1
|
Li Z, Li Y, Liu C, Gu Y, Han G. Research progress of the mechanisms and applications of ginsenosides in promoting bone formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155604. [PMID: 38614042 DOI: 10.1016/j.phymed.2024.155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS Ginsenoside monomers regulate signaling pathways such as WNT/β-catenin, FGF, and BMP/TGF-β, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/β-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.
Collapse
Affiliation(s)
- Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
2
|
Gasmi A, Noor S, Dadar M, Semenova Y, Menzel A, Gasmi Benahmed A, Bjørklund G. The Role of Traditional Chinese Medicine and Chinese Pharmacopoeia in the Evaluation and Treatment of COVID-19. Curr Pharm Des 2024; 30:1060-1074. [PMID: 38523518 DOI: 10.2174/0113816128217263240220060252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
The epidemic prompted by COVID-19 continues to spread, causing a great risk to the general population's safety and health. There are still no drugs capable of curing it. Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the two other diseases caused by coronaviruses. Traditional Chinese Medicine (TCM) showed benefits in treating SARS and MERS by preventing the disease early, substantially mitigating symptoms, shortening the treatment period, and minimizing risks and adverse reactions caused by hormone therapy. Although several vaccines have been developed and are being used for the treatment of COVID-19, existing vaccines cannot provide complete protection against the virus due to the rapid evolution and mutation of the virus, as mutated viral epitopes evade the vaccine's target and decrease the efficacy of vaccines. Thus, there is a need to develop alternative options. TCM has demonstrated positive effects in the treatment of COVID-19. Previous research studies on TCM showed broad-spectrum antiviral activity, offering a range of possibilities for their potential use against COVID-19. This study shed some light on common TCM used for SARS and MERS outbreaks and their effective use for COVID-19 management. This study provides new insights into COVID-19 drug discovery.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Dadar
- CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
3
|
Chandra Das R, Ratan ZA, Rahman MM, Runa NJ, Mondal S, Konstantinov K, Hosseinzadeh H, Cho JY. Antiviral activities of ginseng and its potential and putative benefits against monkeypox virus: A mini review. J Ginseng Res 2023; 47:S1226-8453(23)00028-3. [PMID: 37362081 PMCID: PMC10065872 DOI: 10.1016/j.jgr.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Due to the Covid-19 pandemic more than 6 million people have died, and it has bought unprecedented challenges to our lives. The recent outbreak of monkeypox virus (MPXV) has brought out new tensions among the scientific community. Currently, there is no specific treatment protocol for MPXV. Several antivirals, vaccinia immune globulin (VIG) and smallpox vaccines have been used to treat MPXV. Ginseng, one of the more famous among traditional medicines, has been used for infectious disease for thousands of years. It has shown promising antiviral effects. Ginseng could be used as a potential adaptogenic agent to help prevent infection by MPXV along with other drugs and vaccines. In this mini review, we explore the possible use of ginseng in MPXV prevention based on its antiviral activity.
Collapse
Affiliation(s)
- Rajib Chandra Das
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
- School of Health and Society, University of Wollongong, NSW, Australia
| | - Md Mustafizur Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh
| | | | - Susmita Mondal
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW, Australia
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU, Suwon, Republic of Korea
| |
Collapse
|
4
|
Athari SZ, Karamouz Z, Nourazar MA, Doustar Y, Anzabi Y. Effect of hydro-alcoholic extract of Panax ginseng and Ampicillin treatment in an animal model of Listeria monocytogenes-induced endocarditis. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:109-117. [PMID: 37333474 PMCID: PMC10274313 DOI: 10.22038/ajp.2022.21227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 06/20/2023]
Abstract
Objective Endocarditis is a rare but serious infection caused by Listeria monocytogenes. Panax ginseng demonstrated multiple immunomodulatory effects in earlier studies. Ampicillin is known as an effective antibiotic in the treatment of this disease. Therefore, this study aimed to evaluate the effect of hydro-alcoholic extract of P. ginseng and ampicillin treatment in an animal model of Listeria monocytogenes-induced endocarditis. Materials and Methods Thirty mice, 5-7 weeks old, were randomly divided into five groups (n=6) including Healthy Control, Infected, Ampicillin (20 mg/kg, subcutaneous) treatment, Ginseng (0.025 mg/kg, intraperitoneal) treatment, and Ginseng (0.025 mg/kg, intraperitoneal) +Ampicillin (15 mg/kg, subcutaneous) treatment groups. The concentration of cytokines in heart tissue, such as IL-1 (interleukine-1), IL-6, IL-8, and TNF-α (Tumor Necrosis Factor-α), was measured. Histopathological changes were evaluated in heart tissues. Results The levels of cytokines were significantly decreased in the Ampicillin+Ginseng treated group compared to the other experimental groups. Microscopically, pathologic changes in heart tissue were concomitant with biochemical findings, which in the infected group, neutrophils and mononuclear cells infiltration in endocardial tissue, myocardial cell necrosis, and edema were detectable. The Ampicillin+Ginseng group showed no significant changes compared to the normal control group. Conclusion This study showed that ginseng hydro-alcoholic extract plus ampicillin has better efficacy than the extract or antibiotic alone against experimental endocarditis caused by Listeriosis.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Karamouz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Mir Alireza Nourazar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Yousef Doustar
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Younes Anzabi
- Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
5
|
Protective effects of Korean Red Ginseng against toxicity of endocrine-disrupting chemicals. J Ginseng Res 2023; 47:193-198. [PMID: 36926605 PMCID: PMC10014227 DOI: 10.1016/j.jgr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Several chemicals have been developed owing to the progression of industrialization, among which endocrine-disrupting chemicals (EDCs; essential for plastic production) are used as plasticizers and flame retardants. Plastics have become an essential element in modern life because they provide convenience, thus increasing EDCs exposure to humans. EDCs cause adverse effects such as deterioration of reproductive function, cancer, and neurological abnormalities by disrupting the endocrine system and hence are classified as "dangerous substances." Additionally, they are toxic to various organs but continue to be used. Therefore, it is necessary to review the contamination status of EDCs, select potentially hazardous substances for management, and monitor the safety standards. In addition, it is necessary to discover substances that can protect against EDC toxicity and conduct active research on the protective effects of these substances. According to recent research, Korean Red Ginseng (KRG) exhibits protective effects against several toxicities caused by EDCs to humans. In this review, the effects of EDCs on the human body and the role of KRG in protection against EDC toxicity are discussed.
