N′-disubstituted indazolin-3-ones by an intramolecular anodic dehydrogenative N–N coupling reaction. This method is characterized by mild reaction conditions, an easy experimental setup, excellent scalability, and a high atom economy. It was used to synthesize various indazolin-3-one derivatives in yields up to 78%, applying inexpensive and sustainable electrode materials and a low supporting electrolyte concentration. Mechanistic studies, based on cyclic voltammetry experiments, revealed a biradical pathway. Furthermore, the access to single 2-aryl substituted indazolin-3-ones by cleavage of the protecting group could be demonstrated. A novel sustainable electrochemical synthetic route to N,N′-disubstituted indazolin-3-ones by direct anodic oxidation with mild reaction conditions, a simple galvanostatic setup, broad scope and excellent scalability is established.![]()
Collapse
Affiliation(s)
- Jessica C Bieniek
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Michele Grünewald
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| |
Collapse
|
33
|
Seidler J, Bernhard R, Haufe S, Neff C, Gärtner T, Waldvogel SR. From Screening to Scale-Up: The DoE-Based Optimization of Electrochemical Reduction of l-Cystine at Metal Cathodes. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Seidler
- ESy-Labs GmbH, Siemensstraße 7, 93055 Regensburg, Germany
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Rebecca Bernhard
- Wacker Chemie AG, Consortium für elektrochemische Industrie, Zielstattstraße 20, 81379 München, Germany
| | - Stefan Haufe
- Wacker Chemie AG, Consortium für elektrochemische Industrie, Zielstattstraße 20, 81379 München, Germany
| | - Caroline Neff
- ESy-Labs GmbH, Siemensstraße 7, 93055 Regensburg, Germany
| | - Tobias Gärtner
- ESy-Labs GmbH, Siemensstraße 7, 93055 Regensburg, Germany
| | - Siegfried R. Waldvogel
- ESy-Labs GmbH, Siemensstraße 7, 93055 Regensburg, Germany
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
34
|
Blum SP, Nickel C, Schäffer L, Karakaya T, Waldvogel SR. Electrochemical Nitration with Nitrite. CHEMSUSCHEM 2021; 14:4936-4940. [PMID: 34583423 PMCID: PMC9298355 DOI: 10.1002/cssc.202102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Aromatic nitration has tremendous importance in organic chemistry as nitroaromatic compounds serve as versatile building blocks. This study represents the electrochemical aromatic nitration with NBu4 NO2 , which serves a dual role as supporting electrolyte and as a safe, readily available, and easy-to-handle nitro source. Stoichiometric amounts of 1,1,1-3,3,3-hexafluoroisopropan-2-ol (HFIP) in MeCN significantly increase the yield by solvent control. The reaction mechanism is based on electrochemical oxidation of nitrite to NO2 , which initiates the nitration reaction in a divided electrolysis cell with inexpensive graphite electrodes. Overall, the reaction is demonstrated for 20 examples with yields of up to 88 %. Scalability is demonstrated by a 13-fold scale-up.
Collapse
Affiliation(s)
- Stephan P. Blum
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Christean Nickel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Lukas Schäffer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Tarik Karakaya
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
35
|
Ciriminna R, Ghahremani M, Karimi B, Pagliaro M. Waste‐free oxidation of alcohols at the surface of catalytic electrodes: What is required for industrial uptake? ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | - Mina Ghahremani
- Department of Chemistry Institute for Advanced Studies in Basic Sciences Gava Zang Zanjan Iran
| | - Babak Karimi
- Department of Chemistry Institute for Advanced Studies in Basic Sciences Gava Zang Zanjan Iran
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati Palermo Italy
| |
Collapse
|
36
|
Klein M, Waldvogel SR. Anodic Dehydrogenative Cyanamidation of Thioethers: Simple and Sustainable Synthesis of N-Cyanosulfilimines. Angew Chem Int Ed Engl 2021; 60:23197-23201. [PMID: 34409715 PMCID: PMC8597142 DOI: 10.1002/anie.202109033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Indexed: 12/21/2022]
Abstract
A novel and very simple to perform electrochemical approach for the synthesis of several N-cyanosulfilimines in good to excellent yields was established. This method provides access to biologically relevant sulfoximines by consecutive oxidation using electro-generated periodate. This route can be easily scaled-up to gram quantities. The S,N coupling is carried out at an inexpensive carbon anode by direct oxidation of sulfide. Therefore, the designed process is atom economic and represents a new "green route" for the synthesis of sulfilimines and sulfoximines.
