1
|
Fusi F, Romano G, Speranza G, Agati G. Photon- and Singlet-Oxygen-Induced Cis-Trans Isomerization of the Water-Soluble Carotenoid Crocin. Int J Mol Sci 2023; 24:10783. [PMID: 37445961 DOI: 10.3390/ijms241310783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Studying the cis-trans isomerization process in crocin (CR), one of the few water-soluble carotenoids extracted from saffron, is important to better understand the physiological role of cis-carotenoids in vivo and their potential as antioxidants in therapeutic applications. For that, cis-trans isomerization of both methanol- and water-dissolved CR was induced by light or thermally generated singlet oxygen (1O2). The kinetics of molecular concentrations were monitored by both high-performance liquid chromatography (HPLC) and non-destructive spectrophotometric methods. These last made it possible to simultaneously follow the cis-trans isomerization, the possible bleaching of compounds and the amount of thermally generated 1O2. Our results were in accordance with a comprehensive model where the cis-trans isomerization occurs as relaxation from the triplet state of all-trans- or 13-cis-CR, whatever is the way to populate the CR triplet state, either by photon or 1O2 energy transfer. The process is much more (1.9 to 10-fold) efficient from cis to trans than vice versa. In H2O, a 1O2-induced bleaching effect on the starting CR was not negligible. However, the CR "flip-flop" isomerization reaction could still occur, suggesting that this process can represent an efficient mechanism for quenching of reactive oxygen species (ROS) in vivo, with a limited need of carotenoid regeneration.
Collapse
Affiliation(s)
- Franco Fusi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini, 6, 50139 Florence, Italy
| | - Giovanni Romano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G. Pieraccini, 6, 50139 Florence, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Giovanni Agati
- "Nello Carrara" Institute of Applied Physics (IFAC), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Murotomi K, Umeno A, Shichiri M, Tanito M, Yoshida Y. Significance of Singlet Oxygen Molecule in Pathologies. Int J Mol Sci 2023; 24:ijms24032739. [PMID: 36769060 PMCID: PMC9917472 DOI: 10.3390/ijms24032739] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species, including singlet oxygen, play an important role in the onset and progression of disease, as well as in aging. Singlet oxygen can be formed non-enzymatically by chemical, photochemical, and electron transfer reactions, or as a byproduct of endogenous enzymatic reactions in phagocytosis during inflammation. The imbalance of antioxidant enzymes and antioxidant networks with the generation of singlet oxygen increases oxidative stress, resulting in the undesirable oxidation and modification of biomolecules, such as proteins, DNA, and lipids. This review describes the molecular mechanisms of singlet oxygen production in vivo and methods for the evaluation of damage induced by singlet oxygen. The involvement of singlet oxygen in the pathogenesis of skin and eye diseases is also discussed from the biomolecular perspective. We also present our findings on lipid oxidation products derived from singlet oxygen-mediated oxidation in glaucoma, early diabetes patients, and a mouse model of bronchial asthma. Even in these diseases, oxidation products due to singlet oxygen have not been measured clinically. This review discusses their potential as biomarkers for diagnosis. Recent developments in singlet oxygen scavengers such as carotenoids, which can be utilized to prevent the onset and progression of disease, are also described.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Aya Umeno
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
- Correspondence: ; Tel.: +81-72-751-8234
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan
| | | |
Collapse
|
3
|
Zheng X, Huang Q. Assessment of the antioxidant activities of representative optical and geometric isomers of astaxanthin against singlet oxygen in solution by a spectroscopic approach. Food Chem 2022; 395:133584. [PMID: 35779503 DOI: 10.1016/j.foodchem.2022.133584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/12/2022] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Abstract
Astaxanthin (AST) is a natural antioxidant and has been widely applied as a food supplement. While astaxanthin has many isomers, there are few studies comparing its physicochemical properties. In this work, we were concerned about their antioxidant activities against external oxidative stresses, and specifically, the singlet oxygen (1O2) quenching capacities of the representative optical and geometric isomers of astaxanthin were examined. Methylene blue (MB) was used as the photosensitizer to produce 1O2, and 1,3-diphenylisobenzofuran (DPBF) was used to probe 1O2. Our results showed that the 1O2 quenching capacities of the optical isomers, including 3S,3'S, 3R,3'S, and 3R,3'R all-trans-astaxanthin, are identical. In contrast, the 1O2 quenching capacity of cis-astaxanthin is higher than that of all-trans-astaxanthin. As such, this work provides an effective spectroscopic approach to assessing the antioxidant activities of various forms of astaxanthin against singlet oxygen, and demonstrates the remarkable difference among the geometric isomers.
Collapse
Affiliation(s)
- Xinxin Zheng
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, China.
| |
Collapse
|
4
|
Kruk J, Szymańska R. Singlet oxygen oxidation products of carotenoids, fatty acids and phenolic prenyllipids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112148. [PMID: 33556703 DOI: 10.1016/j.jphotobiol.2021.112148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Singlet oxygen (1O2) is the major reactive oxygen species ROS causing photooxidative stress in plants which is formed predominantly in the reaction center of photosystem II during photosynthesis. To avoid deleterious effects of 1O2 oxygen on photosynthetic membrane components, plant synthesize a variety of 1O2 quenchers of lipophilic character, such as carotenoids or phenolic prenyllipids (tocopherols, plastochromanol-8, plastoquinol). In the process of chemical quenching of 1O2 by the antioxidants, both short-lived products, such as oxidized carotenoids, or relative long-lived compounds, such as oxidized phenolic prenyllipids are formed. The other target of 1O2 are unsaturated fatty acids of membrane lipids that undergo peroxidation as a result of the reaction. Some of the 1O2 oxidation products, like β-cyclocitral can be components of 1O2-signallingsignaling pathway leading to acclimatory responses of plants, while some others further fulfill antioxidant functions, like hydroxy-plastochromanol or hydroxy-plastoquinol. As most of the 1O2 oxidation products are specific compounds formed only as a results of 1O2 action, they can be very useful, specific molecular markers of 1O2-dependent oxidative stress in vivo.
