1
|
Liu G, Han X, Yu X, Wang Y, Ma J, Yang Y. Identification of Aly1 and Aly2 as Modulators of Cytoplasmic pH in Saccharomyces cerevisiae. Curr Issues Mol Biol 2023; 46:171-182. [PMID: 38248315 PMCID: PMC10814103 DOI: 10.3390/cimb46010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
The regulation of intracellular pH in yeast (Saccharomyces cerevisiae) cells is critical for cell function and viability. In yeast, protons (H+) can be excreted from the cell by plasma membrane ATPase PMA1 and pumped into vacuoles by vacuolar H+-ATPase. Because PMA1 is critical to the survival of yeast cells, it is unknown whether other compensatory components are involved in pH homeostasis in the absence of PMA1. To elucidate how intracellular pH is regulated independently of PMA1, we employed a screening approach by exposing the yeast haploid deletion mutant library (ver 4.0) to the selective plant plasma membrane H+-ATPase inhibitor PS-1, which we previously reported. After repeated screenings and verification, we identified two proteins, Aly1 and Aly2, that play a role in the regulation of intracellular pH when PMA1 is deficient. Our research uncovers a new perspective on the regulation of intracellular pH related to PMA1 and also preliminarily reveals a role for Aly1 and Aly2 in the regulation of intracellular pH.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China; (G.L.); (X.H.); (X.Y.); (Y.W.)
| |
Collapse
|
2
|
Okreglak V, Ling R, Ingaramo M, Thayer NH, Millett-Sikking A, Gottschling DE. Cell cycle-linked vacuolar pH dynamics regulate amino acid homeostasis and cell growth. Nat Metab 2023; 5:1803-1819. [PMID: 37640943 PMCID: PMC10590757 DOI: 10.1038/s42255-023-00872-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
Amino acid homeostasis is critical for many cellular processes. It is well established that amino acids are compartmentalized using pH gradients generated between organelles and the cytoplasm; however, the dynamics of this partitioning has not been explored. Here we develop a highly sensitive pH reporter and find that the major amino acid storage compartment in Saccharomyces cerevisiae, the lysosome-like vacuole, alkalinizes before cell division and re-acidifies as cells divide. The vacuolar pH dynamics require the uptake of extracellular amino acids and activity of TORC1, the v-ATPase and the cycling of the vacuolar specific lipid phosphatidylinositol 3,5-bisphosphate, which is regulated by the cyclin-dependent kinase Pho85 (CDK5 in mammals). Vacuolar pH regulation enables amino acid sequestration and mobilization from the organelle, which is important for mitochondrial function, ribosome homeostasis and cell size control. Collectively, our data provide a new paradigm for the use of dynamic pH-dependent amino acid compartmentalization during cell growth/division.
Collapse
Affiliation(s)
- Voytek Okreglak
- Calico Life Sciences, LLC, South San Francisco, CA, USA.
- Altos Labs, Redwood City, CA, USA.
| | - Rachel Ling
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
3
|
Yang SZ, Peng LT. Significance of the plasma membrane H +-ATPase and V-ATPase for growth and pathogenicity in pathogenic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:31-53. [PMID: 37597947 DOI: 10.1016/bs.aambs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Pathogenic fungi are widespread and cause a variety of diseases in human beings and other organisms. At present, limited classes of antifungal agents are available to treat invasive fungal diseases. With the wide use of the commercial antifungal agents, drug resistance of pathogenic fungi are continuously increasing. Therefore, exploring effective antifungal agents with novel drug targets is urgently needed to cope with the challenges that the antifungal area faces. pH homeostasis is vital for multiple cellular processes, revealing the potential for defining novel drug targets. Fungi have evolved a number of strategies to maintain a stable pH internal environment in response to rapid metabolism and a dramatically changing extracellular environment. Among them, plasma membrane H+-ATPase (PMA) and vacuolar H+-ATPase (V-ATPase) play a central role in the regulation of pH homeostasis system. In this chapter, we will summarize the current knowledge about pH homeostasis and its regulation mechanisms in pathogenic fungi, especially for the recent advances in PMA and V-ATPase, which would help in revealing the regulating mechanism of pH on cell growth and pathogenicity, and further designing effective drugs and identify new targets for combating fungal diseases.
Collapse
Affiliation(s)
- S Z Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.
| | - L T Peng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
4
|
Uvdal P, Shashkova S. The Effect of Calorie Restriction on Protein Quality Control in Yeast. Biomolecules 2023; 13:biom13050841. [PMID: 37238710 DOI: 10.3390/biom13050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Initially, protein aggregates were regarded as a sign of a pathological state of the cell. Later, it was found that these assemblies are formed in response to stress, and that some of them serve as signalling mechanisms. This review has a particular focus on how intracellular protein aggregates are related to altered metabolism caused by different glucose concentrations in the extracellular environment. We summarise the current knowledge of the role of energy homeostasis signalling pathways in the consequent effect on intracellular protein aggregate accumulation and removal. This covers regulation at different levels, including elevated protein degradation and proteasome activity mediated by the Hxk2 protein, the enhanced ubiquitination of aberrant proteins through Torc1/Sch9 and Msn2/Whi2, and the activation of autophagy mediated through ATG genes. Finally, certain proteins form reversible biomolecular aggregates in response to stress and reduced glucose levels, which are used as a signalling mechanism in the cell, controlling major primary energy pathways related to glucose sensing.