Collapse
Affiliation(s)
- Martin Klein
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Johannes Gutenberg University MainzDepartment of ChemistryDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
37
|
Klein M, Waldvogel SR. Anodische dehydrierende Cyaniminierung von Thioethern: eine einfache und nachhaltige Synthese von
N
‐Cyansulfiliminen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Klein
- Johannes Gutenberg Universität Mainz Department für Chemie Duesbergweg 10–14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Johannes Gutenberg Universität Mainz Department für Chemie Duesbergweg 10–14 55128 Mainz Deutschland
| |
Collapse
|
38
|
Hielscher M, Oehl EK, Gleede B, Buchholz J, Waldvogel SR. Optimization Strategies for the Anodic Phenol‐Arene Cross‐Coupling Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202101226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maximilian Hielscher
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Elisabeth K. Oehl
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Barbara Gleede
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Julian Buchholz
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
39
|
Wirtanen T, Prenzel T, Tessonnier JP, Waldvogel SR. Cathodic Corrosion of Metal Electrodes-How to Prevent It in Electroorganic Synthesis. Chem Rev 2021; 121:10241-10270. [PMID: 34228450 PMCID: PMC8431381 DOI: 10.1021/acs.chemrev.1c00148] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The critical aspects
of the corrosion of metal electrodes in cathodic
reductions are covered. We discuss the involved mechanisms including
alloying with alkali metals, cathodic etching in aqueous and aprotic
media, and formation of metal hydrides and organometallics. Successful
approaches that have been implemented to suppress cathodic corrosion
are reviewed. We present several examples from electroorganic synthesis
where the clever use of alloys instead of soft neat heavy metals and
the application of protective cationic additives have allowed to successfully
exploit these materials as cathodes. Because of the high overpotential
for the hydrogen evolution reaction, such cathodes can contribute
toward more sustainable green synthetic processes. The reported strategies
expand the applications of organic electrosynthesis because a more
negative regime is accessible within protic media and common metal
poisons, e.g., sulfur-containing substrates, are compatible with these
cathodes. The strongly diminished hydrogen evolution side reaction
paves the way for more efficient reductive electroorganic conversions.
Collapse
Affiliation(s)
- Tom Wirtanen
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Prenzel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jean-Philippe Tessonnier
- Department of Chemical and Biological Engineering, Iowa State University, 617 Bissell Road, Ames, Iowa 50011-1098, United States.,Center for Biorenewable Chemicals (CBiRC), Ames, Iowa, 50011-1098, United States
| | - Siegfried R Waldvogel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
40
|
Blum SP, Hofman K, Manolikakes G, Waldvogel SR. Advances in photochemical and electrochemical incorporation of sulfur dioxide for the synthesis of value-added compounds. Chem Commun (Camb) 2021; 57:8236-8249. [PMID: 34319313 DOI: 10.1039/d1cc03018c] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic photochemistry and electrochemistry currently receive tremendous attention in organic synthesis as both techniques enable the reagent-less activation of organic molecules without using expensive and hazardous redox reagents. The incorporation of SO2 into organic molecules is a relatively modern research topic, which likewise gains immense popularity since the discovery of the SO2 surrogate DABSO. Sulfur-containing organic molecules are omnipresent in pharmaceuticals and agrochemicals. This review covers the recent progress in electrochemical and photochemical methodologies for the incorporation and uses of SO2 in the synthesis of value-added compounds. Additionally, different work techniques are demonstrated for the synthetic application of SO2.
Collapse
Affiliation(s)
- Stephan P Blum
- Department of Chemistry, Johannes Gutenberg University Mainz, D-55128 Mainz, Germany.
| | | | | | | |
Collapse
|
41
|
Beil SB, Pollok D, Waldvogel SR. Reproducibility in Electroorganic Synthesis-Myths and Misunderstandings. Angew Chem Int Ed Engl 2021; 60:14750-14759. [PMID: 33428811 PMCID: PMC8251947 DOI: 10.1002/anie.202014544] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/17/2022]
Abstract
The use of electric current as a traceless activator and reagent is experiencing a renaissance. This sustainable synthetic method is evolving into a hot topic in contemporary organic chemistry. Since researchers with various scientific backgrounds are entering this interdisciplinary field, different parameters and methods are reported to describe the experiments. The variation in the reported parameters can lead to problems with the reproducibility of the reported electroorganic syntheses. As an example, parameters such as current density or electrode distance are in some cases more significant than often anticipated. This Minireview provides guidelines on reporting electrosynthetic data and dispels myths about this technique, thereby streamlining the experimental parameters to facilitate reproducibility.
Collapse
Affiliation(s)
- Sebastian B. Beil
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Dennis Pollok
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
42
|
Dörr M, Hielscher MM, Proppe J, Waldvogel SR. Electrosynthetic Screening and Modern Optimization Strategies for Electrosynthesis of Highly Value‐added Products. ChemElectroChem 2021. [DOI: 10.1002/celc.202100318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maurice Dörr
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | | | - Jonny Proppe
- Institute of Physical Chemistry Georg-August Universität Tammannstr. 6 37077 Göttingen Germany
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
43
|
Beil SB, Pollok D, Waldvogel SR. Reproduzierbarkeit in der elektroorganischen Synthese – Mythen und Missverständnisse. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014544] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sebastian B. Beil
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Dennis Pollok
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Department Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Deutschland
| |
Collapse
|
44
|
Blum SP, Schäffer L, Schollmeyer D, Waldvogel SR. Electrochemical synthesis of sulfamides. Chem Commun (Camb) 2021; 57:4775-4778. [DOI: 10.1039/d1cc01428e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic electrosynthesis enables the formation of symmetrical sulfamides directly from anilines and SO2 mediated by iodide.
Collapse
Affiliation(s)
- Stephan P. Blum
- Department of Chemistry
- Johannes Gutenberg University Mainz
- Mainz 55128
- Germany
| | - Lukas Schäffer
- Department of Chemistry
- Johannes Gutenberg University Mainz
- Mainz 55128
- Germany
| | - Dieter Schollmeyer
- Department of Chemistry
- Johannes Gutenberg University Mainz
- Mainz 55128
- Germany
| | | |
Collapse
|