Collapse
Affiliation(s)
- Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland
| |
Collapse
|
5
|
Jacinavicius FR, Pacheco ABF, Chow F, Verissimo da Costa GC, Kalume DE, Rigonato J, Schmidt EC, Sant'Anna CL. Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Martin D, Amado AM, Gonzálvez AG, Marques MPM, Batista de Carvalho LAE, Ureña ÁG. FTIR Spectroscopy and DFT Calculations to Probe the Kinetics of β-Carotene Thermal Degradation. J Phys Chem A 2019; 123:5266-5273. [PMID: 31084001 DOI: 10.1021/acs.jpca.9b02327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermal degradation of β-carotene in air was investigated. The sample was heated at different temperatures (90, 100, 115, and 130 °C) for periods of up to 8 h to perform a complete kinetic study, the product analysis having been carried out via infrared spectroscopy in attenuated total reflectance mode coupled to density functional theory (DFT) calculations. The kinetics of this thermal degradation process was found to follow a first-order scheme, with rate coefficients varying from k90 °C = (2.0 ± 0.3) × 10-3 to k130 °C = (11.0 ± 0.7) × 10-3 min-1, the experimental activation energy having been calculated as (52 ± 1) kJ mol-1. This Ea value is close to the DFT energies corresponding to a C15-15' or a C13-14 cis-trans isomerization, followed by the formation of a carotene-oxygen diradical, which was characterized for the first time. Comparison between the experimental and calculated infrared data confirmed the C15-15'- cis rupture as the predominant reaction pathway and retinal as the major degradation product.
Collapse
Affiliation(s)
- Daniel Martin
- Unidade de I&D Química-Física Molecular, Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Ana M Amado
- Unidade de I&D Química-Física Molecular, Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Alicia G Gonzálvez
- Departamento de Química-Física Aplicada, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - M Paula M Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal.,Department of Life Sciences , University of Coimbra , 3000-456 Coimbra , Portugal
| | - Luís A E Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry , University of Coimbra , 3004-535 Coimbra , Portugal
| | - Ángel González Ureña
- Departamento de Química-Física Aplicada, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
7
|
Umeda R, Takanari H, Ogata K, Matsumoto S, Kitano T, Ono K, Tokumaru O. Direct free radical scavenging effects of water-soluble HMG-CoA reductase inhibitors. J Clin Biochem Nutr 2019; 64:20-26. [PMID: 30705508 PMCID: PMC6348410 DOI: 10.3164/jcbn.18-48] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, statins, are widely used for preventing cardiovascular and cerebrovascular diseases by controlling blood cholesterol level. Additionally, previous studies revealed the scavenging effects of statins on free radicals. We assessed direct scavenging activities of two water-soluble statins, fluvastatin and pravastatin, on multiple free radicals using electron spin resonance spectrometry with spin trapping method. We estimated reaction rate constants (kfv for fluvastatin, and kpv for pravastatin). Superoxide anion was scavenged by fluvastatin and pravastatin with kfv and kpv of 4.82 M−1s−1 and 49.0 M−1s−1, respectively. Scavenging effects of fluvastatin and pravastatin on hydroxyl radical were comparable; both kfv and kpv were >109 M−1s−1. Fluvastatin also eliminated tert-butyl peroxyl radical with relative kfv of 2.63 to that of CYPMPO, whereas pravastatin did not affect tert-butyl peroxyl radical. Nitric oxide was scavenged by fluvastatin and pravastatin with kfv and kpv of 68.6 M−1s−1 and 701 M−1s−1, respectively. Both fluvastatin and pravastatin had scavenging effects on superoxide anion, hydroxyl radical and nitric oxide radical. On the other hand, tert-butyl peroxyl radical was scavenged only by fluvastatin, suggesting that fluvastatin might have more potential effect than pravastatin to prevent atherosclerosis and ischemia/reperfusion injury via inhibiting oxidation of lipids.
Collapse
Affiliation(s)
- Ryohei Umeda
- Department of Pathophysiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Hiroki Takanari
- Department of Pathophysiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.,Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kazue Ogata
- Department of Anesthesiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Shigekiyo Matsumoto
- Department of Anesthesiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Takaaki Kitano
- Department of Anesthesiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Osamu Tokumaru
- Department of Physiology, Faculty of Welfare and Health Sciences, Oita University, 700 Dan-noharu, Oita 870-1192, Japan
| |
Collapse
|
8
|
Ballatore MB, Spesia MB, Milanesio ME, Durantini EN. Mechanistic insight into the photodynamic effect mediated by porphyrin-fullerene C60 dyads in solution and in Staphylococcus aureus cells. RSC Adv 2018; 8:22876-22886. [PMID: 35540123 PMCID: PMC9081455 DOI: 10.1039/c8ra04562c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 01/28/2023] Open
Abstract
The photodynamic action mechanism sensitized by a non-charged porphyrin-fullerene C60 dyad and its tetracationic analogue was investigated in solution and in Staphylococcus aureus cells.
Collapse
Affiliation(s)
- M. Belén Ballatore
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Córdoba
| | - Mariana B. Spesia
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Córdoba
| | - M. Elisa Milanesio
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Córdoba
| | - Edgardo N. Durantini
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Córdoba
| |
Collapse
|
9
|
Lu B, Zhao Y. Photooxidation of phytochemicals in food and control: a review. Ann N Y Acad Sci 2017; 1398:72-82. [DOI: 10.1111/nyas.13377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou China
| | - Yajing Zhao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science; Zhejiang University; Hangzhou China
| |
Collapse
|
10
|
Extraction, Identification and Photo-Physical Characterization of Persimmon (Diospyros kaki L.) Carotenoids. Foods 2017; 6:foods6010004. [PMID: 28231085 PMCID: PMC5296673 DOI: 10.3390/foods6010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022] Open
Abstract
Carotenoid pigments were extracted and purified from persimmon fruits using accelerated solvent extraction (ASE). Eleven pigments were isolated and five of them were clearly identified as all-trans-violaxanthine, all-trans-lutein, all-trans-zeaxanthin all-trans-cryptoxanthin and all-trans-β-carotene. Absorption and fluorescence spectra were recorded. To evaluate the potential of ¹O₂ quenching of the purified carotenoids, we used a monocarboxylic porphyrin (P1COOH) as the photosensitizer to produce ¹O₂. The rate constants of singlet oxygen quenching (Kq) were determined by monitoring the near-infrared (1270 nm) luminescence of ¹O₂ produced by photosensitizer excitation. The lifetime of singlet oxygen was measured in the presence of increasing concentrations of carotenoids in hexane. Recorded Kq values show that all-trans-β-cryptoxanthin, all-trans-β-carotene, all-trans-lycopene and all-trans-zeaxanthin quench singlet oxygen in hexane efficiently (associated Kq values of 1.6 × 10⁸, 1.3 × 10⁸, 1.1 × 10⁸ and 1.1 × 10⁸ M-1·s-1, respectively). The efficiency of singlet oxygen quenching of β-cryptoxanthin can thus change the consideration that β-carotene and lycopene are the most efficient singlet oxygen quenchers acting as catalysts for deactivation of the harmful ¹O₂.
