1
|
Endogenous Bacterial Chorioretinal Abscess Presenting With Unusual Retinal Pigment Epithelial Excrescences and Large Subretinal Hemorrhage. Retina 2021; 40:e28-e29. [PMID: 32349104 DOI: 10.1097/iae.0000000000002841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Ma J, Cheng P, Chen X, Zhou C, Zheng W. Mining of prognosis-related genes in cervical squamous cell carcinoma immune microenvironment. PeerJ 2020; 8:e9627. [PMID: 32904067 PMCID: PMC7450998 DOI: 10.7717/peerj.9627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The aim of this study was to explore the effective immune scoring method and mine the novel and potential immune microenvironment-related diagnostic and prognostic markers for cervical squamous cell carcinoma (CSSC). Materials and Methods The Cancer Genome Atlas (TCGA) data was downloaded and multiple data analysis approaches were initially used to search for the immune-related scoring system on the basis of Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data (ESTIMATE) algorithm. Afterwards, the representative genes in the gene modules correlated with immune-related scores based on ESTIMATE algorithm were further screened using Weighted Gene Co-expression Network Analysis (WGCNA) and network topology analysis. Gene functions were mined through enrichment analysis, followed by exploration of the correlation between these genes and immune checkpoint genes. Finally, survival analysis was applied to search for genes with significant association with overall survival and external database was employed for further validation. Results The immune-related scores based on ESTIMATE algorithm was closely associated with other categories of scores, the HPV infection status, prognosis and the mutation levels of multiple CSCC-related genes (HLA and TP53). Eighteen new representative immune microenvironment-related genes were finally screened closely associated with patient prognosis and were further validated by the independent dataset GSE44001. Conclusion Our present study suggested that the immune-related scores based on ESTIMATE algorithm can help to screen out novel immune-related diagnostic indicators, therapeutic targets and prognostic predictors in CSCC.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Pu Cheng
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hang Zhou, China
| | - Xuejun Chen
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Chunxia Zhou
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Wei Zheng
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| |
Collapse
|
3
|
Accelerated bacterial detection in blood culture by enhanced acoustic flow cytometry (AFC) following peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). PLoS One 2019; 14:e0201332. [PMID: 30735489 PMCID: PMC6368374 DOI: 10.1371/journal.pone.0201332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/16/2019] [Indexed: 11/23/2022] Open
Abstract
Bacteraemia is a risk factor for subsequent clinical deterioration and death. Current reliance on culture-based methods for detection of bacteraemia delays identification and assessment of this risk until after the optimal period for positively impacting treatment decisions has passed. Therefore, a method for rapid detection and identification of bacterial infection in the peripheral bloodstream in acutely ill patients is crucial for improved patient survival through earlier targeted antibiotic treatment. The turnaround time for current clinical laboratory methods ranges from 12 to 48 hours, emphasizing the need for a faster diagnostic test. Here we describe a novel assay for accelerated generic detection of bacteria in blood culture (BC) using peptide nucleic acid fluorescence in situ hybridization enhanced acoustic flow cytometry (PNA-FISH-AFC). For assay development, we used simulated blood cultures (BCs) spiked with one of three bacterial species at a low starting concentration of 10 CFU/mL: Escherichia coli, Klebsiella pneumoniae or Pseudomonas aeruginosa. Under current clinical settings, it takes a minimum of 12 hours incubation to reach positivity on the BacTEC system, corresponding to a bacterial concentration of 107−109 CFU/mL optimal for further analyses. In contrast, our PNA-FISH-AFC assay detected 103–104 CFU/mL bacteria in BC following a much shorter culture incubation of 5 to 10 hours. Using either PCR-based FilmArray assay or MALDI-TOF for bacterial detection, it took 7–10 and 12–24 hours of incubation, respectively, to reach the positive result. These findings indicate a potential time advantage of PNA-FISH-AFC assay for rapid bacterial detection in BC with significantly improved turnaround time over currently used laboratory techniques.
Collapse
|
4
|
Jing Y, Wang Y, Wang X, Song C, Ma J, Xie Y, Fei Y, Zhang Q, Mi L. Label-free imaging and spectroscopy for early detection of cervical cancer. JOURNAL OF BIOPHOTONICS 2018; 11:e201700245. [PMID: 29205885 DOI: 10.1002/jbio.201700245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 05/20/2023]
Abstract
The label-free imaging and spectroscopy method was studied on cervical unstained tissue sections obtained from 36 patients. The native fluorescence spectra of tissues are analyzed by the optical redox ratio (ORR), which is defined as fluorescence intensity ratio between NADH and FAD, and indicates the metabolism change with the cancer development. The ORRs of normal tissues are consistently higher than those of precancer or cancerous tissues. A criterion line of ORR at 5.0 can be used to discriminate cervical precancer/cancer from normal tissues. The sensitivity and specificity of the native fluorescence spectroscopy method for cervical cancer diagnosis are determined as 100% and 91%. Moreover, the native fluorescence spectroscopy study is much more sensitive on the healthy region of cervical precancer/cancer patients compared with the traditional clinical staining method. The results suggest label-free imaging and spectroscopy is a fast, highly sensitive and specific method on the detection of cervical cancer.