Collapse
|
6
|
He Z, Xu X, Wang C, Li Y, Dong B, Li S, Zeng J. Effect of Panax quinquefolius extract on Mycobacterium abscessus biofilm formation. BIOFOULING 2023; 39:24-35. [PMID: 36644897 DOI: 10.1080/08927014.2023.2166405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Mycobacterium abscessus (M. abscessus) can exist either as planktonic bacteria or as a biofilm. Biofilm formation is one of the important causes of conversion to resistance to antibiotics of bacteria that were previously sensitive when in their planktonic form, resulting in infections difficult to manage. Panax quinquefolius and its active ingredient ginsenosides have the potential ability in fighting pathogenic infections. In this study, the P. quinquefolius extract (PQE) showed good antibacterial/bactericidal activity against the M. abscessus planktonic cells. The extract reduced the biomass, thickness, and number of M. abscessus in the biofilm and altered its morphological characteristics as well as the spatial distribution of dead/alive bacteria. Moreover, the ginsenoside CK monomer had a similar inhibitory effect on M. abscessus planktonic bacteria and biofilm formation. Therefore, PQE and its monomer CK might be potential novel antimicrobial agents for the clinical prevention and treatment of M. abscessus, including biofilms in chronic infections.
Collapse
Affiliation(s)
- Zhiqun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xinyue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Baoyu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shuai Li
- Pharmaceutical Research Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Miedziaszczyk M, Bajon A, Jakielska E, Primke M, Sikora J, Skowrońska D, Idasiak-Piechocka I. Controversial Interactions of Tacrolimus with Dietary Supplements, Herbs and Food. Pharmaceutics 2022; 14:pharmaceutics14102154. [PMID: 36297591 PMCID: PMC9611668 DOI: 10.3390/pharmaceutics14102154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Tacrolimus is an immunosuppressive calcineurin inhibitor used to prevent rejection in allogeneic organ transplant recipients, such as kidney, liver, heart or lung. It is metabolized in the liver, involving the cytochrome P450 (CYP3A4) isoform CYP3A4, and is characterized by a narrow therapeutic window, dose-dependent toxicity and high inter-individual and intra-individual variability. In view of the abovementioned facts, the aim of the study is to present selected interactions between tacrolimus and the commonly used dietary supplements, herbs and food. The review was based on the available scientific literature found in the PubMed, Scopus and Cochrane databases. An increase in the serum concentration of tacrolimus can be caused by CYP3A4 inhibitors, such as grapefruit, pomelo, clementine, pomegranate, ginger and turmeric, revealing the side effects of this drug, particularly nephrotoxicity. In contrast, CYP3A4 inducers, such as St. John’s Wort, may result in a lack of therapeutic effect by reducing the drug concentration. Additionally, the use of Panax ginseng, green tea, Schisandra sphenanthera and melatonin in patients receiving tacrolimus is highly controversial. Therefore, since alternative medicine constitutes an attractive treatment option for patients, modern healthcare should emphasize the potential interactions between herbal medicines and synthetic drugs. In fact, each drug or herbal supplement should be reported by the patient to the physician (concordance) if it is taken in the course of immunosuppressive therapy, since it may affect the pharmacokinetic and pharmacodynamic parameters of other preparations.
Collapse
Affiliation(s)
- Miłosz Miedziaszczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Correspondence:
| | - Aleksander Bajon
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Ewelina Jakielska
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Marta Primke
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Jędrzej Sikora
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Dagmara Skowrońska
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Ilona Idasiak-Piechocka
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
8
|
Yasri S, Wiwanitkit V. Usefulness of ginseng in management of dengue: a bioinformatics pathway interrelationship analysis. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2022; 14:114-117. [PMID: 35619663 PMCID: PMC9123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The function of traditional herbs in tropical illness therapy is interesting. Many researches are currently being conducted on the effects of traditional herbs on a number of tropical ailments, including dengue fever. METHODS In this short paper, we used network pharmacology to determine a shared biological pathway for the pharmacological impact of ginseng, a traditional Asian herb, and the pathophysiological process of dengue fever, a serious tropical vector-borne disease. RESULTS Using interrelationship analysis, the authors were able to discover the common pathway via the vimentin node. CONCLUSION It's possible that ginseng could help in dengue fever therapy.