Collapse
|
11
|
El-Agamey A, McGarvey DJ. Peroxyl radical reactions with carotenoids in microemulsions: Influence of microemulsion composition and the nature of peroxyl radical precursor. Free Radic Biol Med 2016; 90:75-84. [PMID: 26549878 DOI: 10.1016/j.freeradbiomed.2015.10.427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/10/2015] [Accepted: 10/26/2015] [Indexed: 11/15/2022]
Abstract
The reactions of acetylperoxyl radicals with different carotenoids (7,7'-dihydro-β-carotene and ζ-carotene) in SDS and CTAC microemulsions of different compositions were investigated using laser flash photolysis (LFP) coupled with kinetic absorption spectroscopy. The primary objective of this study was to explore the influence of microemulsion composition and the type of surfactant used on the yields and kinetics of various transients formed from the reaction of acetylperoxyl radicals with carotenoids. Also, the influence of the site (hydrocarbon phases or aqueous phase) of generation of the peroxyl radical precursor was examined by using 4-acetyl-4-phenylpiperidine hydrochloride (APPHCl) and 1,1-diphenylacetone (11DPA) as water-soluble and lipid-soluble peroxyl radical precursors, respectively. LFP of peroxyl radical precursors with 7,7'-dihydro-β-carotene (77DH) in different microemulsions gives rise to the formation of three distinct transients namely addition radical (λmax=460 nm), near infrared transient1 (NIR, λmax=700 nm) and 7,7'-dihydro-β-carotene radical cation (77DH(•+), λmax=770 nm). In addition, for ζ-carotene (ZETA) two transients (near infrared transient1 (NIR1, λmax=660 nm) and ζ-carotene radical cation (ZETA(•+), λmax=730-740 nm)) are generated following LFP of peroxyl radical precursors in the presence of ζ-carotene (ZETA) in different microemulsions. The results show that the composition of the microemulsion strongly influences the observed yield and kinetics of the transients formed from the reactions of peroxyl radicals (acetylperoxyl radicals) with carotenoids (77DH and ZETA). Also, the type of surfactant used in the microemulsions influences the yield of the transients formed. The dependence of the transient yields and kinetics on microemulsion composition (or the type of surfactant used in the microemulsion) can be attributed to the change of the polarity of the microenvironment of the carotenoid. Furthermore, the nature of the peroxyl radical precursor used (water-soluble or lipid-soluble peroxyl radical precursors) has little influence on the yields and kinetics of the transients formed from the reaction of peroxyl radicals with carotenoids. In the context of the interest in carotenoids as radical scavenging antioxidants, the fates of the addition radicals (formed from the reaction of carotenoid with peroxyl radicals) and carotenoid radical cations are discussed.
Collapse
Affiliation(s)
- Ali El-Agamey
- School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK; Chemistry Department, Faculty of Science, Damietta University, New Damietta, Damietta, Egypt.
| | - David J McGarvey
- School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| |
Collapse
|
12
|
Sandoval C, Ortega A, Sanchez SA, Morales J, Gunther G. Structuration in the interface of direct and reversed micelles of sucrose esters, studied by fluorescent techniques. PLoS One 2015; 10:e0123669. [PMID: 25905632 PMCID: PMC4408079 DOI: 10.1371/journal.pone.0123669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reactors found in nature can be described as micro-heterogeneous systems, where media involved in each micro-environment can behave in a markedly different way compared with the properties of the bulk solution. The presence of water molecules in micro-organized assemblies is of paramount importance for many chemical processes, ranging from biology to environmental science. Self-organized molecular assembled systems are frequently used to study dynamics of water molecules because are the simplest models mimicking biological membranes. The hydrogen bonds between sucrose and water molecules are described to be stronger (or more extensive) than the ones between water molecules themselves. In this work, we studied the capability of sucrose moiety, attached to alkyl chains of different length, as a surface blocking agent at the water-interface and we compared its properties with those of polyethylenglycol, a well-known agent used for this purposes. Published studies in this topic mainly refer to the micellization process and the stability of mixed surfactant systems using glycosides. We are interested in the effect induced by the presence of sucrose monoesters at the interface (direct and reverse micelles) and at the palisade (mixtures with Triton X-100). We believe that the different functional group (ester), the position of alkyl chain (6-O) and the huge capability of sucrose to interact with water will dramatically change the water structuration at the interface and at the palisade, generating new possibilities for technological applications of these systems. RESULTS Our time resolved and steady state fluorescence experiments in pure SEs micelles show that sucrose moieties are able to interact with a high number of water molecules promoting water structuration and increased viscosity. These results also indicate that the barrier formed by sucrose moieties on the surface of pure micelles is more effective than the polyoxyethylene palisade of Triton X-100. The fluorescence quenching experiments of SEs at the palisade of Triton X-100 micelles indicate a blocking effect dependent on the number of methylene units present in the hydrophobic tail of the surfactant. A remarkable blocking effect is observed when there is a match in size between the hydrophobic regions forming the apolar core (lauryl SE/ Triton X-100). This blocking effect disappears when a mismatch in size between hydrophobic tails, exists due to the disturbing effect on the micelle core.