Collapse
Affiliation(s)
- Yueyue Jing
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Yulan Wang
- Department of Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyi Wang
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Chuan Song
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Jiong Ma
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Yonghui Xie
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| | - Qinghua Zhang
- Department of Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lan Mi
- Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Green Photoelectron Platform, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Identification of autofluorescent cells in human angioimmunoblastic T-cell lymphoma. Histochem Cell Biol 2017; 149:169-177. [PMID: 29197996 DOI: 10.1007/s00418-017-1624-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 02/08/2023]
Abstract
Endogenous cell autofluorescence is a common nuisance that complicates the use of fluorescence microscopy. When using fluorescence-labeled antibodies for specific cell labeling in tissue sections of human angioimmunoblastic T-cell lymphoma (AITL), we encountered with a problematic autofluorescence of multiple cells. These cells emitted fluorescence signals in the green, red and deep-red spectral range. Characterization of these autofluorescent cells solely on the basis of their autofluorescence failed. To identify these enigmatic cells residing the lymphoma tissue, we combined two imaging techniques-fluorescence and brightfield microscopy. Combined fluorescence/brightfield imaging of cells immunolabeled with a panel of CD antibodies raised against diverse cellular components allowed us to identify the autofluorescent cells in the AITL as eosinophils. These cells tended to accumulate in the vicinity of capillaries and arterioles apparently mediating the process of angiogenesis resembling other angiogenesis-associated diseases.
Collapse
|
6
|
Monsel A, Lécart S, Roquilly A, Broquet A, Jacqueline C, Mirault T, Troude T, Fontaine-Aupart MP, Asehnoune K. Analysis of autofluorescence in polymorphonuclear neutrophils: a new tool for early infection diagnosis. PLoS One 2014; 9:e92564. [PMID: 24658436 PMCID: PMC3962417 DOI: 10.1371/journal.pone.0092564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/25/2014] [Indexed: 11/24/2022] Open
Abstract
Diagnosing bacterial infection (BI) remains a challenge for the attending physician. An ex vivo infection model based on human fixed polymorphonuclear neutrophils (PMNs) gives an autofluorescence signal that differs significantly between stimulated and unstimulated cells. We took advantage of this property for use in an in vivo pneumonia mouse model and in patients hospitalized with bacterial pneumonia. A 2-fold decrease was observed in autofluorescence intensity for cytospined PMNs from broncho-alveolar lavage (BAL) in the pneumonia mouse model and a 2.7-fold decrease was observed in patients with pneumonia when compared with control mice or patients without pneumonia, respectively. This optical method provided an autofluorescence mean intensity cut-off, allowing for easy diagnosis of BI. Originally set up on a confocal microscope, the assay was also effective using a standard epifluorescence microscope. Assessing the autofluorescence of PMNs provides a fast, simple, cheap and reliable method optimizing the efficiency and the time needed for early diagnosis of severe infections. Rationalized therapeutic decisions supported by the results from this method can improve the outcome of patients suspected of having an infection.
Collapse
Affiliation(s)
- Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- UPMC Université Paris, Paris, France
- * E-mail:
| | | | - Antoine Roquilly
- Laboratoire UPRES EA 3826, Thérapeutiques cliniques et expérimentales des infections, Faculté de Médecine, Faculté de Nantes, Nantes, France
- CHU Nantes, Pôle Anesthésie Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Alexis Broquet
- Laboratoire UPRES EA 3826, Thérapeutiques cliniques et expérimentales des infections, Faculté de Médecine, Faculté de Nantes, Nantes, France
| | - Cédric Jacqueline
- Laboratoire UPRES EA 3826, Thérapeutiques cliniques et expérimentales des infections, Faculté de Médecine, Faculté de Nantes, Nantes, France
| | - Tristan Mirault
- Vascular Medicine Unit, European Hospital Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, PRES Paris Sorbonne Cité, Paris, France
| | | | | | - Karim Asehnoune
- Laboratoire UPRES EA 3826, Thérapeutiques cliniques et expérimentales des infections, Faculté de Médecine, Faculté de Nantes, Nantes, France
- CHU Nantes, Pôle Anesthésie Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| |
Collapse
|
7
|
Jyothikumar V, Sun Y, Periasamy A. Investigation of tryptophan-NADH interactions in live human cells using three-photon fluorescence lifetime imaging and Förster resonance energy transfer microscopy. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:060501. [PMID: 23748699 PMCID: PMC3675329 DOI: 10.1117/1.jbo.18.6.060501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 05/29/2023]
Abstract
A method to investigate the metabolic activity of intracellular tryptophan (TRP) and coenzyme-NADH using three-photon (3P) fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET) is presented. Through systematic analysis of FLIM data from tumorigenic and nontumorigenic cells, a statistically significant decrease in the fluorescence lifetime of TRP was observed in response to the increase in protein-bound NADH as cells were treated with glucose. The results demonstrate the potential use of 3P-FLIM-FRET as a tool for label-free screening of the change in metabolic flux occurring in human diseases or other clinical conditions.