Collapse
Affiliation(s)
- Petter Uvdal
- Department of Physics, University of Gothenburg, 405 30 Göteborg, Sweden
| | | |
Collapse
|
5
|
Zhang C, Feng Y, Balutowski A, Miner GE, Rivera-Kohr DA, Hrabak MR, Sullivan KD, Guo A, Calderin JD, Fratti RA. The interdependent transport of yeast vacuole Ca 2+ and H + and the role of phosphatidylinositol 3,5-bisphosphate. J Biol Chem 2022; 298:102672. [PMID: 36334632 PMCID: PMC9706634 DOI: 10.1016/j.jbc.2022.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Yeast vacuoles are acidified by the v-type H+-ATPase (V-ATPase) that is comprised of the membrane embedded VO complex and the soluble cytoplasmic V1 complex. The assembly of the V1-VO holoenzyme on the vacuole is stabilized in part through interactions between the VO a-subunit ortholog Vph1 and the lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). PI(3,5)P2 also affects vacuolar Ca2+ release through the channel Yvc1 and uptake through the Ca2+ pump Pmc1. Here, we asked if H+ and Ca2+ transport activities were connected through PI(3,5)P2. We found that overproduction of PI(3,5)P2 by the hyperactive fab1T2250A mutant augmented vacuole acidification, whereas the kinase-inactive fab1EEE mutant attenuated the formation of a H+ gradient. Separately, we tested the effects of excess Ca2+ on vacuole acidification. Adding micromolar Ca2+ blocked vacuole acidification, whereas chelating Ca2+ accelerated acidification. The effect of adding Ca2+ on acidification was eliminated when the Ca2+/H+ antiporter Vcx1 was absent, indicating that the vacuolar H+ gradient can collapse during Ca2+ stress through Vcx1 activity. This, however, was independent of PI(3,5)P2, suggesting that PI(3,5)P2 plays a role in submicromolar Ca2+ flux but not under Ca2+ shock. To see if the link between Ca2+ and H+ transport was bidirectional, we examined Ca2+ transport when vacuole acidification was inhibited. We found that Ca2+ transport was inhibited by halting V-ATPase activity with Bafilomycin or neutralizing vacuolar pH with chloroquine. Together, these data show that Ca2+ transport and V-ATPase efficacy are connected but not necessarily through PI(3,5)P2.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yilin Feng
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Gregory E Miner
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Katherine D Sullivan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Annie Guo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
6
|
Bari KA, Berg MD, Genereaux J, Brandl CJ, Lajoie P. Tra1 controls the transcriptional landscape of the aging cell. G3 (BETHESDA, MD.) 2022; 13:6782959. [PMID: 36315064 PMCID: PMC9836359 DOI: 10.1093/g3journal/jkac287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan assays in yeast measure the survival of nondividing cells at stationary phase over time, providing insights into the aging process of postmitotic cells. Tra1 is an essential component of both the yeast Spt-Ada-Gcn5 acetyltransferase/Spt-Ada-Gcn5 acetyltransferase-like and nucleosome acetyltransferase of H4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitizes cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes, and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
Collapse
Affiliation(s)
- Khaleda Afrin Bari
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Present address for Matthew D Berg: Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada,Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Corresponding author: Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
7
|
Luzia L, Lao‐Martil D, Savakis P, van Heerden J, van Riel N, Teusink B. pH dependencies of glycolytic enzymes of yeast under in vivo-like assay conditions. FEBS J 2022; 289:6021-6037. [PMID: 35429225 PMCID: PMC9790636 DOI: 10.1111/febs.16459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 12/30/2022]
Abstract
Under carbon source transitions, the intracellular pH of Saccharomyces cerevisiae is subject to change. Dynamics in pH modulate the activity of the glycolytic enzymes, resulting in a change in glycolytic flux and ultimately cell growth. To understand how pH affects the global behavior of glycolysis and ethanol fermentation, we measured the activity of the glycolytic and fermentative enzymes in S. cerevisiae under in vivo-like conditions at different pH. We demonstrate that glycolytic enzymes exhibit differential pH dependencies, and optima, in the pH range observed during carbon source transitions. The forward reaction of GAPDH shows the highest decrease in activity, 83%, during a simulated feast/famine regime upon glucose removal (cytosolic pH drop from 7.1 to 6.4). We complement our biochemical characterization of the glycolytic enzymes by fitting the Vmax to the progression curves of product formation or decay over time. The fitting analysis shows that the observed changes in enzyme activities require changes in Vmax , but changes in Km cannot be excluded. Our study highlights the relevance of pH as a key player in metabolic regulation and provides a large set of quantitative data that can be explored to improve our understanding of metabolism in dynamic environments.
Collapse
Affiliation(s)
| | | | | | | | - Natal van Riel
- Department of Biomedical EngineeringTU EindhovenNetherlands
| | | |
Collapse
|
8
|
Guerra P, Vuillemenot LAPE, van Oppen YB, Been M, Milias-Argeitis A. TORC1 and PKA activity towards ribosome biogenesis oscillates in synchrony with the budding yeast cell cycle. J Cell Sci 2022; 135:276358. [PMID: 35975715 DOI: 10.1242/jcs.260378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022] Open
Abstract
Recent studies have revealed that the growth rate of budding yeast and mammalian cells varies during the cell cycle. By linking a multitude of signals to cell growth, the highly conserved Target of Rapamycin Complex 1 (TORC1) and Protein Kinase A (PKA) pathways are prime candidates for mediating the dynamic coupling between growth and division. However, measurements of TORC1 and PKA activity during the cell cycle are still lacking. Following the localization dynamics of two TORC1 and PKA targets via time-lapse microscopy in hundreds of yeast cells, we found that the activity of these pathways towards ribosome biogenesis fluctuates in synchrony with the cell cycle even under constant external conditions. Mutations of upstream TORC1 and PKA regulators suggested that internal metabolic signals partially mediate these activity changes. Our study reveals a new aspect of TORC1 and PKA signaling, which will be important for understanding growth regulation during the cell cycle.