Collapse
Affiliation(s)
- Catalina Sandoval
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Anakenna Ortega
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Susana A. Sanchez
- Departamento de Polímeros, Facultad de Química, Universidad de Concepción, Concepción, Chile
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - German Gunther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Havaux M. Carotenoid oxidation products as stress signals in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:597-606. [PMID: 24267746 DOI: 10.1111/tpj.12386] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 05/17/2023]
Abstract
Carotenoids are known to play important roles in plants as antioxidants, accessory light-harvesting pigments, and attractants for pollinators and seed dispersers. A new function for carotenoids has recently emerged, which relates to the response of plants to environmental stresses. Reactive oxygen species, especially singlet oxygen, produced in the chloroplasts under stress conditions, can oxidize carotenoids leading to a variety of oxidized products, including aldehydes, ketones, endoperoxides and lactones. Some of those carotenoid derivatives, such as volatile β-cyclocitral, derived from the oxidation of β-carotene, are reactive electrophile species that are bioactive and can induce changes in gene expression leading to acclimation to stress conditions. This review summarizes the current knowledge on the non-enzymatic oxidation of carotenoids, the bioactivity of the resulting cleavage compounds and their functions as stress signals in plants.
Collapse
Affiliation(s)
- Michel Havaux
- Laboratoire d'Ecophysiologie Moléculaire des Plantes, CEA, DSV, IBEB, F-13108, Saint-Paul-lez-Durance, France; CNRS, UMR 7265 Biologie Végétale et Microbiologie Environnementales, F-13108, Saint-Paul-lez-Durance, France; Aix-Marseille Université, F-13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
14
|
Ramel F, Mialoundama AS, Havaux M. Nonenzymic carotenoid oxidation and photooxidative stress signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:799-805. [PMID: 22915744 DOI: 10.1093/jxb/ers223] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carotenoids play a crucial protective role in photosynthetic organisms as quenchers of singlet oxygen ((1)O(2)). This function occurs either via a physical mechanism involving thermal energy dissipation or via a chemical mechanism involving direct oxidation of the carotenoid molecule. The latter mechanism can produce a variety of aldehydic or ketonic cleavage products containing a reactive carbonyl group. One such molecule, the volatile β-carotene derivative β-cyclocitral, triggers changes in the expression of (1)O(2)-responsive genes and leads to an enhancement of photooxidative stress tolerance. Thus, besides their well-known functions in light harvesting and photoprotection, carotenoids can also play a role through their nonenzymic oxidation in the sensing and signalling of reactive oxygen species and photooxidative stress in photosynthetic organisms. Enzymic carotenoid oxidation does not seem to play a significant role in this phenomenon. Elucidation of the carotenoid-mediated (1)O(2) signalling pathway could provide new targets for improving photooxidative stress tolerance of plants.
Collapse
Affiliation(s)
- Fanny Ramel
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
| | | | | |
Collapse
|
15
|
Lin CY, Lien CH, Cho KC, Chang CY, Chang NS, Campagnola PJ, Dong CY, Chen SJ. Investigation of two-photon excited fluorescence increment via crosslinked bovine serum albumin. OPTICS EXPRESS 2012; 20:13669-13676. [PMID: 22714432 DOI: 10.1364/oe.20.013669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The two-photon excited fluorescence (TPEF) increments of two dyes via bovine serum albumin (BSA) microstructures fabricated by the two-photon crosslinking technique were investigated. One is Rose Bengal (RB) with a high non-radiative decay rate, while the other is Eosin Y with a low non-radiative decay rate. Experimental results demonstrate that the quantum yield and lifetime of RB are both augmented via crosslinked BSA microstructures. Compared with theoretical analysis, this result indicates that the non-radiative decay rate of RB is decreased; hence, the quenched effect induced by BSA solution is suppressed. However, the fluorescence lifetime of Eosin Y is acutely abated despite the augmented quantum yield for the two-photon crosslinking processing from BSA solution. This result deduces that the radiative decay rate increased. Furthermore, the increased TPEF intensity and lifetime of RB correlated with the concentration of fabricated crosslinked BSA microstructures through pulse selection of the employed femtosecond laser is demonstrated and capable of developing a zone-plate-like BSA microstructure.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M. Chemical quenching of singlet oxygen by carotenoids in plants. PLANT PHYSIOLOGY 2012; 158:1267-78. [PMID: 22234998 PMCID: PMC3291260 DOI: 10.1104/pp.111.182394] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/10/2012] [Indexed: 05/18/2023]
Abstract
Carotenoids are considered to be the first line of defense of plants against singlet oxygen ((1)O(2)) toxicity because of their capacity to quench (1)O(2) as well as triplet chlorophylls through a physical mechanism involving transfer of excitation energy followed by thermal deactivation. Here, we show that leaf carotenoids are also able to quench (1)O(2) by a chemical mechanism involving their oxidation. In vitro oxidation of β-carotene, lutein, and zeaxanthin by (1)O(2) generated various aldehydes and endoperoxides. A search for those molecules in Arabidopsis (Arabidopsis thaliana) leaves revealed the presence of (1)O(2)-specific endoperoxides in low-light-grown plants, indicating chronic oxidation of carotenoids by (1)O(2). β-Carotene endoperoxide, but not xanthophyll endoperoxide, rapidly accumulated during high-light stress, and this accumulation was correlated with the extent of photosystem (PS) II photoinhibition and the expression of various (1)O(2) marker genes. The selective accumulation of β-carotene endoperoxide points at the PSII reaction centers, rather than the PSII chlorophyll antennae, as a major site of (1)O(2) accumulation in plants under high-light stress. β-Carotene endoperoxide was found to have a relatively fast turnover, decaying in the dark with a half time of about 6 h. This carotenoid metabolite provides an early index of (1)O(2) production in leaves, the occurrence of which precedes the accumulation of fatty acid oxidation products.