Collapse
Affiliation(s)
- Vinod Jyothikumar
- University of Virginia, W. M. Keck Center for Cellular Imaging, Department of Biology, Physical and Life Sciences Building, Charlottesville, Virginia 22904
| | - Yuansheng Sun
- University of Virginia, W. M. Keck Center for Cellular Imaging, Department of Biology, Physical and Life Sciences Building, Charlottesville, Virginia 22904
| | - Ammasi Periasamy
- University of Virginia, W. M. Keck Center for Cellular Imaging, Department of Biology, Physical and Life Sciences Building, Charlottesville, Virginia 22904
| |
Collapse
|
8
|
Pu Y, Wang W, Yang Y, Alfano RR. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods. APPLIED OPTICS 2013; 52:1293-301. [PMID: 23435002 DOI: 10.1364/ao.52.001293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/21/2012] [Indexed: 05/23/2023]
Abstract
The native fluorescence spectra of human cancerous and normal breast tissues were investigated using the selected excitation wavelength of 340 nm to excite key building block molecules, such as reduced nicotinamide adenine dinucleotide (NADH), collagen, and flavin. The measured emission spectra were analyzed using a non-negative constraint method, namely multivariate curve resolution with alternating least-squares (MCR-ALS). The results indicate that the biochemical changes of tissue can be exposed by native fluorescence spectra analysis. The MCR-ALS-extracted components corresponding to the key fluorophores in breast tissue, such as collagen, NADH, and flavin, show differences of relative contents of fluorophores in cancerous and normal breast tissues. This research demonstrates that the native fluorescence spectroscopy measurements are effective for detecting changes of fluorophores composition in tissues due to the development of cancer. Native fluorescence spectroscopy analyzed by MCR-ALS may have the potential to be a new armamentarium.
Collapse
Affiliation(s)
- Yang Pu
- Institute for Ultrafast Spectroscopy and Lasers, Department of Physics, City College of the City University of New York, New York 10031, USA
| | | | | | | |
Collapse
|
9
|
Ebenezar J, Pu Y, Wang WB, Liu CH, Alfano RR. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues. APPLIED OPTICS 2012; 51:3642-3649. [PMID: 22695604 DOI: 10.1364/ao.51.003642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/04/2012] [Indexed: 06/01/2023]
Abstract
Stokes shift spectroscopy (S3) is an emerging approach toward cancer detection. The goal of this paper is to evaluate the diagnostic potential of the S3 technique for the detection and characterization of normal and cancerous prostate tissues. Pairs of cancerous and normal prostate tissue samples were taken from each of eight patients. Stokes shift spectra were measured by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval Δλ=20 nm between them. The salient features of this technique are the highly resolved emission peaks and significant spectral differences between the normal and cancerous prostate tissues, as observed in the wavelength region of 250 to 600 nm. The Stokes shift spectra of cancerous and normal prostate tissues revealed distinct peaks around 300, 345, 440, and 510 nm, which are attributed to tryptophan, collagen, NADH, and flavin, respectively. To quantify the spectral differences between the normal and cancerous prostate tissues, two spectral ratios were computed. The findings revealed that both ratio parameters R1=I297/I345 and R2=I307/I345 were excellent diagnostic ratio parameters giving 100% specificity and 100% sensitivity for distinguishing cancerous tissue from the normal tissue. Our results demonstrate that S3 is a sensitive and specific technique for detecting cancerous prostate tissue.
Collapse
Affiliation(s)
- J Ebenezar
- PG & Research Department of Physics, Jamal Mohamed College, Tiruchirappalli, Tamilnadu 620020, India
| | | | | | | | | |
Collapse
|
10
|
Zhou LY, Lin SR, Li Y, Geng QM, Ding SG, Meng LM, Sun XN, Wang JT, Xu ZJ, Guo HL, Li CG, Cui RL. The intrinsic fluorescence spectrum of dilute gastric juice as a novel diagnostic tool for gastric cancer. J Dig Dis 2011; 12:279-85. [PMID: 21791022 DOI: 10.1111/j.1751-2980.2011.00507.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the intrinsic fluorescence spectrum of gastric juice as a diagnostic method for gastric cancer. METHODS We collected gastric juice by gastroscopy in 1,870 patients from May 2001 to March 2006, of whom 202 were involved in a preliminary test, 162 in experimental optimization and 1,506 in clinical verification. The best dilution and pH value were chosen in the experimental optimization phase. Clinical verification was based on optimized samples. Intrinsic fluorescence spectra were measured in all samples with a fluorescence spectrophotometer using an excitation wavelength of 288 nm. RESULTS The first peak of fluorescence intensity (P(1) FI) of the intrinsic fluorescence spectrum was significantly higher in gastric juice from patients with gastric cancer than from those with benign lesions. There was no significant difference in the P(1) FI differences between patients with benign and malignant lesions with samples diluted by 20-fold to 80-fold and from pH 9 to pH 11. Clinical verification in 1,506 patients showed that P(1) FI ≥ 76.5 was the optimal cut-off on the receiver operating characteristic curve for diagnosing gastric cancers: sensitivity was 83.2%, specificity 80.7% and accuracy 82.0%. CONCLUSIONS P(1) FI of the intrinsic fluorescence at 288 nm is significantly higher in patients with gastric cancers than in individuals with benign lesions. As a clinical indicator of gastric cancer, its sensitivity, specificity and accuracy were high.