Collapse
Affiliation(s)
- Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Luc-Alban P E Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Yulan B van Oppen
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Marije Been
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| |
Collapse
|
9
|
Batool W, Liu C, Fan X, Zhang P, Hu Y, Wei Y, Zhang SH. AGC/AKT Protein Kinase SCH9 Is Critical to Pathogenic Development and Overwintering Survival in Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8080810. [PMID: 36012798 PMCID: PMC9410157 DOI: 10.3390/jof8080810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
Primary inoculum that survives overwintering is one of the key factors that determine the outbreak of plant disease. Pathogenic resting structures, such as chlamydospores, are an ideal inoculum for plant disease. Puzzlingly, Magnaporthe oryzae, a devastating fungal pathogen responsible for blast disease in rice, hardly form any morphologically changed resting structures, and we hypothesize that M. oryzae mainly relies on its physiological alteration to survive overwintering or other harsh environments. However, little progress on research into regulatory genes that facilitate the overwintering of rice blast pathogens has been made so far. Serine threonine protein kinase AGC/AKT, MoSch9, plays an important role in the spore-mediated pathogenesis of M. oryzae. Building on this finding, we discovered that in genetic and biological terms, MoSch9 plays a critical role in conidiophore stalk formation, hyphal-mediated pathogenesis, cold stress tolerance, and overwintering survival of M. oryzae. We discovered that the formation of conidiophore stalks and disease propagation using spores was severely compromised in the mutant strains, whereas hyphal-mediated pathogenesis and the root infection capability of M. oryzae were completely eradicated due to MoSch9 deleted mutants’ inability to form an appressorium-like structure. Most importantly, the functional and transcriptomic study of wild-type and MoSch9 mutant strains showed that MoSch9 plays a regulatory role in cold stress tolerance of M. oryzae through the transcription regulation of secondary metabolite synthesis, ATP hydrolyzing, and cell wall integrity proteins during osmotic stress and cold temperatures. From these results, we conclude that MoSch9 is essential for fungal infection-related morphogenesis and overwintering of M. oryzae.
Collapse
|
10
|
Seidel T. The Plant V-ATPase. FRONTIERS IN PLANT SCIENCE 2022; 13:931777. [PMID: 35845650 PMCID: PMC9280200 DOI: 10.3389/fpls.2022.931777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
V-ATPase is the dominant proton pump in plant cells. It contributes to cytosolic pH homeostasis and energizes transport processes across endomembranes of the secretory pathway. Its localization in the trans Golgi network/early endosomes is essential for vesicle transport, for instance for the delivery of cell wall components. Furthermore, it is crucial for response to abiotic and biotic stresses. The V-ATPase's rather complex structure and multiple subunit isoforms enable high structural flexibility with respect to requirements for different organs, developmental stages, and organelles. This complexity further demands a sophisticated assembly machinery and transport routes in cells, a process that is still not fully understood. Regulation of V-ATPase is a target of phosphorylation and redox-modifications but also involves interactions with regulatory proteins like 14-3-3 proteins and the lipid environment. Regulation by reversible assembly, as reported for yeast and the mammalian enzyme, has not be proven in plants but seems to be absent in autotrophic cells. Addressing the regulation of V-ATPase is a promising approach to adjust its activity for improved stress resistance or higher crop yield.
Collapse
|
11
|
Ergosterol depletion under bifonazole treatment induces cell membrane damage and triggers a ROS-mediated mitochondrial apoptosis in Penicillium expansum. Fungal Biol 2021; 126:1-10. [PMID: 34930554 DOI: 10.1016/j.funbio.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/06/2021] [Accepted: 09/07/2021] [Indexed: 01/02/2023]
Abstract
Penicillium expansum is the causal agent of blue mold in harvested fruits and vegetables during storage and distribution, causing serious economic loss. In this study we seek the action modes of bifonazole against this pathogen. Bifonazole exhibited strong antifungal activity against P. expansum by inhibiting ergosterol synthesis. The ergosterol depletion caused damage to the cell structure and especially cell membrane integrity as observed by SEM and TEM. With increased unsaturated fatty acids contents, the cell membrane viscosity decreases and can no longer effectively maintain the cytoplasm, which ultimately decreases extracellular conductivity, changes intracellular pH and ion homeostasis. Exposure of hyphal cells to bifonazole shows that mitochondrial respiration is inhibited and reactive oxygen species (ROS) levels-including H2O2 and malondialdehyde (MDA) - are significantly increased. The functional impairment of mitochondria and cell membrane eventually cause cell death through intrinsic apoptosis and necroptosis.
Collapse
|
12
|
Jalihal AP, Kraikivski P, Murali TM, Tyson JJ. Modeling and analysis of the macronutrient signaling network in budding yeast. Mol Biol Cell 2021; 32:ar20. [PMID: 34495680 PMCID: PMC8693975 DOI: 10.1091/mbc.e20-02-0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Adaptive modulation of the global cellular growth state of unicellular organisms is crucial for their survival in fluctuating nutrient environments. Because these organisms must be able to respond reliably to ever varying and unpredictable nutritional conditions, their nutrient signaling networks must have a certain inbuilt robustness. In eukaryotes, such as the budding yeast Saccharomyces cerevisiae, distinct nutrient signals are relayed by specific plasma membrane receptors to signal transduction pathways that are interconnected in complex information-processing networks, which have been well characterized. However, the complexity of the signaling network confounds the interpretation of the overall regulatory "logic" of the control system. Here, we propose a literature-curated molecular mechanism of the integrated nutrient signaling network in budding yeast, focusing on early temporal responses to carbon and nitrogen signaling. We build a computational model of this network to reconcile literature-curated quantitative experimental data with our proposed molecular mechanism. We evaluate the robustness of our estimates of the model's kinetic parameter values. We test the model by comparing predictions made in mutant strains with qualitative experimental observations made in the same strains. Finally, we use the model to predict nutrient-responsive transcription factor activities in a number of mutant strains undergoing complex nutrient shifts.
Collapse
Affiliation(s)
- Amogh P Jalihal
- Genetics, Bioinformatics, and Computational Biology PhD Program
| | - Pavel Kraikivski
- Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA 24061
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061
| | - John J Tyson
- Division of Systems Biology, Academy of Integrated Science, Virginia Tech, Blacksburg, VA 24061.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
13
|
The Role of Sch9 and the V-ATPase in the Adaptation Response to Acetic Acid and the Consequences for Growth and Chronological Lifespan. Microorganisms 2021; 9:microorganisms9091871. [PMID: 34576766 PMCID: PMC8472237 DOI: 10.3390/microorganisms9091871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studies with Saccharomyces cerevisiae indicated that non-physiologically high levels of acetic acid promote cellular acidification, chronological aging, and programmed cell death. In the current study, we compared the cellular lipid composition, acetic acid uptake, intracellular pH, growth, and chronological lifespan of wild-type cells and mutants lacking the protein kinase Sch9 and/or a functional V-ATPase when grown in medium supplemented with different acetic acid concentrations. Our data show that strains lacking the V-ATPase are especially more susceptible to growth arrest in the presence of high acetic acid concentrations, which is due to a slower adaptation to the acid stress. These V-ATPase mutants also displayed changes in lipid homeostasis, including alterations in their membrane lipid composition that influences the acetic acid diffusion rate and changes in sphingolipid metabolism and the sphingolipid rheostat, which is known to regulate stress tolerance and longevity of yeast cells. However, we provide evidence that the supplementation of 20 mM acetic acid has a cytoprotective and presumable hormesis effect that extends the longevity of all strains tested, including the V-ATPase compromised mutants. We also demonstrate that the long-lived sch9Δ strain itself secretes significant amounts of acetic acid during stationary phase, which in addition to its enhanced accumulation of storage lipids may underlie its increased lifespan.