Collapse
|
17
|
Finn ST, Strnad JA, Barreto PD, Fox ME, Torres J, Sweeney JD, Barreto JC. A screening technique useful for testing the effectiveness of novel "self-cleaning" photocatalytic surfaces. Photochem Photobiol 2011; 87:1184-8. [PMID: 21668868 DOI: 10.1111/j.1751-1097.2011.00953.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We describe a screening methodology that can be used to quickly determine the effectiveness of newly synthesized photocatalysts. We were particularly interested in measuring the destruction of organic molecules painted onto a photocatalytic surface by spraying, with destruction proceeding in ambient air (as a model for airborne toxin destruction). Our method can utilize photocatalysts that are synthesized as powders (such as doped and undoped titanium oxide) and which are then calcined onto a glass substrate disk at 600°C. Herein, we used UV illumination of Aeroxide P-25 TiO(2), but the method is general and can accommodate any region of the light spectrum.
Collapse
Affiliation(s)
- Shane T Finn
- Department of Chemistry, Florida Gulf Coast University, Fort Myers, FL, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Asensi-Fabado MA, Munné-Bosch S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. TRENDS IN PLANT SCIENCE 2010; 15:582-92. [PMID: 20729129 DOI: 10.1016/j.tplants.2010.07.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/13/2010] [Accepted: 07/22/2010] [Indexed: 05/03/2023]
Abstract
Plant-derived vitamins are of great interest because of their impact on human health. They are essential for metabolism because of their redox chemistry and role as enzymatic cofactors, not only in animals but also in plants. Several vitamins have strong antioxidant potential, including both water-soluble (vitamins B and C) and lipid-soluble (vitamins A, E and K) compounds. Here, we review recent advances in the understanding of antioxidant roles of vitamins and present an overview of their occurrence within the plant kingdom, different organs and subcellular location; their major biosynthetic pathways, including common precursors and competitive pathways; and their antioxidant function. In particular, we discuss novel evidence for, as well as evidence against, a role of B vitamins as important antioxidants.
Collapse
Affiliation(s)
- M Amparo Asensi-Fabado
- Departament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, Avinguda Diagonal 645, E-08028 Barcelona, Spain
| | | |
Collapse
|
19
|
Faria AF, Mignone RA, Montenegro MA, Mercadante AZ, Borsarelli CD. Characterization and singlet oxygen quenching capacity of spray-dried microcapsules of edible biopolymers containing antioxidant molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8004-8011. [PMID: 20521822 DOI: 10.1021/jf100925j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Microcapsules of gum arabic or maltodextrin 20DE containing antioxidant molecules (AOx), for example, carotenoids and tocopherol derivatives, were prepared by the spray-drying technique. The properties of these microcapsules were evaluated by several techniques, such as dynamic light scattering, scanning electronic microscopy, and steady-state and time-resolved fluorescence spectroscopy of microencapsulated pyrene. The quenching of photochemically generated singlet molecular oxygen ((1)O(2)) by the AOx in homogeneous solvents as well as in microcapsule solutions was evaluated using time-resolved phosphorescence detection of (1)O(2). The quenching rate constant of the process, k(Q)(AOx), was strongly dependent on the type of the AOx. These results are explained by compartmentalization effects of the AOx in the core of the microcapsules and the accessibility of (1)O(2). The contribution of the biopolymer as quencher of (1)O(2) was also investigated. The present results can be applied to the design of edible antioxidant microcapsules within the food and cosmetic industries.
Collapse
Affiliation(s)
- Adelia F Faria
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, P.O. Box 6121, CEP 13083-862, Campinas, Brazil
| | | | | | | | | |
Collapse
|
20
|
Cerón-Carrasco JP, Bastida A, Requena A, Zúñiga J, Miguel B. A theoretical study of the reaction of beta-carotene with the nitrogen dioxide radical in solution. J Phys Chem B 2010; 114:4366-72. [PMID: 20201503 DOI: 10.1021/jp911846h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A theoretical study of the reaction of beta-carotene (BC) with the nitrogen dioxide radical (NO2*) in solution is carried out using the density functional theory (DFT) at the B3LYP/6-31G(d) level, to optimize the molecular geometries, and the polarizable continuum model (PCM), to account for solvent effects. The three most important reaction mechanisms--electron transfer from beta-carotene to the radical, hydrogen abstraction by the radical, and radical addition to form an adduct--are studied in detail. Three solvents with different polarities--heptane, methanol, and water--are employed to investigate the effect of the environment on the reaction mechanisms. Our results show that electron transfer is thermodynamically favored only in the polar solvents, the abstraction reactions are spontaneous in the three solvents, although faster in the polar ones, and the addition reactions are all endergonic and, therefore, unlikely to occur in any of the solvents. In both the abstraction and addition mechanisms, the attack of the radical takes place preferentially at the beta-ionone rings, in particular at positions H4 and C5, respectively. The higher stability of the reaction products in these cases is explained in terms of their molecular geometries and electronic structures.
Collapse
Affiliation(s)
- J P Cerón-Carrasco
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| | | | | | | | | |
Collapse
|
21
|
Zeb A, Murkovic M. Thin-layer chromatographic analysis of carotenoids in plant and animal samples. JPC-J PLANAR CHROMAT 2010. [DOI: 10.1556/jpc.23.2010.2.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Dandler J, Wilhelm B, Scheer H. Photochemistry of Bacteriochlorophylls in Human Blood Plasma: 2. Reaction Mechanism Investigated by Product Analysis and Deuterium Isotope Effect. Photochem Photobiol 2010; 86:342-52. [DOI: 10.1111/j.1751-1097.2009.00678.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Zeb A, Murkovic M. High-performance thin-layer chromatographic method for monitoring the thermal degradation of β-carotene in sunflower oil. JPC-J PLANAR CHROMAT 2010. [DOI: 10.1556/jpc.23.2010.1.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Spesia MB, Rovera M, Durantini EN. Photodynamic inactivation of Escherichia coli and Streptococcus mitis by cationic zinc(II) phthalocyanines in media with blood derivatives. Eur J Med Chem 2010; 45:2198-205. [PMID: 20153568 DOI: 10.1016/j.ejmech.2010.01.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/24/2010] [Indexed: 01/10/2023]
Abstract
The photodynamic inactivation (PDI) of Escherichia coli and Streptococcus mitis sensitized by cationic phthalocyanines was studied in different media containing blood derivatives. First, the activity of zinc(II) tetramethyltetrapyridino[3,4-b:3',4'-g:3'',4''-l:3''',4'''-q]porphyrazinium (ZnAPc4+), zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]phthalocyanine (ZnPPc4+) and zinc(II) 2,9,16,23-tetrakis[2-(N,N,N-trimethylamino)ethoxy]phthalocyanine (ZnEPc4+) were compared to photoinactivate these bacteria in saline solutions. After visible light irradiation, a higher photoinactivation of E. coli cells was found for ZnPPc4+, while ZnEPc4+ was the more effective sensitizer to eradicate S. mitis cells. In the presence of human red blood (HRB) cells, two aspects were analyzed: the photohemolysis induced by these cationic phthalocyanines and the PDI of bacteria in medium containing erythrocytes. The highest photohemolytic damage was produced by ZnPPc4+, which can be avoided using azida ion as photoprotective quencher. In both bacteria, the photoinactivation is possible in presence of HRB cells. Mainly, ZnEPc4+ is effective to photoinactivate S. mitis with a low hemolysis of erythrocytes. However, inactivation of E. coli by ZnPPc4+ decreases in medium with HRB cells, further when azide ion is added to avoid hemolysis. The presence of plasma considerable reduces the photocytotoxic effect, which mainly affects the eradication of E. coli. However, the PDI of S. mitis by ZnEPc4+ is even possible in presence of blood derivatives.