Collapse
Affiliation(s)
- Li Ya Zhou
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pu Y, Tang GC, Wang WB, Savage HE, Schantz SP, Alfano RR. Native fluorescence spectroscopic evaluation of chemotherapeutic effects on malignant cells using nonnegative matrix factorization analysis. Technol Cancer Res Treat 2011; 10:113-20. [PMID: 21381789 DOI: 10.7785/tcrt.2012.500186] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The native fluorescence spectra of retinoic acid (RA)-treated and untreated human breast cancerous cells excited with the selective wavelengths of 300 nm and 340 nm were measured and analyzed using a blind source separation method namely Nonnegative Matrix Factorization (NMF). The results show that the fluorophores of human malignant breast cells change their compositions when they are treated with RA. The reduced contribution from tryptophan, NADH and flavin to the fluorescence of the treated breast cancerous cells was observed in comparison with that of the untreated cells. The results indicate that the decrease of adenosine triphosphate (ATP) in the RA-treated cells. The possible clinical applications of this native fluorescence study are discussed.
Collapse
Affiliation(s)
- Y Pu
- Institute for Ultrafast Spectroscopy and Lasers, The Department of Electric Engineering, City University of New York, Convent Avenue at 138th Street, New York, NY 10031, USA
| | | | | | | | | | | |
Collapse
|
12
|
Adusumilli PS, Gholami S, Chun YS, Mullerad M, Chan MK, Yu Z, Ben-Porat L, Rusch VW, Fong Y. Fluorescence-assisted cytological testing (FACT): Ex Vivo viral method for enhancing detection of rare cancer cells in body fluids. Mol Med 2011; 17:628-34. [PMID: 21487639 DOI: 10.2119/molmed.2011.00078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/07/2011] [Indexed: 01/27/2023] Open
Abstract
Cytological analysis of body fluids is currently used for detecting cancer. The objective of this study was to determine if the herpes virus carrying an enhanced green fluorescent protein (EGFP) could detect rare cancer cells in body fluids against millions of normal cells. Human cancer cells suspended with normal murine cells were infected with NV1066 at a multiplicity of infection (MOI) of 0.5 and 1.0 for 18 h. Fluorescent microscopy and flow cytometry were used for EGFP detection of cancer cells. EGFP-expressing cells were confirmed as cancer cells with specific markers by immunohistochemistry staining. Limits of detection of cancer cells in body fluid were measured by serial dilutions. Applicability of technique was confirmed with samples from patients with malignant pleural effusions. NV1066 expressed EGFP in 111 human cancer cell lines detected by fluorescent microscopy at an MOI of 0.5. NV1066 selectively infected cancer cells and spared normal cells as confirmed by immunohistochemistry. Sensitivity of detecting fluorescent green cells was 92% (confidence interval [CI] 83% to 97%) at a ratio of 1 cancer cell to 1 million normal cells. EGFP-positive cells were detected by fluorescent microscopy in patients' malignant pleural effusion samples. Our data show proof of the concept that NV1066-induced EGFP expression allows detection of a single cancer cell against a background of 1 million normal cells. This method was demonstrated to be a reliable screening tool for human cancer cells in a suspension of normal murine cells as well as clinical specimens of malignant pleural effusions.
Collapse
Affiliation(s)
- Prasad S Adusumilli
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Plytycz B, Kielbasa E, Grebosz A, Duchnowski M, Morgan AJ. Riboflavin mobilization from eleocyte stores in the earthworm Dendrodrilus rubidus inhabiting aerially-contaminated Ni smelter soil. CHEMOSPHERE 2010; 81:199-205. [PMID: 20633922 DOI: 10.1016/j.chemosphere.2010.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/07/2010] [Accepted: 06/20/2010] [Indexed: 05/29/2023]
Abstract
A 6-week reciprocal transfer laboratory exposure experiment was conducted with two populations of the epigeic earthworm Dendrodrilus rubidus; one population inhabited a site approx. 200 m downwind of an active Ni smelter co-contaminated with Ni and Cu (3648 and 977 microg g(-1)d.w., respectively), the other inhabited uncontaminated soil. Worms transferred from unpolluted to Ni/Cu-polluted soil lost body mass (62%); they also had reduced (70%) total coelomocyte number, including autofluorescent eleocytes, and had significantly decreased (92%) riboflavin-derived fluorescence emission measured at 525 nm. Coelomocyte counts were low, and 525 nm emission was negligible in worms maintained on their native Ni/Cu soil. Earthworms and their coelomocytes were unaffected when transferred from Ni/Cu-polluted soil to unpolluted soil. In conclusion, exposing worms to stress-inducing factors, including metal pollution, alters the riboflavin status within the immune-competent cells of D. rubidus, but it requires further in vivo studies to establish whether the reduction in the fluorescence signal is predominantly due to depletion of riboflavin-containing eleocytes, or to riboflavin quenching, or to enzymatic conversion (and thus depletion) of stored riboflavin into its functional immune-potentiating flavin derivatives, FMN and FAD. The flavin budget of D. rubidus coelomocytes recovered by a reproducible extrusion procedure is a potentially useful biomarker for assessing sublethal stress in this early colonizer of disturbed soils.