Collapse
|
14
|
Teixeira V, Martins TS, Prinz WA, Costa V. Target of Rapamycin Complex 1 (TORC1), Protein Kinase A (PKA) and Cytosolic pH Regulate a Transcriptional Circuit for Lipid Droplet Formation. Int J Mol Sci 2021; 22:9017. [PMID: 34445723 PMCID: PMC8396576 DOI: 10.3390/ijms22169017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that fulfill essential roles in response to metabolic cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). However, our understanding of signaling networks, especially transcriptional mechanisms, regulating membrane biogenesis is very limited. Here, we show that the nutrient-sensing Target of Rapamycin Complex 1 (TORC1) regulates LD formation at a transcriptional level, by targeting DGA1 expression, in a Sit4-, Mks1-, and Sfp1-dependent manner. We show that cytosolic pH (pHc), co-regulated by the plasma membrane H+-ATPase Pma1 and the vacuolar ATPase (V-ATPase), acts as a second messenger, upstream of protein kinase A (PKA), to adjust the localization and activity of the major transcription factor repressor Opi1, which in turn controls the metabolic switch between phospholipid metabolism and lipid storage. Together, this work delineates hitherto unknown molecular mechanisms that couple nutrient availability and pHc to LD formation through a transcriptional circuit regulated by major signaling transduction pathways.
Collapse
Affiliation(s)
- Vitor Teixeira
- Yeast Signalling Networks, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (V.C.)
- Yeast Signalling Networks, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Telma S. Martins
- Yeast Signalling Networks, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (V.C.)
- Yeast Signalling Networks, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - William A. Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA;
| | - Vítor Costa
- Yeast Signalling Networks, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (V.C.)
- Yeast Signalling Networks, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
15
|
Vallabhaneni AR, Kabashi M, Haymowicz M, Bhatt K, Wayman V, Ahmed S, Conrad-Webb H. HSF1 induces RNA polymerase II synthesis of ribosomal RNA in S. cerevisiae during nitrogen deprivation. Curr Genet 2021; 67:937-951. [PMID: 34363098 PMCID: PMC8594204 DOI: 10.1007/s00294-021-01197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
The resource intensive process of accurate ribosome synthesis is essential for cell viability in all organisms. Ribosome synthesis regulation centers on RNA polymerase I (pol I) transcription of a 35S rRNA precursor that is processed into the mature 18S, 5.8S and 25S rRNAs. During nutrient deprivation or stress, pol I synthesis of rRNA is dramatically reduced. Conversely, chronic stress such as mitochondrial dysfunction induces RNA polymerase II (pol II) to transcribe functional rRNA using an evolutionarily conserved cryptic pol II rDNA promoter suggesting a universal phenomenon. However, this polymerase switches and its role in regulation of rRNA synthesis remain unclear. In this paper, we demonstrate that extended nitrogen deprivation induces the polymerase switch via components of the environmental stress response. We further show that the switch is repressed by Sch9 and activated by the stress kinase Rim15. Like stress-induced genes, the switch requires not only pol II transcription machinery, including the mediator, but also requires the HDAC, Rpd3 and stress transcription factor Hsf1. The current work shows that the constitutive allele, Hsf1PO4* displays elevated levels of induction in non-stress conditions while binding to a conserved site in the pol II rDNA promoter upstream of the pol I promoter. Whether the polymerase switch serves to provide rRNA when pol I transcription is inhibited or fine-tunes pol I initiation via RNA interactions is yet to be determined. Identifying the underlying mechanism for this evolutionary conserved phenomenon will help understand the mechanism of pol II rRNA synthesis and its role in stress adaptation.
Collapse
Affiliation(s)
- Arjuna Rao Vallabhaneni
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Merita Kabashi
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Matt Haymowicz
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Kushal Bhatt
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA.,Department of Bioinformatics, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, Texas, 75390, USA
| | - Violet Wayman
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Shazia Ahmed
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Heather Conrad-Webb
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA.