Collapse
Affiliation(s)
- Mariana B Spesia
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro. 3, X5804BYA Río Cuarto, Córdoba, Argentina
| | | | | |
Collapse
|
25
|
De Rosso VV, Morán Vieyra FE, Mercadante AZ, Borsarelli CD. Singlet oxygen quenching by anthocyanin's flavylium cations. Free Radic Res 2008; 42:885-91. [PMID: 18985487 DOI: 10.1080/10715760802506349] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The quenching of singlet molecular oxygen ((1)O(2)) by the flavylium cation form of six widespread anthocyanin derivatives: cyanidin 3-glucoside (CG), cyanidin 3-rutinoside (CR), cyanidin 3-galactoside (CGL), malvidin (M), malvidin 3-glucoside (MG) and malvidin 3,5-diglucoside (MDG) was studied in 1% HCl methanol solution by time-resolved phosphorescence detection (TRPD) of (1)O(2) and photostationary actinometry using perinaphthenone and methylene blue as sensitizers, respectively. The average value of the total (k(0)) and chemical (k(c)) quenching rate constants were approximately 4 x 10(8) M(-1) s(-1) and 3 x 10(6) M(-1) s(-1), respectively, indicating the good performance of the studied anthocyanins as catalytic quenchers of (1)O(2). The quenching efficiency was larger for malvidin than for cyanidin derivatives, probably by the extra electron-donating methoxy group in ring B of the malvidin derivatives; and it was also dependent on the number and type of glycosylated substitution. As observed for other phenolic-like derivatives, the quenching of (1)O(2) by anthocyanins was mediated by a charge-transfer mechanism, which was modulated by the total number of -OR substituents that increases the electron-donating ability of these compounds.
Collapse
Affiliation(s)
- Veridiana V De Rosso
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
26
|
Requena A, Cerón-Carrasco JP, Bastida A, Zúñiga J, Miguel B. A Density Functional Theory Study of the Structure and Vibrational Spectra of β-Carotene, Capsanthin, and Capsorubin. J Phys Chem A 2008; 112:4815-25. [DOI: 10.1021/jp710304u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A. Requena
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain, and Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - J. P. Cerón-Carrasco
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain, and Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - A. Bastida
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain, and Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - J. Zúñiga
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain, and Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - B. Miguel
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain, and Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| |
Collapse
|
27
|
Ohara K, Origuchi T, Kawanishi K, Nagaoka SI. Behavior of Singlet Oxygen in Vitamin E Emulsion. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Andrasik SJ, Belfield KD, Bondar MV, Hernandez FE, Morales AR, Przhonska OV, Yao S. One- and Two-Photon Singlet Oxygen Generation with New Fluorene-Based Photosensitizers. Chemphyschem 2007; 8:399-404. [PMID: 17226876 DOI: 10.1002/cphc.200600568] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The spectral properties of new fluorene-based photosensitizers for efficient singlet oxygen production are investigated at room temperature and 77 K. Two-photon absorption (2PA) cross-sections of the fluorene derivatives are measured by the open aperture Z-scan method. The quantum yields of singlet oxygen generation under one- and two-photon excitation (phi(delta) and 2PAphi(delta), respectively), are determined by the direct measurement of singlet oxygen luminescence at approximately 1270 nm. The values of phi(delta) are independent of excitation wavelength, ranging from 0.6-0.9. The singlet oxygen quantum yields under two-photon excitation are 2PAphi(delta) approximately 1/2 phi(delta), indicating that the two processes exhibit the same mechanism of singlet oxygen production, independent of the mechanism of photon absorption.
Collapse
Affiliation(s)
- Stephen J Andrasik
- Department of Chemistry and CREOL, College of Optics and Photonics, University of Central Florida, P.O. Box 162366, Orlando, FL 32816-2366, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kinetic study of the photosensitized oxygenation of the flavanone naringin and its chalcone. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2006.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Montenegro MA, Nunes IL, Mercadante AZ, Borsarelli CD. Photoprotection of vitamins in skimmed milk by an aqueous soluble lycopene-gum Arabic microcapsule. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:323-9. [PMID: 17227061 DOI: 10.1021/jf0622883] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Riboflavin (Rf)-mediated photosensitized degradation of vitamins A and D3 in skimmed milk under illumination with a white fluorescence lamp was studied by using the HPLC technique. The photosensitized degradation of both vitamins followed first-order kinetics, and the temperature effect on the observed photodegradation rate constant allowed the determination of the activation energy Ea as being 4 and 16 kcal/mol for vitamins A and D3, respectively. The addition of lycopene microencapsulated by spray-drying with a gum arabic-sucrose (8:2) mixture (MIC) produced a reduction of ca. 45% in the photosensitized degradation rate of both vitamins. Front-face fluorescence experiments showed the same photoprotection factor in the degradation of Rf itself, indicating that the photodegradation mechanism involved Rf-mediated reactive species, such as the excited triplet state of Rf, 3Rf*, and/or singlet molecular oxygen, 1O2. The interaction of both 3Rf* and 1O2 with MIC was evaluated in aqueous solutions by using laser-induced time-resolved absorption or emission spectroscopy, and the contribution of an inner-filter effect in the presence of MIC in skimmed milk was evaluated by diffuse reflectance spectroscopy. The main operating mechanism of photoprotection is due to the deactivation of 3Rf* by the proteic component of gum arabic; thus, gum arabic based microcapsules could be used to improve the photostability of milk during its storage and/or processing under light.