Collapse
Affiliation(s)
- Barbara Plytycz
- Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | | | | | | | | |
Collapse
|
14
|
Van Noorden CJF. Imaging enzymes at work: metabolic mapping by enzyme histochemistry. J Histochem Cytochem 2010; 58:481-97. [PMID: 20124092 DOI: 10.1369/jhc.2010.955518] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For the understanding of functions of proteins in biological and pathological processes, reporter molecules such as fluorescent proteins have become indispensable tools for visualizing the location of these proteins in intact animals, tissues, and cells. For enzymes, imaging their activity also provides information on their function or functions, which does not necessarily correlate with their location. Metabolic mapping enables imaging of activity of enzymes. The enzyme under study forms a reaction product that is fluorescent or colored by conversion of either a fluorogenic or chromogenic substrate or a fluorescent substrate with different spectral characteristics. Most chromogenic staining methods were developed in the latter half of the twentieth century but still find new applications in modern cell biology and pathology. Fluorescence methods have rapidly evolved during the last decade. This review critically evaluates the methods that are available at present for metabolic mapping in living animals, unfixed cryostat sections of tissues, and living cells, and refers to protocols of the methods of choice.
Collapse
Affiliation(s)
- Cornelis J F Van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Li C, Pastila RK, Pitsillides C, Runnels JM, Puoris'haag M, Côté D, Lin CP. Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence. OPTICS EXPRESS 2010; 18:988-99. [PMID: 20173920 PMCID: PMC3369551 DOI: 10.1364/oe.18.000988] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We describe a new method for imaging leukocytes in vivo by exciting the endogenous protein fluorescence in the ultraviolet (UV) spectral region where tryptophan is the major fluorophore. Two-photon excitation near 590 nm allows noninvasive optical sectioning through the epidermal cell layers into the dermis of mouse skin, where leukocytes can be observed by video-rate microscopy to interact dynamically with the dermal vascular endothelium. Inflammation significantly enhances leukocyte rolling, adhesion, and tissue infiltration. After exiting the vasculature, leukocytes continue to move actively in tissue as observed by time-lapse microscopy, and are distinguishable from resident autofluorescent cells that are not motile. Because the new method alleviates the need to introduce exogenous labels, it is potentially applicable for tracking leukocytes and monitoring inflammatory cellular reactions in humans.
Collapse
Affiliation(s)
- Chunqiang Li
- Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Pantanelli SM, Li Z, Fariss R, Mahesh SP, Liu B, Nussenblatt RB. Differentiation of malignant B-lymphoma cells from normal and activated T-cell populations by their intrinsic autofluorescence. Cancer Res 2009; 69:4911-7. [PMID: 19458079 DOI: 10.1158/0008-5472.can-08-2761] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with active posterior and intermediate uveitis have inflammatory cells in their vitreous; those with primary intraocular lymphoma have malignant B-lymphoma cells concomitantly. These cell types cannot be distinguished clinically. The goal of this study was to investigate intrinsic autofluorescence as a noninvasive way of differentiating immune and lymphomatous cell populations. Human primary T cells were stimulated with or without anti-CD3 plus anti-CD28 stimulation. B-lymphoma cells (CA46) were cultured separately. Five experimental groups were prepared: unstimulated T cells, stimulated T cells, CA46 cells, and stimulated T cells mixed with CA46 cells at a ratio of 1:3 or mixed at a ratio of 3:1. Samples were excited with three wavelengths and imaged with a confocal microscope. For each condition, the autofluorescent emissions from the sample were measured. In separate experiments, T cells or CA46 cells were injected into the anterior chamber of a BALB/c mouse eye and autofluorescence was measured. Pure T-cell and lymphoma populations were clearly distinguishable based on autofluorescence intensity spectra. CA46 cells were the least fluorescent when excited with 351-nm light, but most fluorescent when excited with longer wavelengths like 488 nm. Mixed populations of T cells and CA46 cells had emission intensities that fell predictably in between those of the pure populations. An ex vivo study showed that CA46 cells could be detected based on their intrinsic autofluorescence. Our studies showed that normal activated and malignant lymphocyte populations can be distinguished based on their intrinsic autofluorescent properties. Future work with in vivo models may prove useful in facilitating the diagnosis of uveitis and other ocular diseases.