Collapse
Affiliation(s)
| | - Viroj Wiwanitkit
- Dr DY Patil UiversityPune, India
- Joseph Ayobabalola UniversityIkeji-Arakeji, Nigeria
- Hainan Medical UniversityHaikou, China
- Faculty of Medicine, University of NisNis, Serbia
| |
Collapse
|
9
|
Kang SH, Cha HJ, Jung SW, Lee SJ. Application of chitosan-ZnO nanoparticle edible coating to wild-simulated Korean ginseng root. Food Sci Biotechnol 2022; 31:579-586. [PMID: 35529686 PMCID: PMC9033911 DOI: 10.1007/s10068-022-01054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
Chitosan-ZnO nanoparticle (ZnONP) edible coating was applied to extend shelf life of wild-simulated Korean ginseng root (WsKG). In antimicrobial testing of various coating solutions (0.01, 0.02, 0.03% ZnONP), Bacillus cereus (Gram-positive) and Escherichia coli (Gram-negative) were most inhibited by the 0.03% chitosan-ZnONP solution. The 0.03% chitosan-ZnONP solution was finally used for edible coating of WsKG. In SEM analysis, the coat of chitosan and ZnONP was well-formed on the surface of WsKG. In isothermal storage tests (temperature: 5–20 °C, RH: 95%), microbial limit (4.70 log CFU/g) of total aerobic bacteria for non-coated and coated WsKG were reached at 3.9 and 6.3 weeks at 5 °C, 1.9 and 4.3 weeks at 10 °C, and 1.3 and 2.0 weeks at 20 °C, respectively. Mold occurred in the non-coated sample at 4 weeks at 5 °C, but not in the coated sample during 6 weeks. Chitosan-ZnONP edible coating was very effective in preserving WsKG.
Collapse
Affiliation(s)
- Soo Hyun Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Hee Jin Cha
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Seung Won Jung
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Seung Ju Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
10
|
Cardos IA, Zaha DC, Sindhu RK, Cavalu S. Revisiting Therapeutic Strategies for H. pylori Treatment in the Context of Antibiotic Resistance: Focus on Alternative and Complementary Therapies. Molecules 2021; 26:molecules26196078. [PMID: 34641620 PMCID: PMC8512130 DOI: 10.3390/molecules26196078] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/15/2022] Open
Abstract
The prevalence of Helicobacter pylori infection remains significant worldwide and it depends on many factors: gender, age, socio-economic status, geographic area, diet, and lifestyle. All successful infectious diseases treatments use antibiotic-susceptibility testing, but this strategy is not currently practical for H. pylori and the usual cure rates of H. pylori are lower than other bacterial infections. Actually, there is no treatment that ensures complete eradication of this pathogen. In the context of an alarming increase in resistance to antibiotics (especially to clarithromycin and metronidazole), alternative and complementary options and strategies are taken into consideration. As the success of antibacterial therapy depends not only on the susceptibility to given drugs, but also on the specific doses, formulations, use of adjuvants, treatment duration, and reinfection rates, this review discusses the current therapies for H. pylori treatment along with their advantages and limitations. As an alternative option, this work offers an extensively referenced approach on natural medicines against H. pylori, including the significance of nanotechnology in developing new strategies for treatment of H. pylori infection.
Collapse
Affiliation(s)
- Ioana Alexandra Cardos
- Faculty of Medicine and Pharmacy, Doctoral School of Biomedical Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Dana Carmen Zaha
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, India
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 1 University Street, 410087 Oradea, Romania
- Correspondence: (D.C.Z.); (R.K.S.); (S.C.)
| |
Collapse
|
11
|
Ahmed S, Shohael AM, Paek KY. Evaluation of growth and some unexplored bioactivities of bioreactor grown adventitious root culture of ginseng (Panax ginseng C.A. Meyer). Biotechnol Appl Biochem 2021; 69:2046-2060. [PMID: 34622986 DOI: 10.1002/bab.2266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/19/2021] [Indexed: 11/11/2022]
Abstract
The purpose of the present study was to evaluate the growth potential and some rarely reported bioactivities (antioxidant, thrombolytic, anticoagulant, and anthelmintic) of Panax ginseng C.A. Meyer adventitious roots. To demonstrate the growth, shake flask and laboratory-scale bioreactor cultures have been employed. The obtained biomass was dried and extracted with water, ethanol, and methanol. The growth ratio (12.62 ± 1.03) observed in the bioreactor was significantly higher than in the shake flask culture. The presence of 10 different phytochemical classes, including carbohydrates, saponins, glycosides, and terpenoids were detected in qualitative estimation. Significant quantities of phenolics, flavonoids, proteins, and tannins were determined. Dose-dependent antioxidant activities were observed, and the IC50 values of methanolic and ethanolic extracts were very similar to the standard. The highest (29.26 ± 5.31%) thrombolytic potential was shown by the methanolic extract. The ethanolic extract significantly extended the coagulation times up to 2.5 fold. The highest anthelmintic properties in terms of paralyzing (2.21 ± 0.31 min) and killing (3.69 ± 0.41 min) of the parasitic worms were displayed by the aqueous extract. The in vitro root growth implies the commercial feasibility of ginseng production in Bangladesh and the demonstration of potential bioactivities strengthens medicinal implications and also offering new research areas.