Collapse
Affiliation(s)
- Mariana A Montenegro
- Instituto de Ciencias Químicas, Faculdad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Av. Belgrano (S) 1912, 4200 Santiago del Estero, Argentina
| | | | | | | |
Collapse
|
31
|
Umeno D, Tobias AV, Arnold FH. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 2005; 69:51-78. [PMID: 15755953 PMCID: PMC1082795 DOI: 10.1128/mmbr.69.1.51-78.2005] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products--those that could be made biosynthetically--remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these "evolved" pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed.
Collapse
Affiliation(s)
- Daisuke Umeno
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Alexander V. Tobias
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
32
|
Yslas EI, Rivarola V, Durantini EN. Synthesis and photodynamic activity of zinc(II) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substituents in homogeneous and biological media. Bioorg Med Chem 2005; 13:39-46. [PMID: 15582450 DOI: 10.1016/j.bmc.2004.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/01/2004] [Accepted: 10/04/2004] [Indexed: 11/25/2022]
Abstract
Two zinc(II) phthalocyanines bearing either four methoxy (ZnPc 3) or trifluoromethylbenzyloxy (ZnPc 4) substituents have been synthesized by a two-step procedure starting from 4-nitrophthalonitrile. Absorption and fluorescence spectroscopic studies were analyzed in different media. These compounds are essentially non-aggregated in the organic solvent. Fluorescence quantum yields (phi(F)) of 0.26 for ZnPc 3 and 0.25 for ZnPc 4 were calculated in tetrahydrofuran (THF). The photodynamic activity of these compounds was compared in both THF containing photooxidizable substrates and in vitro on Hep-2 human larynx-carcinoma cell line. The production of singlet molecular oxygen, O(2)((1)Delta(g)), was determined using 9,10-dimethylanthracene yielding values of approximately 0.56 for both sensitizers. Under these conditions, the addition of beta-carotene (Car) suppresses the O(2)((1)Delta(g))-mediated photooxidation. In biological medium, no dark cytotoxicity was found for cells incubated with 0.1 microM of phthalocyanines 3 and 4 for 24 h. However, under similar conditions 0.5 microM of ZnPc 4 was toxic (70% cell survival). The uptake into Hep-2 cells was evaluated using 0.1muM of sensitizer, reaching values of approximately 0.05 nmol/10(6) cells after 3h of incubation at 37 degrees C. The cell survival after irradiation of the cultures with visible light was dependent upon both light exposure level and intracellular sensitizer concentration. A higher photocytotoxic effect was found for ZnPc 3 with respect to 4 (32%/70% cell survival after 15 min of irradiation). Also, these studies were performed treating the cells with 0.5 microM of ZnPc 3. In this case, an increase in the uptake (approximately 0.28 nmol/10(6) cells) was observed, which is accompanied by a higher photocytotoxic activity (20% cell survival). These results show that even though both sensitizer present similar photophysical properties in homogeneous medium, the photodynamic behavior in cellular media can significantly be changed.
Collapse
Affiliation(s)
- E Inés Yslas
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, X580BYA Río Cuarto, Argentina
| | | | | |
Collapse
|
33
|
Wrona M, Rózanowska M, Sarna T. Zeaxanthin in combination with ascorbic acid or alpha-tocopherol protects ARPE-19 cells against photosensitized peroxidation of lipids. Free Radic Biol Med 2004; 36:1094-101. [PMID: 15082063 DOI: 10.1016/j.freeradbiomed.2004.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 01/08/2004] [Accepted: 02/02/2004] [Indexed: 11/28/2022]
Abstract
The antioxidant action of carotenoids is believed to involve quenching of singlet oxygen and scavenging of reactive oxygen radicals. However, the exact mechanism by which carotenoids protect cells against oxidative damage, particularly in the presence of other antioxidants, remains to be elucidated. This study was carried out to examine the ability of exogenous zeaxanthin alone and in combination with vitamin E or C, to protect cultured human retinal pigment epithelium cells against oxidative stress. The survival of ARPE-19 cells, subjected to merocyanine 540-mediated photodynamic action, was determined by the MTT test and the content of lipid hydroperoxides in photosensitized cells was analyzed by HPLC with electrochemical detection. We found that zeaxanthin-supplemented cells, in the presence of either alpha-tocopherol or ascorbic acid, were significantly more resistant to photoinduced oxidative stress. Cells with added antioxidants exhibited increased viability and accumulated less lipid hydroperoxides than cells without the antioxidant supplementation. Such a synergistic action of zeaxanthin and vitamin E or C indicates the importance of the antioxidant interaction in efficient protection of cell membranes against oxidative damage induced by photosensitized reactions.