Collapse
Affiliation(s)
- Seth M Pantanelli
- Howard Hughes Medical Institute-NIH Research Scholars Program, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Brancaleon L, Durkin AJ, Tu JH, Menaker G, Fallon JD, Kollias N. In vivo Fluorescence Spectroscopy of Nonmelanoma Skin Cancer¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730178ivfson2.0.co2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Palmer GM, Keely PJ, Breslin TM, Ramanujam N. Autofluorescence Spectroscopy of Normal and Malignant Human Breast Cell Lines¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780462asonam2.0.co2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Smith CA, Pollice A, Emlet D, Shackney SE. A simple correction for cell autofluorescence for multiparameter cell-based analysis of human solid tumors. CYTOMETRY PART B-CLINICAL CYTOMETRY 2006; 70:91-103. [PMID: 16456868 DOI: 10.1002/cyto.b.20090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Corrections that have been proposed to minimize the unwanted contribution of cell autofluorescence to the total fluorescence signal often require either specialized instrumentation or the sacrifice of a data channel so as to perform a measurement that can be used to correct for autofluorescence in individual cells. Here we propose a simple cell by cell correction for autofluorescence that is suitable for multiparameter laser scanning cytometry (LSC) studies in human solid tumors that relies on the ratio of mean autofluorescence to mean total cell fluorescence (mean Flauto/mean Fltotal). This approach assumes a correlation between the autofluorescence component and the total signal in individual cells. This correction does not require specialized instrumentation, and does not sacrifice a data channel in multiparameter studies. A potential disadvantage is that errors may be introduced by the assumption of a correlation between the two components of the total fluorescence signal in individual cells in samples in which no such correlation exists. METHODS Distributions of cell autofluorescence and total Her-2/neu cell fluorescence were obtained separately by LSC in three human breast cancer cell lines and in three samples of primary human lung cancer. In the breast cancer cell lines, autofluorescence measurements and Her-2/neu measurements were also obtained on the same cells. RESULTS We show that there is a partial correlation between autofluorescence and total Her-2/neu/FITC fluorescence in individual cells in the three breast cancer cell lines. We also show that the results of a ratio-based autofluorescence correction agree with those based on a true cell by cell correction. Computer simulation studies suggest that in samples with no correlation between the autofluorescence component and the true probe/dye fluorescence component, the ratio correction produces robust estimates of the mean true fluorescence signal, with relatively small but systematic underestimates of the coefficient of variation of such measurements under conditions commonly encountered in the measurement of human solid tumors. CONCLUSIONS A simple cell by cell correction for autofluorescence based on the ratio of mean Flauto to mean Fltotal can be applied in cell samples in which there is a correlation between cell autofluorescence and true probe/dye fluorescence in individual cells. In cell samples that lack this correlation, or in which it is not known whether such a correlation exists, this correction can be used with the reservation that there is a systematic but relatively small underestimation of the degree of variability of the measurements.
Collapse
Affiliation(s)
- Charles A Smith
- Laboratory of Cancer Cell Biology and Genetics, Department of Human Oncology, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, USA
| | | | | | | |
Collapse
|
20
|
Hansch A, Sauner D, Hilger I, Böttcher J, Malich A, Frey O, Bräuer R, Kaiser WA. Autofluorescence spectroscopy in whole organs with a mobile detector system. Acad Radiol 2004; 11:1229-36. [PMID: 15561569 DOI: 10.1016/j.acra.2004.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 07/27/2004] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Autofluorescence can be exploited to obtain spectroscopic information about tissues or organs in a noninvasive fashion. The knowledge of normal organ patterns is a prerequisite for subsequent characterization of pathological states, eg, inflammation or tumors. Therefore, the aim of this study was to investigate the autofluorescence properties of healthy organs in mice. MATERIALS AND METHODS Organs from C57Bl/6 mice were removed in toto and stored in physiologic sodium chloride solution on ice (non-perfused specimens). Investigations were performed with a custom-made mobile fluorescence detector. Excitation-emission matrices (EEMs) were measured in selected organs (bladder, brain, kidney, liver, and spleen) (n = 5). Afterwards, single-emission spectra were obtained in selected organs (bladder, colon, brain, kidney, liver, and spleen) and peak fluorescence signal intensities were calculated (n = 9). RESULTS EEMs showed that excitation at wavelengths from 300-310 nm (emission spectra in all samples of bladder and brain; probably caused by collagen/elastin) and from 350-360 nm (emission spectra in all samples with the exception of spleen; probably caused by NAD(P)H) seem to be best suited for autofluorescence measurements in organs. The single-emission spectra measurements were noticeably different in terms of occurrence (yes/no response) and intensity of fluorescence emission peaks in different organs. CONCLUSION Combined autofluorescence measurements of collagen/elastin (for structural information) and NAD(P)H (for functional information) allow conclusions about the target organs. Therefore, autofluorescence measurements seem to be a diagnostic tool feasible for characterization of tissue.
Collapse
Affiliation(s)
- Andreas Hansch
- Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University Jena, Bachstr. 18, D-07743 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Palmer GM, Keely PJ, Breslin TM, Ramanujam N. Autofluorescence spectroscopy of normal and malignant human breast cell lines. Photochem Photobiol 2004; 78:462-9. [PMID: 14653577 DOI: 10.1562/0031-8655(2003)078<0462:asonam>2.0.co;2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fluorescence of tryptophan, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD) were characterized in normal human breast cells as well as in malignant human breast cells of similar and dissimilar genetic origins. Fluorescence measurements of each cell line were made over a wide range of cell concentrations, and the fluorescence per cell was determined from the slope in the linear range of the fluorescence intensity vs cell concentration plot. All of the malignant cells showed a statistically significant decrease in the tryptophan fluorescence per cell relative to that of the normal cells. No statistically significant differences were observed in the NAD(P)H or FAD fluorescence per cell between the normal and any of the malignant cell types. NAD(P)H fluorescence was also imaged from monolayers of the normal and malignant cells (of similar genetic origin) using two-photon fluorescence microscopy. A statistically significant decrease in the NAD(P)H fluorescence with malignancy was observed, suggesting that fluorescence imaging of single cells or the cell monolayer preparation may provide more contrast than volume-averaged fluorescence measurements of cells in suspension. In conclusion, the differences in normal and malignant human breast tissue fluorescence spectra may be attributed in part to differences in the intrinsic cellular fluorescence of normal and malignant breast epithelial cells.