Collapse
Affiliation(s)
- Sium Ahmed
- Cell Genetics and Plant Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Abdullah Mohammad Shohael
- Cell Genetics and Plant Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Kee Yoeup Paek
- Research Center for the Development of Advanced Horticultural Technology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
12
|
Yi YS. New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114292. [PMID: 34089812 DOI: 10.1016/j.jep.2021.114292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng is an ethnopharmacological herbal plant in Asian countries, particularly in Korea, China, and Japan. Ginseng saponins, including ginsenosides, are major active components in ginseng and have been demonstrated to have numerous pharmacological effects on various human diseases. AIM OF THE REVIEW Many previous studies investigating the anti-inflammatory effect of ginseng saponins have mostly focused on the 'priming' step rather than the 'triggering' step. This review aims to discuss the studies investigating an inhibitory role of ginseng saponins in inflammasome activation of the triggering step. MATERIALS AND METHODS The literature was explored using the search strings, such as "ginseng saponins and inflammasomes" and "ginsenosides and inflammasomes" in several resources, such as PubMed, Google Scholar, and Scopus databases. RESULTS Various ginseng saponins of Panax ginseng, Panax japonicas, and Panax quinquefolius alleviated inflammatory responses and diseases by inhibiting the nucleotide-binding oligomerization domain-like receptor (NLR) P3 (NLRP3) inflammasome activation. Also, ginseng saponin, Rg1 of Panax ginseng alleviated neuroinflammation and diseases by inhibiting NLRP1 inflammasome activation. Finally, ginseng saponins, Rh1 and Rg3 in Korea red ginseng (KRG) of Panax ginseng ameliorated sepsis by inhibiting absent in melanoma 2 (AIM2) inflammasome activation. CONCLUSION The studies discussed in this review provide insight into the new paradigm of the ginseng saponins as the promising anti-inflammatory agents that could be ethnopharmacologically used to prevent and treat inflammatory and inflammation-induced disorders via targeting inflammasomes.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Life Sciences, Kyonggi University, Suwon, 16227, Republic of Korea.
| |
Collapse
|
13
|
Zhou S, Feng J, Xie Q, Huang T, Xu X, Zhou D, Zhang W, Sun S, Liu X, Wu X, Che J, Fan T, Zou D, Wang J, Zhan D, Peng D, Feng Y, Yu G, Yuan Z, Fang B. Traditional Chinese medicine shenhuang granule in patients with severe/critical COVID-19: A randomized controlled multicenter trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153612. [PMID: 34126419 PMCID: PMC8161732 DOI: 10.1016/j.phymed.2021.153612] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is still a pandemic, with a high mortality rate in severe/critical cases. Therapies based on the Shenghuang Granule have proved helpful in viral infection and septic shock. HYPOTHESIS/PURPOSE The objective of the current study was to compare the efficacy and safety of the traditional Chinese medicine, Shenhuang Granule, with standard care in hospitalized patients with severe/critical COVID-19. STUDY DESIGN AND METHODS This was an open-label, multicenter, randomized, controlled clinical trial. At 4 medical centers, a total of 111 severe/critical patients were randomly assigned to receive Shenhuang Granule (SHG group) twice a day for 14 days, in addition to standard care, or to receive standard care alone (Control group). The maximal follow up time was 75 days. The clinical endpoint was clinical improvement and mortality. RESULTS 54 patients were assigned to the control group and 57 to the SHG group. The overall mortality was 75.9% (41/54) in the control group, and 38.6% (22/57) in the SHG group (p < 0.01 vs. control). The post hoc analysis showed that in the severe category, the mortality of the control group vs. the SHG group was 58.8% (10/17) vs. 5.3% (1/19) (p < 0.01); while in the critical category, it was 83.8% (31/37) vs. 55.3% (21/38) (p < 0.05). In the severe category, the mortality of patients who eventually received an invasive ventilator in the control vs. the SHG group was 58.8% (10/17) vs. 0 (0/19) (p < 0.01). Administration of SHG was associated with increased lymphocytes and decreased adverse events. CONCLUSION Shenhuang Granule is a promising integrative therapy for severe and critical COVID-19.
Collapse
Affiliation(s)
- Shuang Zhou
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China; Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai China, 201203
| | - Jun Feng
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Hankou, Wuhan, Hubei, 430030, China
| | - Qin Xie
- Wuhan Mental Health Center, Wuhan, 430012, China
| | - Tingrong Huang
- Huangshi Hospital of TCM (Infectious Disease Hospital), 6 Plaza Road, Huangshi Port District, Huangshi, Hubei, 435000, China
| | - Xiaoming Xu
- Medical Informatics Department, Wuhan Center Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Daixing Zhou
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Hankou, Wuhan, Hubei, 430030, China
| | - Wen Zhang
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Shuting Sun
- Clinical Medical College of TCM, Hubei University of Chinese Medicine, 1 Tanhualin, Wuchang District, Wuhan, Hubei, 430065, China
| | - Xudong Liu
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Hankou, Wuhan, Hubei, 430030, China
| | - Xinxin Wu
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Jinhua Che
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Tian Fan
- Medical Department of Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Dengxiu Zou
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Hankou, Wuhan, Hubei, 430030, China
| | - Junshuai Wang
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Hankou, Wuhan, Hubei, 430030, China
| | - Daqian Zhan
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Hankou, Wuhan, Hubei, 430030, China
| | - Dan Peng
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Hankou, Wuhan, Hubei, 430030, China
| | - Yikuan Feng
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Hankou, Wuhan, Hubei, 430030, China
| | - Gang Yu
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Hankou, Wuhan, Hubei, 430030, China
| | - Zuobiao Yuan
- American Academy of Acupuncture and Oriental Medicine. 1925 W County Rd B2, Roseville, MN 55113, USA.
| | - Bangjiang Fang
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China; Leishenshan Hospital of Wuhan, Wuhan, 430200, Hubei, China.