| |
Collapse
|
16
|
Zhou X, Li J, Tang N, Xie H, Fan X, Chen H, Tang M, Xie X. Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms 2021; 9:1557. [PMID: 34442636 PMCID: PMC8401276 DOI: 10.3390/microorganisms9081557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/03/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi form a mutualistic symbiosis with a majority of terrestrial vascular plants. To achieve an efficient nutrient trade with their hosts, AM fungi sense external and internal nutrients, and integrate different hierarchic regulations to optimize nutrient acquisition and homeostasis during mycorrhization. However, the underlying molecular networks in AM fungi orchestrating the nutrient sensing and signaling remain elusive. Based on homology search, we here found that at least 72 gene components involved in four nutrient sensing and signaling pathways, including cAMP-dependent protein kinase A (cAMP-PKA), sucrose non-fermenting 1 (SNF1) protein kinase, target of rapamycin kinase (TOR) and phosphate (PHO) signaling cascades, are well conserved in AM fungi. Based on the knowledge known in model yeast and filamentous fungi, we outlined the possible gene networks functioning in AM fungi. These pathways may regulate the expression of downstream genes involved in nutrient transport, lipid metabolism, trehalase activity, stress resistance and autophagy. The RNA-seq analysis and qRT-PCR results of some core genes further indicate that these pathways may play important roles in spore germination, appressorium formation, arbuscule longevity and sporulation of AM fungi. We hope to inspire further studies on the roles of these candidate genes involved in these nutrient sensing and signaling pathways in AM fungi and AM symbiosis.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
| | - Nianwu Tang
- UMR Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280 Champenoux, France;
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| |
Collapse
|
17
|
Chaves SR, Rego A, Martins VM, Santos-Pereira C, Sousa MJ, Côrte-Real M. Regulation of Cell Death Induced by Acetic Acid in Yeasts. Front Cell Dev Biol 2021; 9:642375. [PMID: 34249904 PMCID: PMC8264433 DOI: 10.3389/fcell.2021.642375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
Acetic acid has long been considered a molecule of great interest in the yeast research field. It is mostly recognized as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, as well as of lignocellulosic biomass pretreatment. High acetic acid levels are commonly associated with arrested fermentations or with utilization as vinegar in the food industry. Due to its obvious interest to industrial processes, research on the mechanisms underlying the impact of acetic acid in yeast cells has been increasing. In the past twenty years, a plethora of studies have addressed the intricate cascade of molecular events involved in cell death induced by acetic acid, which is now considered a model in the yeast regulated cell death field. As such, understanding how acetic acid modulates cellular functions brought about important knowledge on modulable targets not only in biotechnology but also in biomedicine. Here, we performed a comprehensive literature review to compile information from published studies performed with lethal concentrations of acetic acid, which shed light on regulated cell death mechanisms. We present an historical retrospective of research on this topic, first providing an overview of the cell death process induced by acetic acid, including functional and structural alterations, followed by an in-depth description of its pharmacological and genetic regulation. As the mechanistic understanding of regulated cell death is crucial both to design improved biomedical strategies and to develop more robust and resilient yeast strains for industrial applications, acetic acid-induced cell death remains a fruitful and open field of study.
Collapse
Affiliation(s)
- Susana R Chaves
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - António Rego
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Vítor M Martins
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Cátia Santos-Pereira
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria João Sousa
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
18
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
19
|
Calafí C, López-Malo M, Velázquez D, Zhang C, Fernández-Fernández J, Rodríguez-Galán O, de la Cruz J, Ariño J, Casamayor A. Overexpression of budding yeast protein phosphatase Ppz1 impairs translation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118727. [DOI: 10.1016/j.bbamcr.2020.118727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022]
|
20
|
Roger F, Picazo C, Reiter W, Libiad M, Asami C, Hanzén S, Gao C, Lagniel G, Welkenhuysen N, Labarre J, Nyström T, Grøtli M, Hartl M, Toledano MB, Molin M. Peroxiredoxin promotes longevity and H 2O 2-resistance in yeast through redox-modulation of protein kinase A. eLife 2020; 9:e60346. [PMID: 32662770 PMCID: PMC7392609 DOI: 10.7554/elife.60346] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Peroxiredoxins are H2O2 scavenging enzymes that also carry out H2O2 signaling and chaperone functions. In yeast, the major cytosolic peroxiredoxin, Tsa1 is required for both promoting resistance to H2O2 and extending lifespan upon caloric restriction. We show here that Tsa1 effects both these functions not by scavenging H2O2, but by repressing the nutrient signaling Ras-cAMP-PKA pathway at the level of the protein kinase A (PKA) enzyme. Tsa1 stimulates sulfenylation of cysteines in the PKA catalytic subunit by H2O2 and a significant proportion of the catalytic subunits are glutathionylated on two cysteine residues. Redox modification of the conserved Cys243 inhibits the phosphorylation of a conserved Thr241 in the kinase activation loop and enzyme activity, and preventing Thr241 phosphorylation can overcome the H2O2 sensitivity of Tsa1-deficient cells. Results support a model of aging where nutrient signaling pathways constitute hubs integrating information from multiple aging-related conduits, including a peroxiredoxin-dependent response to H2O2.
Collapse
Affiliation(s)
- Friederike Roger
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Cecilia Picazo
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenterViennaAustria
| | - Marouane Libiad
- Oxidative Stress and Cancer Laboratory, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif sur YvetteFrance
| | - Chikako Asami
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Sarah Hanzén
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Chunxia Gao
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Gilles Lagniel
- Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit (SBIGEM)CEA SaclayFrance
| | - Niek Welkenhuysen
- Department of Mathematical Sciences, Chalmers University of Technology and University of GothenburgGothenburgSweden
| | - Jean Labarre
- Oxidative Stress and Cancer Laboratory, Integrative Biology and Molecular Genetics Unit (SBIGEM)CEA SaclayFrance
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Markus Hartl
- Mass Spectrometry Facility, Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenterViennaAustria
| | - Michel B Toledano
- Oxidative Stress and Cancer Laboratory, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif sur YvetteFrance
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| |
Collapse
|
21
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
22
|
Devare MN, Kim YH, Jung J, Kang WK, Kwon K, Kim J. TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast. Aging Cell 2020; 19:e13151. [PMID: 32449834 PMCID: PMC7294778 DOI: 10.1111/acel.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.