Collapse
Affiliation(s)
- Gregory M Palmer
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
22
|
Hansch A, Sauner D, Hilger I, Frey O, Haas M, Malich A, Bräuer R, Kaiser WA. Noninvasive diagnosis of arthritis by autofluorescence. Invest Radiol 2003; 38:578-83. [PMID: 12960527 DOI: 10.1097/01.rli.0000077128.80730.03] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RATIONALE AND OBJECTIVES The detection of arthritis by autofluorescence was investigated using an antigen-induced arthritis model. METHODS For autofluorescence investigations of joints, a mobile fluorescence-detector was constructed consisting of a lens/mirror system attached to a conventional spectrofluorometer and optimized fiber optic cables reaching to and from the site of investigation. Autofluorescence measurements were performed at 7 arthritic and 7 healthy mice. Fifteen antigen-induced arthritis and 3 healthy mice were used for histologic examinations. RESULTS In the exudative stage (day 1), a decrease of emission signal intensities for excitation wavelengths at 300 nm (emission, 355-365 nm) and 360 nm (emission, 475-485 nm) was observed. Signals increased on day 7 (maximum of cellular infiltration). Chronic inflammation (day 14 and 21) led to a decrease of signals again. CONCLUSION Arthritis influences autofluorescence signals in vivo. The detected excitation/emission pairs can be assigned to collagen/elastin and NAD(P)H. Signal intensities of NAD(P)H differed significantly from controls at day 1 and 7.
Collapse
Affiliation(s)
- Andreas Hansch
- Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University-Jena, Bachstrasse 18, 07740 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu C, Liu Q, Ramanujam N. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation. JOURNAL OF BIOMEDICAL OPTICS 2003; 8:237-247. [PMID: 12683849 DOI: 10.1117/1.1559058] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Accepted: 10/29/2002] [Indexed: 05/24/2023]
Abstract
Developing fiber optic probe geometries to selectively measure fluorescence spectra from different sublayers within human epithelial tissues will potentially improve the endogenous fluorescence contrast between neoplastic and nonneoplastic tissues. In this study, two basic fiber optic probe geometries, which are called the variable aperture (VA) and multidistance (MD) approaches, are compared for depth-resolved fluorescence measurements from human cervical epithelial tissues. The VA probe has completely overlapping illumination and collection areas with variable diameters, while the MD probe employs separate illumination and collection fibers with a fixed separation between them. Monte Carlo simulation results show that the total fluorescence detected is significantly higher for the VA probe geometry, while the probing depth is significantly greater for the MD probe geometry. An important observation is that the VA probe is more sensitive to the epithelial layer, while the MD probe is more sensitive to the stromal layer. The effect of other factors, including numerical aperture (NA) and tissue optical properties on the fluorescence measurements with VA and MD probe geometries, are also evaluated. The total fluorescence detected with both probe geometries significantly increases when the fiber NA is changed from 0.22 to 0.37. The sensitivity to different sublayers is found to be strongly dependent on the tissue optical properties. The simulation results are used to design a simple fiber optic probe that combines both the VA and MD geometries to enable fluorescence measurements from the different sublayers within human epithelial tissues.
Collapse
Affiliation(s)
- Changfang Zhu
- University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
24
|
Palmer GM, Keely PJ, Breslin TM, Ramanujam N. Autofluorescence Spectroscopy of Normal and Malignant Human Breast Cell Lines¶. Photochem Photobiol 2003. [DOI: 10.1562/0031-8655(2003)078%3c0462:asonam%3e2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Grossman N, Ilovitz E, Chaims O, Salman A, Jagannathan R, Mark S, Cohen B, Gopas J, Mordechai S. Fluorescence spectroscopy for detection of malignancy: H-ras overexpressing fibroblasts as a model. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2001; 50:53-63. [PMID: 11714512 DOI: 10.1016/s0165-022x(01)00175-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Autofluorescence from intracellular chromophores upon illumination of cells by monochromatic light has been studied towards the development of novel noninvasive and sensitive technology for the early detection of cancer. To investigate the relationship between biochemical and morphological changes underlying malignant disease and resulting fluorescence spectra, an in vitro model system of a paired normal and malignant murine fibroblasts cell lines, differing in cancer-associated H-ras expression was employed. A comparison of fluorescence excitation and emission spectra of proliferative cells revealed that fluorescence intensity of malignant cells was significantly less than that of normal cells upon excitation at 290 nm. Fluorescence of both cell lines decreased with decreasing cell concentration, but at each concentration, normal cells had higher fluorescence intensity than malignant cells. Similar differences between the cell lines were observed when brought to quiescence or at stationary phase. Results suggested that the chromophore contributing most significantly to these spectra is tryptophan and its moieties in proteins. This model system demonstrates the specific contribution of H-ras to subcellular chromophores, resulting in a significant difference in their autofluorescence intensity, and implies the potential use of the technique for cancer detection. This model system is potent for analysis of the contribution of other oncogenes and their combinations towards spectral detection of cancer.