| |
Collapse
|
14
|
Najafi TF, Bahri N, Tohidinik HR, Feyz S, Bloki F, Savarkar S, Jahanfar S. Treatment of cancer-related fatigue with ginseng: A systematic review and meta-analysis. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Alsayari A, Muhsinah AB, Almaghaslah D, Annadurai S, Wahab S. Pharmacological Efficacy of Ginseng against Respiratory Tract Infections. Molecules 2021; 26:molecules26134095. [PMID: 34279434 PMCID: PMC8271507 DOI: 10.3390/molecules26134095] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are underestimated, as they are mild and generally not incapacitating. In clinical medicine, however, these infections are considered a prevalent problem. By 2030, the third most comprehensive reason for death worldwide will be chronic obstructive pulmonary disease (COPD), according to the World Health Organization. The current arsenal of anti-inflammatory drugs shows little or no benefits against COPD. For thousands of years, herbal drugs have been used to cure numerous illnesses; they exhibit promising results and enhance physical performance. Ginseng is one such herbal medicine, known to alleviate pro-inflammatory chemokines and cytokines (IL-2, IL-4, IFN-γ, TNF-α, IL-5, IL-6, IL-8) formed by macrophages and epithelial cells. Furthermore, the mechanisms of action of ginsenoside are still not fully understood. Various clinical trials of ginseng have exhibited a reduction of repeated colds and the flu. In this review, ginseng’s structural features, the pathogenicity of microbial infections, and the immunomodulatory, antiviral, and anti-bacterial effects of ginseng were discussed. The focus was on the latest animal studies and human clinical trials that corroborate ginseng’s role as a therapy for treating respiratory tract infections. The article concluded with future directions and significant challenges. This review would be a valuable addition to the knowledge base for researchers in understanding the promising role of ginseng in treating respiratory tract infections. Further analysis needs to be re-focused on clinical trials to study ginseng’s efficacy and safety in treating pathogenic infections and in determining ginseng-drug interactions.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Dalia Almaghaslah
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (A.B.M.); (S.A.)
- Correspondence: or
| |
Collapse
|
16
|
Lee YS, Kim KW, Yoon D, Kim GS, Kwon DY, Kang OH, Lee DY. Comparison of Antivirulence Activities of Black Ginseng against Methicillin-Resistant Staphylococcus aureus According to the Number of Repeated Steaming and Drying Cycles. Antibiotics (Basel) 2021; 10:antibiotics10060617. [PMID: 34064076 PMCID: PMC8224340 DOI: 10.3390/antibiotics10060617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Korean ginseng has been widely used in Eastern medicine for thousands of years. The contents of the compounds in ginseng roots change depending on the amount of steaming and drying, and the drying method used. Black ginseng (BG) is the Korean ginseng processed by repeated steaming and drying. In this study, 5-year-old fresh Korean ginseng roots were steamed and dried 3 or 5 times, and we investigated how many cycles of steaming and drying are preferable for antivirulence activities against methicillin-resistant Staphylococcus aureus (MRSA). As a result, the antivirulence activities was increased by the treatment of BG that was steamed and dried three times, and the effect was further increased by five-time processed BG. Moreover, an ELISA showed that the TNF-α production of RAW264.7 cells stimulated by MRSA supernatants was inhibited by subinhibitory concentrations of BG extract. The expression of Hla, staphylococcal enterotoxin A (SEA), and staphylococcal enterotoxin B (SEB), an important virulence factor in the pathogenicity of MRSA, was found to decrease when bacterial cells were treated with BG extract. The antivirulence activities of BG were not simply due to pathogen growth inhibition; the BG extract was shown to decrease agrA, hla, sea, and seb expression in MRSA. Therefore, BG strongly reduces the secretion of the virulence factors produced by Staphylococcus aureus, suggesting that a BG-based structure may be used for the development of drugs aimed at staphylococcal virulence-related exoproteins. This study suggests that BG could be used as a promising natural compound in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
| | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Korea; (D.-Y.K.); (O.-H.K.)
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Korea; (D.-Y.K.); (O.-H.K.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
- Correspondence:
| |
Collapse
|
17
|
Bian S, Zhao Y, Li F, Lu S, He Z, Wang S, Bai X, Zhao D, Liu M, Wang J. Total ginsenosides induce autophagic cell death in cervical cancer cells accompanied by downregulation of bone marrow stromal antigen-2. Exp Ther Med 2021; 22:667. [PMID: 33986832 PMCID: PMC8112150 DOI: 10.3892/etm.2021.10099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Ginsenosides are important active components in Panax ginseng. In the present study, total ginsenosides (TGNs) were demonstrated to enhance autophagy by promoting acidic vacuole organelle formation, recruitment of enhanced green fluorescent protein-microtubule-associated protein light chain 3 and expression of autophagy-related factors in cervical cancer cell lines. TGN markedly increased the expression of p62 at the transcriptional level, but decreased p62 protein expression in the presence of actinomycin D. The autophagic regulatory effect was reversible. TGN (≤120 µg/ml) did not affect the proliferation of cervical cancer cells under normal culture conditions, but markedly inhibited the growth of serum-deprived cells. Treatment with an inhibitor of autophagy (3-methyladenine) impaired TGN-induced cell death. This suggested that TGN caused autophagic cell death. In addition, western blot analysis demonstrated that the protein level of bone marrow stromal antigen-2 (BST-2) was downregulated by TGN. Upregulation of BST-2 reduced cell death. The results of the combined actions of various monomeric ginsenosides in TGN provide the molecular basis to develop TGN as a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Shuai Bian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Fangyu Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Shuyan Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Ziyan He