Collapse
Affiliation(s)
- Mayur Nimbadas Devare
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Yeong Hyeock Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Joohye Jung
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Woo Kyu Kang
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Ki‐Sun Kwon
- Aging Intervention Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
| | - Jeong‐Yoon Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| |
Collapse
|
23
|
Struyfs C, Cools TL, De Cremer K, Sampaio-Marques B, Ludovico P, Wasko BM, Kaeberlein M, Cammue BPA, Thevissen K. The antifungal plant defensin HsAFP1 induces autophagy, vacuolar dysfunction and cell cycle impairment in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183255. [PMID: 32145284 DOI: 10.1016/j.bbamem.2020.183255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
The plant defensin HsAFP1 is characterized by broad-spectrum antifungal activity and induces apoptosis in Candida albicans. In this study, we performed a transcriptome analysis on C. albicans cultures treated with HsAFP1 to gain further insight in the antifungal mode of action of HsAFP1. Various genes coding for cell surface proteins, like glycosylphosphatidylinositol (GPI)-anchored proteins, and proteins involved in cation homeostasis, autophagy and in cell cycle were differentially expressed upon HsAFP1 treatment. The biological validation of these findings was performed in the model yeast Saccharomyces cerevisiae. To discriminate between events linked to HsAFP1's antifungal activity and those that are not, we additionally used an inactive HsAFP1 mutant. We demonstrated that (i) HsAFP1-resistent S. cerevisiae mutants that are characterized by a defect in processing GPI-anchors are unable to internalize HsAFP1, and (ii) moderate doses (FC50, fungicidal concentration resulting in 50% killing) of HsAFP1 induce autophagy in S. cerevisiae, while high HsAFP1 doses result in vacuolar dysfunction. Vacuolar function is an important determinant of replicative lifespan (RLS) under dietary restriction (DR). In line, HsAFP1 specifically reduces RLS under DR. Lastly, (iii) HsAFP1 affects S. cerevisiae cell cycle in the G2/M phase. However, the latter HsAFP1-induced event is not linked to its antifungal activity, as the inactive HsAFP1 mutant also impairs the G2/M phase. In conclusion, we demonstrated that GPI-anchored proteins are involved in HsAFP1's internalization, and that HsAFP1 induces autophagy, vacuolar dysfunction and impairment of the cell cycle. Collectively, all these data provide novel insights in the mode of action of HsAFP1 as well as in S. cerevisiae tolerance mechanisms against this peptide.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tanne L Cools
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4700 Braga/Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4700 Braga/Guimarães, Portugal
| | - Brian M Wasko
- Department of Pathology, University of Washington, 98195 Seattle, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, 98195 Seattle, USA
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
24
|
Hakkaart X, Liu Y, Hulst M, El Masoudi A, Peuscher E, Pronk J, van Gulik W, Daran-Lapujade P. Physiological responses of Saccharomyces cerevisiae to industrially relevant conditions: Slow growth, low pH, and high CO 2 levels. Biotechnol Bioeng 2020; 117:721-735. [PMID: 31654410 PMCID: PMC7028085 DOI: 10.1002/bit.27210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Abstract
Engineered strains of Saccharomyces cerevisiae are used for industrial production of succinic acid. Optimal process conditions for dicarboxylic‐acid yield and recovery include slow growth, low pH, and high CO2. To quantify and understand how these process parameters affect yeast physiology, this study investigates individual and combined impacts of low pH (3.0) and high CO2 (50%) on slow‐growing chemostat and retentostat cultures of the reference strain S. cerevisiae CEN.PK113‐7D. Combined exposure to low pH and high CO2 led to increased maintenance‐energy requirements and death rates in aerobic, glucose‐limited cultures. Further experiments showed that these effects were predominantly caused by low pH. Growth under ammonium‐limited, energy‐excess conditions did not aggravate or ameliorate these adverse impacts. Despite the absence of a synergistic effect of low pH and high CO2 on physiology, high CO2 strongly affected genome‐wide transcriptional responses to low pH. Interference of high CO2 with low‐pH signaling is consistent with low‐pH and high‐CO2 signals being relayed via common (MAPK) signaling pathways, notably the cell wall integrity, high‐osmolarity glycerol, and calcineurin pathways. This study highlights the need to further increase robustness of cell factories to low pH for carboxylic‐acid production, even in organisms that are already applied at industrial scale.
Collapse
Affiliation(s)
- Xavier Hakkaart
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Yaya Liu
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Mandy Hulst
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Anissa El Masoudi
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Eveline Peuscher
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Jack Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg, Delft, The Netherlands
| |
Collapse
|
25
|
Jaskolka MC, Kane PM. Interaction between the yeast RAVE complex and Vph1-containing V o sectors is a central glucose-sensitive interaction required for V-ATPase reassembly. J Biol Chem 2020; 295:2259-2269. [PMID: 31941791 DOI: 10.1074/jbc.ra119.011522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
The yeast vacuolar H+-ATPase (V-ATPase) of budding yeast (Saccharomyces cerevisiae) is regulated by reversible disassembly. Disassembly inhibits V-ATPase activity under low-glucose conditions by releasing peripheral V1 subcomplexes from membrane-bound Vo subcomplexes. V-ATPase reassembly and reactivation requires intervention of the conserved regulator of H+-ATPase of vacuoles and endosomes (RAVE) complex, which binds to cytosolic V1 subcomplexes and assists reassembly with integral membrane Vo complexes. Consistent with its role, the RAVE complex itself is reversibly recruited to the vacuolar membrane by glucose, but the requirements for its recruitment are not understood. We demonstrate here that RAVE recruitment to the membrane does not require an interaction with V1 Glucose-dependent RAVE localization to the vacuolar membrane required only intact Vo complexes containing the Vph1 subunit, suggesting that the RAVE-Vo interaction is glucose-dependent. We identified a short conserved sequence in the center of the RAVE subunit Rav1 that is essential for the interaction with Vph1 in vivo and in vitro Mutations in this region resulted in the temperature- and pH-dependent growth phenotype characteristic of ravΔ mutants. However, this region did not account for glucose sensitivity of the Rav1-Vph1 interaction. We quantitated glucose-dependent localization of a GFP-tagged RAVE subunit to the vacuolar membrane in several mutants previously implicated in altering V-ATPase assembly state or glucose-induced assembly. RAVE localization did not correlate with V-ATPase assembly levels reported previously in these mutants, highlighting both the catalytic nature of RAVE's role in V-ATPase assembly and the likelihood of glucose signaling to RAVE independently of V1.