Collapse
Affiliation(s)
- Marta Wrona
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
34
|
Jockusch S, Ren RX, Jang YP, Itagaki Y, Vollmer-Snarr HR, Sparrow JR, Nakanishi K, Turro NJ. Photochemistry of A1E, a Retinoid with a Conjugated Pyridinium Moiety: Competition between Pericyclic Photooxygenation and Pericyclization. J Am Chem Soc 2004; 126:4646-52. [PMID: 15070381 DOI: 10.1021/ja039048d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photochemistry of the retinoid analogue A1E shows an oxygen and solvent dependence. Irradiation of A1E with visible light (lambda(irr) = 425 nm) in methanol solutions resulted in pericyclization to form pyridinium terpenoids. Although the quantum yield for this cyclization is low (approximately 10(-4)), nevertheless the photochemical transformation occurs with quantitative chemical yield with remarkable chemoselectivity and diastereoselectivity. Conversely, irradiation of A1E under the same irradiation conditions in air-saturated carbon tetrachloride or deuterated chloroform produced a cyclic 5,8-peroxide as the major product. Deuterium solvent effects, experiments utilizing endoperoxide, phosphorescence, and chemiluminescence quenching studies strongly support the involvement of singlet oxygen in the endoperoxide formation. It is proposed that, upon irradiation, in the presence of oxygen, A1E acts as a sensitizer for generation of singlet oxygen from triplet oxygen present in the solution; the singlet oxygen produced reacts with A1E to produce cyclic peroxide. Thus, the photochemistry of A1E is characterized by two competing reactions, cyclization and peroxide formation. The dominant reaction is determined by the concentration of oxygen, the concentration of A1E, and the lifetime of singlet oxygen in the solvent employed. If the lifetime of singlet oxygen in a given solvent is long enough, then oxidation (peroxide formation) is the major reaction. If the singlet oxygen produced is quenched by the protonated solvent molecules faster than singlet oxygen reacts with A1E, then cyclization dominates.
Collapse
Affiliation(s)
- Steffen Jockusch
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Scalise I, Durantini EN. Photodynamic effect of metallo 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl) porphyrins in biomimetic AOT reverse micelles containing urease. J Photochem Photobiol A Chem 2004. [DOI: 10.1016/s1010-6030(03)00317-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Milanesio ME, Alvarez MG, Silber JJ, Rivarola V, Durantini EN. Photodynamic activity of monocationic and non-charged methoxyphenylporphyrin derivatives in homogeneous and biological media. Photochem Photobiol Sci 2004; 2:926-33. [PMID: 14560810 DOI: 10.1039/b212890j] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel 5-[4-(trimethylammonium)phenyl]-10,15,20-tris(2,4,6-trimethoxyphenyl)porphyrin iodide (2) has been synthesized. A positive charge was incorporated at a peripheral position to increase the amphiphilic character of the structure. The photodynamic effect of the cationic porphyrin 2 was compared with that of non-charged 5-(4-aminophenyl)-10,15,20-tris(2,4,6-trimethoxyphenyl)porphyrin (1), both in a homogeneous medium bearing photooxidizable substrates and in vitro on the Hep-2 human larynx carcinoma cell line. Absorption and fluorescence spectroscopic studies in different media show that 2 is essentially unaggregated in solution, and also in human cells. The singlet molecular oxygen, O2(1delta(g)), production was evaluated using 9,10-dimethylanthracene in N,N-dimethylformamide, yielding phi(delta) values of approximately 0.66 for both porphyrins. The addition of beta-carotene suppresses the O2(1delta(g))-mediated photooxidation. L-Tryptophan and guanosine 5'-monophosphate were used as biological substrate models. Porphyrin 2 sensitizes the decomposition of both compounds faster than does 1. In the biological medium, no dark cytotoxicity was observed, even though a high porphyrin concentration (10 microM) and a long incubation time (24 h) were employed. Cell treatments were performed with 5 microM of porphyrin for 24 h. Under these conditions, the uptake of porphyrin 2 into Hep-2 was about 3 times higher than that of 1. Cell survival after irradiation with visible light was dependent upon both the light exposure level and intracellular sensitizer concentration. Thus, a higher photocytotoxic effect was found for porphyrin 2 in comparison to 1. These results show that the amphiphilic monocationic porphyrin 2 could be a promising model for phototherapeutic agents with potential applications in tumor cell inactivation by photodynamic therapy.
Collapse
Affiliation(s)
- M Elisa Milanesio
- Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro 3, 5800 Río Cuarto, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
37
|
Montenegro MA, Rios ADO, Mercadante AZ, Nazareno MA, Borsarelli CD. Model studies on the photosensitized isomerization of bixin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:367-373. [PMID: 14733523 DOI: 10.1021/jf0349026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The photosensitized isomerization reaction of the natural cis carotenoid bixin (methyl hydrogen 9'-cis-6, 6'-diapocarotene-6, 6'-dioate) with rose bengal or methylene blue as the sensitizer in acetonitrile/methanol (1:1) solution was studied using UV-vis spectroscopy, high-performance liquid chromatography (HPLC), and time-resolved spectroscopic techniques, such as laser-flash photolysis and singlet oxygen phosphorescence detection. In both N(2)- and air-saturated solutions, the main product formed was all-trans-bixin. The observed isomerization rate constants, k(obs), decreased in the presence of air or with increase in the bixin concentration, suggesting the participation of the excited triplet state of bixin, (3)Bix, as precursor of the cis--> trans process. On the other hand, bixin solutions in the absence of sensitizer and/or light did not degrade, indicating that the ground state of bixin is stable to thermal isomerization at room temperature. Time-resolved spectroscopic experiments confirmed the formation of the excited triplet state of bixin and its deactivation by ground state bixin and molecular oxygen quenching processes. The primary isomerization products only degraded in the presence of air and under prolonged illumination conditions, probably due to the formation of oxidation products by reaction with singlet molecular oxygen. An energy-transfer mechanism was used to explain the observed results for the bixin transformations, and the consequences for food color are discussed.
Collapse
Affiliation(s)
- Mariana A Montenegro
- Instituto de Ciencias Químicas, Universidad Nacional de Santiago del Estero, Av. Belgrano (S) 1912, 4200 Santiago del Estero, Argentina
| | | | | | | | | |
Collapse
|
38
|
Aramendía PF, Viappiani C, Wilkinson F. Editorial: Professor Silvia Braslavsky. Photochem Photobiol Sci 2003; 2:vii-viii. [PMID: 12911217 DOI: 10.1039/b305468c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 2003; 103:1685-757. [PMID: 12744692 DOI: 10.1021/cr010371d] [Citation(s) in RCA: 1312] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Claude Schweitzer
- Institut für Physikalische und Theoretische Chemie, Johann Wolfgang Goethe-Universität, Marie-Curie-Strasse 11, D60439 Frankfurt am Main, Germany
| | | |
Collapse
|