- College of Chemistry, Jilin University, Changchun, Jilin 13012, P.R. China
| | - Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xueyuan Bai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
18
|
You Q, Li L, Li D, Yang D, Chen L, Chen HP, Liu YP. Meta-Analysis on the Chinese Herbal Formula Xiaoer-Feike Granules as a Complementary Therapy for Children With Acute Lower Respiratory Infections. Front Pharmacol 2020; 11:496348. [PMID: 33192498 PMCID: PMC7642815 DOI: 10.3389/fphar.2020.496348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Over the past five years the Chinese herbal formula (CHF) medicine, Xiaoer-Feike granules (XFG), has become a widely used adjuvant therapy for acute lower respiratory infections (ALRI). Considering the rapid popularization and application of XFG, and the lack of systematic evidence evaluating its effectiveness and safety in treating ALRI, it is necessary to conduct a meta-analysis to determine its benefits for patients. Methods This study systematically identified randomized controlled trials (RCTs) of XFG treatments for ALRI through July 2019 using four English-databases (PubMed, Cochrane Library, Ovid, and Web of Science) and four Chinese-databases (Sino-med database, China National Knowledge Infrastructure (CNKI), VIP database, and the WANFANG database). We then performed a quality assessment and data analysis with Review Manager 5.3.5 and Stata 15.1. Results Twenty-one RCTs involving 3425 patients were randomly divided into an XFG group and a conventional medicine (CM) group. The results showed that the clinical efficacy rate (CER) of the XFG group was significantly higher than that of the CM group (RR=1.17, 95% CI =1.13-1.22, P< 0.00001). In comparison with the CM group, the XFG group had strikingly shortened: resolution time of cough (RTC) (MD = -1.92; 95% CI =-2.33, -1.51, P<0.00001); resolution time of rale (RTR) (MD = -1.68; 95% CI =-2.27, -1.10, P<0.00001); resolution time of fever (RTF) (MD = -1.46; 95% CI =-1.92, -1.00, P<0.00001); resolution time of inflammatory lesions (RTIL) (MD = -2.43, 95% CI =-2.94, -1.93, P< 0.00001); and hospital stays (HS) (MD = -2.26, 95% CI =-3.03, -1.49, P< 0.00001). At the cellular and molecular level, the CD4, CD8, CD4/CD8, IL-6, TNF-α, and CRP levels were significantly improved when CM was complemented with XFG. In addition, no significant difference was observed between the XFG and CM groups in terms of the adverse events (AE) (RR =0.97, 95% CI= 0.61-1.54, P= 0.89). Conclusions The findings of this meta-analysis support the use of XFG in the treatment of ALRI. However, these results should be treated with caution due to the significant heterogeneity and publication bias of existing data. Further well-designed and high-quality RCTs are needed to interrogate the efficacy and safety of XFG.
Collapse
Affiliation(s)
- Qiang You
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Li
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - You-Ping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Fan TT, Cheng BL, Fang XM, Chen YC, Su F. Application of Chinese Medicine in the Management of Critical Conditions: A Review on Sepsis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1315-1330. [PMID: 32907362 DOI: 10.1142/s0192415x20500640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical care medicine is a medical specialty engaging the diagnosis and treatment of critically ill patients who have or are likely to have life-threatening organ failure. Sepsis, a life-threatening condition that arises when the body responds to infection, is currently the major cause of death in intensive care units (ICU). Although progress has been made in understanding the pathophysiology of sepsis, many drawbacks in sepsis treatment remains unresolved. For example, antimicrobial resistance, controversial of glucocorticoids use, prolonged duration of ICU care and the subsequent high cost of the treatment. Recent years have witnessed a growing trend of applying traditional Chinese medicine (TCM) in sepsis management. The TCM application emphasizes use of herbal formulation to balance immune responses to infection, which include clearing heat and toxin, promoting blood circulation and removing its stasis, enhancing gastrointestinal function, and strengthening body resistance. In this paper, we will provide an overview of the current status of Chinese herbal formulations, single herbs, and isolated compounds, as an add-on therapy to the standard Western treatment in the sepsis management. With the current trajectory of worldwide pandemic eruption of newly identified Coronavirus Disease-2019 (COVID-19), the adjuvant TCM therapy can be used in the ICU to treat critically ill patients infected with the novel coronavirus.
Collapse
Affiliation(s)
- Tian-Tian Fan
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Bao-Li Cheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Xiang-Ming Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yong-Can Chen
- Gastroenterology of Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310007, P. R. China
| | - Fan Su
- Department of Anesthesiology, Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan 250014, P. R. China
| |
Collapse
|
20
|
Zhang D, Zhang B, Lv JT, Sa RN, Zhang XM, Lin ZJ. The clinical benefits of Chinese patent medicines against COVID-19 based on current evidence. Pharmacol Res 2020; 157:104882. [PMID: 32380051 PMCID: PMC7198419 DOI: 10.1016/j.phrs.2020.104882] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of emerging infectious pneumonia caused by 2019 Novel Coronavirus (2019-nCoV) has posed an enormous threat to public health, and traditional Chinese medicine (TCM) have made vast contribution to the prevention, treatment and rehabilitation of coronavirus disease 19 (COVID-19) among Chinese population. As an indispensable part of TCM, Chinese patent medicines (CPMs) are highly valued and critically acclaimed in their campaign to contain and tackle the epidemic, they can achieve considerable effects for both suspected cases under medical observation period, and confirmed individuals with serious underlying diseases or critical conditions. Given this, based on the Guideline on Diagnosis and Treatment of Coronavirus Disease 2019 in China, the present review summarized the basic information, clinical evidence and published literatures of recommended CPMs against COVID-19. The details were thoroughly introduced involving compositions, therapeutic effects, clinical indications, medication history of CPMs and the profiles of corresponding research. With regard to infected patients with different stages and syndrome, the preferable potentials and therapeutic mechanism of CPMs were addressed through the comprehensive collection of relevant literatures and on-going clinical trials. This study could provide an insight into clinical application and underlying mechanism of recommended CPMs against COVID-19, with the aim to share the Chinese experience in clinical practice and facilitate scientific development of TCM, especially CPMs in the fierce battle of COVID-19.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Jin-Tao Lv