Collapse
Affiliation(s)
- Michael C Jaskolka
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
26
|
Zimmermann A, Tadic J, Kainz K, Hofer SJ, Bauer MA, Carmona-Gutierrez D, Madeo F. Transcriptional and epigenetic control of regulated cell death in yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:55-82. [PMID: 32334817 DOI: 10.1016/bs.ircmb.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unicellular organisms like yeast can undergo controlled demise in a manner that is partly reminiscent of mammalian cell death. This is true at the levels of both mechanistic and functional conservation. Yeast offers the combination of unparalleled genetic amenability and a comparatively simple biology to understand both the regulation and evolution of cell death. In this minireview, we address the capacity of the nucleus as a regulatory hub during yeast regulated cell death (RCD), which is becoming an increasingly central question in yeast RCD research. In particular, we explore and critically discuss the available data on stressors and signals that specifically impinge on the nucleus. Moreover, we also analyze the current knowledge on nuclear factors as well as on transcriptional control and epigenetic events that orchestrate yeast RCD. Altogether we conclude that the functional significance of the nucleus for yeast RCD in undisputable, but that further exploration beyond correlative work is necessary to disentangle the role of nuclear events in the regulatory network.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
27
|
Cardarelli S, Giorgi M, Poiana G, Biagioni S, Saliola M. Metabolic role of cGMP in S. cerevisiae: the murine phosphodiesterase-5 activity affects yeast cell proliferation by altering the cAMP/cGMP equilibrium. FEMS Yeast Res 2019; 19:5322165. [PMID: 30772891 DOI: 10.1093/femsyr/foz016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
In higher eukaryotes, cAMP and cGMP are signal molecules of major transduction pathways while phosphodiesterases (PDE) are a superfamily of cAMP/cGMP hydrolysing enzymes, modulatory components of these routes. Saccharomyces cerevisiae harbours two genes for PDE: Pde2 is a high affinity cAMP-hydrolysing enzyme, while Pde1 can hydrolyse both cAMP and cGMP. To gain insight into the metabolic role of cGMP in the physiology of yeast, the murine Pde5a1 gene encoding a specific cGMP-hydrolysing enzyme, was expressed in S. cerevisiae pdeΔ strains. pde1Δ and pde2Δ PDE5A1-transformed strain displayed opposite growth-curve profiles; while PDE5A1 recovered the growth delay of pde1Δ, PDE5A1 reversed the growth profile of pde2Δ to that of the untransformed pde1Δ. Growth test analysis and the use of Adh2 and Adh1 as respiro-fermentative glycolytic flux markers confirmed that PDE5A1 altered the metabolism by acting on Pde1-Pde2/cyclic nucleotides content and also on the TORC1 nutrient-sensing cascade. cGMP is required during the log-phase of cell proliferation to adjust/modulate cAMP levels inside well-defined ranges. A model is presented proposing the role of cGMP in the cAMP/PKA pathway. The expression of the PDE5A1 cassette in other mutant strains might constitute the starting tool to define cGMP metabolic role in yeast nutrient signaling.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Mauro Giorgi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| | - Michele Saliola
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Piazzale A. Moro, Rome 5, 00185, Italy
| |
Collapse
|
28
|
Using pH-Activable Carbon Nanoparticles as Cell Imaging Probes. MICROMACHINES 2019; 10:mi10090568. [PMID: 31466251 PMCID: PMC6780376 DOI: 10.3390/mi10090568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
Herein, we demonstrate the fabrication of innovative pH-activable carbon nanoparticles (CNPs) based on urea and citric acid by microwave-assisted green synthesis for application in cell imaging. These CNP-based nanoprobes offer significant advantages of pH responsiveness and excellent biocompatibility. The pH responsiveness ranges from 1.0 to 4.6 and the slightly pH responsiveness ranges from 4.6 to 9.0. In addition, the pH-dependent modification of charge as well as the final diameter of the designed CNPs not only provide support as stable sensors for cell imaging under pH values from 4.6 to 9.0, but can also observe the pH change in cells from 1.0 to 4.6. Importantly, this significantly enhances the cellular internalization process resulting in tumor cell death. Together, we believe that these superior photoluminescence properties of our designed nanomaterials potentially allow for biological labeling, bioimaging, and drug delivery applications.
Collapse
|
29
|
Elhasi T, Blomberg A. Integrins in disguise - mechanosensors in Saccharomyces cerevisiae as functional integrin analogues. MICROBIAL CELL 2019; 6:335-355. [PMID: 31404395 PMCID: PMC6685044 DOI: 10.15698/mic2019.08.686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to sense external mechanical stimuli is vital for all organisms. Integrins are transmembrane receptors that mediate bidirectional signalling between the extracellular matrix (ECM) and the cytoskeleton in animals. Thus, integrins can sense changes in ECM mechanics and can translate these into internal biochemical responses through different signalling pathways. In the model yeast species Saccharomyces cerevisiae there are no proteins with sequence similarity to mammalian integrins. However, we here emphasise that the WSC-type (Wsc1, Wsc2, and Wsc3) and the MID-type (Mid2 and Mtl1) mechanosensors in yeast act as partial functional integrin analogues. Various environmental cues recognised by these mechanosensors are transmitted by a conserved signal transduction cascade commonly referred to as the PKC1-SLT1 cell wall integrity (CWI) pathway. We exemplify the WSC- and MID-type mechanosensors functional analogy to integrins with a number of studies where they resemble the integrins in terms of both mechanistic and molecular features as well as in the overall phenotypic consequences of their activity. In addition, many important components in integrin-dependent signalling in humans are conserved in yeast; for example, Sla1 and Sla2 are homologous to different parts of human talin, and we propose that they together might be functionally similar to talin. We also propose that the yeast cell wall is a prominent cellular feature involved in sensing a number of external factors and subsequently activating different signalling pathways. In a hypothetical model, we propose that nutrient limitations modulate cell wall elasticity, which is sensed by the mechanosensors and results in filamentous growth. We believe that mechanosensing is a somewhat neglected aspect of yeast biology, and we argue that the physiological and molecular consequences of signal transduction initiated at the cell wall deserve more attention.