Collapse
Affiliation(s)
- N Grossman
- Soroka University Medical Center and Faculty of Health Sciences, Ben Gurion University of the Negev, POB 151, 84101, Beersheba, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Boonacker E, Van Noorden CJ. Enzyme cytochemical techniques for metabolic mapping in living cells, with special reference to proteolysis. J Histochem Cytochem 2001; 49:1473-86. [PMID: 11724895 DOI: 10.1177/002215540104901201] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Specific enzymes play key roles in many pathophysiological processes and therefore are targets for therapeutic strategies. The activity of most enzymes is largely determined by many factors at the post-translational level. Therefore, it is essential to study the activity of target enzymes in living cells and tissues in a quantitative manner in relation to pathophysiological processes to understand its relevance and the potential impact of its targeting by drugs. Proteases, in particular, are crucial in every aspect of life and death of an organism and are therefore important targets. Enzyme activity in living cells can be studied with various tools. These can be endogenous fluorescent metabolites or synthetic chromogenic or fluorogenic substrates. The use of endogenous metabolites is rather limited and nonspecific because they are involved in many biological processes, but novel chromogenic and fluorogenic substrates have been developed to monitor activity of enzymes, and particularly proteases, in living cells and tissues. This review discusses these substrates and the methods in which they are applied, as well as their advantages and disadvantages for metabolic mapping in living cells.
Collapse
Affiliation(s)
- E Boonacker
- Academic Medical Center, University of Amsterdam, Department of Cell Biology and Histology, Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
Brancaleon L, Durkin AJ, Tu JH, Menaker G, Fallon JD, Kollias N. In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem Photobiol 2001; 73:178-83. [PMID: 11272732 DOI: 10.1562/0031-8655(2001)073<0178:ivfson>2.0.co;2] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vivo and ex vivo tissue autofluorescence (endogenous fluorescence) have been employed to investigate the presence of markers that could be used to detect tissue abnormalities and/or malignancies. We present a study of the autofluorescence of normal skin and tumor in vivo, conducted on 18 patients diagnosed with nonmelanoma skin cancers (NMSC). We observed that both in basal cell carcinomas (BCC) and squamous cell carcinomas (SCC) the endogenous fluorescence due to tryptophan residues was more intense in tumor than in normal tissue, probably due to epidermal thickening and/or hyperproliferation. Conversely, the fluorescence intensity associated with dermal collagen crosslinks was generally lower in tumors than in the surrounding normal tissue, probably because of degradation or erosion of the connective tissue due to enzymes released by the tumor. The decrease of collagen fluorescence in the connective tissue adjacent to the tumor loci was validated by fluorescence imaging on fresh-frozen tissue sections obtained from 33 NMSC excised specimens. Our results suggest that endogenous fluorescence of NMSC, excited in the UV region of the spectrum, has characteristic features that are different from normal tissue and may be exploited for noninvasive diagnostics and for the detection of tumor margins.
Collapse
Affiliation(s)
- L Brancaleon
- Wellman Laboratories of Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Pitts JD, Sloboda RD, Dragnev KH, Dmitrovsky E, Mycek MA. Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells. JOURNAL OF BIOMEDICAL OPTICS 2001; 6:31-40. [PMID: 11178578 DOI: 10.1117/1.1333057] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Revised: 10/09/2000] [Accepted: 10/11/2000] [Indexed: 05/23/2023]
Abstract
Tissue autofluorescence has been explored as a potential method of noninvasive pre-neoplasia (pre-malignancy) detection in the lung. Here, we report the first studies of intrinsic cellular autofluorescence from SV40 immortalized and distinct tobacco-carcinogen-transformed (malignant) human bronchial epithelial cells. These cell lines are useful models for studies seeking to distinguish between normal and pre-neoplastic human bronchial epithelial cells. The cells were characterized via spectrofluorimetry and confocal fluorescence microscopy. Spectrofluorimetry revealed that tryptophan was the dominant fluorophore. No change in tryptophan emission intensity was observed between immortalized and carcinogen-transformed cells. Confocal autofluorescence microscopy was performed using a highly sensitive, spectrometer-coupled instrument capable of limiting emission detection to specific wavelength ranges. These studies revealed two additional endogenous fluorophores, whose excitation and emission characteristics were consistent with nicotinamide adenine dinucleotide (NADH) and flavins. In immortalized human bronchial epithelial cells, the fluorescence of these species was localized to cytoplasmic granules. In contrast, the carcinogen-transformed cells showed an appreciable decrease in the fluorescence intensity of both NADH and flavins and the punctate, spatial localization of the autofluorescence was lost. The observed autofluorescence decrease was potentially the result of changes in the redox state of the fluorophores. The random cytoplasmic fluorescence pattern found in carcinogen-transformed cells may be attributed to changes in the mitochondrial morphology. The implications of these results to pre-neoplasia detection in the lung are discussed.
Collapse
Affiliation(s)
- J D Pitts
- Dartmouth College, Department of Physics and Astronomy, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|