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ri-Na Sa
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Pharmacy Department, Gansu Provincial Hospital, Lanzhou, China
| | - Xiao-Meng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Jian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Fang B, Zhang W, Wu X, Huang T, Li H, Zheng Y, Che J, Sun S, Jiang C, Zhou S, Feng J. Shenhuang granule in the treatment of severe coronavirus disease 2019 (COVID-19): study protocol for an open-label randomized controlled clinical trial. Trials 2020; 21:568. [PMID: 32580752 PMCID: PMC7312108 DOI: 10.1186/s13063-020-04498-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Currently, coronavirus disease 2019 (COVID-19) is continuously and rapidly circulating, causing heavy damage on public health. No effective antiviral treatment has been proved thus far. Traditional Chinese medicine (TCM) has been widely applied in the treatment of a variety of infection diseases in China, hoping to produce clinical effects and reduce the use of antibiotics and glucocorticoid. The aim of this study is to evaluate the efficacy and safety of Shenhuang granule in treatment of severe COVID-19. METHODS/DESIGN This multicenter, open-label randomized controlled trial is conducted in 160 participants with severe COVID-19. The participants will be randomly (1:1) divided into treatment group or control group. All participants are given standard therapy at the same time. The experiment will receive Shenhuang granule treatment twice a day for 14 days. The clinical indicators of patients will be assessed at baseline and at 3, 5, 7, and 14 days after treatment initiation. The primary outcome is 14-day clinical outcome. Adverse events will be monitored throughout the trial. DISCUSSION This will be the first randomized controlled trial, which evaluate the effect of Shenhuang granule in patients with severe COVID-19 in China. The results of this trial may not only provide evidence-based recommendations to clinicians to treat severe COVID-19, but also enrich the theory and practice of TCM in treating infectious diseases. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2000029777. Registered on 13 February 2020.
Collapse
Affiliation(s)
- Bangjiang Fang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, NO.725 Wanping South Road, Xuhui District, Shanghai, 200032, China
- Clinical Medical College of TCM, Hubei University of Chinese Medicine, NO.1 Tanhualin, Wuchang District, Wuhan, 430065, Hubei, China
| | - Wen Zhang
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, NO.725 Wanping South Road, Xuhui District, Shanghai, 200032, China
| | - Xinxin Wu
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, NO.725 Wanping South Road, Xuhui District, Shanghai, 200032, China
| | - Tingrong Huang
- Huangshi Hospital of TCM (Infectious Disease Hospital), NO.6 Plaza Road, Huangshi Port District, Huangshi, 435000, Hubei, China
| | - Huacheng Li
- Huangshi Hospital of TCM (Infectious Disease Hospital), NO.6 Plaza Road, Huangshi Port District, Huangshi, 435000, Hubei, China
| | - You Zheng
- Huangshi Hospital of TCM (Infectious Disease Hospital), NO.6 Plaza Road, Huangshi Port District, Huangshi, 435000, Hubei, China
| | - Jinhua Che
- Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, NO.725 Wanping South Road, Xuhui District, Shanghai, 200032, China
| | - Shuting Sun
- Clinical Medical College of TCM, Hubei University of Chinese Medicine, NO.1 Tanhualin, Wuchang District, Wuhan, 430065, Hubei, China
| | - Chao Jiang
- The Third Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, NO.167, Textile City East Street, Baqiao District, Xi'an, 710032, Shanxi, China
| | - Shuang Zhou
- Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, 201203, China.
| | - Jun Feng
- Department of Emergency Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, Hubei, China.
| |
Collapse
|
22
|
Lim SW, Luo K, Quan Y, Cui S, Shin YJ, Ko EJ, Chung BH, Yang CW. The safety, immunological benefits, and efficacy of ginseng in organ transplantation. J Ginseng Res 2020; 44:399-404. [PMID: 32372861 PMCID: PMC7195583 DOI: 10.1016/j.jgr.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
Korean ginseng (Panax ginseng) is associated with a variety of therapeutic effects, including antioxidative, anti-inflammatory, vasorelaxative, antiallergic, antidiabetic, and anticancer effects. Accordingly, the use of ginseng has reached an all-time high among members of the general public. However, the safety and efficacy of ginseng in transplant recipients receiving immunosuppressant drugs have still not been elucidated. Transplantation is the most challenging and complex of surgical procedures and may require causation for the use of ginseng. In this regard, we have previously examined the safety, immunological benefits, and protective mechanisms of ginseng with respect to calcineurin inhibitor-based immunosuppression, which is the most widely used regimen in organ transplantation. Using an experimental model of calcineurin inhibitor-induced organ injury, we found that ginseng does not affect drug levels in the peripheral blood and tissue, favorably regulates immune response, and protects against calcineurin inhibitor-induced nephrotoxicity and pancreatic islet injury. On the basis of our experimental studies and a review of the related literature, we propose that ginseng may provide benefits in organ transplant recipients administered calcineurin inhibitors. Through the present review, we aimed to briefly discuss our current understanding of the therapeutic benefits of ginseng related to transplant patient survival.