Collapse
Affiliation(s)
- Tarek Elhasi
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| | - Anders Blomberg
- Dept. of Chemistry and Molecular Biology, Univ. of Gothenburg, Sweden
| |
Collapse
|
30
|
Aufschnaiter A, Büttner S. The vacuolar shapes of ageing: From function to morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:957-970. [PMID: 30796938 DOI: 10.1016/j.bbamcr.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Cellular ageing results in accumulating damage to various macromolecules and the progressive decline of organelle function. Yeast vacuoles as well as their counterpart in higher eukaryotes, the lysosomes, emerge as central organelles in lifespan determination. These acidic organelles integrate enzymatic breakdown and recycling of cellular waste with nutrient sensing, storage, signalling and mobilization. Establishing physical contact with virtually all other organelles, vacuoles serve as hubs of cellular homeostasis. Studies in Saccharomyces cerevisiae contributed substantially to our understanding of the ageing process per se and the multifaceted roles of vacuoles/lysosomes in the maintenance of cellular fitness with progressing age. Here, we discuss the multiple roles of the vacuole during ageing, ranging from vacuolar dynamics and acidification as determinants of lifespan to the function of this organelle as waste bin, recycling facility, nutrient reservoir and integrator of nutrient signalling.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden.
| |
Collapse
|
31
|
Hayek SR, Rane HS, Parra KJ. Reciprocal Regulation of V-ATPase and Glycolytic Pathway Elements in Health and Disease. Front Physiol 2019; 10:127. [PMID: 30828305 PMCID: PMC6384264 DOI: 10.3389/fphys.2019.00127] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
The ability of cells to adapt to fluctuations in glucose availability is crucial for their survival and involves the vacuolar proton-translocating ATPase (V-ATPase), a proton pump found in all eukaryotes. V-ATPase hydrolyzes ATP via its V1 domain and uses the energy released to transport protons across membranes via its Vo domain. This activity is critical for pH homeostasis and generation of a membrane potential that drives cellular metabolism. A number of stimuli have been reported to alter V-ATPase assembly in yeast and higher eukaryotes. Glucose flux is one of the strongest and best-characterized regulators of V-ATPase; this review highlights current models explaining how glycolysis and V-ATPase are coordinated in both the Saccharomyces cerevisiae model fungus and in mammalian systems. Glucose-dependent assembly and trafficking of V-ATPase, V-ATPase-dependent modulations in glycolysis, and the recent discovery that glucose signaling through V-ATPase acts as a molecular switch to dictate anabolic versus catabolic metabolism are discussed. Notably, metabolic plasticity and altered glycolytic flux are critical drivers of numerous human pathologies, and the expression and activity of V-ATPase is often altered in disease states or can be pharmacologically manipulated as treatment. This overview will specifically discuss connections between V-ATPase and glycolysis in cancer.
Collapse
Affiliation(s)
- Summer R Hayek
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Hallie S Rane
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
32
|
Yeast at the Forefront of Research on Ageing and Age-Related Diseases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:217-242. [PMID: 30911895 DOI: 10.1007/978-3-030-13035-0_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ageing is a complex and multifactorial process driven by genetic, environmental and stochastic factors that lead to the progressive decline of biological systems. Mechanisms of ageing have been extensively investigated in various model organisms and systems generating fundamental advances. Notably, studies on yeast ageing models have made numerous and relevant contributions to the progress in the field. Different longevity factors and pathways identified in yeast have then been shown to regulate molecular ageing in invertebrate and mammalian models. Currently the best candidates for anti-ageing drugs such as spermidine and resveratrol or anti-ageing interventions such as caloric restriction were first identified and explored in yeast. Yeasts have also been instrumental as models to study the cellular and molecular effects of proteins associated with age-related diseases such as Parkinson's, Huntington's or Alzheimer's diseases. In this chapter, a review of the advances on ageing and age-related diseases research in yeast models will be made. Particular focus will be placed on key longevity factors, ageing hallmarks and interventions that slow ageing, both yeast-specific and those that seem to be conserved in multicellular organisms. Their impact on the pathogenesis of age-related diseases will be also discussed.
Collapse
|
33
|
Coccetti P, Nicastro R, Tripodi F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae. MICROBIAL CELL 2018; 5:482-494. [PMID: 30483520 PMCID: PMC6244292 DOI: 10.15698/mic2018.11.655] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
All proliferating cells need to match metabolism, growth and cell cycle progression with nutrient availability to guarantee cell viability in spite of a changing environment. In yeast, a signaling pathway centered on the effector kinase Snf1 is required to adapt to nutrient limitation and to utilize alternative carbon sources, such as sucrose and ethanol. Snf1 shares evolutionary conserved functions with the AMP-activated Kinase (AMPK) in higher eukaryotes which, activated by energy depletion, stimulates catabolic processes and, at the same time, inhibits anabolism. Although the yeast Snf1 is best known for its role in responding to a number of stress factors, in addition to glucose limitation, new unconventional roles of Snf1 have recently emerged, even in glucose repressing and unstressed conditions. Here, we review and integrate available data on conventional and non-conventional functions of Snf1 to better understand the complexity of cellular physiology which controls energy homeostasis.
Collapse
Affiliation(s)
- Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| | - Raffaele Nicastro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,Present address: Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO, Centre of Systems Biology, Milan, Italy
| |
Collapse
|
34
|
The Small Yeast GTPase Rho5 and Its Dimeric GEF Dck1/Lmo1 Respond to Glucose Starvation. Int J Mol Sci 2018; 19:ijms19082186. [PMID: 30049968 PMCID: PMC6121567 DOI: 10.3390/ijms19082186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 12/25/2022] Open
Abstract
Rho5 is a small GTPase of Saccharomyces cerevisiae and a homolog of mammalian Rac1. The latter regulates glucose metabolism and actin cytoskeleton dynamics, and its misregulation causes cancer and a variety of other diseases. In yeast, Rho5 has been implicated in different signal transduction pathways, governing cell wall integrity and the responses to high medium osmolarity and oxidative stress. It has also been proposed to affect mitophagy and apoptosis. Here, we demonstrate that Rho5 rapidly relocates from the plasma membrane to mitochondria upon glucose starvation, mediated by its dimeric GDP/GTP exchange factor (GEF) Dck1/Lmo1. A function in response to glucose availability is also suggested by synthetic genetic phenotypes of a rho5 deletion with gpr1, gpa2, and sch9 null mutants. On the other hand, the role of mammalian Rac1 in regulating the action cytoskeleton does not seem to be strongly conserved in S. cerevisiae Rho5. We propose that Rho5 serves as a central hub in integrating various stress conditions, including a crosstalk with the cAMP/PKA (cyclic AMP activating protein kinase A) and Sch9 branches of glucose signaling pathways.
Collapse
|