Collapse
Affiliation(s)
- Sun Woo Lim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang Luo
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yi Quan
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sheng Cui
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Jin Shin
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Ko
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Transplant Research Center, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
23
|
Shahiduzzaman M, Ras R, Widmer G. Effect of Ginsenoside-Rh2 and Curcurbitacin-B on Cryptosporidium parvum in vitro. Exp Parasitol 2020; 212:107873. [PMID: 32165146 DOI: 10.1016/j.exppara.2020.107873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/09/2022]
Abstract
Ginsenoside-Rh2 and cucurbitacin-B (CuB) are secondary metabolites of Ginseng (Panax ginseng) and Cucurbitaceae plants respectively. We assessed the anticryptosporidial activity of these two functional compounds in a cell culture model of cryptosporidiosis. The highest concentration of each compound that was not toxic to the host cells was used to assess the activity against C. parvum during infection/invasion and growth in HCT-8 cell monolayers. Monolayers were infected with pre-excysted C. parvum oocysts. Infected monolayers were incubated at 37 °C for 24 h and 48 h in the presence of different concentrations of each test compound. A growth resumption assay was performed by incubating infected monolayers in the presence of compounds for 24 h followed by a second 24-h incubation in the absence of compound. To screen for invasion inhibiting activity, freshly excysted C. parvum sporozoites were pre-treated with different concentrations of compounds prior to adding them to the cell monolayers. Paromomycin, a known inhibitor of C. parvum, and DMSO were used as positive and negative control, respectively. The level of infection was initially assessed using an immunofluorescent assay and quantified by real-time PCR. Both compounds were found to strongly inhibit C. parvum intracellular development in a dose-dependent manner. IC50 values of 25 μM for a 24 h development period and 5.52 μM after 48 h development were measured for Rh2, whereas for CuB an IC50 value of 0.169 μg/ml and 0.118 μg/ml were obtained for the same incubation periods. CuB also effectively inhibited resumption of growth, an activity that was not observed with Rh2. CuB was more effective at inhibiting excystation and/or host cell invasion, indicating that this compound also targets extracellular stages of the parasite.
Collapse
Affiliation(s)
- Md Shahiduzzaman
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA; Department of Parasitology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Refaat Ras
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA; Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Giovanni Widmer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| |
Collapse
|
24
|
20(S)-Ginsenoside Rg3 Promotes HeLa Cell Apoptosis by Regulating Autophagy. Molecules 2019; 24:molecules24203655. [PMID: 31658733 PMCID: PMC6832142 DOI: 10.3390/molecules24203655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
20(S)-Ginsenoside Rg3 (GRg3) has various bioactivities including anti-cancer effects and inhibition of autophagy. However, no reports have investigated the appearance of autophagy or the connection between autophagy and apoptosis in HeLa cells treated with 20(S)-GRg3. Cell viability was measured by CCK-8 (cell counting kit-8) assays. Apoptosis and the cell cycle were analyzed by Hoechst 33342 staining and flow cytometry. Apoptotic pathways were examined by ROS (reactive oxygen species) determination and rhodamine 123 assays. Western blot analysis was used to determine changes in protein levels. Autophagy induction was monitored by acidic vesicular organelle staining and EGFP-LC3 transfection. 20(S)-GRg3 inhibited autophagy of cells in a starved state, making it impossible for cells to maintain a steady state through autophagy, and then induced apoptosis. 20(S)-GRg3 blocked the late stage of autophagy (fusion of lysosomes and degradation of autophagic lysosomes), including a decrease in acidic vesicular organelle fluorescence, increased LC3 I–II conversion, accumulation of EGFP-LC3 fluorescence, GFP-mRFP-LC3 red-green fluorescence ratio, degradation of the substrate p62, and loss of the balance between autophagy and apoptosis, which induced apoptosis. ROS increased, the mitochondrial membrane potential decreased, apoptotic inducer AIF was released from mitochondria, and nuclear transfer occurred, triggering a series of subsequent apoptotic events. Autophagy inducer rapamycin inhibited the apoptosis induced by 20(S)-GRg3, whereas autophagy inhibitor BA1 promoted apoptosis induced by 20(S)-GRg3. Therefore, 20(S)-GRg3 promoted HeLa cell apoptosis by regulating autophagy. In the autophagic state, 20(S)-GRg3 can be used as a novel autophagy inhibitor in synergy with tumor-blocking therapies such as chemotherapy, which supports its application in the medical field.
Collapse
|
25
|
Fullybright R. Characterization of Biological Resistance and Successful Drug Resistance Control in Medicine. Pathogens 2019; 8:E73. [PMID: 31159292 PMCID: PMC6631572 DOI: 10.3390/pathogens8020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 11/28/2022] Open
Abstract
It has now been a century that drug resistance has been getting worse in human infectious diseases medicine. A similar trend is observed in veterinary medicine and agriculture. The successful control of drug resistance requires an understanding of biological resistance in general, as a phenomenon taking place in nature. Once we have understood the main characteristics of biological resistance and how it operates in nature, we can then apply that new understanding to its subset that drug resistance in human medicine is. Possession of such an edge can also lead to the successful control of resistance in veterinary medicine, in agriculture, and in other settings of resistance activity by biological organisms. Based on biological resistance data from human medicine, veterinary medicine, and agriculture, some of the fundamental characteristics of resistance as a natural process displayed by all living organisms are established. The consistent, common features characterizing the data are exploited, as is a mathematical model depicting how biological resistance strengthens in living organisms. It is found that biological resistance in general, and drug resistance in particular, is a phenomenon governed by at least two laws: the First Law of Resistance, requiring a threshold to be met before resistance can be prevented and the Second Law of Resistance, causing resistance to strengthen to infinite levels if unstopped. Inference is thereafter made as to the drug design strategy required for the successful control of resistance in medicine. To that end, the blueprint currently applied in the design of infectious diseases drugs needs revising.
Collapse
Affiliation(s)
- Rudolf Fullybright
- Department of Applied Research, Applied-Research Center for True Development, Montréal, QC H1W 0A3, Canada.
| |
Collapse
|